JP2011217469A - 電動機駆動装置の制御装置 - Google Patents

電動機駆動装置の制御装置 Download PDF

Info

Publication number
JP2011217469A
JP2011217469A JP2010081515A JP2010081515A JP2011217469A JP 2011217469 A JP2011217469 A JP 2011217469A JP 2010081515 A JP2010081515 A JP 2010081515A JP 2010081515 A JP2010081515 A JP 2010081515A JP 2011217469 A JP2011217469 A JP 2011217469A
Authority
JP
Japan
Prior art keywords
control
field
voltage
command value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081515A
Other languages
English (en)
Other versions
JP5120670B2 (ja
Inventor
Ho Ga
鵬 賀
Suburata Saha
スブラタ サハ
Takeshi Iwatsuki
健 岩月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2010081515A priority Critical patent/JP5120670B2/ja
Priority to US13/018,953 priority patent/US20110241583A1/en
Priority to CN2011800098165A priority patent/CN102763321A/zh
Priority to DE112011100226T priority patent/DE112011100226T5/de
Priority to PCT/JP2011/052400 priority patent/WO2011122105A1/ja
Publication of JP2011217469A publication Critical patent/JP2011217469A/ja
Application granted granted Critical
Publication of JP5120670B2 publication Critical patent/JP5120670B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0021Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】変調率等の電圧指標に基づいて強め界磁制御及び矩形波制御を実行する構成において、適切に強め界磁制御を終了させることができる電動機駆動装置の制御装置を実現する。
【解決手段】電圧波形制御部10は、直流電圧Vdcに対する電圧指令値Vd、Vqの大きさを表す電圧指標Mが所定の矩形波しきい値未満である場合にはPWM制御を実行し、電圧指標Mが矩形波しきい値以上である場合には矩形波制御を実行し、界磁調整部8は、電圧指標Mが矩形波しきい値より小さい所定の強め界磁しきい値以上となったことを条件として強め界磁制御を実行し、モード制御部5は、界磁調整指令値ΔIdが、界磁磁束を強める方向に目標トルクTM及び電圧速度比RVωに基づいて定まる調整指令しきい値ΔIdT以上となったことを条件として、界磁調整部8による強め界磁制御を終了させる。
【選択図】図2

Description

本発明は、直流電圧を交流電圧に変換して交流電動機に供給する直流交流変換部を備えた電動機駆動装置の制御を行う制御装置に関する。
直流電源からの直流電圧をインバータにより交流電圧に変換して交流電動機を駆動する電動機駆動装置が一般的に用いられている。このような電動機駆動装置では、交流電動機の各相のコイルに正弦波状の交流電圧を供給して効率的にトルクを発生させるために、ベクトル制御に基づく正弦波PWM(パルス幅変調)制御及び最大トルク制御が多く行われている。ところで、電動機は、回転速度が高くなるに従って誘起電圧が高くなり、電動機を駆動するために必要となる交流電圧(以下「必要電圧」という。)も高くなる。そして、この必要電圧が、インバータから出力し得る最大の交流電圧(以下「最大出力電圧」という。)を超えると、コイルに必要な電流を流すことができなくなり、電動機を適切に制御することができない。そこで、この誘起電圧を下げるために、電動機の界磁磁束を弱める弱め界磁制御が行われる。しかし、弱め界磁制御を行うと、最大トルク制御を行うことができなくなるために出力可能な最大トルクが低下するとともに効率も低下する。
このような問題に対して、下記の特許文献1には、電動機の回転速度が上昇して誘起電圧が高くなるに従って、正弦波PWM制御から過変調PWM制御、更には矩形波制御に移行する電動機駆動装置の制御装置の技術が記載されている。ここで、直流電源電圧(システム電圧)に対する交流電圧波形の基本波成分の実効値の比率である変調率に関して、正弦波PWM制御では変調率の上限が0.61である。これに対して、過変調PWM制御では変調率を0.61〜0.78の範囲まで高めることができ、矩形波制御では変調率が最大の0.78となる。従って、この特許文献1に記載された制御装置によれば、過変調PWM制御又は矩形波制御によって交流電動機に供給する交流電圧波形の基本波成分の振幅を大きくする(変調率を高める)ことにより、正弦波PWM制御のみを行う構成に比べて、直流電圧を有効利用して最大トルク制御を行うことが可能な回転速度領域を拡大している。そして、電動機の必要電圧が最大出力電圧より低い状態では正弦波PWM制御又は過変調PWM制御と共に最大トルク制御を行い、電動機の必要電圧が最大出力電圧に達すると矩形波制御と共に弱め界磁制御を行う。
ところで、特許文献1に記載された制御装置では、最大トルク制御を行うことが可能な動作領域においてPWM制御が行われるが、このようなPWM制御はインバータを構成するスイッチング素子のオンオフ回数が多いため、スイッチング損失が大きくなり易い。電動機の効率を更に向上させるためには、このようなスイッチング損失を抑制することが効果的である。一方、矩形波制御によればスイッチング素子のオンオフ回数をPWM制御に比べて大幅に少なくすることができるため、スイッチング損失を抑制することが可能である。下記の特許文献2には、PWM制御を行うことが可能な動作領域においても、交流電動機の界磁磁束を強める方向に界磁調整指令値を決定することにより、変調率を最大値として矩形波制御(1パルス駆動)を行うことが記載されている。これにより、電動機に流れる電流が増加して電動機における損失は若干増加するが、インバータにおけるスイッチング損失を低減することができ、システム全体として効率を高めることが可能となっている。
特開2006−311770号公報 特開2008−079399号公報
ところで、矩形波制御中は、変調率が最大値に維持されるため、変調率によって矩形波制御とPWM制御とを切り替える構成では、交流電動機の運転状態が変化しても矩形波制御を終了することができない。そのため、交流電動機の回転速度が低下し、或いは目標トルクが低下した場合であっても、界磁磁束を強める方向に界磁調整指令値が大きくなるだけで矩形波制御は終了しない。従って、界磁調整指令値が大きくなることにより効率が低下し、或いは回転速度が低い領域で矩形波制御を行うことにより交流電動機の出力トルクに振動等が生じる可能性がある。しかしながら、上記特許文献2には、このような界磁磁束を強める強め界磁制御によって矩形波制御を実行する構成において、当該矩形波制御及び強め界磁制御を適切に終了するための構成について一切記載されていない。
そこで、上記変調率等の電圧指標に基づいて強め界磁制御及び矩形波制御を実行する構成において、適切に強め界磁制御を終了させることができる電動機駆動装置の制御装置を実現することが望まれる。
上記目的を達成するための本発明に係る、直流電圧を交流電圧に変換して交流電動機に供給する直流交流変換部を備えた電動機駆動装置の制御を行う制御装置の特徴構成は、前記交流電動機の目標トルクに基づいて、前記直流交流変換部から前記交流電動機に供給する電流の指令値である基本電流指令値を決定する電流指令決定部と、前記基本電流指令値の調整値である界磁調整指令値を決定する界磁調整部と、前記界磁調整指令値により前記基本電流指令値を調整した後の調整後電流指令値、及び前記交流電動機の回転速度に基づいて、前記直流交流変換部から前記交流電動機に供給する電圧の指令値である電圧指令値を決定する電圧指令決定部と、前記電圧指令値に基づいて前記直流交流変換部を制御し、パルス幅変調制御及び矩形波制御を少なくとも含む電圧波形制御を実行する電圧波形制御部と、前記界磁調整部及び前記電圧波形制御部を制御するモード制御部と、を備え、前記電圧波形制御部は、前記直流電圧に対する前記電圧指令値の大きさを表す電圧指標が所定の矩形波しきい値未満である場合には前記パルス幅変調制御を実行し、前記電圧指標が前記矩形波しきい値以上である場合には前記矩形波制御を実行し、前記界磁調整部は、前記基本電流指令値に対して前記交流電動機の界磁磁束を強める調整を行うように前記界磁調整指令値を決定する強め界磁制御、及び前記基本電流指令値に対する調整を行わないように前記界磁調整指令値を決定する通常界磁制御を少なくとも含む界磁制御を実行するように構成され、前記電圧指標が前記矩形波しきい値より小さい所定の強め界磁しきい値以上となったことを条件として前記強め界磁制御を実行し、前記モード制御部は、前記直流電圧と前記交流電動機の回転速度との比を電圧速度比として、前記界磁調整指令値が、前記界磁磁束を強める方向に、前記目標トルク及び前記電圧速度比に基づいて定まる調整指令しきい値以上となったことを条件として、前記界磁調整部による前記強め界磁制御を終了させる点にある。
この特徴構成によれば、直流電圧に対する電圧指令値の大きさを表す電圧指標に基づいて強め界磁制御を実行し、当該強め界磁制御を実行することにより電圧指標を上昇させて電圧波形制御を矩形波制御に移行させることができる。従って、交流電動機における矩形波制御が行われる運転領域を広げることができ、直流交流変換部におけるスイッチング損失を低減して効率を高めることができる。またこの際、界磁調整部により界磁調整指令値を適切に決定して強め界磁の程度を変化させることにより、交流電動機の回転速度に関わらず目標トルクに応じたトルクを適切に交流電動機に出力させることができる。更にこの特徴構成によれば、界磁調整指令値が、界磁磁束を強める方向に、目標トルク及び電圧速度比に基づいて定まる調整指令しきい値以上となったことを条件として強め界磁制御を終了させるため、界磁調整指令値が大きくなることにより効率が低下する前に、適切に強め界磁制御を終了させることができる。すなわち、界磁調整指令値が大きくなることによる電動機における損失の増大と、矩形波制御を実行することによるスイッチング損失の低減との関係に応じて適切に強め界磁制御を終了することができるので、交流電動機及び電動機駆動装置を含むシステム全体としての効率が悪化することを抑制できる。この際、目標トルク及び電圧速度比に基づいて定まる調整指令しきい値を用いることにより、目標トルク及び電圧速度比に応じた適切な調整指令しきい値を設定することができる。
ここで、前記モード制御部は、前記強め界磁制御と共に前記矩形波制御を実行する強め界磁・矩形波制御モード中に、前記強め界磁制御を終了する際には、前記界磁磁束の調整量を減少させる方向に前記界磁調整指令値を次第に変化させることで前記電圧指標を次第に低下させ、前記強め界磁制御と共に前記パルス幅変調制御を実行する強め界磁・パルス幅変調制御モードを経て、前記通常界磁制御と共に前記パルス幅変調制御を実行する通常界磁・パルス幅変調制御モードに移行させると好適である。
この構成によれば、強め界磁・矩形波制御モードから強め界磁制御を終了する際に、強め界磁制御と共にパルス幅変調制御を実行する強め界磁・パルス幅変調制御モードを経て通常界磁・パルス幅変調制御モードに移行させるので、強め界磁制御を終了する際に界磁調整指令値及び電圧指標が急激に変化することを抑制できる。従って、交流電動機のコイルに流れる電流の急激な変化やオーバーシュートを抑制できると共に、交流電動機の出力トルクの振動が発生することを抑制することができる。
また、前記通常界磁制御と共に前記パルス幅変調制御を実行する通常界磁・パルス幅変調制御モードを実行した場合の前記交流電動機及び前記電動機駆動装置の損失を通常時損失とし、前記強め界磁制御と共に前記矩形波制御を実行する強め界磁・矩形波制御モードを実行した場合の前記交流電動機及び前記電動機駆動装置の損失を強め界磁時損失として、前記強め界磁時損失が前記通常時損失より少なくなる前記界磁調整指令値の範囲における前記界磁磁束を強める方向の上限を、前記調整指令しきい値とすると好適である。
この構成によれば、目標トルク及び電圧速度比に応じて変化する強め界磁時損失及び通常時損失に合わせて、強め界磁時損失が通常時損失より少ない範囲、すなわち強め界磁・矩形波制御モードを実行した方が通常界磁・パルス幅変調制御モードを実行するよりも損失が少ない範囲の上限に界磁調整指令値がなったことを条件として強め界磁制御を終了するように、適切に調整指令しきい値を設定することができる。これにより、界磁調整指令値が大きくなることによる電動機の損失増大に伴う効率低下が、矩形波制御を実行することによるスイッチング損失の低減に伴う効率向上を上回るときに強め界磁制御を終了することができる。従って、スイッチング損失を低減に伴う効率向上の効果を最大限に得ることができ、交流電動機及び電動機駆動装置を含むシステム全体としての効率を良くすることができる。
また、前記モード制御部は、前記界磁調整指令値が前記調整指令しきい値以上となったこと、及び前記回転速度が所定の回転速度しきい値未満となったこと、の双方の条件を判断し、少なくとも一方の条件が満たされた場合に、前記強め界磁制御を終了させると好適である。
この構成によれば、界磁調整指令値が調整指令しきい値以上となったことに加えて、回転速度が前記回転速度しきい値未満となったことも条件として判断し、少なくとも一方の条件が満たされた場合に強め界磁制御を終了させるため、交流電動機の回転速度が矩形波制御の実行に適した回転速度未満に低下する前に、適切に強め界磁制御を終了させることができる。従って、回転速度が低い領域で矩形波制御を行うことにより交流電動機の出力トルクに振動等が生じることを抑制できる。
ここで、前記回転速度しきい値は、前記目標トルク及び前記直流電圧に基づいて定まると好適である。この構成によれば、目標トルク及び直流電圧に応じた適切な回転速度しきい値を設定することができる。
また、前記目標トルク及び前記直流電圧の双方の値に応じて、前記通常界磁制御の実行中において前記電圧指標が前記強め界磁しきい値となる回転速度を、前記回転速度しきい値とすると好適である。
この構成によれば、通常界磁制御の実行中において、目標トルク及び直流電圧に応じて変化する電圧指標に合わせて、実質的に当該電圧指標が強め界磁しきい値未満となったことを条件として強め界磁制御を終了するように適切に回転速度しきい値を設定することができる。これにより、強め界磁制御を開始する条件と合致するように、強め界磁制御を終了する条件を設定することができる。また、このような強め界磁制御の終了条件を、目標トルク及び直流電圧の双方の値に応じた回転速度に基づいて判定することができるので、容易かつ適切に強め界磁制御を終了させることができる。
また、前記モード制御部は、前記交流電動機の目標トルクが所定の強め界磁許容トルク範囲から外れている場合には、前記界磁調整部が前記強め界磁制御を実行しないように制御する構成とすると好適である。
ここで、矩形波制御ではコイルに流れる電流に含まれる基本波成分以外の高調波成分が大きくなり易い。そのため、交流電動機の目標トルクの値によっては、強め界磁制御を行うことによって矩形波制御に移行することが適切でない場合がある。この構成によれば、強め界磁制御を行うことを許容するトルク範囲を制限することにより、矩形波制御に移行することが適切な状態でのみ強め界磁を行い、適切に矩形波制御を実行することができる。
また、前記モード制御部は、前記強め界磁制御を終了させる際には、前記界磁調整指令値を現在値からゼロに向って一定の変化速度で変化させるように前記界磁調整部を制御する構成とすると好適である。
この構成によれば、強め界磁制御を終了する際に、界磁調整指令値が一定の速度でゼロに向って減少するように変化させるので、電圧指標を次第に低下させることができる。これにより、電圧指標が矩形波しきい値から次第に低下する間に、適切に強め界磁・パルス幅変調制御モードを実行することができる。従って、強め界磁制御を終了する際に界磁調整指令値及び電圧指標が急激に変化することを抑制でき、交流電動機のコイルに流れる電流の急激な変化やオーバーシュートを抑制できると共に、交流電動機の出力トルクの振動が発生することを抑制することができる。
また、前記電圧指令決定部は、直流交流変換部から前記交流電動機に供給される電流の実際の値である実電流値に基づいて、前記調整後電流指令値に対するフィードバック制御を行い、前記電圧指令値を決定すると好適である。
この構成によれば、電流センサ等により検出される実電流値と、界磁調整指令値による調整後の電流指令値との偏差に基づく電流フィードバック制御により、電圧指令値を適切に決定することができる。
本発明の実施形態に係る電動機駆動装置の構成を示す回路図である。 本発明の実施形態に係る制御装置の機能ブロック図である。 本発明の実施形態に係る電圧制御領域マップの例を示す図である 本発明の実施形態に係る基本d軸電流指令値マップの例を示す図である。 本発明の実施形態に係るq軸電流指令値マップの例を示す図である。 本発明の実施形態に係る積分入力調整部において用いられる変換マップの例を示す図である。 本発明の実施形態に係る回転速度しきい値の導出方法を示す概念図である。 本発明の実施形態に係る調整指令しきい値の導出方法を示す概念図である。 本発明の実施形態に係る制御装置の動作の流れを示すフローチャートである。 本発明の実施形態に係る制御装置における、目標トルク及び回転速度の変化に伴うd軸電流指令値及びq軸電流指令値の変化の一例を示す図である。
まず、本発明の実施形態について図面に基づいて説明する。図1に示すように、本実施形態においては、電動機駆動装置1が、三相交流により動作する交流電動機としての埋込磁石構造の同期電動機4(IPMSM、以下単に「電動機4」という。)を駆動する装置として構成されている場合を例として説明する。この電動機4は、必要に応じて発電機としても動作するように構成されている。この電動機4は、例えば、電動車両やハイブリッド車両等の駆動力源として用いられる。電動機駆動装置1は、直流電圧Vdcを交流に変換して電動機4に供給するインバータ6を有して構成されている。そして、本実施形態では、図2に示すように、制御装置2は、電動機駆動装置1を制御することにより、ベクトル制御法を用いて電動機4の電流フィードバック制御を行う。この際、制御装置2は、電圧波形制御として、パルス幅変調(Pulse Width Modulation、以下「PWM」という)制御及び矩形波制御を実行可能に構成されている。また、制御装置2は、界磁調整制御として、目標トルクTMに基づいて決定された基本電流指令値Idb、Iqbに対する調整を行わない通常界磁制御、電動機4の界磁磁束を弱めるように基本電流指令値Idb、Iqbに対する調整を行う弱め界磁制御、及び電動機4の界磁磁束を強めるように基本電流指令値Idb、Iqbに対する調整を行う強め界磁制御を実行可能に構成されている。そして、この制御装置2は、電圧指標としての変調率Mに基づいて強め界磁制御及び矩形波制御を実行する構成において、電動機4の運転状態に応じて適切に強め界磁制御を終了させることができるように構成されている点に特徴を有している。以下、本実施形態に係る電動機駆動装置1及びその制御装置2について詳細に説明する。
1.電動機駆動装置の構成
まず、本実施形態に係る電動機駆動装置1の構成について図1に基づいて説明する。この電動機駆動装置1は、直流電圧Vdcを交流電圧に変換して電動機4に供給するインバータ6を備えている。また、電動機駆動装置1は、直流電圧Vdcを発生させる直流電源3と、直流電源3からの直流電圧Vdcを平滑化する平滑コンデンサC1と、を備えている。直流電源3としては、例えば、ニッケル水素二次電池やリチウムイオン二次電池等の各種二次電池、キャパシタ、或いはこれらの組合せ等が用いられる。直流電源3の電圧である直流電圧Vdcは、電圧センサ41により検出されて制御装置2へ出力される。
インバータ6は、直流の直流電圧Vdcを交流電圧に変換して電動機4に供給するための装置であり、本発明における直流交流変換部に相当する。インバータ6は、複数組のスイッチング素子E1〜E6と、ダイオードD1〜D6と、を備えている。ここでは、インバータ6は、電動機4の各相(U相、V相、W相の3相)のそれぞれについて一対のスイッチング素子、具体的には、U相用上アーム素子E1及びU相用下アーム素子E2、V相用上アーム素子E3及びV相用下アーム素子E4、並びにW相用上アーム素子E5及びW相用下アーム素子E6を備えている。これらのスイッチング素子E1〜E6として、本例では、IGBT(絶縁ゲートバイポーラトランジスタ)を用いる。各相用の上アーム素子E1、E3、E5のエミッタと下アーム素子E2、E4、E6のコレクタとが、電動機4の各相のコイルにそれぞれ接続されている。また、各相用の上アーム素子E1、E3、E5のコレクタはシステム電圧線51に接続され、各相用の下アーム素子E2、E4、E6のエミッタは負極線52に接続されている。また、各スイッチング素子E1〜E6には、それぞれフリーホイールダイオードとして機能するダイオードD1〜D6が並列接続されている。なお、スイッチング素子E1〜E6としては、IGBTの他に、バイポーラ型、電界効果型、MOS型など種々の構造のパワートランジスタを用いることができる。
スイッチング素子E1〜E6のそれぞれは、制御装置2から出力されるスイッチング制御信号S1〜S6に従ってオンオフ動作を行う。これにより、インバータ6は、直流電圧Vdcを交流電圧に変換して電動機4に供給し、目標トルクTMに応じたトルクを電動機4に出力させる。この際、各スイッチング素子E1〜E6は、スイッチング制御信号S1〜S6に従って、後述するPWM制御又は矩形波制御に従ったスイッチング動作を行う。本実施形態では、スイッチング制御信号S1〜S6は、各スイッチング素子E1〜E6のゲートを駆動するゲート駆動信号である。一方、電動機4が発電機として機能する際には、インバータ6は、発電された交流電圧を直流電圧に変換してシステム電圧線51に供給する。電動機4の各相のコイルに流れる各相電流、具体的には、U相電流Iur、V相電流Ivr、及びW相電流Iwrは、電流センサ42により検出されて制御装置2へ出力される。
また、電動機4のロータの各時点での磁極位置θは、回転センサ43により検出されて制御装置2へ出力される。回転センサ43は、例えばレゾルバ等により構成される。ここで、磁極位置θは、電気角上でのロータの回転角度を表している。電動機4の目標トルクTMは、図示しない車両制御装置等の他の制御装置等からの要求信号として制御装置2に入力される。すなわち、目標トルクTMは、電動機4に対する出力トルクの指令値(トルク指令値)とされている。
2.制御装置の構成
次に、図1に示される制御装置2の構成について、図2〜図7を用いて詳細に説明する。以下に説明する制御装置2の各機能部は、マイクロコンピュータ等の論理回路を中核部材として、入力されたデータに対して種々の処理を行うためのハードウエア又はソフトウエア(プログラム)或いはその両方により構成されている。上記のとおり、制御装置2には、目標トルクTM及び磁極位置θが入力される。更に、制御装置2には、U相電流Iur、V相電流Ivr、及びW相電流Iwrも入力される。そこで、図2に示すように、制御装置2は、これらの目標トルクTM、磁極位置θ、磁極位置θから導出される電動機4の回転速度ω、及び各相電流Iur、Ivr、Iwrに基づいて、ベクトル制御法を用いた電流フィードバック制御を行い、電動機4に供給する電圧の指令値である電圧指令値Vd、Vqを決定する。そして、この電圧指令値Vd、Vqに基づいてインバータ6を駆動するためのスイッチング制御信号S1〜S6を生成して出力し、当該インバータ6を介して電動機4の駆動制御を行う。
2−1.制御モード
本実施形態では、制御装置2は、電圧指令値Vd、Vqに基づいてインバータ6を制御して行う電圧波形制御に関してPWM制御及び矩形波制御を実行可能に構成されている。また、基本電流指令値Idb、Iqbに対する界磁調整指令値としてのd軸電流調整指令値ΔIdを決定することにより電動機4の界磁磁束を調整する界磁制御に関して、通常界磁制御、強め界磁制御、及び弱め界磁制御を実行可能に構成されている。そして、制御装置2は、これらの電圧波形制御と界磁制御とを組み合わせて複数の制御モードの何れかを選択的に実行する。
PWM制御では、インバータ6の各スイッチング素子E1〜E6のオンオフを、電圧指令値Vd、Vqに基づく三相交流電圧Vu、Vv、Vw(図2参照)に基づいて制御する。具体的には、U、V、Wの各相のインバータ6の出力電圧波形であるPWM波形が、上アーム素子E1、E3、E5がオン状態となるハイレベル期間と、下アーム素子E2、E4、E6がオン状態となるローレベル期間とにより構成されるパルスの集合で構成されると共に、その基本波成分が一定期間で略正弦波状となるように、各パルスのデューティ比を制御する。本実施形態では、PWM制御には、通常PWM制御と過変調PWM制御の2つの制御方式が含まれる。
通常PWM制御は、交流電圧波形Vu、Vv、Vwがキャリア波形の振幅以下であるPWM制御である。このような通常PWM制御としては、正弦波PWM制御が代表的であるが、本実施形態では、正弦波PWM制御の各相の基本波に対して中性点バイアス電圧を印加する空間ベクトルPWM(Space Vector PWM、以下「SVPWM」という)制御を用いる。なお、SVPWM制御では、キャリアとの比較によらずにデジタル演算により直接PWM波形を生成するが、その場合でも交流電圧波形Vu、Vv、Vwは仮想的なキャリア波形の振幅以下である。本発明においては、このようにキャリアを用いずにPWM波形を生成する方式も、仮想的なキャリア波形の振幅との比較で通常PWM制御又は過変調PWM制御に含めることとする。直流電圧Vdcに対するインバータ6の出力電圧波形の基本波成分の実効値の比率を変調率M(後述する式(4)参照)とすると、通常PWM制御としてのSVPWM制御では、変調率Mは「0〜0.707」の範囲で変化させることができる。
過変調PWM制御は、交流電圧波形Vu、Vv、Vwの振幅がキャリア波形(三角波)の振幅を超えるPWM制御である。過変調PWM制御では、通常PWM制御に比べて、各パルスのデューティ比を基本波成分の山側で大きく谷側で小さくすることにより、インバータ6の出力電圧波形の基本波成分の波形を歪ませ、振幅が通常PWM制御よりも大きくなるように制御する。過変調PWM制御では、変調率Mは「0.707〜0.78」の範囲で変化させることができる。
矩形波制御は、各スイッチング素子E1〜E6のオン及びオフが電動機4の電気角1周期につき1回ずつ行われ、各相について電気角半周期につき1回のパルスが出力される回転同期制御である。すなわち、矩形波制御では、U、V、Wの各相のインバータ6の出力電圧波形が、1周期につき前記ハイレベル期間と前記ローレベル期間とが1回ずつ交互に表れるとともにこれらのハイレベル期間とローレベル期間との比が1:1の矩形波となるように制御する。このとき、各相の出力電圧波形は、互いに120°位相をずらして出力される。これにより、矩形波制御は、インバータ6に矩形波状電圧を出力させる。矩形波制御では、変調率Mは最大変調率Mmaxである「0.78」に固定される。すなわち、変調率Mが最大変調率Mmaxに到達すると矩形波制御が実行される。このため、本実施形態においては、矩形波制御を実行させるための変調率Mのしきい値である矩形波しきい値Mbは、最大変調率Mmaxに設定されている。
上記のとおり、本実施形態における界磁制御には、通常界磁制御、強め界磁制御、及び弱め界磁制御が含まれる。後述するように、電流指令決定部7において、電動機4の目標トルクTMに基づく、インバータ6から電動機4に供給する電流の指令値である基本電流指令値Idb、Iqbが決定される。界磁制御は、このように決定された基本電流指令値Idb、Iqbを調整する界磁調整指令値(d軸電流調整指令値ΔId)により、電動機4の界磁磁束を調整する制御である。具体的には、電流指令決定部7は、目標トルクTMに基づいて、基本電流指令値としての基本d軸電流指令値Idb及び基本q軸電流指令値Iqbを決定する。ここで、電流ベクトル制御法においては、d軸は界磁の磁束方向に設定し、q軸は界磁の向きに対して電気角でπ/2進んだ方向に設定する。そのため、基本d軸電流指令値Idbを調整するd軸電流調整指令値ΔIdを界磁調整指令値として適切に決定することにより、電動機4の界磁磁束を調整することができる。
後述するように、電流指令決定部7は、最大トルク制御を行うように基本電流指令値Idb、Iqbを決定する。ここで、最大トルク制御は、同一電流に対して電動機4の出力トルクが最大となるように電流位相を調節する制御である。この最大トルク制御では、電動機4の電機子コイルに流す電流に対して最も効率的にトルクを発生させることができる。なお、電流位相とは、d軸電流指令値とq軸電流指令値との合成ベクトルのq軸に対する位相である。通常界磁制御は、電流指令決定部7により決定された基本電流指令値Idb、Iqbに対する調整を行わない界磁制御である。すなわち、通常界磁制御では、d軸電流調整指令値ΔIdが基本d軸電流指令値Idbに対する調整を行わないようにゼロ(ΔId=0)に設定される。従って、本実施形態においては、制御装置2は、通常界磁制御の実行中には、最大トルク制御を行うことになる。言い換えれば、本実施形態に係る通常界磁制御は最大トルク制御である。
強め界磁制御は、通常界磁制御(最大トルク制御)に比べて電動機4の界磁磁束を強めるように基本電流指令値Idb、Iqbに対する調整を行う界磁制御である。すなわち、強め界磁制御は、電動機4の界磁磁束を強める方向の磁束が電機子コイルから発生するように電流位相を調節する制御である。ここでは、強め界磁制御では、通常界磁制御よりも電流位相を遅らせるようにd軸電流調整指令値ΔIdを設定する。具体的には、強め界磁制御では、d軸電流調整指令値ΔIdが、基本d軸電流指令値Idbを正方向に変化させる(増加させる)ように正の値(ΔId>0)に設定される。
弱め界磁制御は、通常界磁制御(最大トルク制御)に比べて電動機4の界磁磁束を弱めるように基本電流指令値Idb、Iqbに対する調整を行う界磁制御である。すなわち、弱め界磁制御は、電動機4の界磁磁束を弱める方向の磁束が電機子コイルから発生するように電流位相を調節する制御である。ここでは、弱め界磁制御では、通常界磁制御よりも電流位相を進めるようにd軸電流調整指令値ΔIdを設定する。具体的には、弱め界磁制御では、d軸電流調整指令値ΔIdが、基本d軸電流指令値Idbを負方向に変化させる(減少させる)ように負の値(ΔId<0)に設定される。
図3は、回転速度ωと目標トルクTMとにより規定される電動機4の動作可能領域の中における各制御モードが実行される領域を規定した電圧制御領域マップ34(図2参照)の例を示す図である。この図に示すように、本実施形態においては、制御装置2は、通常界磁制御と共にPWM制御を実行する通常界磁・PWM制御モードA1、強め界磁制御と共にPWM制御を実行する強め界磁・PWM制御モードA2、強め界磁制御と共に矩形波制御を実行する強め界磁・矩形波制御モードA3、弱め界磁制御と共に矩形波制御を実行する弱め界磁・矩形波制御モードA5を実行可能に構成されている。更に、この制御装置2は、強め界磁・PWM制御モードA2及び強め界磁・矩形波制御モードA3を経ずに弱め界磁・矩形波制御モードA5へ移行する場合には、通常界磁・PWM制御モードA1と弱め界磁・矩形波制御モードA5との間で、弱め界磁制御と共にPWM制御を実行する弱め界磁・PWM制御モードA4を実行可能に構成されている。図3のマップに示される領域Fは、強め界磁制御が実行される強め界磁制御領域である。この強め界磁制御領域Fでは、基本的に強め界磁・矩形波制御モードA3が実行されるが、当該強め界磁・矩形波制御モードA3と他のモードとの間の移行の際に、強め界磁・PWM制御モードA2が実行される。
また、上記のとおり、本実施形態ではPWM制御として通常PWM制御及び過変調PWM制御の2つの電圧波形制御を実行する。そのため、通常界磁・PWM制御モードA1は、通常界磁制御と共に通常PWM制御を実行する通常界磁・通常PWM制御モードA1aと、通常界磁制御と共に過変調PWM制御を実行する通常界磁・過変調PWM制御モードA1bとを含んでいる。一方、強め界磁・PWM制御モードA2は、強め界磁制御と共に過変調PWM制御を実行する強め界磁・過変調PWM制御モードA2bとなっている。更にここでは、弱め界磁・PWM制御モードA4は、弱め界磁制御と共に過変調PWM制御を実行する弱め界磁・過変調PWM制御モードA4aとされている。
図3に示す電圧制御領域の例において、曲線L1〜L3は、いずれも通常界磁制御(最大トルク制御)中における変調率Mがある値になるときの電動機4の回転速度ω及び目標トルクTMにより定まる線である。曲線L1は、通常界磁制御中における変調率Mが、最大変調率Mmax(=0.78)となる線である。曲線L2は、通常界磁制御中における変調率Mが、通常PWM制御と過変調PWM制御との境界の値に設定された過変調しきい値Mo(=0.707)となる線である。本実施形態では、後述する強め界磁しきい値Msが、過変調しきい値Moと一致するように設定されている。曲線L3は、通常界磁制御中における変調率Mが、過変調しきい値Moと最大変調率Mmaxとの間に設定された値(例えば、0.76)となる線である。
ところで、電動機4は、回転速度ωが高くなるに従って誘起電圧が高くなり、電動機4を駆動するために必要となる交流電圧(以下「必要電圧」という。)も高くなる。そして、この必要電圧が、そのときの直流電圧Vdcを変換してインバータ6から出力し得る最大の交流電圧(以下「最大出力電圧」という。)を超えると、コイルに必要な電流を流すことができなり、電動機4を適切に制御することができない。そこで、直流電圧Vdcに基づく最大出力電圧に対する電動機4の必要電圧を表す変調率Mが最大変調率Mmaxに達する曲線L1より高回転側の領域では、弱め界磁・矩形波制御モードA5が実行される。なお、上記の必要電圧及び最大出力電圧は、共に交流電圧の実効値として互いに比較することができる。
更に、本実施形態においては、変調率Mが最大変調率Mmaxより低い状態でも、所定の条件を満たす場合には、強め界磁制御と共に矩形波制御を実行する強め界磁・矩形波制御モードA3を実行する。また、強め界磁・矩形波制御モードA3と他のモードとの間の移行に際して、調整後電流指令値Id、Iqが急激に変化することによって電動機4のコイルに流れる電流の急激な変化やオーバーシュートを抑制すると共に電動機4の出力トルクの振動を抑制するために、強め界磁・PWM制御モードA2が実行される。強め界磁制御は、基本的に、通常界磁制御を行うとすれば変調率Mが最大変調率Mmaxより低くなる状態で目標トルクTMに応じたトルクを電動機4に出力させつつ矩形波制御を行うために実行される。
図3に示すように、強め界磁制御領域Fは、目標トルクTMについて規定された強め界磁許容トルク範囲TMR内に設定されている。すなわち、強め界磁制御領域Fは、強め界磁許容トルク範囲TMR内であって、通常界磁制御中における変調率Mが強め界磁しきい値Ms(ここでは過変調しきい値Moと一致、曲線L2)から最大変調率Mmax(曲線L1)までとなる領域(Ms≦M<Mmax)に設定されている。電動機4の回転速度ω及び目標トルクTMにより定まる動作点が、通常界磁・PWM制御モードA1の領域から移動して強め界磁制御領域F内に入った場合には、制御装置2は、通常界磁・PWM制御モードA1から強め界磁・PWM制御モードA2を経て強め界磁・矩形波制御モードA3へ移行する制御を行なう。逆に、電動機4の動作点が、強め界磁制御領域Fから移動して通常界磁・PWM制御モードA1の領域内に入った場合には、制御装置2は、強め界磁・矩形波制御モードA3から強め界磁・PWM制御モードA2を経て通常界磁・PWM制御モードA1へ移行する制御を行なう。電動機4の動作点が強め界磁制御領域F内に留まっている場合には、強め界磁・矩形波制御モードA3の実行状態が継続される。このような強め界磁制御領域Fを設定していることにより、従来からある弱め界磁・矩形波制御モードA5だけを有する場合に比べて、電動機4の動作可能領域の中における矩形波制御が実行される領域が拡大されている。なお、図3において強め界磁制御領域F内を区画する破線は、電動機4の回転速度ω又は目標トルクTMが所定の変化速度で変化した場合に、強め界磁・PWM制御モードA2が実行される領域と強め界磁・矩形波制御モードA3が実行される領域とが切り替わる境界の一例を示している。この境界の位置は、回転速度ω又は目標トルクTMの変化速度によって異なる位置となる。
曲線L2より低回転側の領域で、通常界磁・通常PWM制御モードA1aが実行される。また、強め界磁許容トルク範囲TMR以外では、曲線L2より高回転側であって曲線L3より低回転側の領域で、通常界磁・過変調PWM制御モードA1bが実行される。更に、強め界磁許容トルク範囲TMR以外では、曲線L3より高回転側であって曲線L1より低回転側の領域で弱め界磁・過変調PWM制御モードA4a(弱め界磁・PWM制御モードA4)が実行される。この弱め界磁・過変調PWM制御モードA4aは、通常界磁・過変調PWM制御モードA1bから急激に弱め界磁制御と共に矩形波制御を行う状態に移行させることにより、調整後電流指令値Id、Iqが急激に変化することを抑制するために実行される。
2−2.制御装置の機能部
次に、図2に示す制御装置2の機能ブロック図に基づいて、制御装置2の各機能部について説明する。図2に示すように、d軸電流指令値導出部21には、目標トルクTMが入力される。d軸電流指令値導出部21は、入力された目標トルクTMに基づいて基本d軸電流指令値Idbを導出する。ここで、基本d軸電流指令値Idbは、最大トルク制御を行う場合におけるd軸電流の指令値に相当する。本実施形態では、d軸電流指令値導出部21は、図4に示す基本d軸電流指令値マップを用いて、目標トルクTMの値に応じた基本d軸電流指令値Idbを導出する。図示の例では、目標トルクTMとして「TM1」の値が入力された場合には、これに応じて、d軸電流指令値導出部21は、基本d軸電流指令値Idbとして「Id1」を導出する。同様に、d軸電流指令値導出部21は、目標トルクTMとして「TM3」、「TM5」の値が入力された場合には、基本d軸電流指令値Idbとして「Id3」、「Id5」をそれぞれ導出する。このように導出された基本d軸電流指令値Idbは、加算器23へ入力される。加算器23には、後述する積分器32により導出されたd軸電流調整指令値ΔIdが更に入力される。加算器23は、下記の式(1)に示すように、基本d軸電流指令値Idbにd軸電流調整指令値ΔIdを加算し、調整後d軸電流指令値Idを導出する。
Id=Idb+ΔId・・・(1)
q軸電流指令値導出部22には、目標トルクTM及びd軸電流調整指令値ΔIdが入力される。q軸電流指令値導出部22は、入力された目標トルクTMとd軸電流調整指令値ΔIdとに基づいて調整後q軸電流指令値Iqを導出する。本実施形態では、q軸電流指令値導出部22は、図5に示すq軸電流指令値マップを用いて、目標トルクTM及びd軸電流調整指令値ΔIdの値に応じた調整後q軸電流指令値Iqを導出する。図5において、細い実線は、TM1〜TM5の各トルクを出力するためのd軸電流とq軸電流との値の組み合わせを示す等トルク線61であり、太い実線は最大トルク制御を行うためのd軸電流及びq軸電流の値を示す最大トルク制御線62である。また、図5において、太い一点鎖線は、そのときの電動機4の回転速度ω及び直流電圧Vdcにより制限されるd軸電流及びq軸電流が取り得る値の範囲を示す電圧制限楕円63である。この電圧制限楕円63の径は、電動機4の回転速度ωに反比例し、直流電圧Vdcに比例する。調整後d軸電流指令値Id及び調整後q軸電流指令値Iqがこの電圧制限楕円63上の値をとる際には、変調率Mは最大変調率Mmax(=0.78)となる。このとき、制御装置2は電圧波形制御部10に矩形波制御を行わせる。また、図5にハッチングを施して示す強め界磁制御領域Fは、強め界磁・PWM制御モードA2及び強め界磁・矩形波制御モードA3が実行される領域を示している。この強め界磁制御領域Fの上限は最大トルク制御線62が電圧制限楕円63と交差する点で規定される。また、後述するように、強め界磁制御は、通常界磁制御中における変調率Mが強め界磁しきい値Msとなったときに開始し、所定の強め界磁終了条件を満たしたときに終了する。従って、強め界磁制御領域Fの下限は、これらの強め界磁しきい値Ms及び強め界磁終了条件によって規定される。
図示の例では、目標トルクTMとして「TM1」の値が入力された場合には、q軸電流指令値導出部22は、目標トルクTM=TM1の等トルク線61と最大トルク制御線62との交点のq軸電流の値である「Iq1」を基本q軸電流指令値Iqbとして導出する。ここで、基本q軸電流指令値は、最大トルク制御を行う場合におけるq軸電流の指令値に相当する。この場合、弱め界磁制御及び強め界磁制御の双方が行われず、後述する積分器32から入力されるd軸電流調整指令値ΔIdはゼロ(ΔId=0)である。従って、調整後q軸電流指令値Iqは基本q軸電流指令値Iqbと同じ値となる。このとき制御装置2は、通常界磁・PWM制御モードA1を実行する。
また、目標トルクTMとして「TM3」の値が入力された場合には、q軸電流指令値導出部22は、目標トルクTM=TM3の等トルク線61と最大トルク制御線62との交点のq軸電流の値である「Iq3」を基本q軸電流指令値Iqbとして導出する。この際、基本d軸電流指令値Idb及び基本q軸電流指令値Iqbは、強め界磁制御領域F内に入っているため強め界磁制御が行われる。この場合、d軸電流調整指令値ΔIdとして正の値、ここでは「ΔId1」(ΔId1>0)が後述する積分器32から入力される。従って、q軸電流指令値導出部22は、目標トルクTM=TM3の等トルク線61に沿ってd軸の正方向に「ΔId1」だけ移動した電圧制限楕円63上のq軸電流の値である「Iq4」を調整後q軸電流指令値Iqとして導出する。このとき制御装置2は、強め界磁・矩形波制御モードA3を実行する。
また、目標トルクTMとして「TM5」の値が入力された場合には、q軸電流指令値導出部22は、目標トルクTM=TM5の等トルク線61と最大トルク制御線62との交点のq軸電流の値である「Iq5」を基本q軸電流指令値Iqbとして導出する。この際、基本d軸電流指令値Idb及び基本q軸電流指令値Iqbは、電圧制限楕円63よりも外側にあるため、弱め界磁制御が行われる。この場合、d軸電流調整指令値ΔIdとして負の値、ここでは「−ΔId2」(−ΔId2<0)が後述する積分器32から入力される。従って、q軸電流指令値導出部22は、目標トルクTM=TM5の等トルク線61に沿ってd軸の負方向に「−ΔId2」だけ移動した電圧制限楕円63上のq軸電流の値である「Iq6」を調整後q軸電流指令値Iqとして導出する。このとき制御装置2は、弱め界磁・矩形波制御モードA5を実行する。
なお、図5のq軸電流指令値マップにより求められる基本q軸電流指令値Iqb(Iq1、Iq3、Iq5)に対応するd軸電流の値(Id1、Id3、Id5)は、図4に示す基本d軸電流指令値マップを用いて求められる基本d軸電流指令値Idbの値と一致する。よって、基本d軸電流指令値Idbをこの図5に示すマップにより求めることも可能である。本実施形態においては、電動機4の目標トルクTMに基づいて基本d軸電流指令値Idb及び基本q軸電流指令値Iqbを決定するd軸電流指令値導出部21及びq軸電流指令値導出部22が、本発明における電流指令決定部7を構成している。そして、基本d軸電流指令値Idb及び基本q軸電流指令値Iqbが、インバータ6から電動機4に供給する電流の指令値である、本発明における基本電流指令値となる。
電流制御部24には、上記のように導出された調整後d軸電流指令値Id及び調整後q軸電流指令値Iqが入力される。更に、電流制御部24には、三相二相変換部27から実d軸電流Idr及び実q軸電流Iqrが入力され、回転速度導出部28から電動機4の回転速度ωが入力される。実d軸電流Idr及び実q軸電流Iqrは、インバータ6から電動機4に供給される電流の実際の値に対応しており、電流センサ42(図1参照)により検出されたU相電流Iur、V相電流Ivr、及びW相電流Iwrと回転センサ43(図1参照)により検出された磁極位置θとに基づいて、三相二相変換部27により三相二相変換を行って導出される。また、電動機4の回転速度ωは、回転センサ43(図1参照)により検出された磁極位置θに基づいて回転速度導出部28により導出される。
電流制御部24は、実d軸電流Idr及び実q軸電流Iqrに基づいて、調整後d軸電流指令値Id及び調整後q軸電流指令値Iqに対するフィードバック制御を行い、電圧指令値Vd、Vqを決定する。そのために、電流制御部24は、調整後d軸電流指令値Idと実d軸電流Idrとの偏差であるd軸電流偏差δId、及び調整後q軸電流指令値Iqと実q軸電流Iqrとの偏差であるq軸電流偏差δIqを導出する。そして、電流制御部24は、d軸電流偏差δIdに基づいて比例積分制御演算(PI制御演算)を行って基本d軸電圧指令値Vzdを導出すると共に、q軸電流偏差δIqに基づいて比例積分制御演算を行って基本q軸電圧指令値Vzqを導出する。なお、これらの比例積分制御演算に代えて比例積分微分制御演算(PID制御演算)を行っても好適である。
そして、電流制御部24は、下記の式(2)に示すように、基本d軸電圧指令値Vzdに対してq軸電機子反作用Eqを減算する調整を行ってd軸電圧指令値Vdを導出する。
Vd=Vzd−Eq
=Vzd−ω・Lq・Iqr・・・(2)
この式(2)に示されるように、q軸電機子反作用Eqは、電動機4の回転速度ω、実q軸電流Iqr、及びq軸インダクタンスLqに基づいて導出される。
更に、電流制御部24は、下記の式(3)に示すように、基本q軸電圧指令値Vzqに対してd軸電機子反作用Ed及び永久磁石の電機子鎖交磁束による誘起電圧Emを加算する調整を行ってq軸電圧指令値Vqを導出する。
Vq=Vzq+Ed+Em
=Vzq+ω・Ld・Idr+ω・MIf・・・(3)
この式(3)に示されるように、d軸電機子反作用Edは、電動機4の回転速度ω、実d軸電流Idr、及びd軸インダクタンスLdに基づいて導出される。また、誘起電圧Emは、永久磁石の電機子鎖交磁束の実効値により定まる誘起電圧定数MIf及び電動機4の回転速度ωに基づいて導出される。
本実施形態においては、d軸電圧指令値Vd及びq軸電圧指令値Vqが、本発明における電圧指令値に相当する。そして、基本電流指令値Idb、Iqbに対してd軸電流調整指令値ΔIdによる界磁調整を行った後の調整後電流指令値Id、Iqと、電動機4の回転速度ωと、実d軸電流Idr及び実q軸電流Iqrとに基づいて、電圧指令値Vd、Vqが決定される。よって、この電流制御部24により、本発明における電圧指令決定部9が構成されている。
電圧波形制御部10は、電圧指令値Vd、Vqに基づいてインバータ6を制御し、PWM制御及び矩形波制御を少なくとも含む電圧波形制御を実行する。本実施形態では、電圧波形制御部10は、通常PWM制御、過変調PWM制御、及び矩形波制御のいずれかを選択的に実行する。本実施形態では、電圧波形制御部10は、後述するモード制御部5からの指令に従って、変調率Mが矩形波しきい値Mb(=0.78)以上である場合には矩形波制御を実行する。また、電圧波形制御部10は、変調率Mが矩形波しきい値Mb未満である場合には、更に過変調しきい値Mo(=0.707)に基づいて通常PWM制御又は過変調PWM制御を実行する。電圧波形制御部10には、三相二相変換部25及び制御信号生成部26が含まれる。
二相三相変換部25には、d軸電圧指令値Vd及びq軸電圧指令値Vqが入力される。また、二相三相変換部25には、回転センサ43(図1参照)により検出された磁極位置θも入力される。二相三相変換部25は、磁極位置θを用いてd軸電圧指令値Vd及びq軸電圧指令値Vqに対して二相三相変換を行い、三相の交流電圧指令値、すなわちU相電圧指令値Vu、V相電圧指令値Vv、及びW相電圧指令値Vwを導出する。但し、これらの交流電圧指令値Vu、Vv、Vwの波形は、制御モード毎に異なるため、二相三相変換部25は、制御モード毎に異なる電圧波形の交流電圧指令値Vu、Vv、Vwを制御信号生成部26に出力する。具体的には、二相三相変換部25は、後述するモード制御部5から通常PWM制御の実行指令を受けた場合には、当該通常PWM制御に応じた交流電圧波形の交流電圧指令値Vu、Vv、Vwを出力する。ここでは、通常PWM制御はSVPWM制御とされているので、当該SVPWM制御用の交流電圧波形に従って交流電圧指令値Vu、Vv、Vwを出力する。また、二相三相変換部25は、モード制御部5から過変調PWM制御の実行指令を受けた場合には、当該過変調PWM制御に応じた交流電圧波形の交流電圧指令値Vu、Vv、Vwを出力する。また、二相三相変換部25は、モード制御部5から矩形波制御の実行指令を受けた場合には、当該矩形波制御に応じた交流電圧波形の交流電圧指令値Vu、Vv、Vwを出力する。ここで、矩形波制御を実行する際の交流電圧指令値Vu、Vv、Vwは、インバータ6の各スイッチング素子E1〜E6のオンオフ切替位相の指令値とすることができる。この指令値は、各スイッチング素子E1〜E6のオンオフ制御信号に対応し、各スイッチング素子E1〜E6のオン又はオフを切り替えるタイミングを表す磁極位置θの位相を表す指令値である。
制御信号生成部26には、三相二相変換部25により生成されたU相電圧指令値Vu、V相電圧指令値Vv、及びW相電圧指令値Vwが入力される。制御信号生成部26は、それらの交流電圧指令値Vu、Vv、Vwに従って、図1に示すインバータ6の各スイッチング素子E1〜E6を制御するスイッチング制御信号S1〜S6を生成する。そして、インバータ6は、スイッチング制御信号S1〜S6に従って各スイッチング素子E1〜E6のオンオフ動作を行う。これにより、電動機4のPWM制御(通常PWM制御又は過変調PWM制御)又は矩形波制御が行われる。
変調率導出部29には、電流制御部24により導出されたd軸電圧指令値Vd及びq軸電圧指令値Vqが入力される。また、変調率導出部29には、電圧センサ41により検出された直流電圧Vdcの値が入力される。変調率導出部29は、これらの値に基づいて変調率Mを、下記の式(4)に従って導出する。
M=√(Vd+Vq)/Vdc・・・(4)
本実施形態では、変調率Mは、直流電圧Vdcに対するインバータ6の出力電圧波形の基本波成分の実効値の比率であり、ここでは、3相の線間電圧実効値を直流電圧Vdcの値で除算した値として導出される。本実施形態においては、この変調率Mが、そのときの直流電圧Vdcに対する電圧指令値Vd、Vqの大きさを表す電圧指標に相当する。上記のとおり、変調率Mの最大値(最大変調率Mmax)は、矩形波制御を実行している際の変調率Mに相当する「0.78」である。ここでは、この最大変調率Mmaxは、矩形波しきい値Mbでもある。
減算器30には、変調率導出部29により導出された変調率Mと、所定の指令変調率MTとが入力される。本実施形態では、指令変調率MTは、最大変調率Mmax(=0.78)に設定している。減算器30は、下記の式(5)に示すように、変調率Mから指令変調率MTを減算した変調率偏差ΔMを導出する。
ΔM=M−MT・・・(5)
本実施形態では、変調率偏差ΔMは、電圧指令値Vd、Vqがそのときの直流電圧Vdcによって出力し得る最大の交流電圧の値を超えている程度を表す。従って、変調率偏差ΔMは、実質的には直流電圧Vdcの不足の程度を表す電圧不足指標として機能する。
積分入力調整部31には、減算器30により導出された変調率偏差ΔMが入力される。積分入力調整部31は、変調率偏差ΔMの値に対して所定の調整を行い、当該調整後の値である調整値Yを積分器32へ出力する。図6は、この積分入力調整部31により用いられる変換マップの一例を示す図である。この図に示すように、本実施形態においては、積分入力調整部31は、変調率偏差ΔMが所定の強め界磁開始偏差ΔMs(ΔMs<0)以上ゼロ未満の状態(ΔMs≦ΔM<0)では正の調整値Y(Y>0)を出力し、変調率偏差ΔMがゼロより大きい状態(0<ΔM)では負の調整値Y(Y<0)を出力し、変調率偏差ΔMが強め界磁開始偏差ΔMs未満の状態(ΔM<ΔMs)及び変調率偏差ΔMがゼロの状態(ΔM=0)では調整値Yとしてゼロ(Y=0)を出力する。より詳しくは、積分入力調整部31は、変調率偏差ΔMが強め界磁開始偏差ΔMs以上であって中間偏差ΔMsm未満の状態(ΔMs≦ΔM<ΔMsm)では、変調率偏差ΔMが増加するに従って増加する調整値Yを出力する。この範囲では、変調率偏差ΔMと調整値Yとの関係は一次関数により表すことができる。このように変調率偏差ΔMの増加に従って調整値Yが増加する変換マップの領域を設定することにより、強め界磁制御を開始した直後にd軸電流調整指令値ΔIdが急激に上昇することを抑制できる。よって、d軸電流調整指令値ΔIdによる調整後の電流指令値Id、Iqが急激に変化することによる、電動機4のコイルに流れる電流の急激な変化やオーバーシュートを抑制すると共に電動機4の出力トルクの振動を抑制することができる。
また、積分入力調整部31は、変調率偏差ΔMが中間偏差ΔMsm以上の状態(ΔMsm≦ΔM)では、変調率偏差ΔMが増加するに従って減少する調整値Yを出力する。この範囲では、調整値Yは変調率偏差ΔMに比例し、比例定数は負の値となる。ここで、強め界磁開始偏差ΔMsは、強め界磁制御を開始するための変調率偏差ΔMのしきい値であり、ゼロ未満の値に設定される。この強め界磁開始偏差ΔMsは、指令変調率MTと合わせて強め界磁制御の開始条件を構成する。よって、強め界磁開始偏差ΔMsは、指令変調率MT(=0.78)と合わせて決定される強め界磁しきい値Msが適切な値となるように設定される。上記のとおり、本実施形態では、強め界磁しきい値Msは過変調しきい値Mo(=0.707)と一致するように設定される。よって、ここでは強め界磁開始偏差ΔMsは、「−0.073」(=0.707−0.78)に設定される。なお、中間偏差ΔMsmは、強め界磁開始偏差ΔMsより大きくゼロ未満の値、例えば「−0.035」に設定される。このように、強め界磁しきい値Msは、矩形波しきい値Mb(本実施形態では、指令変調率MT及び最大変調率Mmaxに等しい)より小さい値に設定される。強め界磁制御は、変調率Mがこの強め界磁しきい値Ms以上となったことを条件として実行される。
図2に示すように、積分器32には積分入力調整部31により導出された調整値Yが入力される。積分器32は、この調整値Yを所定のゲインを用いて積分し、当該積分値をd軸電流調整指令値ΔIdとして導出する。本実施形態では、このd軸電流調整指令値ΔIdが、基本電流指令値Idb、Iqbの調整値であり、電動機4の界磁磁束を調整するための界磁調整指令値に相当する。このd軸電流調整指令値ΔIdは、変調率導出部29、減算器30、積分入力調整部31、及び積分器32により決定される。よって、本実施形態では、変調率導出部29、減算器30、積分入力調整部31、及び積分器32により、界磁調整部8が構成されている。そして、d軸電流調整指令値ΔIdに応じて、通常界磁制御(最大トルク制御)、強め界磁制御、又は弱め界磁制御が選択的に実行される。ここで、d軸電流調整指令値ΔIdがゼロである場合(ΔId=0)には通常界磁制御(最大トルク制御)が行われる。d軸電流調整指令値ΔIdが正の値をとる場合(ΔId>0)、基本電流指令値Idb、Iqbに対して電動機4の界磁磁束を強める調整が行われる。すなわち正のd軸電流調整指令値ΔIdである強め界磁電流が流れることにより、通常界磁制御に比べて電動機4の界磁磁束が強められ、強め界磁制御が行われる。d軸電流調整指令値ΔIdが負の値をとる場合(ΔId<0)、基本電流指令値Idb、Iqbに対して電動機4の界磁磁束を弱める調整が行われる。すなわち負のd軸電流調整指令値ΔIdである弱め界磁電流が流れることにより、通常界磁制御に比べて電動機4の界磁磁束が弱められ、弱め界磁制御が行われる。
上記のように、変調率偏差ΔMが強め界磁開始偏差ΔMs以上ゼロ未満の状態(ΔMs≦ΔM<0)では、調整値Yとして正の値(Y>0)が出力されるので、積分器32により導出されるd軸電流調整指令値ΔIdは増加(正方向に変化)し、電動機4の界磁磁束を強める方向にd軸電流調整指令値ΔIdが変化する。また、変調率偏差ΔMがゼロより大きい状態(0<ΔM)では、調整値Yとして負の値(Y<0)が出力されるので、積分器32により導出されるd軸電流調整指令値ΔIdは減少(負方向に変化)し、電動機4の界磁磁束を弱める方向にd軸電流調整指令値ΔIdが変化する。変調率偏差ΔMが強め界磁開始偏差ΔMs未満(ΔM<ΔMs)及び変調率偏差ΔMがゼロの状態(ΔM=0)では、調整値Yとしてゼロ(Y=0)が出力されるので、積分器32により導出されるd軸電流調整指令値ΔIdは変化せず、電動機4の界磁磁束を変化させないようにd軸電流調整指令値ΔIdが決定される。
上記のとおり、本実施形態に係る通常界磁制御では、同一電流に対して電動機4の出力トルクが最大となるように電流位相を調節する最大トルク制御が行われる。そのため、通常界磁制御を実行するためのd軸電流調整指令値ΔIdの基準値(ΔId=0)から、電動機4の界磁磁束を強める方向にd軸電流調整指令値ΔIdが変化するに従って、同一トルクを出力するために必要とされる調整後の電流指令値Id、Iqは増加し、それに基づいて導出される電圧指令値Vd、Vq及び変調率Mは増加する。言い換えると、電圧指令決定部9は、d軸電流調整指令値ΔIdが基準値(ΔId=0)から増加する(正方向に変化する)に従って電圧指令値Vd、Vqを増大させる。また、変調率導出部29は、d軸電流調整指令値ΔIdが基準値(ΔId=0)から増加する(正方向に変化する)に従って変調率Mを増大させる。
モード制御部5は、回転速度ω及び目標トルクTMを含む電動機4の動作状態並びに直流電圧Vdcに基づいて複数の制御モードの中から実行する制御モードを決定し、当該制御モードに応じて界磁調整部8及び電圧波形制御部10を含む制御装置2の各部を制御する。更に、モード制御部5は、強め界磁制御の実行中には強め界磁終了条件の判定を行い、当該強め界磁終了条件が満たされた場合には強め界磁制御を終了させる強め界磁終了制御も行う。ここでは、図2に示すように、モード制御部5には、回転速度ω、目標トルクTM、直流電圧Vdc、変調率M、及びd軸電流調整指令値ΔIdが入力され、これらに基づいてモード制御部5の制御動作が行われる。本実施形態では、モード制御部5は、基本的に、図3に例を示す電圧制御領域マップ34に基づいて制御モードの決定を行う。また、モード制御部5は、強め界磁制御の実行中は、図7及び図8に例を示す強め界磁終了条件マップに基づいて強め界磁制御の終了判定を行う。このモード制御部5の詳細については以下に説明する。
2−3.モード制御部の詳細
図3に示すように、モード制御部5は、強め界磁制御領域Fを除いて、電動機4の回転速度ω及び目標トルクTMが高くなるに従って、通常界磁・通常PWM制御モードA1a、通常界磁・過変調PWM制御モードA1b、弱め界磁・過変調PWM制御モードA4a、弱め界磁・矩形波制御モードA5の順に制御モードを移行させる。上記のとおり、これらの各制御モード間の境界(曲線L1、L2、L3)は、通常界磁制御(最大トルク制御)中における変調率Mが一定となる位置に設定されている。この中で、曲線L1は、通常界磁制御中における変調率Mが最大変調率Mmax(=0.78)となる位置に設定されており、回転速度ω及び目標トルクTMに基づいて通常界磁制御を行うべく導出した変調率Mが最大変調率Mmaxを超える状態では、制御装置2は、弱め界磁・矩形波制御モードA5を実行する。
強め界磁制御領域Fは、目標トルクTMについて規定された強め界磁許容トルク範囲TMR内に設定されている。また、強め界磁制御領域Fは、弱め界磁制御領域(弱め界磁・矩形波制御モードA5が実行される領域)を除く領域全体で、強め界磁制御を行わずに通常界磁制御を行ったと仮定した場合における変調率Mが、強め界磁しきい値Ms(曲線L2)から最大変調率Mmax(曲線L1)までとなる領域(Ms≦M<Mmax)に設定されている。ここで、強め界磁しきい値Msは、指令変調率MTと強め界磁開始偏差ΔMsとの双方の設定によって定まる。すなわち、変調率Mが次第に上昇して指令変調率MTに近づく状況において、積分入力調整部31は、上記のとおり、変調率偏差ΔMが強め界磁開始偏差ΔMs(ΔMs<0)以上ゼロ未満の状態(ΔMs≦ΔM<0)で正の調整値Y(Y>0)を出力する。そして、変調率偏差ΔMは、上記式(5)に示すように、変調率Mから指令変調率MTを減算して求められる。従って、強め界磁制御を開始するときの変調率Mの値である強め界磁しきい値Msは、下記の式(6)に示すように、指令変調率MTに強め界磁開始偏差ΔMsを加算して求められる。
Ms=MT+ΔMs・・・(6)
本実施形態では、指令変調率MTが「0.78」に設定され、強め界磁開始偏差ΔMsが「−0.073」に設定されているので、強め界磁しきい値Msは過変調しきい値Moと等しい「0.707」となる。このため、目標トルクTMが強め界磁許容トルク範囲TMR内にある状態で通常界磁・通常PWM制御モードA1aの実行中に変調率Mが強め界磁しきい値Msを超えた場合、すなわち電動機4の動作点が強め界磁制御領域Fに入った場合、界磁調整部8は強め界磁制御を開始する。
また、モード制御部5は、変調率Mが矩形波しきい値Mb(最大変調率Mmax)以上の状態では電圧波形制御部10に矩形波制御を実行させ、変調率Mが矩形波しきい値Mb未満の状態では電圧波形制御部10にPWM制御を実行させる。更に本実施形態では、PWM制御には通常PWM制御と過変調PWM制御の2つが含まれるため、モード制御部5は、変調率Mが矩形波しきい値Mb未満の状態であって、過変調しきい値Mo(=0.707)以下の状態では電圧波形制御部10に通常PWM制御を実行させ、過変調しきい値Mo(=0.707)より大きい状態では電圧波形制御部10に過変調PWM制御を実行させる。上記のとおり、電圧波形制御部10は、三相二相変換部25及び制御信号生成部26を備えて構成されており、これらによってPWM制御及び矩形波制御を含む電圧波形制御が実行される。
回転速度ω及び目標トルクTMにより定まる電動機4の動作点が強め界磁制御領域Fに入った場合には、上記のような指令変調率MT及び強め界磁開始偏差ΔMsの設定によって、積分入力調整部31から正の調整値Yが出力され、積分器32により正のd軸電流調整指令値ΔIdが出力される。これにより強め界磁制御が開始される。上記のとおり、強め界磁制御領域Fを規定する強め界磁しきい値Ms(曲線L2)は、指令変調率MT(=0.78)及び強め界磁開始偏差ΔMs(=−0.073)により定まり、本例では過変調しきい値Mo(=0.707)に一致している。モード制御部5は、強め界磁制御の開始後、まず、電圧波形制御部10にPWM制御を実行させる。本例では、強め界磁制御の開始時の変調率Mは過変調しきい値Moであるので、モード制御部5は、電圧波形制御部10に過変調PWM制御を実行させる。すなわち、モード制御部5は、強め界磁制御を開始した際には、まず強め界磁・過変調PWM制御モードA2bを実行する。その後、強め界磁制御によって変調率Mが次第に上昇し、最終的には矩形波しきい値Mbに到達する。変調率Mが矩形波しきい値Mbに到達した後には、モード制御部5は、電圧波形制御部10に矩形波制御を実行させる。これにより、強め界磁・矩形波制御モードA3が実行される。
ところで、界磁制御部8は、変調率Mが強め界磁しきい値Msを超えて強め界磁制御を開始した後は、変調率Mを指令変調率MTに一致させるようにd軸電流調整指令値ΔIdを調整する。ここで、指令変調率MTは矩形波しきい値Mbと同じく最大変調率Mmax(=0.78)値とされている。従って、強め界磁制御を開始した後、変調率Mは、最終的には最大変調率Mmaxに収束する。このように変調率Mが矩形波しきい値Mbである最大変調率Mmaxに達した後は、モード制御部5が電圧波形制御部10に矩形波制御を実行させる。また、この状態から、電動機4の目標トルクTMや回転速度ωが変化することに伴って変調率Mが変化した場合、当該変調率Mの変化に応じて変調率偏差ΔMも変化するため、界磁制御部8において界磁磁束を強める方向又は弱める方向にd軸電流調整指令値ΔIdが適宜変更される。これにより、d軸電流調整指令値ΔIdは、強め界磁制御が行われる正の値から弱め界磁制御が行われる負の値まで適宜変化する。d軸電流調整指令値ΔIdが負の値になった状態では、弱め界磁制御が実行される。強め界磁制御及び弱め界磁制御のいずれが行われる場合においても、変調率Mは矩形波しきい値Mbである最大変調率Mmaxに収束し、矩形波制御を実行する状態が維持される。
2−4.強め界磁終了制御
上記のとおり、本実施形態に係る制御装置2では、矩形波制御の実行中は、変調率Mを矩形波しきい値Mbである最大変調率Mmaxに維持するようにd軸電流調整指令値ΔIdが決定され、強め界磁制御や弱め界磁制御が実行される。そのため、変調率Mのみによって矩形波制御とPWM制御とを切り替える構成では、電動機4の運転状態が変化しても矩形波制御は終了しない。すなわち、回転速度ω及び目標トルクTMの一方又は双方が低下して電動機4の動作点が、図3の曲線L2より左側の通常界磁・通常PWM制御モードA1aの領域に入った場合であっても、界磁磁束を強める方向にd軸電流調整指令値ΔIdが大きくなるだけで矩形波制御及び強め界磁制御は終了しない。このため、d軸電流調整指令値ΔIdが大きくなることにより効率が低下し、或いは回転速度ωが低い領域で矩形波制御を行うことにより電動機4の出力トルクに振動等が生じる可能性がある。そこで、モード制御部5は、このような場合に適切に強め界磁制御を終了させることにより、矩形波制御を終了させることができるように強め界磁終了制御を行う。
すなわち、モード制御部5は、目標トルクTM、直流電圧Vdc、及びd軸電流調整指令値ΔIdに基づいて、強め界磁制御を終了する条件である強め界磁終了条件を判定する。そして、強め界磁終了条件を満たす場合には、モード制御部5は、界磁調整部8による強め界磁制御を終了させる。本実施形態においては、強め界磁終了条件は、以下の(A)、(B)、及び(C)の3つの条件のいずれかを満たすこととしている。
(A)電動機4の回転速度ω<回転速度しきい値ωT
(B)d軸電流調整指令値ΔId≧調整指令しきい値ΔIdT
(C)目標トルクTMが強め界磁許容トルク範囲TMR外であること
なお、本実施形態においては、上記の条件(C)に示すように、目標トルクTMが強め界磁許容トルク範囲TMR外であることも強め界磁終了条件に含めて判定することにより、強め界磁許容トルク範囲TMR内でのみ強め界磁制御を行なうように規制している。以下では、これらの強め界磁終了条件及び強め界磁制御の終了動作について詳細に説明する。
2−4−1.強め界磁終了条件(A):回転速度ωに基づく終了条件
上記のように、モード制御部5は、強め界磁終了条件(A)として、電動機4の回転速度ωに基づく終了条件を用いる。すなわち、モード制御部5は、電動機4の回転速度ωが、目標トルクTM及び直流電圧Vdcに基づいて定まる回転速度しきい値ωT未満となったこと(ω<ωT)を条件として、界磁調整部8による強め界磁制御を終了させる。本実施形態では、目標トルクTM及び直流電圧Vdcの双方の値に応じて、通常界磁制御の実行中において変調率Mが上述した強め界磁しきい値Ms(=0.707)となる電動機4の回転速度ωを、回転速度しきい値ωTとする。
制御装置2は、目標トルクTM及び直流電圧Vdcに関連付けて適切な回転速度しきい値ωTを規定した回転速度しきい値マップ35A(図7(c)参照)を強め界磁終了条件マップ35(図1参照)として備えている。モード制御部5は、この回転速度しきい値マップ35Aに基づいて、目標トルクTM及び直流電圧Vdcに応じた適切な回転速度しきい値ωTを導出する。図7は、この回転速度しきい値ωTの導出方法、言い換えれば、回転速度しきい値マップ35Aの作成方法を示す概念図である。
適切な回転速度しきい値ωTは、実際の制御装置2を用いて実験的に求めることができる。例えば、図7(a)に示すように、まず、直流電源3が取り得る直流電圧Vdcの範囲内から任意の電圧、ここでは「Vdc1」を選択する(Vdc=Vdc1)。また、電動機4が取り得る目標トルクTMの範囲内から任意のトルク、例えば「TM1」を選択する(TM=TM1)。次に、選択した直流電圧Vdc=Vdc1及び目標トルクTM=TM1を制御装置2に入力し、インバータ6にPWM制御(ここでは通常PWM制御)を実行させ、電動機4の回転速度ωをゼロから次第に上昇させる。そして、回転速度ωに応じたd軸電流調整指令値ΔIdを計測し、d軸電流調整指令値ΔIdがゼロから正の値に変化する瞬間の回転速度ωを計測する。上記のとおり、界磁調整部8は、変調率Mが強め界磁しきい値Msを超えたときに正のd軸電流調整指令値ΔIdが出力されるように構成されている。従って、d軸電流調整指令値ΔIdを監視することにより、変調率Mが強め界磁しきい値Msとなるときの回転速度ωを計測することができる。図7(a)に示す例では、このときの回転速度ωは「ω11」となっている。このようにして求めた回転速度ω=ω1を、その直流電圧Vdc=Vdc1及び目標トルクTM=TM1での回転速度しきい値ωTとする。すなわち、この回転速度しきい値ωT=ω1が、引数としての直流電圧Vdc=Vdc1及び目標トルクTM=TM1に対応する回転速度しきい値マップ35A(図7(c)参照)の値となる。
その後、直流電圧Vdc=Vdc1を維持したまま、電動機4が取り得る目標トルクTMの範囲内で様々なトルクを選択し、同様に、PWM制御を実行させながら、電動機4の回転速度ωをゼロから次第に上昇させ、d軸電流調整指令値ΔIdがゼロから正の値に変化する瞬間の回転速度ωを計測する。図7(a)の例では、目標トルクTM=TM2での回転速度ωは「ω12」、目標トルクTM=TM3での回転速度ωは「ω13」となっている。多数のトルクを選択し、各トルクについての回転速度ωを計測することで、図7(a)に曲線LωTとして示すように、直流電圧Vdcが「Vdc1」である状態で、通常界磁制御中において変調率Mが強め界磁しきい値Ms(=0.707)となる目標トルクTMと回転速度ωとの関係を求めることができる。この曲線LωTは、上述した変調率Mが過変調しきい値Mo(=0.707)となる曲線L2と理論上一致する。図7(b)に示すように、このように求めた目標トルクTMと回転速度ωとの関係(曲線LωT)を、当該直流電圧Vdc=Vdc1についての回転速度しきい値ωTのマップとする。その後、直流電圧Vdc=Vdc2、直流電圧Vdc=Vdc3、・・・のように、直流電源3が取り得る直流電圧Vdcの範囲内で様々な電圧を選択し、同様に、変調率Mが強め界磁しきい値Ms(=0.707)となる目標トルクTMと回転速度ωとの関係を求める。そして、各直流電圧Vdcについて求めた目標トルクTMと回転速度ωとの関係を、各直流電圧Vdcについての回転速度しきい値ωTのマップとし、回転速度しきい値マップ35Aに登録する。
以上により、図7(c)に示すように、目標トルクTM及び直流電圧Vdcに関連付けて適切な回転速度しきい値ωTを規定した回転速度しきい値マップ35Aが作成できる。制御装置2は、図1に示す強め界磁終了条件マップ35の一部として、上記のような回転速度しきい値マップ35Aをモード制御部5から参照可能に備えている。
2−4−2.強め界磁終了条件(B):d軸電流調整指令値ΔIdに基づく終了条件
上記のように、モード制御部5は、強め界磁終了条件(B)として、界磁調整指令値としてのd軸電流調整指令値ΔIdに基づく終了条件を用いる。すなわち、モード制御部5は、d軸電流調整指令値ΔIdが、界磁磁束を強める方向に、目標トルクTM及び電圧速度比RVωに基づいて定まる調整指令しきい値ΔIdT以上となったこと(ΔId≧ΔIdT)を条件として、界磁調整部8による強め界磁制御を終了させる。ここで、電圧速度比RVωは、直流電圧Vdcと電動機4の回転速度ωとの比である。本実施形態では、強め界磁制御と共に矩形波制御を実行することにより得られるインバータ6におけるスイッチング損失の低減効果と、界磁磁束を強める方向にd軸電流調整指令値ΔIdを増大することによる効率の悪化との関係に着目する。具体的には、通常界磁・PWM制御モードA1(ここでは通常界磁・通常PWM制御モードA1a)を実行した場合の電動機4及び電動機駆動装置1の損失を通常時損失Loss1とし、強め界磁・矩形波制御モードA3を実行した場合の電動機4及び電動機駆動装置1の損失を強め界磁時損失Loss2とし、強め界磁制御を実行することによる効率向上分を損失差分ΔLoss(=Loss1−Loss2)とする。そして、強め界磁時損失Loss2が通常時損失Loss1より少なくなる、すなわち、損失差分ΔLossが正(ΔLoss>0)となるd軸電流調整指令値ΔIdの範囲における界磁磁束を強める方向の上限を、調整指令しきい値ΔIdTとする。
制御装置2は、目標トルクTM及び電圧速度比RVωに関連付けて適切な調整指令しきい値ΔIdTを規定した調整指令しきい値マップ35B(図8(c)参照)を強め界磁終了条件マップ35(図1参照)として備えている。モード制御部5は、この調整指令しきい値マップ35Bに基づいて、目標トルクTM及び電圧速度比RVωに応じた適切な調整指令しきい値ΔIdTを導出する。図8は、この調整指令しきい値ΔIdTの導出方法、言い換えれば、調整指令しきい値マップ35Bの作成方法を示す概念図である。
適切な調整指令しきい値ΔIdTは、実際の制御装置2を用いて実験的に求めることができる。例えば、図8(a)に示すように、まず、直流電源3が取り得る直流電圧Vdcの範囲内から任意の電圧、及び電動機4が取り得る目標トルクTMの範囲内から任意のトルクを選択する。ここでは、一例として、直流電圧Vdcとして「Vdc1」、目標トルクTMとして「TM3」を選択する(Vdc=Vdc1、TM=TM3)。そして、選択した直流電圧Vdc=Vdc1及び目標トルクTM=TM3において、PWM制御を実行可能な回転速度ωであるPWM可能上限速度ωUを導出する。このPWM可能上限速度ωUは、図8(a)に示すようなId−Iq平面上において、直流電圧Vdc=Vdc1とした場合に、最大トルク制御線62及び目標トルクTM=TM3の等トルク線61の交点を通る電圧制限楕円63Uの回転速度ωとして求めることができる。次に、選択した直流電圧Vdc=Vdc1及び目標トルクTM=TM3を制御装置2に入力し、インバータ6にPWM制御(ここでは通常PWM制御)を実行させ、電動機4の回転速度ωをPWM可能上限速度ωUから次第に低下させる。そして、回転速度ωに応じて変化するd軸電流調整指令値ΔIdと通常時損失Loss1との関係を計測する。また、同じ直流電圧Vdc及び目標トルクTMの条件で、インバータ6に矩形波制御を実行させ、電動機4の回転速度ωをPWM可能上限速度ωUから次第に低下させる。そして、回転速度ωに応じて変化するd軸電流調整指令値ΔIdと強め界磁時損失Loss2との関係を計測する。ここで、通常時損失Loss1及び強め界磁時損失Loss2は、それぞれ、PWM制御又は矩形波制御での、電動機4における銅損及び鉄損、並びに電動機駆動装置1におけるスイッチング損失等を含み、直流電源3から電動機駆動装置1に供給した電力と電動機4により得られた出力との差により求められる。
以上より、回転速度ωに応じて変化するd軸電流調整指令値ΔIdと、通常時損失Loss1と、強め界磁時損失Loss2と、の関係が求まる。そこで、各d軸電流調整指令値ΔId(回転速度ω)での通常時損失Loss1と強め界磁時損失Loss2との差分(Loss1−Loss2)から、図8(a)に示すように、回転速度ωに応じて変化するd軸電流調整指令値ΔIdと損失差分ΔLossとの関係を導出する。そして、d軸電流調整指令値ΔIdと損失差分ΔLossとの関係に基づいて、損失差分ΔLossが正から負に変化する瞬間(損失差分ΔLoss=0となる瞬間)の回転速度ω及びd軸電流調整指令値ΔIdを計測する。図8(a)に示す例では、このときの回転速度ωは「ω1」、d軸電流調整指令値ΔIdは「ΔId31」となっている。このように求めた回転速度ω=ω1と直流電圧Vdc=Vdc1との比が、このときの電圧速度比RVω1となる。そして、このように求めたd軸電流調整指令値ΔId=ΔId31を、その電圧速度比RVω=RVω1及び目標トルクTM=TM3での調整指令しきい値ΔIdTとする。すなわち、この調整指令しきい値ΔIdT=ΔId31が、引数としての電圧速度比RVω=RVω1及び目標トルクTM=TM3に対応する調整指令しきい値マップ35B(図8(c)参照)の値となる。
その後、図8(b)に示すように、直流電圧Vdc=Vdc1を維持したまま、目標トルクTM=TM1、目標トルクTM=TM2、・・・のように、電動機4が取り得る目標トルクTMの範囲内で様々なトルクを選択し、同様に、回転速度ωに応じて変化するd軸電流調整指令値ΔIdと損失差分ΔLossとの関係を導出する。そして、各目標トルクTMについて、損失差分ΔLossが正から負に変化する瞬間の回転速度ω及びd軸電流調整指令値ΔIdを求め、その回転速度ωと直流電圧Vdcとの比をこのときの電圧速度比RVωとして、このように求めたd軸電流調整指令値ΔIdを、その電圧速度比RVω及び目標トルクTMでの調整指令しきい値ΔIdTとする。また、直流電圧Vdc=Vdc2、直流電圧Vdc=Vdc3、・・・のように、直流電源3が取り得る直流電圧Vdcの範囲内で様々な電圧を選択し、各直流電圧Vdcについて、上記と同様に目標トルクTMを様々に選択して、回転速度ωに応じて変化するd軸電流調整指令値ΔIdと損失差分ΔLossとの関係を導出する。そして、直流電圧Vdcと目標トルクTMとの組み合わせのそれぞれについて、損失差分ΔLossが正から負に変化する瞬間の回転速度ω及びd軸電流調整指令値ΔIdを求め、その回転速度ωと直流電圧Vdcとの比をこのときの電圧速度比RVωとして、このように求めたd軸電流調整指令値ΔIdを、その電圧速度比RVω及び目標トルクTMでの調整指令しきい値ΔIdTとする。そして、電圧速度比RVωと目標トルクTMと調整指令しきい値ΔIdTとの関係を、調整指令しきい値ΔIdTのマップとして調整指令しきい値マップ35Bに登録する。
以上により、図8(c)に示すように、目標トルクTM及び電圧速度比RVωに関連付けて適切な調整指令しきい値ΔIdTを規定した調整指令しきい値マップ35Bが作成できる。制御装置2は、図1に示す強め界磁終了条件マップ35の一部として、上記のような調整指令しきい値マップ35Bをモード制御部5から参照可能に備えている。なお、上記の方法では、損失差分ΔLossが正から負に変化する瞬間の回転速度ωに基づいて、調整指令しきい値ΔIdTの引数としての電圧速度比RVωを求める構成としている。そのため、調整指令しきい値マップ35Bの縦軸を構成する電圧速度比RVωが、各目標トルクTMについて同じ値とならない場合がある。その場合には、線形補間等により、電圧速度比RVωを所定の値に揃えた場合の調整指令しきい値ΔIdTを求めてマップ化すると好適である。
2−4−3.強め界磁終了条件(C):強め界磁許容トルク範囲TMRに基づく終了条件
また、本実施形態では、モード制御部5は、強め界磁終了条件(C)として、強め界磁許容トルク範囲TMRに基づく終了条件を用いる。すなわち、モード制御部5は、電動機4の目標トルクTMが所定の強め界磁許容トルク範囲TMRから外れている場合には、界磁調整部8が強め界磁制御を実行しないように、強め界磁制御を終了させる。すなわち、モード制御部5は、強め界磁許容トルク範囲TMRの上限を許容トルク上限TMRHとし、下限を許容トルク下限TMRLとして、目標トルクTM<許容トルク下限TMRL、又は目標トルクTM>許容トルク上限TMRHのときに強め界磁制御を終了させる。ここで、許容トルク上限TMRHは、例えば、電動機4に流れる交流電流の基本波成分以外の高調波成分が大きくなり易い矩形波制御を行った際に、電動機4の電機子コイルに流れる電流が当該電動機4に許容される電流制限値を超えないように設定すると好適である。また、許容トルク下限TMRLは、例えば、出力トルクが小さすぎるために矩形波制御を行うのに適さないトルク範囲を強め界磁許容トルク範囲TMRから除外するように設定すると好適である。
2−4−4.強め界磁制御の終了動作
そして、モード制御部5は、上述した強め界磁終了条件(A)〜(C)のいずれかを満たす場合には、d軸電流調整指令値ΔIdをゼロとする制御を行う。すなわち、モード制御部5は、強め界磁終了条件を満たす場合には、d軸電流調整指令値ΔIdをゼロとする指令を積分器32へ出力し、積分器32が出力するd軸電流調整指令値ΔIdをゼロとする。この際、モード制御部5は、d軸電流調整指令値ΔIdを現在値からゼロに向って一定の変化速度で変化させるように界磁調整部8を制御する。すなわち、強め界磁制御の実行中は、d軸電流調整指令値ΔIdは正の値となっているので、モード制御部5は、強め界磁制御を終了させる際には、d軸電流調整指令値ΔIdを時間の経過に従って現在値からゼロまで次第に低下(減少)させる。モード制御部5は、このように強め界磁制御を終了する際に、界磁磁束の調整量を減少させる方向にd軸電流調整指令値ΔIdを次第に変化させることで変調率Mを次第に低下させる制御を行う。これにより、変調率Mを、矩形波制御モードが実行される矩形波しきい値Mb(最大変調率Mmax=0.78)から次第に低下させ、d軸電流調整指令値ΔIdがゼロとなるまでの間であって且つ変調率Mが過変調しきい値Mo(=0.707)となるまでの間に強め界磁・過変調PWM制御モードA2b(強め界磁・PWM制御モードA2)を実行する。そして、d軸電流調整指令値ΔIdがゼロとなり、変調率Mが過変調しきい値Mo未満となったときに、通常界磁・通常PWM制御モードA1a(通常界磁・PWM制御モードA1)に移行する。
よって、本実施形態では、モード制御部5は、強め界磁制御を終了する際には、強め界磁・矩形波制御モードA3から強め界磁・PWM制御モードA2を経て通常界磁・PWM制御モードA1に移行させる。これにより、強め界磁制御を終了する際にd軸電流調整指令値ΔIdによる調整後の電流指令値Id、Iqが急激に変化すること、及び変調率Mが急激に変化することを抑制でき、電動機4のコイルに流れる電流の急激な変化やオーバーシュートを抑制できると共に、電動機4の出力トルクの振動が発生することを抑制することができる。なお、モード制御部5は、上記強め界磁終了条件(A)、(B)、及び(C)の全てが満たされなくなったときには、d軸電流調整指令値ΔIdを強制的にゼロとするための終了動作を停止する。これにより、積分器32が調整値Yを積分してd軸電流調整指令値ΔIdを導出する制御が再開される。
3.制御装置の動作
次に、制御装置2の各部の動作について、図9及び図10を用いて詳細に説明する。図9は、本実施形態に係る制御装置2における電圧指令値Vd、Vqの導出までの各部の動作の流れを示すフローチャートである。
図8に示すように、制御装置2は、まず、変調率導出部29により変調率Mを導出する(ステップ#01)。次に、減算器30により、変調率Mから指令変調率MT(最大変調率Mmax=0.78)を減算した変調率偏差ΔM(=M−MT)を導出する(ステップ#02)。その後、制御装置2は、d軸電流調整指令値ΔIdがゼロより大きい(ΔId>0)か否かを判定する(ステップ#03)。この判定は、そのときに制御装置2が強め界磁制御中であるか否かを判定するものである。d軸電流調整指令値ΔIdがゼロ以下(ΔId≦0)である場合には(ステップ#03:No)、制御装置2が通常界磁制御中又は弱め界磁制御中であると判定できる。そこで次に、変調率偏差ΔMがゼロ未満(ΔM<0)であるか否かを判定する(ステップ#04)。この判定は、変調率Mが指令変調率MT未満であるか否かを判定するものである。変調率偏差ΔMがゼロ以上(ΔM≧0)である場合には(ステップ#04:No)、処理はステップ#06へ進み、当該変調率偏差ΔMに基づいて積分入力調整部31から出力されるゼロ以下の調整値Y(図6参照)を積分器32により積分し、d軸電流調整指令値ΔIdを導出する(ステップ#06)。これにより、d軸電流調整指令値ΔIdは負方向、すなわち電動機4の界磁磁束を弱める方向に変化する。このとき、通常界磁制御中であれば弱め界磁制御が開始され、弱め界磁制御中であれば弱め界磁の程度が増大する。
変調率偏差ΔMがゼロ未満(ΔM<0)である場合には(ステップ#04:Yes)、次に、変調率偏差ΔMが強め界磁開始偏差ΔMs以上(ΔM≧ΔMs)であるか否かを判定する(ステップ#05)。変調率偏差ΔMが強め界磁開始偏差ΔMs未満(ΔM<ΔMs)である場合には(ステップ#05:No)、積分入力調整部31により調整値Yとしてゼロが出力される(図6参照)。従って、積分器32による調整値Yの積分は行わず、処理はステップ#07へ進む。よって、d軸電流調整指令値ΔIdは変化しない。このとき、通常界磁制御中であれば当該通常界磁制御が継続され、弱め界磁制御中であれば当該弱め界磁制御が継続される。変調率偏差ΔMが強め界磁開始偏差ΔMs以上(ΔM≧ΔMs)である場合には(ステップ#05:Yes)、積分入力調整部31により調整値Yとして正の値が出力される(図6参照)。そこで、積分器32により正の調整値Yを積分し、d軸電流調整指令値ΔIdを導出する(ステップ#06)。これにより、d軸電流調整指令値ΔIdは正方向、すなわち電動機4の界磁磁束を強める方向に変化する。このとき、通常界磁制御中であれば強め界磁制御が開始され、弱め界磁制御中であれば弱め界磁の程度が減少し或いは強め界磁制御に移行する。
一方、d軸電流調整指令値ΔIdがゼロより大きい(ΔId>0)場合には(ステップ#03:Yes)、制御装置2が強め界磁制御中であると判定できる。そこで次に、モード制御部5により、上述した強め界磁終了条件(A)〜(C)を判定する。具体的には、条件(A):電動機4の回転速度ωが、目標トルクTM及び直流電圧Vdcに基づいて定まる回転速度しきい値ωT未満である(ω<ωT)か否か(ステップ#10)、条件(B):d軸電流調整指令値ΔIdが、目標トルクTM及び電圧速度比RVωに基づいて定まる調整指令しきい値ΔIdT以上である(ΔId≧ΔIdT)か否か(ステップ#11)、条件(C):電動機4の目標トルクTMが所定の強め界磁許容トルク範囲TMR外であるか否か(ステップ#12)を判定する。これらの強め界磁終了条件(A)〜(C)のいずれかを満たす場合(ステップ#10:Yes、ステップ#11:Yes、又はステップ#12:Yes)には、モード制御部5が強め界磁制御の終了動作を行う。すなわち、モード制御部5は、強め界磁制御を終了するために、d軸電流調整指令値ΔIdを一定の変化速度でゼロにする(ステップ#13)。これにより、強め界磁制御が終了し、通常界磁制御が実行される状態となる。上記の強め界磁終了条件(A)〜(C)のいずれも満たさない場合(ステップ#10:No、ステップ#11:No、及びステップ#12:No)には、強め界磁制御を継続することとし、処理はステップ#06へ進む。従って、変調率偏差ΔMに応じて積分入力調整部31により出力された調整値Yを積分器32により積分し、d軸電流調整指令値ΔIdを導出する(ステップ#06)。これにより、強め界磁制御中も、変調率偏差ΔMに応じてd軸電流調整指令値ΔIdが適切に調整される。この際、d軸電流調整指令値ΔIdが負方向に変化して強め界磁制御から弱め界磁制御へ移行することもある。
その後、d軸電流指令値導出部21により導出された基本d軸電流指令値Idbと積分器32により導出されたd軸電流調整指令値ΔIdとを加算して調整後d軸電流指令値Idを導出する(ステップ#07)。また、q軸電流指令値導出部22により調整後q軸電流指令値Iqを導出する(ステップ#08)。そして、これらの調整後d軸電流指令値Id及び調整後q軸電流指令値Iqに基づいて、電流制御部24により電圧指令値Vd、Vqを導出する(ステップ#18)。以上で処理を終了する。
次に、図9に示すフローチャートに従う制御装置2の動作の具体例について、図3及び図10を用いて説明する。図10は、時間Tの経過に従って図3に示す点t0からt6へ向かって順に電動機4の動作点を変化させ、その後点t7からt13へ向かって順に電動機4の動作点を変化させた際における、目標トルクTM、回転速度ω、及びd軸電流調整指令値ΔIdによる調整後の電流指令値Id、Iqの変化の一例を示す図である。具体的には、図10(a)は時間軸Tに沿った目標トルクTMの変化、図10(b)はそのとき回転速度ωの変化、図10(c)はそのときの調整後d軸電流指令値Id及び調整後q軸電流指令値Iqの変化をそれぞれ示している。
本例では、時点t0〜t1では、目標トルクTMがゼロの状態で回転速度ωをゼロからω1まで上昇させる。このとき、調整後d軸電流指令値Id及び調整後q軸電流指令値Iqはゼロのままである。時点t1〜t2では、回転速度ωをω1で一定とした状態で目標トルクTMをゼロからTM6まで上昇させる。このとき、調整後d軸電流指令値Idは目標トルクTMに比例してId8まで減少し、調整後q軸電流指令値Iqは目標トルクTMに比例してIq8まで増加する。時点t2〜t6では、目標トルクTMをTM6で一定とした状態で回転速度ωをω1からω2まで上昇させる。このとき、電動機4の動作点が強め界磁制御領域Fに入るまでの時点t2〜t3では、調整後d軸電流指令値Id及び調整後q軸電流指令値Iqは一定に維持される。時点t0〜t3では、通常界磁・PWM制御モードA1(通常界磁・通常PWM制御モードA1a)が実行される。電動機4の動作点が強め界磁制御領域Fに入ってからの時点t3〜t4で、d軸電流調整指令値ΔIdが増加することにより強め界磁制御が実行され、調整後d軸電流指令値IdはId8からId9まで増加し、調整後q軸電流指令値IqはIq8からIq9まで増加する。この際、変調率Mが矩形波しきい値Mbに到達するまでの間(時点t3〜t4)に強め界磁・PWM制御モードA2が実行される。
その後、時点t4〜t5では、回転速度ωが上昇することによって図5に示す電圧制限楕円63の径が縮小するため、矩形波制御中には電圧制限楕円63上に設定される調整後d軸電流指令値Id及び調整後q軸電流指令値Iqが共に減少する。具体的には、調整後d軸電流指令値IdはId9からId8まで減少し、調整後q軸電流指令値IqはIq9からIq8まで減少する。このとき、d軸電流調整指令値ΔIdも減少する。時点t4〜t5では強め界磁・矩形波制御モードA3が実行される。そして、時点t5でd軸電流調整指令値ΔIdがゼロとなり強め界磁制御が終了する。強め界磁制御領域Fから出てからの時点t5〜t6では、d軸電流調整指令値ΔIdが更に減少して負の値になることにより弱め界磁制御が実行され、調整後d軸電流指令値IdはId8からId7まで減少し、調整後q軸電流指令値IqはIq8からIq7まで減少する。時点t6〜t7では、回転速度ω及び目標トルクTMの双方が一定に維持されるため、調整後d軸電流指令値Id及び調整後q軸電流指令値Iqは共に変化しない。
時点t7〜t11では、目標トルクTMをTM6で一定とした状態で回転速度ωをω2からω1まで下降させる。このとき、電動機4の動作点が強め界磁制御領域Fに入るまでの時点t7〜t8では、弱め界磁制御が実行されつつd軸電流調整指令値ΔIdが次第に増加し、調整後d軸電流指令値IdはId7からId8まで増加し、調整後q軸電流指令値IqはIq7からIq8まで増加する。そして、時点t8でd軸電流調整指令値ΔIdがゼロとなり弱め界磁制御が終了する。時点t5〜t8では弱め界磁・PWM制御モードA4が実行される。電動機4の動作点が強め界磁制御領域Fに入ってからの時点t8〜t9では、回転速度ωが下降することによって図5に示す電圧制限楕円63の径が拡大するため、矩形波制御中に電圧制限楕円63上に設定される調整後d軸電流指令値Id及び調整後q軸電流指令値Iqが共に増加する。具体的には、調整後d軸電流指令値IdはId8からId9まで増加し、調整後q軸電流指令値IqはIq8からIq9まで増加する。このとき、d軸電流調整指令値ΔIdも増加する。時点t8〜t9では強め界磁・矩形波制御モードA3が実行される。本例では、時点t9で強め界磁終了条件(A)〜(C)のいずれかが満たされる状態となり、その後時点t10までの間に、d軸電流調整指令値ΔIdを一定の変化速度(減少速度)でゼロにする。これにより、調整後d軸電流指令値IdはId9からId8まで減少し、調整後q軸電流指令値IqはIq9からIq8まで減少する。このようにd軸電流調整指令値ΔIdの減少速度が規制されるため、d軸電流調整指令値ΔIdによる調整後の調整後d軸電流指令値Id及び調整後q軸電流指令値Iqの減少速度も規制されて緩やかな曲線を描くように増加する。これにより、変調率Mの変化速度(下降速度)が規制され、変調率Mが強め界磁しきい値Ms(図3の曲線L2)に到達するまでに所定の時間が確保されるので、この間(時点t9〜t10)に強め界磁・PWM制御モードA2が実行される。
電動機4の動作点が強め界磁制御領域Fから出てからの時点t10〜t11では、調整後d軸電流指令値Id及び調整後q軸電流指令値Iqは一定に維持される。時点t11〜t12では、回転速度ωをω1で一定とした状態で目標トルクTMをTM6からゼロまで下降させる。このとき、調整後d軸電流指令値Idは目標トルクTMに比例してId8からゼロまで増加し、調整後q軸電流指令値Iqは目標トルクTMに比例してIq8からゼロまで減少する。時点t12〜t13では、目標トルクTMがゼロの状態で回転速度ωをω1からゼロまで下降させる。このとき、調整後d軸電流指令値Id及び調整後q軸電流指令値Iqはゼロのままである。時点t10〜t13では、通常界磁・PWM制御モードA1(通常界磁・通常PWM制御モードA1a)が実行される。
4.その他の実施形態
(1)上記の実施形態では、強め界磁終了条件(A)で用いる回転速度しきい値ωTとして、目標トルクTM及び直流電圧Vdcに基づいて定まる値を用いる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、回転速度しきい値ωTを、目標トルクTM及び直流電圧Vdcに関わらず一定の値に設定することも、本発明の好適な実施形態の一つである。また、回転速度しきい値ωTを、目標トルクTM及び直流電圧Vdcのいずれか一方に基づいて定まる値とすることも、本発明の好適な実施形態の一つである。更に、回転速度しきい値ωTを、目標トルクTM、直流電圧Vdc、調整指令しきい値ΔIdT等に基づいて所定の式により算出した値としても好適である。このように回転速度しきい値ωTを定める場合、当該回転速度しきい値ωTに基づく強め界磁終了条件(A)と、上述した調整指令しきい値ΔIdTに基づく強め界磁終了条件(B)との双方が満たされた場合に強め界磁制御を終了させる構成とすると特に好適である。この場合、モード制御部5は、d軸電流調整指令値ΔIdが、界磁磁束を強める方向に調整指令しきい値ΔIdT以上となり、且つ回転速度ωが回転速度しきい値ωT未満となったことを条件として、強め界磁制御を終了させる。なお、この場合においても、強め界磁許容トルク範囲TMRに基づく強め界磁終了条件(C)は選択的条件とし、条件(A)且つ条件(B)と条件(C)とのいずれかが満たされた場合に強め界磁制御を終了させる構成とすると更に好適である。
(2)上記の実施形態では、(A)電動機4の回転速度ω<回転速度しきい値ωT、(B)d軸電流調整指令値ΔId≧調整指令しきい値ΔIdT、及び(C)目標トルクTMが強め界磁許容トルク範囲TMR外であること、の3つの強め界磁終了条件のいずれかを満たす場合に強め界磁制御を終了させる場合を例と説明した。しかし、本発明の実施形態はこれに限定されない。例えば、モード制御部5が、強め界磁終了条件(B)のみを判断する構成とし、当該条件(B)が満たされた場合にのみ強め界磁終了制御を行う構成とすることも、本発明の好適な実施形態の一つである。また、モード制御部5が、強め界磁終了条件(B)及び(A)、或いは強め界磁終了条件(B)及び(C)を判断し、これらのいずれかの強め界磁終了条件が満たされた場合にのみ強め界磁終了制御を行う構成とすることも、本発明の好適な実施形態の一つである。
(3)上記の実施形態では、強め界磁終了条件(A)で用いる回転速度しきい値ωTとして、変調率Mが強め界磁しきい値Ms(=0.707)となる電動機4の回転速度ωを用いる場合について説明した。しかし、本発明の実施形態はこれに限定されるものではない。回転速度しきい値ωTを、変調率Mが強め界磁しきい値Ms以外の一定値となるときの回転速度ωに設定することも可能である。従って、回転速度しきい値ωTを、変調率Mが強め界磁しきい値Msより小さい値(例えばM=0.7、M=0.65、M=0.5等)となるときの回転速度ωに設定し、或いは変調率Mが強め界磁しきい値Msより大きい値(例えばM=0.72、M=0.75等)となるときの回転速度ωに設定することも、本発明の好適な実施形態の一つである。また、変調率Mが一定値となるときの回転速度ωに限定されず、目標トルクTMと直流電圧Vdcとに基づいて定まる所定の回転速度ωを回転速度しきい値ωTとして設定することも可能である。例えば、TM=−αω+β(α、βは定数)を満たす回転速度ωを直流電圧Vdcの値毎に設定し、それを回転速度しきい値ωTとすることも、本発明の好適な実施形態の一つである。
(4)上記の実施形態では、強め界磁終了条件(B)で用いる調整指令しきい値ΔIdTを、強め界磁制御を実行することによる効率向上分である損失差分ΔLoss(=Loss1−Loss2)が正となるd軸電流調整指令値ΔIdの範囲の上限に設定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、調整指令しきい値ΔIdTを、損失差分ΔLossが正となるd軸電流調整指令値ΔIdの範囲内の任意の値に設定し、或いは損失差分ΔLossが負となるd軸電流調整指令値ΔIdの範囲内に設定することも可能である。また、調整指令しきい値ΔIdTを、損失差分ΔLossとは無関係に、目標トルクTM及び電圧速度比RVωに基づいて定まる値を調整指令しきい値ΔIdTとして設定することも可能である。
(5)上記の実施形態では、強め界磁・矩形波制御モード中に、強め界磁制御を終了する際には、d軸電流調整指令値ΔIdを一定の変化速度で次第に減少させることで変調率Mを次第に低下させ、強め界磁・パルス幅変調制御モードを経て通常界磁・パルス幅変調制御モードに移行させる制御を行なう場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、強め界磁制御を終了する際のd軸電流調整指令値ΔIdの現在値の大きさに関わらず、d軸電流調整指令値ΔIdが現在値からゼロとなるまでの変化時間が一定となるように、d軸電流調整指令値ΔIdを次第に減少させる構成とすることも、本発明の好適な実施形態の一つである。この場合にも、d軸電流調整指令値ΔIdがゼロとなるまでの時間が確保されるため、強め界磁・矩形波制御モードから通常界磁・パルス幅変調制御モードに移行する際に、強め界磁・パルス幅変調制御モードを実行することができる。
(6)上記の実施形態では、強め界磁しきい値Msが過変調しきい値Mo(=0.707)と一致するように設定される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。強め界磁しきい値Msを、過変調しきい値Moより小さい値(例えばM=0.7、M=0.65、M=0.5等)に設定し、或いは過変調しきい値Moより大きい値(例えばM=0.72、M=0.75等)に設定することも、本発明の好適な実施形態の一つである。なお、強め界磁しきい値Msを、過変調しきい値Moより大きい値に設定した場合には、強め界磁制御が開始される前に、通常界磁・PWM制御モードA1として通常界磁・過変調PWM制御モードA1bが実行される。
(7)上記の実施形態では、電動機駆動装置1が直流電源3からの直流電圧Vdcをインバータ6へ供給する構成である場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。例えば、直流電源3からの電源電圧を変換して所望値のシステム電圧を生成するDC−DCコンバータ等の電圧変換部を備え、当該電圧変換部により生成されたシステム電圧を直流交流変換部としてのインバータ6に供給する構成とすることも、本発明の好適な実施形態の一つである。この場合において、電圧変換部は、電源電圧を昇圧する昇圧コンバータとすることができる他、電源電圧を降圧する降圧コンバータとし、或いは電源電圧の昇圧及び降圧の双方を行う昇降圧コンバータとすることもできる。
(8)上記の実施形態では、交流電動機4が三相交流により動作する埋込磁石構造の同期電動機(IPMSM)である場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、例えば、交流電動機4として、表面磁石構造の同期電動機(SPMSM)を用いることができ、或いは、同期電動機以外にも、例えば、誘導電動機等を用いることもできる。また、このような交流電動機に供給する交流として、三相以外の単相、二相、又は四相以上の多相交流を用いることができる。
(9)上記の実施形態では、例えば電動機4が電動車両やハイブリッド車両等の駆動力源として用いられる場合を例として説明した。しかし、本実施形態に係る電動機4の用途はこれに限定されるものではなく、あらゆる用途の電動機について、本発明を適用することが可能である。
本発明は、直流電圧を交流電圧に変換して交流電動機に供給する直流交流変換部を備えた電動機駆動装置の制御を行う制御装置に好適に利用可能である。
1:電動機駆動装置
2:制御装置
4:交流電動機
5:モード制御部
6:インバータ(直流交流変換部)
7:電流指令決定部
8:界磁調整部
9:電圧指令決定部
10:電圧波形制御部
Vdc:直流電圧
TM:目標トルク
ω:回転速度
Idb:基本d軸電流指令値(基本電流指令値)
Id:調整後d軸電流指令値(調整後電流指令値)
Iqb:基本q軸電流指令値(基本電流指令値)
Iq:調整後q軸電流指令値(調整後電流指令値)
ΔId:d軸電流調整指令値(界磁調整指令値)
Vd:d軸電圧指令値(電圧指令値)
Vq:q軸電圧指令値(電圧指令値)
M:変調率(電圧指標)
Mb:矩形波しきい値
Ms:強め界磁しきい値
RVω:電圧速度比
ωT:回転速度しきい値
ΔIdT:調整指令しきい値
TMR:強め界磁許容トルク範囲
A1:通常界磁・PWM制御モード
A2:強め界磁・PWM制御モード
A3:強め界磁・矩形波制御モード

Claims (9)

  1. 直流電圧を交流電圧に変換して交流電動機に供給する直流交流変換部を備えた電動機駆動装置の制御を行う制御装置であって、
    前記交流電動機の目標トルクに基づいて、前記直流交流変換部から前記交流電動機に供給する電流の指令値である基本電流指令値を決定する電流指令決定部と、
    前記基本電流指令値の調整値である界磁調整指令値を決定する界磁調整部と、
    前記界磁調整指令値により前記基本電流指令値を調整した後の調整後電流指令値、及び前記交流電動機の回転速度に基づいて、前記直流交流変換部から前記交流電動機に供給する電圧の指令値である電圧指令値を決定する電圧指令決定部と、
    前記電圧指令値に基づいて前記直流交流変換部を制御し、パルス幅変調制御及び矩形波制御を少なくとも含む電圧波形制御を実行する電圧波形制御部と、
    前記界磁調整部及び前記電圧波形制御部を制御するモード制御部と、を備え、
    前記電圧波形制御部は、前記直流電圧に対する前記電圧指令値の大きさを表す電圧指標が所定の矩形波しきい値未満である場合には前記パルス幅変調制御を実行し、前記電圧指標が前記矩形波しきい値以上である場合には前記矩形波制御を実行し、
    前記界磁調整部は、前記基本電流指令値に対して前記交流電動機の界磁磁束を強める調整を行うように前記界磁調整指令値を決定する強め界磁制御、及び前記基本電流指令値に対する調整を行わないように前記界磁調整指令値を決定する通常界磁制御を少なくとも含む界磁制御を実行するように構成され、前記電圧指標が前記矩形波しきい値より小さい所定の強め界磁しきい値以上となったことを条件として前記強め界磁制御を実行し、
    前記モード制御部は、前記直流電圧と前記交流電動機の回転速度との比を電圧速度比として、前記界磁調整指令値が、前記界磁磁束を強める方向に、前記目標トルク及び前記電圧速度比に基づいて定まる調整指令しきい値以上となったことを条件として、前記界磁調整部による前記強め界磁制御を終了させる電動機駆動装置の制御装置。
  2. 前記モード制御部は、前記強め界磁制御と共に前記矩形波制御を実行する強め界磁・矩形波制御モード中に、前記強め界磁制御を終了する際には、前記界磁磁束の調整量を減少させる方向に前記界磁調整指令値を次第に変化させることで前記電圧指標を次第に低下させ、前記強め界磁制御と共に前記パルス幅変調制御を実行する強め界磁・パルス幅変調制御モードを経て、前記通常界磁制御と共に前記パルス幅変調制御を実行する通常界磁・パルス幅変調制御モードに移行させる請求項1に記載の電動機駆動装置の制御装置。
  3. 前記通常界磁制御と共に前記パルス幅変調制御を実行する通常界磁・パルス幅変調制御モードを実行した場合の前記交流電動機及び前記電動機駆動装置の損失を通常時損失とし、前記強め界磁制御と共に前記矩形波制御を実行する強め界磁・矩形波制御モードを実行した場合の前記交流電動機及び前記電動機駆動装置の損失を強め界磁時損失として、
    前記強め界磁時損失が前記通常時損失より少なくなる前記界磁調整指令値の範囲における前記界磁磁束を強める方向の上限を、前記調整指令しきい値とする請求項1又は2に記載の電動機駆動装置の制御装置。
  4. 前記モード制御部は、前記界磁調整指令値が前記調整指令しきい値以上となったこと、及び前記回転速度が所定の回転速度しきい値未満となったこと、の双方の条件を判断し、少なくとも一方の条件が満たされた場合に、前記強め界磁制御を終了させる請求項1から3のいずれか一項に記載の電動機駆動装置の制御装置。
  5. 前記回転速度しきい値は、前記目標トルク及び前記直流電圧に基づいて定まる請求項4に記載の電動機駆動装置の制御装置。
  6. 前記目標トルク及び前記直流電圧の双方の値に応じて、前記通常界磁制御の実行中において前記電圧指標が前記強め界磁しきい値となる回転速度を、前記回転速度しきい値とする請求項5に記載の電動機駆動装置の制御装置。
  7. 前記モード制御部は、前記交流電動機の目標トルクが所定の強め界磁許容トルク範囲から外れている場合には、前記界磁調整部が前記強め界磁制御を実行しないように制御する請求項1から6のいずれか一項に記載の電動機駆動装置の制御装置。
  8. 前記モード制御部は、前記強め界磁制御を終了させる際には、前記界磁調整指令値を現在値からゼロに向って一定の変化速度で変化させるように前記界磁調整部を制御する請求項1から7のいずれか一項に記載の電動機駆動装置の制御装置。
  9. 前記電圧指令決定部は、直流交流変換部から前記交流電動機に供給される電流の実際の値である実電流値に基づいて、前記調整後電流指令値に対するフィードバック制御を行い、前記電圧指令値を決定する請求項1から8のいずれか一項に記載の電動機駆動装置の制御装置。
JP2010081515A 2010-03-31 2010-03-31 電動機駆動装置の制御装置 Expired - Fee Related JP5120670B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010081515A JP5120670B2 (ja) 2010-03-31 2010-03-31 電動機駆動装置の制御装置
US13/018,953 US20110241583A1 (en) 2010-03-31 2011-02-01 Control device of motor driving apparatus
CN2011800098165A CN102763321A (zh) 2010-03-31 2011-02-04 电动机驱动装置的控制装置
DE112011100226T DE112011100226T5 (de) 2010-03-31 2011-02-04 Steuerungsvorrichtung einer Motorantriebsvorrichtung
PCT/JP2011/052400 WO2011122105A1 (ja) 2010-03-31 2011-02-04 電動機駆動装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081515A JP5120670B2 (ja) 2010-03-31 2010-03-31 電動機駆動装置の制御装置

Publications (2)

Publication Number Publication Date
JP2011217469A true JP2011217469A (ja) 2011-10-27
JP5120670B2 JP5120670B2 (ja) 2013-01-16

Family

ID=44708830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081515A Expired - Fee Related JP5120670B2 (ja) 2010-03-31 2010-03-31 電動機駆動装置の制御装置

Country Status (5)

Country Link
US (1) US20110241583A1 (ja)
JP (1) JP5120670B2 (ja)
CN (1) CN102763321A (ja)
DE (1) DE112011100226T5 (ja)
WO (1) WO2011122105A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054066A (ja) * 2012-09-06 2014-03-20 Toyota Motor Corp 回転電機駆動システムの制御装置
JP2014161140A (ja) * 2013-02-19 2014-09-04 Hitachi Ltd 電動機駆動システム
JP2015095950A (ja) * 2013-11-12 2015-05-18 サンケン電気株式会社 誘導電動機制御装置及び誘導電動機制御方法
JP2019213316A (ja) * 2018-06-01 2019-12-12 株式会社Soken 回転電機の制御装置
JP2020108281A (ja) * 2018-12-27 2020-07-09 株式会社豊田自動織機 インバータ制御装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597771B1 (en) * 2010-07-23 2018-06-27 Mitsubishi Electric Corporation Control apparatus and control method for an ac rotary machine
WO2012014443A1 (ja) * 2010-07-27 2012-02-02 三菱電機株式会社 交流回転機の制御装置
JP5718668B2 (ja) * 2011-02-15 2015-05-13 トヨタ自動車株式会社 回転電機駆動システム
DE102011085853A1 (de) * 2011-11-07 2013-05-08 Siemens Aktiengesellschaft Verfahren und Anordnung zum Betrieb von Synchronmotoren
JP5955761B2 (ja) * 2012-12-25 2016-07-20 トヨタ自動車株式会社 車両の制御装置
JP2015136237A (ja) * 2014-01-17 2015-07-27 株式会社安川電機 回転電機制御装置、回転電機制御方法、及び制御マップの作成方法
DE102014104488A1 (de) * 2014-03-31 2015-10-01 Robert Bosch Automotive Steering Gmbh Verfahren zur Ansteuerung eines Elektromotors für ein Hilfskraft-Lenksystem
CN104079230B (zh) * 2014-07-07 2016-09-28 神王伟国 异步电动机效率优化控制的方法、装置、系统及电动汽车
FR3024616B1 (fr) * 2014-07-31 2016-07-15 Renault Sa Procede et dispositif de commande du couple electromagnetique d'un groupe motopropulseur
US9634579B2 (en) * 2015-04-03 2017-04-25 Hamilton Sundstrand Corporation Systems and methods for controlling inverters
WO2017143434A1 (en) * 2016-02-23 2017-08-31 Canadian Space Agency Energy-efficient motor drive with or without open-circuited phase
JP6289545B2 (ja) * 2016-06-15 2018-03-07 三菱電機株式会社 回転電機の制御方法
DE102016118170A1 (de) * 2016-09-26 2018-03-29 Wittenstein Se Verfahren und vorrichtung zum abbauen elastisch gespeicherter energie
CN106849805A (zh) * 2017-02-09 2017-06-13 澳特卡新能源科技(上海)有限公司 一种电动压缩机驱动电机的弱磁控制方法
US9774279B1 (en) * 2017-03-02 2017-09-26 Borgwarner Inc. Brushless DC motor control and method
DE102017217913A1 (de) * 2017-10-09 2019-04-11 Robert Bosch Gmbh Verfahren zum Wechseln zwischen Blockansteuerung und PWM-Ansteuerung einer elektrischen Maschine
CN110504891B (zh) * 2018-05-16 2021-09-03 台达电子工业股份有限公司 马达驱动电路及其控制方法
WO2020017202A1 (ja) 2018-07-18 2020-01-23 パナソニックIpマネジメント株式会社 電動工具、制御方法、プログラム
CN111404429B (zh) * 2018-12-28 2021-11-12 比亚迪股份有限公司 一种车辆及其电机控制方法与装置、计算机可读存储介质
CN110829920A (zh) * 2019-11-04 2020-02-21 中国第一汽车股份有限公司 一种调制装置及系统
US11456680B2 (en) * 2020-05-08 2022-09-27 Hamilton Sundstrand Corporation Over-modulation pulse width modulation with maximum output and minimum harmonics
IT202100018689A1 (it) * 2021-07-15 2023-01-15 Ferrari Spa Procedimento ed apparato per controllare un motore elettrico
CN115871481A (zh) * 2021-09-29 2023-03-31 本田技研工业株式会社 电动发电机控制系统及混合动力车辆
KR20230089191A (ko) * 2021-12-13 2023-06-20 현대모비스 주식회사 모터의 약자속 제어를 위한 데이터 맵 작성 방법 및 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081287A (ja) * 2004-09-09 2006-03-23 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP2006311770A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp モータ駆動システムの制御装置
JP2007259538A (ja) * 2006-03-22 2007-10-04 Aisin Aw Co Ltd 電動駆動制御装置及び電動駆動制御方法
JP2008079399A (ja) * 2006-09-20 2008-04-03 Toshiba Corp 車両制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280573B2 (ja) * 2003-07-31 2009-06-17 トヨタ自動車株式会社 負荷駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081287A (ja) * 2004-09-09 2006-03-23 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP2006311770A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp モータ駆動システムの制御装置
JP2007259538A (ja) * 2006-03-22 2007-10-04 Aisin Aw Co Ltd 電動駆動制御装置及び電動駆動制御方法
JP2008079399A (ja) * 2006-09-20 2008-04-03 Toshiba Corp 車両制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054066A (ja) * 2012-09-06 2014-03-20 Toyota Motor Corp 回転電機駆動システムの制御装置
JP2014161140A (ja) * 2013-02-19 2014-09-04 Hitachi Ltd 電動機駆動システム
JP2015095950A (ja) * 2013-11-12 2015-05-18 サンケン電気株式会社 誘導電動機制御装置及び誘導電動機制御方法
JP2019213316A (ja) * 2018-06-01 2019-12-12 株式会社Soken 回転電機の制御装置
JP7144197B2 (ja) 2018-06-01 2022-09-29 株式会社Soken 回転電機の制御装置
JP2020108281A (ja) * 2018-12-27 2020-07-09 株式会社豊田自動織機 インバータ制御装置
JP7052713B2 (ja) 2018-12-27 2022-04-12 株式会社豊田自動織機 インバータ制御装置

Also Published As

Publication number Publication date
CN102763321A (zh) 2012-10-31
DE112011100226T5 (de) 2012-10-31
US20110241583A1 (en) 2011-10-06
WO2011122105A1 (ja) 2011-10-06
JP5120670B2 (ja) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5120670B2 (ja) 電動機駆動装置の制御装置
JP5120669B2 (ja) 電動機駆動装置の制御装置
JP5246508B2 (ja) 電動機駆動装置の制御装置
JP5035641B2 (ja) 電動機駆動装置の制御装置
JP5652659B2 (ja) 電動機制御装置
JP4205157B1 (ja) 電動機の制御装置
US8232753B2 (en) Control device for electric motor drive apparatus
US7595600B2 (en) Method and system for torque control in permanent magnet machines
JP5435292B2 (ja) 制御装置
JP5803559B2 (ja) 回転電機制御装置
JP5370769B2 (ja) 電動機駆動装置の制御装置
JP4008724B2 (ja) モータ制御装置
JP5534323B2 (ja) 電動機制御装置
JP2015109770A (ja) 電動機駆動装置
WO2018139298A1 (ja) 交流電動機の制御装置
WO2018116668A1 (ja) モータ制御装置および電動車両
JP5958400B2 (ja) モータ駆動制御装置
JP5370748B2 (ja) 電動機駆動装置の制御装置
JP2019161748A (ja) インバータの制御方法及びインバータ制御装置
JP5942809B2 (ja) 交流電動機の制御システム
RU2463699C1 (ru) Устройство преобразования мощности для возбуждения электродвигателя
JP2023125302A (ja) 交流電動機の制御装置およびプログラム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5120670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees