JP2011176045A - 積層型半導体発光素子 - Google Patents

積層型半導体発光素子 Download PDF

Info

Publication number
JP2011176045A
JP2011176045A JP2010037789A JP2010037789A JP2011176045A JP 2011176045 A JP2011176045 A JP 2011176045A JP 2010037789 A JP2010037789 A JP 2010037789A JP 2010037789 A JP2010037789 A JP 2010037789A JP 2011176045 A JP2011176045 A JP 2011176045A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010037789A
Other languages
English (en)
Inventor
Akira Mizuyoshi
明 水由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010037789A priority Critical patent/JP2011176045A/ja
Publication of JP2011176045A publication Critical patent/JP2011176045A/ja
Abandoned legal-status Critical Current

Links

Images

Abstract

【課題】小型で発熱が少なく、しかも所望の波長帯の出射光が高強度で安定して得られる積層型半導体発光素子を提供する。
【解決手段】それぞれ発光ダイオードを構成する第1の発光素子部30、第2の発光素子部20、第3の発光素子部10が中心発光波長の長い順に下層から配置され、上層に配置された発光素子部は下層に配置された発光素子部の発光光に対する透光性をそれぞれ有し、第1の発光素子部30と第2の発光素子部20との間に配置された第1光学機能層42と、第2の発光素子部20と第3の発光素子部10との間に配置された第2光学機能層41は、下層側の発光素子部の発光光を上方に透過させるとともに上層側の発光素子部の発光光を上方に反射する光学特性を有している。
【選択図】図1

Description

本発明は、発光ダイオードを用いて構成される積層型半導体発光素子に関する。
近年、発光ダイオード(LED:Light Emitting Diode)は、赤色、緑色、青色等の様々な波長で発光する素子が安定して得られるようになり、そのため、複数の波長の発光ダイオードを組み合わせて使用することで白色を始めとする任意色の光が容易に得られるようになった。また、発光ダイオードの高出力化も可能になったため、高輝度の白色光を必要とする照明等の用途にも発光ダイオードが利用されつつある。
発光ダイオードを組み合わせる形態としては、複数の発光ダイオード素子を基板上で接続する等の部品単位の組み合わせ構成例が多いが、互いに異なる波長で発光する複数の発光ダイオードを積層した積層型半導体発光素子の技術も知られている(例えば特許文献1参照)。
特開2007−95844号公報
上記のような赤色発光ダイオードと、緑色発光ダイオードと、青色発光ダイオードとをそれらの厚み方向に積層して一体化した積層型半導体発光素子は、各発光ダイオードの層からの発光光を合成した光を出射する。しかし、積層された上層の発光ダイオードからの光は発光素子の光出射側とは反対側となる下層側の発光ダイオードに向けても出射されるので、光利用効率が低下する。また、積層された下層の発光ダイオードからの光は、上層の発光ダイオードの層を通過して発光素子表面から出射されるので、発光光の一部が反射又は吸収される等して減衰し、出射光量が低下する。そこで、十分な光量を得るためには、各色の発光ダイオードに、より大きな電気エネルギを供給せざるを得なくなり、発光素子の発熱の増大を招き、温度変化に伴って出射光のスペクトルに変化が生じることになる。また、過度な温度上昇を避けるために十分な放熱対策を行う必要が生じ、素子サイズを増大させる要因になる。
本発明は、上記状況に鑑みてなされたもので、小型で発熱が少なく、しかも所望の波長帯の光が高強度で安定して得られる積層型半導体発光素子を提供することを目的とする。
本発明は下記構成からなる。
それぞれ発光ダイオードを構成する第1の発光素子部、第2の発光素子部、第3の発光素子部が各発光素子の厚み方向にこの順で積層され、最上層の前記第3の発光素子部の上面から光を出射する積層型半導体発光素子であって、
前記第1の発光素子部、第2の発光素子部、第3の発光素子部は、中心発光波長の長い順に下層から配置され、上層に配置された前記発光素子部は下層に配置された前記発光素子部の発光光に対する透光性をそれぞれ有し、
前記第1の発光素子部と前記第2の発光素子部との間に第1光学機能層、前記第2の発光素子部と前記第3の発光素子部との間に第2光学機能層が配置され、
前記第1光学機能層が、前記第1の発光素子部の発光光を透過し、前記第2の発光素子部の発光光を反射する光学特性を有し、
前記第2光学機能層が、前記第1の発光素子部の発光光及び第2の発光素子部の発光光を透過し、前記第3の発光素子部の発光光を反射する光学特性を有する積層型半導体発光素子。
本発明の積層型半導体発光素子によれば、小型で発熱が少なく、しかも所望の波長帯の出射光を高強度で安定して得ることができる。
本発明の実施形態を説明する図で、積層型半導体発光素子の構成例を示す断面図である。 青色発光素子部、緑色発光素子部、赤色発光素子部のそれぞれの箇所で発生する光の各波長成分(R、G、B)とそれらの光路の概要を示す説明図である。 光学機能層のB反射層の一構成例を示す概略的な断面図である。 図3に示したB反射層の分光反射特性の具体例を示すグラフである。 上側光学機能層の光路選択層の一構成例を示す概略的な断面図である。 支持部材を備えた積層型半導体発光素子の一例を示す概略的な構成図である。 青色、緑色、赤色の各発光素子部に更に他の色の発光素子部を積層して構成した積層型半導体発光素子の概略構成図である。 青色、緑色、赤色の各発光素子部に更に他の色の発光素子部を積層して構成した積層型半導体発光素子の概略構成図である。 各発光素子部の発光面のサイズを光出射側ほど広くして積層した積層型半導体発光素子の概略構成図である。 積層型半導体発光素子を蛍光体によりモールドした場合の概略的な構成図である。 出射光のスペクトルを示すグラフである。 積層型半導体発光素子を蛍光体によりモールド成形した場合の概略的な構成図である。
以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、積層型半導体発光素子の構成例を示す断面図である。
この積層型半導体発光素子100は、それぞれ発光ダイオードを構成する青色発光素子部10、緑色発光素子部20、赤色発光素子部30が各発光素子の厚み方向にこの順で積層され、最上層の青色発光素子部10の上面側が光出射面となる。青色発光素子部10の発光ダイオードは青(B)色、緑色発光素子部20の発光ダイオードは緑(G)色、赤色発光素子部30の発光ダイオードは赤(R)色の波長帯でそれぞれ発光して、各発光光により出射光が生成される。
青色発光素子部10、緑色発光素子部20、赤色発光素子部30は、発光波長の長い順に各層の厚み方向(Z軸方向:光の出射軸方向)に下層から配置されている。即ち、発光波長が最も長い赤色発光素子部30が最下層に配置され、次に赤色よりも発光波長が短い緑色発光素子部20が赤色発光素子部30の上方に配置され、次に発光波長が短い青色発光素子部10が緑色発光素子部20の上方に配置されている。ここで、本明細書では「上方」を積層型半導体発光素子の光出射方向、「下方」をその反対方向を指すものとする。
上側光学機能層41は、青色発光素子部10の下面と緑色発光素子部20の上面との間に配置されており、下側光学機能層42は、緑色発光素子部20の下面と赤色発光素子部30の上面との間に配置されている。
上側光学機能層41は、青色の波長帯の光に対して高い反射率を有し、R,G色の波長帯の光に対しては反射率が低く、光を透過する特性を有する。また、下側光学機能層42は、G色の波長帯の光に対して高い反射率を有し、R色の波長帯の光に対しては反射率が低く、光を透過する光学特性を有する。
この積層型半導体発光素子100は、B,G,R色の各波長帯の光を矢印A方向に向けて出射する。各発光素子部からの発光光が透過するように、少なくとも上層側となる青色発光素子部10及び緑色発光素子部20については、下層側の発光素子部からの発光光を透過させる材料を用いて構成してある。
また、上記構成の積層型半導体発光素子100を製造する際は、基板上に上記各層を順次形成する以外にも、予め青色発光素子部10、緑色発光素子部20、赤色発光素子部30の各デバイスを個別に所定の半導体製造プロセスで作成した後、これらを上側光学機能層41、下側光学機能層42と接着して一体化する等、適宜な工程で製造できる。
次に、各色発光素子部10,20,30の発光ダイオードを形成する具体的な層構成例について説明する。
図1に示すように、青色発光素子部10は、青色p側透明電極11、p型GaNコンタクト層12、p型InGaN層13、InGaN発光層14、n型GaN層15、青色n側電極16、GaNバッファ層17、及びサファイア絶縁基板18を有する。
青色p側透明電極11は、青色発光素子部10に正電位を印加する透明電極である。青色n側電極16は、青色発光素子部10に負電位を印加する電極である。この青色n側電極16は、n型GaN層15中の光路を外れた領域に配置されるように、n型GaN層15の側方に突出した部位の上面に配置してある。
これらの各電極は、透明導電膜を用いて構成されている。透明導電膜としては、例えばインジウムスズ酸化膜(ITO)が用いられ、この他にもZnO、InGaZnO、TiNbO等の透明導電膜を用いることができる。
ここで、GaN材料を用いた発光ダイオードの電極には、これまでニッケル/金電極が一般的に使用されており、この場合の電極膜は、極薄膜化技術によって発光光であるB、G色光を透過させるように最適化されてきた。しかし、依然としてR色光の反射率が高く、発光ダイオード全体の透過率を高めることが困難であったが、近年になって各種の透明電極材料が利用できるようになり、B色光やG色光だけでなくR色光についても透過率が高い材料を用いた電極の作製が可能になった。そこで、水分や不純物を無くし結晶化度を高め、可視波長域に対する透明度が高く、しかも比較的低温で作製可能なITOを本積層型半導体発光素子100の電極膜に用いることで、発光層からの光を高い透過率で出射させ、光の利用効率を高めた構成としている。
p型InGaN層13、InGaN発光層14、n型GaN層15の領域には、pn接合によるダイオードが形成され、青色p側透明電極11と青色n側電極16との間に順方向に電圧を印加することにより、各層の厚み方向(Z方向)に電流が流れてダイオードの境界のInGaN発光層14の領域が青色に発光する。
また、青色発光素子部10には基板としてサファイア絶縁基板18を用いており、下層の緑色発光素子部20と赤色発光素子部30からの光はサファイア絶縁基板18を透過する。
同様に、緑色発光素子部20は、緑色p側透明電極21、p型GaNコンタクト層22、p型InGaN層23、InGaN発光層24、n型GaN層25、緑色n側電極26、GaNバッファ層27、及びサファイア絶縁基板28を有している。
緑色p側透明電極21は、緑色発光素子部20に正電位を印加する透明電極で、緑色n側電極26は、緑色発光素子部20に負電位を印加する電極である。この緑色n側電極26は、n型GaN層25中の光路を外れた領域に配置されるように、n型GaN層25の側方に突出した部位の上面に配置してある。
p型InGaN層23、InGaN発光層24、n型GaN層25の領域には、pn接合によるダイオードが形成され、緑色p側透明電極21と緑色n側電極26との間に順方向に電圧を印加することにより、各層の厚み方向(Z方向)にる電流が流れてダイオードの境界のInGaN発光層24の領域が緑色に発光する。
また、緑色発光素子部20には基板としてサファイア絶縁基板28を用いてあり、下層の赤色発光素子部30からの光はサファイア絶縁基板28を透過する。
赤色発光素子部30は、図1に示すように赤色p側透明電極31、p型AlInGaP層32、p型AlInGaP発光層33、n型GaP層34、GaPバッファ層35、n型基板36、及び赤色n側電極37を有している。
赤色p側透明電極31は、発光ダイオードである赤色発光素子部30に正電位を印加する透明電極であり、赤色n側電極37は、赤色発光素子部30に負電位を印加する電極である。この赤色n側電極37はn型基板36下面の導電性を有する金属層で形成することで、下側に向かう赤色光を上側に反射する反射層とすることができる。また、赤色n側電極37を透明電極として、更に下層に赤色光を反射するAgコート層等の反射層を設けた構成としてもよい。
この赤色発光素子部30においても、p型AlInGaP層32、p型AlInGaP発光層33、n型GaP層34の領域には、pn接合によるダイオードが形成され、赤色p側透明電極31と赤色n側電極37との間に順方向に電圧を印加することにより、各層の厚み方向(Z方向)に電流が流れダイオードの境界のp型AlInGaP発光層33の領域がR色に発光する。
n型基板36は透明な材料で構成されているが、この基板の材料としてGaAsを用いる場合は、GaAsが赤色光を吸収する特性を有するため発光効率が低下する。そこで、GaAs基板上に各層を製膜した後に、GaP等の透明基板を接着してGaAs基板をリフトオフにより分離して除去するとよい。
青色発光素子部10、緑色発光素子部20、赤色発光素子部30のそれぞれの箇所で発生する光の各波長成分(R、G、B)とそれらの光路の概要を図2に示した。
上側光学機能層41は、青色光を反射するB反射層41aと、入射光の光路を揃えて出射させる偏向層41bとを有している。また、下側光学機能層42は、緑色光を反射するG反射層42aと、上記同様の偏向層42bとを有している。
青色発光素子部10のInGaN発光層14(図1参照)で発生するB色の発光光の大部分は、Z軸方向に沿うように、図2における上方向及び下方向に向かって出射される。この上方に向かう光成分はそのまま矢印A方向に出射され、下方に向かう光成分は上側光学機能層41のB反射層41aで反射され、再び青色発光素子部10の内部を透過して上方に向かい、矢印A方向に出射される。
また、緑色発光素子部20のInGaN発光層24(図1参照)で発生するG色の発光光の大部分は、Z軸方向に沿うように、図2における上方向及び下方向に向かって出射される。この上方に向かう光成分は、上側光学機能層41を透過し、青色発光素子部10の内部を透過して、積層型半導体発光素子100から矢印A方向に出射される。また、下方に向かう光成分は、下側光学機能層42のG反射層42aで反射し、再び緑色発光素子部20の内部を透過し、更に上側光学機能層41を透過し、青色発光素子部10の内部を透過して、積層型半導体発光素子100から矢印A方向に出射される。
また、赤色発光素子部30のp型AlInGaP発光層33(図1参照)で発生するR色の発光光の大部分は、Z軸方向に沿うように、図2における上方向及び下方向に向かって出射される。この上方に向かう光成分は、下側光学機能層42を透過し、緑色発光素子部20の内部を透過し、更に上側光学機能層41を透過し、青色発光素子部10の内部を透過して、積層型半導体発光素子100から矢印A方向に出射される。また、下方に向かう光成分は、赤色n側電極37の反射面で反射されて上方に向かい、再び赤色発光素子部30の内部を透過し、下側光学機能層42を透過し、緑色発光素子部20の内部を透過し、上側光学機能層41を透過し、更に青色発光素子部10の内部を透過して積層型半導体発光素子100から矢印A方向に出射される。
従って、R、G、B各色の波長成分の光をそれぞれ積層型半導体発光素子100から矢印A方向に出射することができ、各色の混合比率に応じた白色や任意色の出射光が得られる。しかも、下方へ向かう光成分を上方に反射させる構成としているため、各発光層から発生する光を無駄なく出射光として取り出すことができ、光の利用効率を高められる。これにより、印加する電気エネルギが抑えられ、発光素子の発熱も抑制される。
上記上側光学機能層41のB反射層41aの一構成例を図3に、このB反射層41aの分光反射特性を図4に示した。
図3に示すように、B反射層41aは誘電体多層膜からなり、互いに屈折率の異なるAlOの層とTiOの層とを交互に重ねて形成した多層膜積層体として構成している。
このB反射層41aは、図4に示すように、B色の波長帯では光反射率が大きく、他のG色やR色の波長帯では光反射率が小さくなるように各層の膜厚や屈折率等が設定されている。ここでは、G色やR色の波長帯の光成分は透過し、B色の波長帯の光成分を選択的に反射するように機能する。
下側光学機能層42のG反射層42aについても、B反射層41aと同様に誘電体多層膜で構成できる。但し、G反射層42aについては、G色の波長帯では光反射率が大きく、R色の波長帯では光反射率が小さくなるように光学特性を調整する。
なお、上記のB反射層41a、G反射層42aは、誘電体多層膜の他にも、例えば透明基板にAR(anti-reflective)コーティングを施した光学機能層等で構成することもできる。ARコーティング層は、薄膜の表面からの反射と基板表面からの反射との間で相殺的な干渉が起こることで光の反射を減少させる。この光の干渉には波長依存性があり、例えば膜厚を変更することにより、B反射層41aに対して図4に示す分光反射特性のようにB色の波長帯の反射率を選択的に高めることが可能となる。また、G反射層42aのG色の波長帯の反射率についても同様である。
また、上記の誘電体多層膜の代わりに偏光ビームスプリッタを用いた構成にすることもできる。その場合には、InGaN/GaN単一量子井戸を活性層とした発光ダイオードを用い、GaN結晶のc面に垂直なm面と呼ばれる非極性面を結晶成長面とすることで、このm面から強い偏光を出射させる構成とする。この構成によれば、偏光を直接出射する発光ダイオードとなり、発光ダイオードの発光光率を高められ、しかも、光の利用効率をより向上することができる。
次に、上側光学機能層41及び下側光学機能層42の偏向層41b及び42bについて説明する。
図2に示す偏向層41b、42bは、光学機能層の層面に対する垂直方向から傾斜する入射光を略垂直方向に偏向させる機能を有している。
図5に偏向層41b、42bの具体的な構成例を示した。
偏向層41b、42bは、断面が山形の複数のプリズム部が並設された凹凸表面形状の入射面を有するプリズムシートであり、この入射面から入射した光は、山形のプリズムによる屈折によって光学機能層の層面の略垂直方向へ向けて出射される。これにより、発光素子部から上方に向けて斜めに入射する光成分が垂直方向に偏向されて出射されて、上層へ向かう光の透過率が向上するため、高強度の出射光を生成することができる。
なお、プリズム部の形状としては、長尺の三角プリズムが平行に複数列配設された三角プリズムシート、角錐状又は円錐状の凸部が複数配置されたプリズムシート等、適宜な形状のものを採用できる。
偏向層41b及び偏向層42bは、これらを省略して構成を簡単化することもできる。その場合、発光ダイオードの半導体層としてGaN層、電極層としてITO層、保護膜として樹脂層を配置して、各層の屈折率をそれぞれ異ならせ、層界面で全反射を生じさせる。すると、発光層から発光ダイオード表面へ所定角度斜めから入射する発光成分は、全反射により発光層側に戻されて再利用されることになる。
次に、積層型半導体発光素子の他の構成例を説明する。
上述した積層型半導体発光素子100は、各層の電極へ電力を供給することで発光して光が出射されるようになるが、同時に発熱も生じる。この発熱は発光素子の発光特性を変化させる要因となるので、過度な発熱を防止するための熱拡散手段を設けることが好ましい。
図6は支持部材を備えた積層型半導体発光素子の一例を示す概略的な構成図である。この積層型半導体発光素子100Aにおいては、各発光素子部10,20,30の積層体の側面に支持部材60が密着して配置されている。支持部材60は、積層型半導体発光素子100Aを実装する基板等に固定することを容易にすると共に、青色発光素子部10、緑色発光素子部20、赤色発光素子部30の通電によって生じる発熱を拡散して、各発光素子部の温度上昇を抑制する伝熱部材(ヒートシンク)として機能する。
具体的には、青色発光素子部10、緑色発光素子部20、赤色発光素子部30を積層した略四角柱状の構造体(柱状体と称する)は、図示はしないが各発光素子部間には前述の上側光学機能層41と下側光学機能層42が介装されている。
そして、この柱状体の少なくともいずれかの側面には、各発光素子部とそれぞれ物理的に接触させるように熱抵抗の低い支持部材60が配置されている。支持部材60は、アルミ、銅、銀等の熱伝導性の高い金属材料、高熱伝導樹脂材料、高熱伝導性の複合材料等の高伝熱材で構成できる。
また、青色発光素子部10、緑色発光素子部20、赤色発光素子部30の各々の側面には、それぞれコンタクト電極61,62,63,・・・が配置されている。各コンタクト電極はこの積層型半導体発光素子100Aが実装された先で、適宜なコネクタを介して電源ラインに接続され、各発光素子部に駆動電力を供給する。
このように、コンタクト電極61,62,63,・・・を柱状体の側面に配置することで、青色発光素子部10、緑色発光素子部20、赤色発光素子部30の各々の大きさを、Z軸と直交する面の矩形の領域(発光面)L1×L2が1mm×1mm程度のサイズに収めることができる。発光面の面積は、0.5mm以上、1.5mm以下、好ましくは0.8mm以上、1.2mmとするとよく、小さな設置スペースで必要十分な光量を得ることができる。
上記構成によれば、各発光素子部からの発熱が支持部材60に伝達されて発光素子部の発熱が抑制されることで、発光特性の変化が抑制され、均一なスペクトルで安定した光出射が行える。また、各コンタクト電極61,62,63,・・・へ印加電位を個別に制御することにより、例えば、光量制御や温度補償制御を、発光素子部10,20,30毎に個別に行うことができる。
次に、積層型半導体発光素子の他の構成例について説明する。
図7、図8に上述した青色、緑色、赤色の各発光素子部に更に他の色の発光素子部を積層して構成した積層型半導体発光素子の概略構成図を示した。
図7に示す積層型半導体発光素子100Bは、青色発光素子部10、緑色発光素子部20、赤色発光素子部30の他に、紫色発光素子部51と赤外発光素子部52を更に追加して構成してある。
紫色発光素子部51は、例えば中心波長が405nmの紫色光を発光し、また、赤外発光素子部52は、例えば785nmの近赤外光を発光する。この場合の各発光素子部の配置順序は、紫色発光素子部51が青色発光素子部10よりも上方に配置され、赤外発光素子部52は赤色発光素子部30よりも下方に配置される。つまり、この積層型半導体発光素子100Bにおいても、発光波長が長い順で下層から順次積層してある。つまり、発光波長が短波長ほど、光出射端となる上方に配置される。
また、積層型半導体発光素子100Bにおいても、各発光素子部間には、それぞれ前述の光学機能層が配置される。特に、紫色発光素子部51と青色発光素子部10との間には光学機能層が配置され、この光学機能層は紫色光を上方に反射して青色、緑色、赤色光、及び近赤外光を透過させる。また、入射角度の浅い入射光成分は下方に反射して戻すことは前述と同様である。
赤色発光素子部30と赤外発光素子部52との間には他の光学機能層が配置され、この光学機能層は、赤色光を上方に反射して近赤外光を透過させる。また、入射角度の浅い入射光成分は下方に反射して戻すことは前述と同様である。
上記構成の積層型半導体発光素子100Bによれば、青色、緑色、赤色光の任意の光量比による光出射によって任意の色調の出射光を生成可能にすると共に、この出射光と同時に又は個別に紫色光、近赤外光を選択的に出射できる。従って、任意の光照射パターンを任意のタイミングで出射させることが可能となり、本発光素子の利用分野を拡大できる。
例えば、この積層型半導体発光素子100Bを内視鏡装置の患部照明用に適用する場合には、白色光による通常観察に加えて、特殊光観察が容易に行えるようになる。つまり、白色光と紫色の狭帯域光を同時に照射して粘膜組織表層の微細血管を強調した観察画像が得られる。また、紫色光のみ照射することで生体からの蛍光を観察する蛍光観察画像が得られる。更に、近赤外光を照射することで、インドシアニングリーン(ICG)等の薬剤を生体に注入した場合に、造影作用によって病巣を発見する等の赤外光観察による観察画像が得られる。
また、紫色発光素子部82の紫色光は、光線力学診断(Photodynamic Diagnosis:PDD)を行うための照明光としても用いることができる。PDDは、予め腫瘍親和性がありかつ特定の励起光に対して感応する光感受性物質を生体に投与した後、励起光となるレーザ光を生体組織面に照射して、癌などの腫瘍の病巣部で光感受性物質の濃度が高くなった部位からの蛍光を観察する診断方法である。
図8の積層型半導体発光素子100Cは、青色発光素子部10、緑色発光素子部20、赤色発光素子部30の他に、橙色発光素子部53を更に追加して構成してある。橙色発光素子部53は、例えば中心波長が560nmの橙色光を発光する。
この積層型半導体発光素子100Cにおいても、各発光素子部が発光波長の長い順に下側から積層して配置され、各発光素子部の間には前述の光学機能層が配置されている。
この構成例の場合では、橙色発光素子部53が緑色発光素子部20と赤色発光素子部30との間に配置され、橙色発光素子部53と赤色発光素子部30との間には光学機能層が配置されている。この光学機能層は、橙色光を上方に反射して赤色光を透過させる。また、入射角度の浅い入射光成分は下方に反射して戻すことは前述と同様である。
例えば、この積層型半導体発光素子100Cを内視鏡装置の患部照明用に適用する場合には、白色光による通常観察に加えて、橙色光による観察が行えるようになる。この橙色光によれば、観察部位の発赤等の炎症初期の症状を感度良く観察することができる。
上記例の各積層型半導体発光素子100,100A、100B,100Cにおいては、発光面のサイズを略共通にして各発光素子部を角柱状に積層させた構成としていたが、各発光素子部の積層形態はこれに限らない。例えば、図9に示すように、出射する照明光の拡がりを考慮して、各発光素子部の発光面の面積を光出射側ほど広くしてもよい。
つまり、この積層型半導体発光素子100Dにおいては、発光領域の面積(Z軸と直交する面の面積)が互いに異なる青色発光素子部10A、緑色発光素子部20A、赤色発光素子部30Aを用いて、面積が最も小さい赤色発光素子部30Aを最下部に配置し、次に面積が大きい緑色発光素子部20Aを中間部に配置し、最も大きい面積の青色発光素子部10Aを最上部に配置してある。
これにより、下層側の発光素子部からの出射光軌跡の外郭が上層側の発光素子部の発光面内に含まれるようになり、下層側の発光素子部からの発光光がその上方で遮蔽されることなく、拡がりながら矢印A方向に出射されることになる。従って、各発光素子部からの発光光がケラレることなく、有効に利用されて高輝度な出射光を得ることができる。
次に、積層型半導体発光素子の他の構成例について説明する。
図10は前述の積層型半導体発光素子の周囲を蛍光体によりモールドした場合の概略的な構成図である。
この積層型半導体発光素子100Eは、青色発光素子部10、緑色発光素子部20、赤色発光素子部30を積層して構成して、更にそれらを取り囲むように形成された蛍光体81を有している。なお、各発光素子部同士の間には、図示しない前述の光学機能層が配置されている。
蛍光体81は、青色光の一部を吸収して緑色〜黄色に励起発光する複数種の蛍光体物質(例えばYAG系蛍光体、或いはBAM(BaMgAl1017)等の蛍光体)を含んで構成される。
この積層型半導体発光素子100Eは、青色発光素子部10が中心波長445nmの青色光を出射する。蛍光体81は、青色発光素子部10から出射された青色光のエネルギの一部を吸収して励起され、例えば図11に示すようなスペクトル、つまり概ね450〜700nmの波長帯域で大きな発光強度が得られる励起発光光(黄色光)になる。この蛍光体81の励起発光光と、青色発光素子部10から出射され蛍光体81を透過した青色光の成分との合成により白色に近い出射光が得られる。
また、緑色発光素子部20から出射される緑色の狭帯域光及び赤色発光素子部30から出射される赤色の狭帯域光については、蛍光体81を励起させることなく透過し、拡散しつつ出射される。
本構成の積層型半導体発光素子100Eによれば、青色発光素子部10から青色光を発光させることで、白色の出射光が得られ、更に、緑色発光素子部20から狭帯域の緑色光、赤色発光素子部30から狭帯域の赤色光を選択的に出射させることができる。
図12に示す積層型半導体発光素子100Fは、上記の積層型半導体発光素子100Eの構成に加えて紫色発光素子部82を青色発光素子部10の上方に配置している。そして更に、これらの周囲を取り囲むように蛍光体83の層が形成されている。
蛍光体83は、青色発光素子部10からの青色光にのみ励起発光する蛍光体であり、他の色の光は透過させる発光特性を有する。
上記構成の積層型半導体発光素子100Fによれば、青色発光素子部10からの青色光により白色光が得られ、紫色発光素子部82からの紫色光と、緑色発光素子部20からの狭帯域の緑色光、赤色発光素子部からの狭帯域の赤色光を選択的に出射させることができる。
なお、上記の積層型半導体発光素子100A,100B,100C,100D,100E,100Fは、電子内視鏡装置に適用することに限らず、特に小型、軽量でしかも経済的に優れた構成であるため、他のいかなる光源装置に対しても適用が可能である。
以上の通り、本明細書には次の事項が開示されている。
(1) それぞれ発光ダイオードを構成する第1の発光素子部、第2の発光素子部、第3の発光素子部が各発光素子の厚み方向にこの順で積層され、最上層の前記第3の発光素子部の上面から光を出射する積層型半導体発光素子であって、
前記第1の発光素子部、第2の発光素子部、第3の発光素子部は、中心発光波長の長い順に下層から配置され、上層に配置された前記発光素子部は下層に配置された前記発光素子部の発光光に対する透光性をそれぞれ有し、
前記第1の発光素子部と前記第2の発光素子部との間に第1光学機能層、前記第2の発光素子部と前記第3の発光素子部との間に第2光学機能層が配置され、
前記第1光学機能層が、前記第1の発光素子部の発光光を透過し、前記第2の発光素子部の発光光を反射する光学特性を有し、
前記第2光学機能層が、前記第1の発光素子部の発光光及び第2の発光素子部の発光光を透過し、前記第3の発光素子部の発光光を反射する光学特性を有する積層型半導体発光素子。
この積層型半導体発光素子によれば、第1の発光素子部からの発光光が第1光学機能層を通して第2の発光素子部へ導入され、更に第2の発光素子部からの発光光と共に第2光学機能層を通して第3の発光素子部に導入され、第3の発光素子部からの発光光と共に出射される。このとき、第2の発光素子部からの発光光のうち、下方に向かう光成分が第1光学機能層により上方に反射され、第3の発光素子部からの発光光のうち、下方に向かう光成分が第2光学機能層により上方に反射される。これにより、各発光素子から出射される光のエネルギが光路途中で吸収・減衰されることなく、発光光を高効率で出射光として利用でき、発熱を抑制しつつ高強度の光を安定して得ることができる。
(2) (1)の積層型半導体発光素子であって、
前記第1の発光素子部の下層に配置され、該第1の発光素子部の発光光を上方に反射する反射層を有する積層型半導体発光素子。
この積層型半導体発光素子によれば、第1の発光素子部から下方に向かう光成分が反射層により上方に反射されて有効利用されるので、出射光強度をより高めることができる。
(3) (1)又は(2)の積層型半導体発光素子であって、
前記第1光学機能層及び前記第2光学機能層の少なくともいずれかが、下層側に向かう特定の波長帯域の光を選択的に反射してする誘電体多層膜を有する積層型半導体発光素子。
この積層型半導体発光素子によれば、発光素子部から下方に向かう光成分を誘電体多層膜によって高い反射率で確実に反射させることができる。
(4) (1)〜(3)のいずれかの積層型半導体発光素子であって、
前記第1光学機能層及び前記第2光学機能層の少なくともいずれか一方が、上層側に向かう光を前記光学機能層の層面に対する略垂直方向に揃える偏向層を更に備える積層型半導体発光素子。
この積層型半導体発光素子によれば、発光素子部から上方に向けて斜めに入射する光成分が略垂直方向に偏向されて出射され、これにより、高強度の出射光を生成することができる。
(5) (4)の積層型半導体発光素子であって、
前記偏向層が、断面が山形の複数のプリズム部が並設された凹凸表面形状の入射面を有するプリズムシートである積層型半導体発光素子。
この積層型半導体発光素子によれば、凹凸表面形状を有するプリズムシートを発光素子部の間に介装することによって、簡単に入射光を垂直方向に偏向して出射させることができる。
(6) (1)〜(5)のいずれかの積層型半導体発光素子であって、
前記第1の発光素子部、前記第2の発光素子部、前記第3の発光素子部を積層した柱状体のいずれかの側面に、支持部材が密着された積層型半導体発光素子。
この積層型半導体発光素子によれば、柱状体の側面のいずれかが支持部材に密着されることで、発光素子部を安定して固定できる。
(7) (6)の積層型半導体発光素子であって、
前記支持部材が金属材料からなる積層型半導体発光素子。
この積層型半導体発光素子によれば、高熱伝導性の金属材料による熱拡散効果により、発光素子部の発熱を抑えることができる。
(8) (6)又は(7)の積層型半導体発光素子であって、
前記柱状体の側面に、前記第1の発光素子部、前記第2の発光素子部、前記第3の発光素子部をそれぞれ発光駆動するためのコンタクト電極が配置された積層型半導体発光素子。
この積層型半導体発光素子によれば、柱状体の側面にコンタクト電極を配置するため、発光素子をより小型化することができる。
(9) (1)〜(8)のいずれかの積層型半導体発光素子であって、
前記第1の発光素子部、前記第2の発光素子部、前記第3の発光素子部とは異なる中心発光波長の発光素子部を、少なくとも一層更に備えた積層型半導体発光素子。
この積層型半導体発光素子によれば、例えば光の三原色の他に更に他の特定波長成分の光が出射可能となり、発光素子の利用範囲を拡げることができる。
(10) (1)〜(9)のいずれかの積層型半導体発光素子であって、
前記複数の発光素子部が厚み方向に重なり合う積層面積が、下層側の発光素子より上層側の発光素子が大きい積層型半導体発光素子。
この積層型半導体発光素子によれば、下層側の前記発光素子部からの出射光軌跡の外郭が、上層側の前記発光素子部の発光面内に含まれるようになり、下層側の発光素子部からの発光光が上層側の発光素子部によりケラレることが防止され、光利用効率を高めて高輝度の光を出射することができる。
(11) (1)〜(10)のいずれかの積層型半導体発光素子であって、
前記第1の発光素子部、前記第2の発光素子部、前記第3の発光素子部の周囲を覆って配置され、前記いずれかの発光素子部からの発光光により励起発光する蛍光体層を備えた積層型半導体発光素子。
この積層型半導体発光素子によれば、いずれかの発光素子部の発光光を波長変換することで、出射光の波長帯の種類を増やすことができ、発光素子の利用範囲を拡げることができる。例えば蛍光体層の発光と合わせて白色光を生成することで、他の発光素子部の発光波長を白色光生成用以外の他の波長に割り当てることができ、所望のスペクトルの出射光を容易に得ることができる。
10 青色発光素子部(第3の発光素子部)
12 p型GaN層
13 p型InGaN層
14 InGaN発光層
15 n型GaN層
20 緑色発光素子部(第2の発光素子部)
22 p型GaNコンタクト層
23 p型InGaN層
24 InGaN発光層
25 n型GaN層
30 赤色発光素子部(第1の発光素子部)
32 p型AlInGaP層
33 p型AlInGaP発光層
34 n型GaP層
41 上側光学機能層(第2光学機能層)
42 下側光学機能層(第1光学機能層)
100,100A,100B,100C,100D,100E,100F 積層型半導体発光素子

Claims (11)

  1. それぞれ発光ダイオードを構成する第1の発光素子部、第2の発光素子部、第3の発光素子部が各発光素子の厚み方向にこの順で積層され、最上層の前記第3の発光素子部の上面から光を出射する積層型半導体発光素子であって、
    前記第1の発光素子部、第2の発光素子部、第3の発光素子部は、中心発光波長の長い順に下層から配置され、上層に配置された前記発光素子部は下層に配置された前記発光素子部の発光光に対する透光性をそれぞれ有し、
    前記第1の発光素子部と前記第2の発光素子部との間に第1光学機能層、前記第2の発光素子部と前記第3の発光素子部との間に第2光学機能層が配置され、
    前記第1光学機能層が、前記第1の発光素子部の発光光を透過し、前記第2の発光素子部の発光光を反射する光学特性を有し、
    前記第2光学機能層が、前記第1の発光素子部の発光光及び第2の発光素子部の発光光を透過し、前記第3の発光素子部の発光光を反射する光学特性を有する積層型半導体発光素子。
  2. 請求項1記載の積層型半導体発光素子であって、
    前記第1の発光素子部の下層に配置され、該第1の発光素子部の発光光を上方に反射する反射層を有する積層型半導体発光素子。
  3. 請求項1又は請求項2記載の積層型半導体発光素子であって、
    前記第1光学機能層及び前記第2光学機能層の少なくともいずれかが、下層側に向かう特定の波長帯域の光を選択的に反射してする誘電体多層膜を有する積層型半導体発光素子。
  4. 請求項1〜請求項3のいずれか1項記載の積層型半導体発光素子であって、
    前記第1光学機能層及び前記第2光学機能層の少なくともいずれか一方が、上層側に向かう光を前記光学機能層の層面に対する略垂直方向に揃える偏向層を更に備える積層型半導体発光素子。
  5. 請求項4記載の積層型半導体発光素子であって、
    前記偏向層が、断面が山形の複数のプリズム部が並設された凹凸表面形状の入射面を有するプリズムシートである積層型半導体発光素子。
  6. 請求項1〜請求項5のいずれか1項記載の積層型半導体発光素子であって、
    前記第1の発光素子部、前記第2の発光素子部、前記第3の発光素子部を積層した柱状体のいずれかの側面に、支持部材が密着された積層型半導体発光素子。
  7. 請求項6記載の積層型半導体発光素子であって、
    前記支持部材が金属材料からなる積層型半導体発光素子。
  8. 請求項6又は請求項7記載の積層型半導体発光素子であって、
    前記柱状体の側面に、前記第1の発光素子部、前記第2の発光素子部、前記第3の発光素子部をそれぞれ発光駆動するためのコンタクト電極が配置された積層型半導体発光素子。
  9. 請求項1〜請求項8のいずれか1項記載の積層型半導体発光素子であって、
    前記第1の発光素子部、前記第2の発光素子部、前記第3の発光素子部とは異なる中心発光波長の発光素子部を、少なくとも一層更に備えた積層型半導体発光素子。
  10. 請求項1〜請求項9のいずれか1項記載の積層型半導体発光素子であって、
    前記複数の発光素子部が厚み方向に重なり合う積層面積が、下層側の発光素子より上層側の発光素子が大きい積層型半導体発光素子。
  11. 請求項1〜請求項10のいずれか1項記載の積層型半導体発光素子であって、
    前記第1の発光素子部、前記第2の発光素子部、前記第3の発光素子部の周囲を覆って配置され、前記いずれかの発光素子部からの発光光により励起発光する蛍光体層を備えた積層型半導体発光素子。
JP2010037789A 2010-02-23 2010-02-23 積層型半導体発光素子 Abandoned JP2011176045A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037789A JP2011176045A (ja) 2010-02-23 2010-02-23 積層型半導体発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037789A JP2011176045A (ja) 2010-02-23 2010-02-23 積層型半導体発光素子

Publications (1)

Publication Number Publication Date
JP2011176045A true JP2011176045A (ja) 2011-09-08

Family

ID=44688674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037789A Abandoned JP2011176045A (ja) 2010-02-23 2010-02-23 積層型半導体発光素子

Country Status (1)

Country Link
JP (1) JP2011176045A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098427A (ja) * 2011-11-02 2013-05-20 Citizen Electronics Co Ltd 半導体発光装置
WO2014036939A1 (zh) * 2012-09-10 2014-03-13 厦门市三安光电科技有限公司 暖白光发光二极管及其制作方法
JP2015076527A (ja) * 2013-10-09 2015-04-20 シチズン電子株式会社 Led発光装置
JP2015109331A (ja) * 2013-12-04 2015-06-11 シャープ株式会社 窒化物半導体発光装置
US9202994B2 (en) 2013-03-07 2015-12-01 Kabushiki Kaisha Toshiba Semiconductor light emitting element and method for manufacturing the same
KR20190068195A (ko) * 2017-12-08 2019-06-18 엘지디스플레이 주식회사 발광 소자, 마이크로 디스플레이 장치
JP2020501360A (ja) * 2016-12-01 2020-01-16 オステンド・テクノロジーズ・インコーポレーテッド マイクロ画素ディスプレイからの偏光発光及びその製造方法
WO2021133140A1 (ko) * 2019-12-28 2021-07-01 서울바이오시스주식회사 발광 소자 및 그것을 갖는 led 디스플레이 장치
JP7451513B2 (ja) 2018-11-02 2024-03-18 ソウル バイオシス カンパニー リミテッド 発光装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254732A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 半導体発光装置
JP2006196569A (ja) * 2005-01-12 2006-07-27 Seiko Epson Corp 発光素子
JP2008263127A (ja) * 2007-04-13 2008-10-30 Toshiba Corp Led装置
JP2012504856A (ja) * 2008-10-03 2012-02-23 ヴァーシテック・リミテッド 半導体カラー調節可能広帯域光源及びフルカラーマイクロディスプレイ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254732A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 半導体発光装置
JP2006196569A (ja) * 2005-01-12 2006-07-27 Seiko Epson Corp 発光素子
JP2008263127A (ja) * 2007-04-13 2008-10-30 Toshiba Corp Led装置
JP2012504856A (ja) * 2008-10-03 2012-02-23 ヴァーシテック・リミテッド 半導体カラー調節可能広帯域光源及びフルカラーマイクロディスプレイ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098427A (ja) * 2011-11-02 2013-05-20 Citizen Electronics Co Ltd 半導体発光装置
WO2014036939A1 (zh) * 2012-09-10 2014-03-13 厦门市三安光电科技有限公司 暖白光发光二极管及其制作方法
US9202994B2 (en) 2013-03-07 2015-12-01 Kabushiki Kaisha Toshiba Semiconductor light emitting element and method for manufacturing the same
US9337400B2 (en) 2013-03-07 2016-05-10 Kabushiki Kaisha Toshiba Semiconductor light emitting element and method for manufacturing the same
JP2015076527A (ja) * 2013-10-09 2015-04-20 シチズン電子株式会社 Led発光装置
JP2015109331A (ja) * 2013-12-04 2015-06-11 シャープ株式会社 窒化物半導体発光装置
JP7293112B2 (ja) 2016-12-01 2023-06-19 オステンド・テクノロジーズ・インコーポレーテッド マイクロ画素ディスプレイからの偏光発光及びその製造方法
JP2020501360A (ja) * 2016-12-01 2020-01-16 オステンド・テクノロジーズ・インコーポレーテッド マイクロ画素ディスプレイからの偏光発光及びその製造方法
KR20190068195A (ko) * 2017-12-08 2019-06-18 엘지디스플레이 주식회사 발광 소자, 마이크로 디스플레이 장치
KR102442725B1 (ko) * 2017-12-08 2022-09-13 엘지디스플레이 주식회사 발광 소자, 마이크로 디스플레이 장치
JP7451513B2 (ja) 2018-11-02 2024-03-18 ソウル バイオシス カンパニー リミテッド 発光装置
WO2021133140A1 (ko) * 2019-12-28 2021-07-01 서울바이오시스주식회사 발광 소자 및 그것을 갖는 led 디스플레이 장치
US11688840B2 (en) 2019-12-28 2023-06-27 Seoul Viosys Co., Ltd. Light emitting device and led display apparatus having the same

Similar Documents

Publication Publication Date Title
JP2011176045A (ja) 積層型半導体発光素子
JP5877347B2 (ja) バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
TWI323817B (en) A light source for lcd back-lit displays
US8384096B2 (en) Semiconductor component with optically active regions which provides high optical output power, and method for producing same
TWI601267B (zh) 具有寬廣色彩範圍之高效率發光系統
JP5935067B2 (ja) 波長変換板、およびそれを用いた照明装置
JP6286026B2 (ja) 発光ダイオードコンポーネント
JP4689579B2 (ja) 発光装置
US9239133B2 (en) High brightness solid state illumination system for fluorescence imaging and analysis
US9151468B2 (en) High brightness illumination devices using wavelength conversion materials
JP5617916B2 (ja) バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
JP2007157831A (ja) 発光装置
TW201128816A (en) Light emitting device
JP2017517892A (ja) 半導体デバイス及び照明装置
JP2011171376A (ja) 発光装置
JP2004031843A (ja) 発光ダイオ−ド
US20120076167A1 (en) Side-emitting led light source for backlighting applications
US9112089B2 (en) Semiconductor chip, display comprising a plurality of semiconductor chips and methods for the production thereof
JP2008028182A (ja) 照明装置
JP6863420B2 (ja) 発光モジュール及びその製造方法、液晶表示装置
JP6596582B2 (ja) 照明装置
US11193651B2 (en) Illumination device including laser light source, molded body with obtusely inclined side surfaces, and phosphor layer
KR102389061B1 (ko) 발광소자 패키지
JP6249335B2 (ja) 発光装置
JP2014067548A (ja) 固体照明装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130918