JP2011233476A - 固体酸化物形燃料電池モジュール - Google Patents

固体酸化物形燃料電池モジュール Download PDF

Info

Publication number
JP2011233476A
JP2011233476A JP2010105437A JP2010105437A JP2011233476A JP 2011233476 A JP2011233476 A JP 2011233476A JP 2010105437 A JP2010105437 A JP 2010105437A JP 2010105437 A JP2010105437 A JP 2010105437A JP 2011233476 A JP2011233476 A JP 2011233476A
Authority
JP
Japan
Prior art keywords
stack
plate
gas
reformer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010105437A
Other languages
English (en)
Inventor
Fumio Hashimoto
文夫 橋本
Takayuki Hashimoto
隆之 橋本
Kunio Komori
国生 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FCO HOLDING Inc
Original Assignee
FCO HOLDING Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCO HOLDING Inc filed Critical FCO HOLDING Inc
Priority to JP2010105437A priority Critical patent/JP2011233476A/ja
Publication of JP2011233476A publication Critical patent/JP2011233476A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】板状スタックを用いて、起動性や熱効率に優れた固体酸化物形燃料電池モジュールを提供する。
【解決手段】薄肉のセルを積層一体化してなる板状スタック3と、燃料を水蒸気改質する改質器4と、水を気化して改質器4へ送出する水蒸気発生器5と、加熱ガスを送出する加熱装置6とを断熱性筐体2に収容し、改質器4を、間隙21を挟んで板状スタック3の一面と対向するように配置するとともに、水蒸気発生器5を、間隙22を挟んで板状スタック3の他面と対向するように配置し、さらに、加熱装置6を、板状スタック3の側縁と対向する位置から板状スタック3に向けて加熱ガスを送出するように配置し、加熱装置6が送出する加熱ガスが板状スタック3の両面側の間隙21,22を夫々通過するようにする。
【選択図】図8

Description

本発明は、スタックや改質器等を断熱性筐体に収容してなる固体酸化物形燃料電池モジュールに関する。
高温型燃料電池である固体酸化物形燃料電池は、熱効率の良さから最近低温型燃料電池である高分子型の燃料電池よりも有望視されるようになってきた。然るに、通常体積出力密度が低く(約500W/L)、セラミックの単セルを数百枚積層(スタッキング)して初めて所望の出力が得られるため、特に家庭用のコージェネ用のシステムとして設置しようとした場合にそのシステムのサイズの大きさが課題となり、燃料電池コージェネが普及しないという大きな要因を占めている。これと同時に、価格の高さがCO2を削減するのに有効と言われつつ普及を妨げる最大要因となっている。
固体酸化物形燃料電池の高い作動温度(500〜1000℃)は、高分子型の燃料電池に比べて、高価な貴金属触媒を使わなくてもよいという利点がある。その半面、起動時には、作動温度に達するまで電池を加熱しなくてはならない。特に、断熱材でもあるセラミック系の材料は加熱され難く、かといって、急激に加熱すれば、外部と内部の熱応力差が大きくなり破壊されてしまうため、作動温度に達するまでの時間、即ち起動時間が長いという欠点がある。一般的に自動車のように短時間で起動させる必要がある燃料電池としては不適であるといわれるのはそのためである。
システムのサイズに関しては、従来の固体酸化物形燃料電池は、スタックとこれに改質燃料を供給する改質器が個別に設置されており、システム全体を小型化する阻害要因にもなっていた。こうした現状にあって、小型化を目的として、断熱性筐体にスタック、改質器、水蒸気発生器、及び加熱用のガスバーナーとを収容してモジュール化した固体酸化物形燃料電池モジュールが提案されている(特許文献1参照)。かかる固体酸化物形燃料電池モジュールは、板状セルを縦横寸法と同程度かそれ以上に積層したブロック状のスタックを採用したものであり、起動時には、ガスバーナーによってスタックを積層方向から加熱するよう構成されている。
また、発明者等は、固体酸化物形燃料電池スタックの各構成要素をテープキャスト法などのキャスティングによるシート成形法で作製し、これらを積層して一体焼成する技術を開発している(特許文献2参照)。
特開2009−272117号公報 国際公開第2009/119771号パンフレット
発明者等は、前記特許文献2の技術を用いることにより、スタックの主要構成要素である電極、電解質、及びセパレータの全てを薄層化し、これらを積層一体化したスタックを開発した。かかるスタックは、既存の固体酸化物形燃料電池スタックと比較して、単セルが極めて薄くなり、体積出力密度を大幅に向上し得るため、縦横寸法よりも格段に薄い板状スタックとなる。例えば、かかる技術を用いれば、50セルのスタックを約10mmの厚さで積層し、焼成したものが得られる。
このように、発明者等が開発した積層一体型の板状スタックは、固体酸化物形燃料電池の実用化の課題とされてきた小型化に大いに貢献し得るものであり、また、熱容量も大幅に減少するため、起動性や熱効率を大幅に改善できる可能性がある。しかしながら、かかる板状スタックは、従来のブロック状スタックとは、形状、熱容量、出力密度等が大きく異なるため、特許文献1のようにブロック状のスタックに適合したモジュールでは、板状スタックの長所を十分に活かすことができない。
本発明は、かかる現状に鑑みてなされたものであり、上記板状スタックを用いて、起動性や熱効率に優れた固体酸化物形燃料電池モジュールを提供することを目的とするものである。
本発明は、薄肉のセルを積層一体化してなる板状スタックと、燃料を水蒸気改質する改質器と、水を気化して前記改質器へ送出する水蒸気発生器と、加熱ガスを送出する加熱装置とを断熱性筐体に収容してなり、前記改質器は、間隙を挟んで前記板状スタックの一面と対向するように配置され、前記水蒸気発生器は、間隙を挟んで前記板状スタックの他面と対向するように配置され、前記加熱装置は、前記板状スタックの側縁と対向する位置から前記板状スタックに向けて加熱ガスを送出するように配置され、前記加熱装置が送出する加熱ガスが前記板状スタックの両面側の前記間隙を夫々通過するよう構成されていることを特徴とする固体酸化物形燃料電池モジュールである。
かかる構成にあっては、薄い板状スタックの側縁に対向する位置から加熱ガスを送出することで、板状スタックの両面側に偏りなく加熱ガスを流すことができ、これにより、板状スタックをムラなく加熱可能となる。このように、板状スタックを両面側から加熱すれば、片面側から加熱する場合に比べて、単純計算で2倍の熱量を加えることができる。また、片面側から加熱する場合に比べて、板状スタックの温度分布の差が小さくなるから、板状スタックを比較的強力に加熱してもひび割れが生じ難い。したがって、本発明の固体酸化物形燃料電池モジュールでは、起動時に板状スタックを急速に加熱可能となる。
また、板状スタックの両面側に改質器及び水蒸気発生器を対向状に配置しているため、板状スタックの加熱と同時に、改質器及び水蒸気発生器も加熱ガスによって加熱でき、固体酸化物形燃料電池モジュールの起動時には、加熱装置を用いて3つの装置を同時に、効率的に加熱可能となる。
また、本発明に係る積層一体型の板状スタックは、ブロック状スタックに比べて体積出力密度が高く、多量の輻射熱を放射する。また、厚みが薄いため、その輻射熱の殆どは板状スタックの両面から放射される。本発明では、かかる板状スタックの両面側に改質器及び水蒸気発生器を対向状に配置しているため、発電中は、板状スタックから放射される多量の輻射熱を利用して、改質器及び水蒸気発生器を効率よく加熱できる。
また、本発明にあって、前記改質器は、板状をなし、前記断熱性筐体の内部を仕切るように配設されて、前記板状スタックと対向する面の裏側に間隙状の副空隙を区画形成しており、前記板状スタックの両面側の前記間隙を通過した加熱ガスが、前記副空隙に流入して該副空隙内で前記改質器の板面に沿って流れるよう構成されていることが提案される。すなわち、かかる構成によれば、板状スタックの両面側の間隙で熱交換を終えた加熱ガスを利用して、改質器を副空隙でさらに加熱可能となるから、加熱ガスの熱を一層効率的に活用可能となる。
また、本発明にあって、前記水蒸気発生器は、前記板状スタックの前記他面側に、蛇行状に配置された金属パイプである構成が提案される。かかる構成にあっては、金属パイプを蛇行状に配置することで、板状スタックと水蒸気発生器の対向面積を増加させることができ、これにより、間隙を通過する加熱ガスとの接触面積が増えるとともに、より多くの輻射熱が水蒸気発生器に当たることとなって、水蒸気発生器を効率よく加熱可能となる。
また、本発明にあって、前記板状スタックは、厚みが30mm以下であることが提案される。かかる厚みであれば、加熱装置の送出する加熱ガスを、板状スタックの側縁から板状スタックの両面側に極めてスムーズに分岐させることができる。
また、本発明にあって、前記板状スタックと前記改質器との間隙は、20mm〜30mmであることが提案される。間隙が20mm以上であれば、十分な加熱ガスを通過させることができ、間隙が30mm以下であれば、板状スタックの輻射熱を改質器に十分に伝えることができるためである。
また、本発明にあって、前記板状スタックの側縁に組み付けられるマニホールドと、該マニホールドに接続されるパイプが、前記板状スタックを含む平面上に配置されることが提案される。かかる構成であれば、マニホールドや、それに接続されるパイプが加熱ガスの流れを撹乱しなくなり、加熱ガスをよりスムーズに流すことが可能となる。
また、本発明にあって、前記改質器は、平板状の中空容器に改質触媒を内蔵してなるものであり、前記中空容器の内部には、該中空容器の内壁面を厚み方向に連結する連結部材が複数設けられていることが提案される。かかる構成にあっては、中空容器の熱膨張を適切に防止できる。
また、本発明にあって、前記断熱性筐体は、前記板状スタック及び前記改質器が組み付けられるベース部材と、該ベース部材に脱着可能なカバー部材とを備えてなり、前記ベース部材と前記カバー部材を分離することで、前記断熱性筐体の内部空間が開放されて、前記板状スタックと前記改質器を前記ベース部材から別々に取外し可能となること構成が提案される。かかる構成にあっては、板状スタックや改質器等の保守管理が容易となり、また、板状スタックや改質器を個別に交換可能となる。なお、改質器については、主要構成要素である改質触媒部分が取外し可能に構成されていれば足りる。
また、本発明にあって、前記加熱装置は、火口を前記板状スタックの側縁に対向するように配置されたガスバーナーであり、前記加熱ガスは、該ガスバーナーの燃焼ガスであることが提案される。かかる構成にあっては、改質前のプロセスガスや、板状スタックの使用済燃料を加熱装置の燃料として利用可能となる。
また、本発明にあって、前記ガスバーナーは、外筐体に内筐体を収容してなる二重構造をなし、内筐体に形成されたノズル孔から燃料ガスと空気の混合ガスを内筐体の外側に放出し、さらに、該混合ガスを外筐体に形成された火口から放出して燃焼させるものであり、前記火口は、前記ノズル孔よりも小さく、火口の開口面積の合計がノズル孔の開口面積の合計と略等しくなるように前記ノズル孔よりも多数形成されることが提案される。かかる構成にあっては、二重構造となっており、また、火口が、ノズル孔よりも小さく、また、ノズル孔から火口へ燃料がスムーズに流れるため、火焔がノズル孔の方へ逆火することがない。したがって、かかるガスバーナーでは、逆火防止構造を別途設ける必要がない。
また、本発明にあって、前記ガスバーナーの火口は、前記板状スタックの側縁と対向する側に、分散状に複数設けられていることが提案される。かかる構成にあっては、ガスバーナーから板状スタックの側縁に向けて燃焼ガスを乱れなく送出可能となり、板状スタックをより一層均一に加熱可能となる。
また、本発明にあって、前記板状スタックは、前記断熱性筐体の内部に縦向きに配置されており、前記ガスバーナーは、前記板状スタックの下側縁に対向する位置から燃焼ガスを上方に放出するよう構成されることが提案される。かかる構成では、ガスバーナーの火口で生じた燃焼ガスを、板状スタックに向けて乱れなくスムーズに送出可能となる。
以上に述べたように、本発明の固体酸化物形燃料電池モジュールでは、加熱ガスによって板状スタックを両面側から加熱することで、板状スタックを急速に加熱可能となる。このため、熱容量が小さく、熱し易いという板状スタックの特性との相乗により、短時間での起動が可能となる。
また、起動時には、板状スタック、改質器及び水蒸気発生器の3つを加熱装置によって同時に加熱できるから、起動時の熱効率を向上できるとともに、起動時の熱源を加熱装置に集約することで、固体酸化物形燃料電池モジュールのコンパクト化が可能となる。
また、板状スタックの両面側に改質器及び水蒸気発生器を対向状に配置しているため、板状スタックの両面から放射される多量の輻射熱を無駄なく活用して改質器及び水蒸気発生器を加熱でき、水蒸気改質反応に必要な熱量を効率よく供給可能となる。
このように、本発明によれば、板状スタックを用いて短時間で起動可能な固体酸化物形燃料電池モジュールを実現でき、また、起動時及び発電時における熱効率の向上も可能となる。
断熱性筐体2を切断して内部構造を示す固体酸化物形燃料電池モジュール1の左側面図である。 図1中のA−A線で断熱性筐体2を切断して示す正面図である。 図1中のB−B線で断熱性筐体2等を切断して示す正面図である。 図1中のC−C線で断熱性筐体2を切断して示す平面図である。 板状スタック3の斜視図である。 (a)は、改質器4の側面図であり、(b)は、(a)中のD−D線断面図である。 (a)は、ガスバーナー6の平面図であり、(b)は、(a)中のE−E線断面図であり、(c)は、(b)中のF−F線断面図である。 ガスバーナー6の加熱ガスの流れを示す説明図である。 板状スタック3の輻射熱を示す説明図である。 (a)は、ベース部材2aとカバー部材2bを分離した状態を示す説明図であり、(b)は、ベース部材2aから、板状スタック3や改質器4等を取り外した状態を示す説明図である。
本発明の実施形態を、以下の実施例に従って説明する。
実施例の固体酸化物形燃料電池モジュール1は、図1〜4に示すように、板状スタック3、改質器4、水蒸気発生器5、及びガスバーナー6を断熱性筐体2に収容してモジュール化したものである。この固体酸化物形燃料電池モジュール1は、例えば、ガス供給排出装置や制御装置、貯湯槽などの周辺装置と組み合わせて燃料電池システムを構成し得るものである。
断熱性筐体2は、奥行きの浅い扁平な内部空間20を有する直方体状の筐体であり、断熱材料の外側を金属板で被覆してなるものである。
板状スタック3は、上記特許文献2に記載された技術を用いて製造されたものである。具体的には、スタックを構成する電解質、電極及びセパレータをテープキャスト法によってシート状に作製し、これらを順番に積層し、一体焼成したものである。なお、板状スタック3は、厚くするほど熱容量が増加し、加熱に時間がかかる。また、厚くするほど、加熱時に温度差が生じ、熱応力により破壊される可能性が大となり、さらには、加熱ガスをスムーズに流し難くなる。このため、板状スタック3の厚みは30mm以下にすることが望ましい。かかる板状スタック3は、厚さ1mm以下の薄肉形状のセルで構成され、50セルの積層体を約10mm厚で実現し得るため、30mm以下であっても十分な出力が得られる。
板状スタック3は、薄肉形状のセルを厚み方向に積層したものであり、図5に示すように、略正方形板状をなしている。板状スタック3の両面は、集電用の電極リード線(図示省略)を接続する集電面を構成しており、該板状スタック3の両面には、表裏のセルのセパレータ部分が露出している。また、板状スタック3の内部には、改質燃料の流路と空気の流路(図示省略)が直交状に形成されており、板状スタック3の四辺には、改質燃料又は空気を供給・排出するためのマニホールド7a〜7dが夫々組み付けられ、各マニホールド7a〜7dには、改質燃料又は空気を流すパイプ8a〜8dが接続される。各マニホールドとこれに接続される各パイプ8a〜8dは、板状スタック3と同質材料の安定化ジルコニア材を用いており、線膨張率が同等にしてあるので熱膨張により破壊されることが無い。
改質器4は、炭化水素ガス等のプロセスガス(改質用の燃料)と水蒸気を受け入れて、水蒸気改質反応により水素リッチな改質燃料を生成して送出するものである。改質器4は、図6に示すように、平板状をなす金属製の中空容器40を備える。中空容器40の内部には、改質触媒を充填した触媒層41が設けられる。中空容器40の下端部には、断熱性筐体2の外部からプロセスガスを供給するプロセスガス供給パイプ9と、水蒸気発生器5から水蒸気を供給する水蒸気供給パイプ10が接続される。一方、中空容器40の上端部には、改質燃料を板状スタック3に供給する改質燃料供給パイプ8aが接続される。
改質器4について詳述すると、改質触媒が充填される触媒層41は、中空容器40内の上部から中央部に設けられる。改質触媒には、二酸化マンガン、酸化銅等が用いられる。また、触媒層41には、中空容器40の内壁面を厚み方向に連結する円柱状の金属製連結部材46が適切な間隔を持って溶接固着されており、かかる連結部材46により中空容器40の熱膨張が防止される。
触媒層41の下方には空隙部42が形成される。この空隙部42には、幅方向に亘って反応ガス供給パイプ43が配設される。反応ガス供給パイプ43には、プロセスガス供給パイプ9と水蒸気供給パイプ10が接続されており、プロセスガスと水蒸気は、反応ガス供給パイプ43に形成された小孔47から空隙部42に放出され、さらに、空隙部42と触媒層41を仕切る通気性の隔壁44を通って触媒層41に流入するよう構成されている。ここで、反応ガス供給パイプ43の小孔47は、改質器4の幅方向に亘って分散状に複数形成されているため、プロセスガスと水蒸気は、反応ガス供給パイプ43から空隙部42にムラなく放出されて触媒層41に均一に供給される。したがって、かかる構成によれば、改質反応を扁平な触媒層41で効率よく行わせることができる。
また、触媒層41の上端部には、幅方向に亘ってコレクターパイプ45が配設される。コレクターパイプ45は、改質燃料供給パイプ8aと接続されており、触媒層41で生成された改質燃料は、コレクターパイプ45に形成された小孔48からパイプ45内に流入し、改質燃料供給パイプ8aを通って板状スタック3へ供給される。コレクターパイプ45の小孔48は、触媒層41の幅方向に亘って分散状に複数形成されており、これにより、触媒層41の中を水蒸気とプロセスガスが分散して流れ、均一な改質反応が行われるよう設計してある。
水蒸気発生器5は、図1,2に示すように、蛇行状に配設された金属パイプからなるものである。この水蒸気発生器5は、上側の端部を断熱性筐体2の外部から水を供給する水供給パイプ12と接続し、下側の端部を改質器4へ水蒸気を送出する水蒸気供給パイプ10と接続している。すなわち、かかる水蒸気発生器5では、水供給パイプ12から水蒸気発生器5の管内に水が供給され、水蒸気発生器5が加熱されて管内で水が気化すると、発生した高圧の水蒸気が水蒸気供給パイプ10を介して改質器4へ送出される。後述するように、この水蒸気発生器5は、ガスバーナー6からの加熱ガスや、板状スタック3の輻射熱により加熱される。
ガスバーナー6は、本発明に係る加熱装置を構成するものである。このガスバーナー6は、図7に示すように、扁平角柱状をなしており、上面に形成された複数の火口53で燃料ガス(炭化水素ガス)を燃焼させて加熱ガス(燃焼ガス)を上方に送出する。ガスバーナー6は、角筒状の外筐体50に円筒状の内筐体51を挿入した二重構造となっている。内筐体51は、断熱性筐体2の外部から燃料ガスと空気の混合ガスを供給する混合ガス供給パイプ13と接続されており、混合ガス供給パイプ13から内筐体51に供給された混合ガスは、内筐体51の上部に長尺方向に沿って複数形成されたノズル孔52から内筐体51の外側に分散状に放出される。そして、内筐体51から放出された混合ガスは、外筐体50の上部に穿設された火口53で燃焼し、加熱ガス(燃焼ガス)が上方に送出される。ここで、外筐体50の上面には、複数の火口53が等間隔に、分散状に形成されているため、加熱ガスは、ガスバーナー6の上面全体から略均一に放出される。
また、かかるガスバーナー6では、外筐体50と内筐体51の二重構造にするとともに、火口53をノズル孔52よりも小さくし、さらに、ノズル孔52から火口53に混合ガスがスムーズに流れるように、火口53の開口面積の合計がノズル孔52の開口面積の合計と略等しくなるように設定している。これらの構成によれば、火焔がノズル孔52の方へ逆火することがなくなる。このため、一般的なガスバーナーでは、逆火防止構造としてフレームアレスターが必要であるが、本実施例のガスバーナー6では、これを省略できる。
以下に、板状スタック3等の具体的な配設態様について説明する。
板状スタック3は、図1〜4に示すように、断熱性筐体2の内部空間20の扁平形状に合わせるように、その板面を前後に向けて設置される。平板状の改質器4は、板状スタック3の背面と対向する位置に、間隙21を挟んで平行に配置される。また、水蒸気発生器5は、板状スタック3の正面と対向する位置に、間隙22を挟んで平行に配置される。
詳述すると、平板状をなす改質器4は、図1,4に示すように、断熱性筐体2の扁平な内部空間20を奥行き方向に二分するように配設され、内部空間20を、板状スタック3等が設置される主空隙23と、該主空隙23の裏側に形成される間隙状の副空隙24とに区画している。主空隙23と副空隙24は、改質器4の上端部と断熱性筐体2の内壁面の間に形成されたスリット状のガス連通孔25を介して連通している。そして、副空隙24の下端部には、加熱ガスを断熱性筐体2から排出するための加熱ガス排出パイプ14が配設されており、ガス連通孔25を介して主空隙23から加熱ガスを受け入れて、受け入れた加熱ガスを副空隙24の下端部から排出するよう構成されている。ここで、加熱ガス排出パイプ14には、加熱ガスを流入させる小孔26が副空隙24の幅方向に亘って複数形成されており、これにより、幅広間隙状の副空隙24内を加熱ガスが偏りなく流れるようにしている。
図1,3に示すように、改質器4の中空容器40の正面下部には、前方へ突出する金属製の連結具49が固定される。この連結具49は、板状スタック3に組み付けられたマニホールド7dを下方から支持しており、これにより、板状スタック3が改質器4と平行な姿勢で保持されている。
金属パイプからなる水蒸気発生器5は、図1,2に示すように、主空隙23の上端部で水供給パイプ12と接続しており、板状スタック3の正面と対向する位置を、板状スタック3と平行な面に沿って下方に蛇行して、主空隙23の下端部で水蒸気供給パイプ10と接続している。また、この水蒸気発生器5は、熱交換の効率を高めるために、断熱性筐体2の内壁に近接配置される。
ガスバーナー6は、図1〜4に示すように、主空隙23の下端部に設置され、断熱性筐体2の内壁と改質器4の間に嵌着保持される。かかる設置状態にあって、ガスバーナー6は、多数の火口53が形成された上面を板状スタック3の下側縁と対向させており、ガスバーナー6の加熱ガス(燃焼ガス)は、板状スタック3に向けて送出される。
板状スタック3の両面側に形成される間隙21,22は、板状スタック3の輻射熱が改質器4と水蒸気発生器5に効率よく伝達され、尚且つ、加熱ガスがスムーズに通過し得るように、厚さが20mm〜30mm程度に設定される。また、板状スタック3の側縁に組み付けられたマニホールド7a〜7dと、該マニホールド7a〜7dに接続されるパイプ8a〜8dは、図1〜4に示すように、板状スタック3の板面を含む平面上に配置され、これにより、間隙21,22における加熱ガスの流れを阻害しないようになっている。また、板状スタック3を保持する前記連結具49は、図4に示すように、間隙21における加熱ガスの流れを極力阻害しないように薄板形状に構成される。
以上の構成によれば、図8に示すように、ガスバーナー6から送出される加熱ガスは、主空隙23を上昇し、板状スタック3の下端部で、改質器4側の間隙21と水蒸気発生器5側の間隙22とに分かれ、夫々の間隙21,22を上方に通過する。この時、両間隙21,22に挟まれた板状スタック3は、加熱ガスによって両面側から加熱され、また、これと同時に、加熱ガスによって改質器4と水蒸気発生器5が加熱される。そして、間隙21,22を通過した加熱ガスは、主空隙23の上端部においてガス連通孔25から副空隙24に流入し、ガス連通孔25で折り返すようにして、副空隙24を下降する。この時、加熱ガスが改質器4の背面に沿って流れることにより、改質器4は、加熱ガスによって副空隙24側からも加熱される。そして、副空隙24の下端部に達した加熱ガスは、加熱ガス排出パイプ14を介して断熱性筐体2の外部に排出される。
このように、本実施例では、熱容量の極めて小さい板状スタック3に対して、平板状の改質器4と水蒸気発生器5を両面側から挟み込むようにして平行に近接配置し、板状スタック3の下方から加熱ガスを送出するようにしている。かかる構成にあっては、板状スタック3の下側縁に対向する位置から、板状スタック3の板面と平行に加熱ガスを送出することで、板状スタック3の両面側に偏りなく加熱ガスを流すことができ、これにより、板状スタック3を均一に加熱可能となる。このように、板状スタック3を両面側から加熱することで、本実施例では、片面側から加熱する場合に比べて、単純計算で2倍の熱量を加えることができる。また、加熱ムラが少なくなるため、強力な火力で加熱した場合でも、熱応力で板状スタック3が破壊され難く、起動時に板状スタック3を短時間で作動温度まで加熱できる。
また、板状スタック3の両面に改質器4と水蒸気発生器5とを平行に、近接配置しているため、板状スタック3の両面を加熱する加熱ガスによって、改質器4及び水蒸気発生器5を同時に加熱することができる。このため、ガスバーナー6の加熱ガスを効率的に利用することができ、高い熱効率を達成できる。また、間隙21,22を通過した加熱ガスを改質器4の上端部で折り返して、改質器4を背面側からも加熱しているため、起動時の熱効率をさらに向上できる。
また、かかる構成にあっては、板状スタック3の発電中は、図9に示すように、板状スタック3の両面から放射される輻射熱によって、改質器4及び水蒸気発生器5が加熱される。出力密度の高い板状スタック3では、ブロック状スタックよりも多量の輻射熱が放射され、また、その輻射熱の殆どは、板状スタック3の板面から放射される。このため、かかる構成では、板状スタック3の発する多量の輻射熱を効率よく改質反応に利用できる。
また、本実施例では、断熱性筐体2の扁平な内部空間20に、板状スタック3と改質器4と水蒸気発生器5とを平行に、近接配置しているため、板状スタック3の薄型形状を活かした、小型で軽量な固体酸化物形燃料電池モジュールを実現できる。例えば、本実施例の構成では、縦400mm、横280mm、厚さ100mmの断熱性筐体を使用して、750Wのモジュールを実現できる。これは、同程度の出力を有する従来モジュールの1/5程度の大きさとなる。このため、当然、普及の妨げとなっている価格も大幅に低減することができ、CO2削減の切り札となり地球環境の対応に早期に貢献できるものとなる。
また、図2,4に示すように、断熱性筐体2は、ベース部材2aと、該ベース部材2aに被さるカバー部材2bとで構成される。ベース部材2aとカバー部材2bとは、周縁部に形成された鍔部27,27同士を螺着することによって緊密に接合されており、必要に応じてベース部材2aとカバー部材2bを分離して内部空間20を開放できるようになっている。ここで、プロセスガスや空気等の流体を断熱性筐体2の内外に供給・排出するパイプは全てベース部材2aを貫通しており、これらのパイプと接続された板状スタック3、改質器4、水蒸気発生器5及びガスバーナー6は、全てベース部材2aに間接的に組み付けられている。このため、かかる構成では、図10(a)に示すように、ベース部材2aとカバー部材2bを分離すると、断熱性筐体2に収容された全ての部材が、ベース部材2aに組み付けられた状態で外部に露出することとなる。また、このように内部空間20を開放した状態では、図10(b)に示すように、パイプを連結部分で適宜分離することで、板状スタック3、改質器4、水蒸気発生器5及びガスバーナー6をベース部材2aから別々に取外し可能となる。このように、本実施例では、断熱性筐体2を二つに分離することで、内部空間20を開放し、筐体内に収容した装置を外部に露出させることでき、これにより、容易に保守管理を行うことが可能となる。また、内部空間20の開放状態で、板状スタック3や改質器4等を個別に取り外せるため、耐用期間が過ぎた板状スタック3や改質器4等を別々に交換できる。したがって、かかる構成によれば維持費用を削減可能となる。なお、本実施例では、改質器4を丸ごと取外し可能としているが、かかる構成に替えて、改質器に内蔵される改質触媒部分のみを取り外して交換し得るよう構成してもよい。
本実施例の固体酸化物形燃料電池モジュールの運転方法について説明する。
板状スタック3、改質器4、及び水蒸気発生器5には、図示しない温度センサが配設されており、固体酸化物形燃料電池モジュールの運転は、これらの温度センサからの出力に応じて、各種の流体の流量を制御することによって行われる。
固体酸化物形燃料電池モジュールの起動には、板状スタック3を作動温度まで加熱するとともに、改質器4の触媒層41を水蒸気改質反応に適した温度まで加熱し、さらに、水蒸気発生器5を十分な水蒸気を発生し得る温度まで加熱する必要がある。このため、起動時には、ガスバーナー6を点火し、ガスバーナー6の加熱ガスによって、板状スタック3を両面側から加熱し、また、これと同時に改質器4、及び水蒸気発生器5を加熱する(図8参照)。この時、ガスバーナー6の火力は、板状スタック3が熱応力で破損しない程度に調整する必要があるが、薄く、熱容量の小さい板状スタック3を、両面側から均一に加熱しているため、比較的強めの火力で加熱できる。ガスバーナー6の加熱によって、板状スタック3、改質器4及び水蒸気発生器5が夫々規定の温度に達すると、改質器4や水蒸気発生器5にプロセスガスや水を供給開始する。これにより、改質器4で水蒸気改質反応が開始され、板状スタック3に改質燃料が供給されて発電が開始される。なお、本実施例では、板状スタック3が作動温度700〜800℃に達した時、改質器4の触媒層41がそのライトオフ温度600〜650℃に達するように設計されている。このように、本実施例では、板状スタック3、改質器4、及び水蒸気発生器5の3つをガスバーナー6によって同時に加熱可能とし、起動時の加熱装置をガスバーナー6に集約しているため、加熱装置の点において、小型化、軽量化、高効率化、低コスト化が実現される。
発電中は、板状スタック3は加熱不要となるが、改質器4及び水蒸気発生器5については、吸熱反応に必要な熱量を外部から供給し続けなくてはならない。本実施例では、発電中の板状スタック3の両面から、改質器4及び水蒸気発生器5へ輻射熱を放射することによって、かかる熱量が供給される(図9参照)。板状スタック3は体積出力密度が高く、両面から多量の輻射熱を放射するため、発電中は、改質器4及び水蒸気発生器5の吸熱反応に必要な熱量の殆どを板状スタック3の輻射熱で賄うことができる。このため、発電中は、ガスバーナー6への混合ガスの供給を減少又は停止し、改質器4及び水蒸気発生器5の温度を制御する。
なお、本発明に係る固体酸化物形燃料電池モジュールは、上記実施例の形態に限らず本発明の要旨を逸脱しない範囲内において種々変更を加えることができる。
例えば、上記実施例では、板状スタック3から排出される未燃焼燃料を含む使用済燃料を、使用済燃料排出パイプ8bを介して断熱性筐体2の外部に排出しているが、使用済燃料排出パイプ8bをガスバーナー6に接続し、使用済燃料をガスバーナー6で燃焼させることも提案される。かかる構成を採用すれば、熱効率をさらに向上できる。また、ガスバーナー6を利用することで、使用済燃料の燃焼装置を別途配設しなくても済むという利点もある。
また、本発明に係る加熱装置としては、ガスバーナー以外にも電気を駆動源とするものも使用可能である。また、上記実施例では、板状スタック3、改質器4、及び水蒸気発生器5を縦向きに配置して、加熱ガスを下方から送出するようにしているが、本発明にあって、板状スタック等を横向きに配置することも可能であり、また、板状スタックの配置に応じて、加熱ガスを上方や水平方向から送出するようにしてもよい。
また、上記実施例では、水蒸気発生器5が、蛇行状に配設した金属パイプのみで構成されているが、本発明に係る水蒸気発生器は、実施例の構成に替えて、既存の水蒸気発生器を適宜採用可能である。
1 固体酸化物形燃料電池モジュール
2 断熱性筐体
2a ベース部材
2b カバー部材
3 板状スタック
4 改質器
5 水蒸気発生パイプ
6 ガスバーナー
7a〜7d マニホールド
8a〜8d パイプ
9 プロセスガス供給パイプ
21 間隙
22 間隙
23 主空間
24 副空間
25 ガス連通孔
40 中空容器
41 触媒層
46 連結部材
50 外筐体
51 内筐体
52 ノズル孔
53 火口

Claims (10)

  1. 薄肉のセルを積層一体化してなる板状スタックと、
    燃料を水蒸気改質する改質器と、
    水を気化して前記改質器へ送出する水蒸気発生器と、
    加熱ガスを送出する加熱装置と
    を断熱性筐体に収容してなり、
    前記改質器は、間隙を挟んで前記板状スタックの一面と対向するように配置され、
    前記水蒸気発生器は、間隙を挟んで前記板状スタックの他面と対向するように配置され、
    前記加熱装置は、前記板状スタックの側縁と対向する位置から前記板状スタックに向けて加熱ガスを送出するように配置され、
    前記加熱装置が送出する加熱ガスが前記板状スタックの両面側の前記間隙を夫々通過するよう構成されていることを特徴とする固体酸化物形燃料電池モジュール。
  2. 前記改質器は、板状をなし、前記断熱性筐体の内部を仕切るように配設されて、前記板状スタックと対向する面の裏側に間隙状の副空隙を区画形成しており、
    前記板状スタックの両面側の前記間隙を通過した加熱ガスが、前記副空隙に流入して該副空隙内で前記改質器の板面に沿って流れるよう構成されていることを特徴とする請求項1記載の固体酸化物形燃料電池モジュール。
  3. 前記水蒸気発生器は、前記板状スタックの前記他面側に、蛇行状に配置された金属パイプであることを特徴とする請求項1又は請求項2に記載の固体酸化物形燃料電池モジュール。
  4. 前記板状スタックの側縁に組み付けられるマニホールドと、該マニホールドに接続されるパイプが、前記板状スタックを含む平面上に配置されることを特徴とする請求項1乃至請求項3のいずれか1項に記載の固体酸化物形燃料電池モジュール。
  5. 前記改質器は、平板状の中空容器に改質触媒を内蔵してなるものであり、前記中空容器の内部には、該中空容器の内壁面を厚み方向に連結する連結部材が複数設けられていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の固体酸化物形燃料電池モジュール。
  6. 前記断熱性筐体は、前記板状スタック及び前記改質器が組み付けられるベース部材と、該ベース部材に脱着可能なカバー部材とを備えてなり、
    前記ベース部材と前記カバー部材を分離することで、前記断熱性筐体の内部空間が開放されて、前記板状スタックと前記改質器を前記ベース部材から別々に取外し可能となることを特徴とする請求項1乃至請求項5のいずれか1項に記載の固体酸化物形燃料電池モジュール。
  7. 前記加熱装置は、火口を前記板状スタックの側縁に対向するように配置されたガスバーナーであり、前記加熱ガスは、該ガスバーナーの燃焼ガスであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の固体酸化物形燃料電池モジュール。
  8. 前記ガスバーナーは、外筐体に内筐体を収容してなる二重構造をなし、内筐体に形成されたノズル孔から燃料ガスと空気の混合ガスを内筐体の外側に放出し、さらに、該混合ガスを外筐体に形成された火口から放出して燃焼させるものであり、
    前記火口は、前記ノズル孔よりも小さく、火口の開口面積の合計がノズル孔の開口面積の合計と略等しくなるように前記ノズル孔よりも多数形成されることを特徴とする請求項7記載の固体酸化物形燃料電池モジュール。
  9. 前記ガスバーナーの火口は、前記板状スタックの側縁と対向する側に、分散状に複数設けられていることを特徴とする請求項7又は請求項8に記載の固体酸化物形燃料電池モジュール。
  10. 前記板状スタックは、前記断熱性筐体の内部に縦向きに配置されており、前記ガスバーナーは、前記板状スタックの下側縁に対向する位置から燃焼ガスを上方に放出するよう構成されることを特徴とする請求項7乃至請求項9のいずれか1項に記載の固体酸化物形燃料電池モジュール。
JP2010105437A 2010-04-30 2010-04-30 固体酸化物形燃料電池モジュール Pending JP2011233476A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105437A JP2011233476A (ja) 2010-04-30 2010-04-30 固体酸化物形燃料電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105437A JP2011233476A (ja) 2010-04-30 2010-04-30 固体酸化物形燃料電池モジュール

Publications (1)

Publication Number Publication Date
JP2011233476A true JP2011233476A (ja) 2011-11-17

Family

ID=45322592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105437A Pending JP2011233476A (ja) 2010-04-30 2010-04-30 固体酸化物形燃料電池モジュール

Country Status (1)

Country Link
JP (1) JP2011233476A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130318A (ja) * 2013-12-05 2015-07-16 株式会社デンソー 燃料電池装置
JP2016110781A (ja) * 2014-12-04 2016-06-20 日本碍子株式会社 燃料電池システム
JP2018055984A (ja) * 2016-09-29 2018-04-05 Toto株式会社 固体酸化物形燃料電池装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130318A (ja) * 2013-12-05 2015-07-16 株式会社デンソー 燃料電池装置
JP2016110781A (ja) * 2014-12-04 2016-06-20 日本碍子株式会社 燃料電池システム
JP2018055984A (ja) * 2016-09-29 2018-04-05 Toto株式会社 固体酸化物形燃料電池装置

Similar Documents

Publication Publication Date Title
JP6017977B2 (ja) 燃料電池システム
JP5109252B2 (ja) 燃料電池
JP5109253B2 (ja) 燃料電池
JP6109484B2 (ja) 燃料電池装置
JP2006269419A (ja) 固体酸化物形燃料電池および運転方法
JP2008198423A (ja) 燃料電池発電システム及びその運転方法
US10170776B2 (en) Fuel cell module
JP5427568B2 (ja) 発電装置
JP2009076274A (ja) 燃料電池モジュール
JP5908746B2 (ja) 燃料電池システム
JP4797352B2 (ja) 固体酸化物形燃料電池
JP6406704B2 (ja) 燃料電池モジュール
JP2011233476A (ja) 固体酸化物形燃料電池モジュール
JP2007080761A (ja) 燃料電池およびその起動方法
JP2007026928A (ja) 燃料電池
JP2010267394A (ja) 発電装置
JP5435191B2 (ja) 燃料電池モジュール、及びそれを備える燃料電池
JP2012003934A (ja) 固体酸化物型燃料電池
JP2008235109A (ja) 燃料電池システム
JP6498884B2 (ja) 燃料電池
JP2009245623A (ja) 固体酸化物形燃料電池
WO2017038893A1 (ja) 燃料電池モジュールおよび燃料電池装置
JP5552380B2 (ja) 発電装置
WO2017033650A1 (ja) 燃料電池システム
JP5448985B2 (ja) 固体酸化物形燃料電池用の補助器,固体酸化物形燃料電池,および固体酸化物形燃料電池システム