JP2011155098A - グラフェン膜と金属電極とが電気的接合した回路装置 - Google Patents

グラフェン膜と金属電極とが電気的接合した回路装置 Download PDF

Info

Publication number
JP2011155098A
JP2011155098A JP2010015081A JP2010015081A JP2011155098A JP 2011155098 A JP2011155098 A JP 2011155098A JP 2010015081 A JP2010015081 A JP 2010015081A JP 2010015081 A JP2010015081 A JP 2010015081A JP 2011155098 A JP2011155098 A JP 2011155098A
Authority
JP
Japan
Prior art keywords
graphene film
graphene
metal electrode
film
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010015081A
Other languages
English (en)
Other versions
JP4967034B2 (ja
Inventor
Makoto Okai
誠 岡井
Masayuki Hirooka
誠之 廣岡
Yasuo Wada
恭雄 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010015081A priority Critical patent/JP4967034B2/ja
Priority to US13/013,984 priority patent/US8471237B2/en
Publication of JP2011155098A publication Critical patent/JP2011155098A/ja
Application granted granted Critical
Publication of JP4967034B2 publication Critical patent/JP4967034B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】グラフェン膜と金属電極との間の接触抵抗を低減してグラフェン膜と金属電極とが良好に電気的接合された回路装置を提供する。
【解決手段】本発明に係るグラフェン膜と金属電極とが電気的接合した回路装置は、単層または複数層からなるグラフェン膜を利用した回路装置であって、前記グラフェン膜と直接接触する下地層としての酸化アルミニウム膜が前記グラフェン膜の下部のみに形成されており、前記酸化アルミニウム膜の組成がAl2-xO3+x(x ≧ 0)であり、前記グラフェン膜と金属電極とが直接接合し、該接合箇所には凹凸構造が形成され、前記凹凸構造は、前記酸化アルミニウム膜に形成された少なくとも1つのコーン状凹部と、前記コーン状凹部を含む前記酸化アルミニウム膜の表面に沿って該表面と平行に成長した前記グラフェン膜と、前記グラフェン膜を覆いかつ前記コーン状凹部を埋めるように形成された前記金属層とから構成されていることを特徴とする。
【選択図】図1

Description

本発明は、グラフェンを電子・光集積回路装置として利用することに係り、特に、グラフェン膜と金属電極とが電気的に接合した回路装置に関するものである。
グラフェン(グラフェンシートとも言う)とは、ベンゼン環を2次元平面に敷き詰めた六員環シートのことであり、閉曲面を構成していないものを言う。グラフェンを筒状に丸めて閉曲面を構成したものがカーボンナノチューブであり、グラフェンを多数枚積層したものがグラファイトである。グラフェンの各炭素原子はsp2混成軌道を形成しており、シートの上下には非局在化した電子が存在している。
グラフェンの物性的な特徴として、(1)キャリア移動度が200,000 cm2/Vs程度とシリコン(Si)結晶よりも1桁以上高く、金属やカーボンナノチューブをも超える値を示す、(2)ナノデバイス特有の1/fノイズを大幅に低減できる、(3)負の屈折率を示す、(4)グラフェン上の電子はあたかも質量がゼロであるかのように振舞う、などが報告されている。これらの特徴からグラフェンは「ポストSi」の新素材として有望視されている。
グラフェンを用いた電子・光集積回路装置を実現するためには、形成したグラフェン膜と金属電極とを電気的に良好な状態で(例えば、低抵抗で)接続する技術が必要不可欠である。非特許文献1には、カーボンナノチューブと金属電極との接触抵抗について報告されている。ただし、該接触抵抗は、カーボンナノチューブ自体の電気抵抗と、カーボンナノチューブと金属電極との間の界面抵抗が並列接続の状態になっている合成抵抗である(以下、本明細書においては、その様な状態を含めて接触抵抗と称す)。非特許文献1によると、カーボンナノチューブと金属電極との接触抵抗はkΩオーダ(0.5〜50 kΩ、室温)とされている。
Jeong-O Lee, C Park, Ju-Jin Kim, Jinhee Kim, Jong Wan Park, and Kyung-Hwa Yoo: "Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method", J. Phys. D: Appl. Phys. 33, 1953 (2000).
もしも、グラフェン膜と金属電極とを非特許文献1と同様の条件で接続した場合、接触抵抗もkΩオーダになると予想される。しかしながら、kΩオーダの抵抗は接触抵抗として非常に大きく、電子・光集積回路装置を実現する上での障害となる。従って、本発明の目的は、グラフェン膜と金属電極との間の接触抵抗を低減してグラフェン膜と金属電極とが良好に電気的接合された回路装置を提供することにある。
グラフェンはカーボンナノチューブと異なり平面構造であるため、金属電極との接合面積をカーボンナノチューブの場合に比して大きくしやすいと言える。そこで、グラフェン膜と金属電極との接合面積を効果的に大きくする構造を採用することに加えて、グラフェン膜自体の電気抵抗を低減することによって、全体としての接触抵抗を低減することを考えた。
本発明は、上記目的を達成するため、単層または複数層からなるグラフェン膜を利用した回路装置であって、
前記グラフェン膜と直接接触する下地層としての酸化アルミニウム膜が前記グラフェン膜の下部のみに形成されており、
前記酸化アルミニウム膜の組成がAl2-xO3+x(x ≧ 0)であり、
前記グラフェン膜と金属電極とが直接接合し、該接合箇所には凹凸構造が形成され、
前記凹凸構造は、前記酸化アルミニウム膜に形成された少なくとも1つのコーン状凹部と、前記コーン状凹部を含む前記酸化アルミニウム膜の表面に沿って該表面と平行に成長した前記グラフェン膜と、前記グラフェン膜を覆いかつ前記コーン状凹部を埋めるように形成された前記金属層とから構成されていることを特徴とするグラフェン膜と金属電極とが電気的接合した回路装置を提供する。
なお、本発明で言う「複数層からなるグラフェン膜」とは、20層以下のグラフェンシートからなるグラフェン膜と定義する。これは、20層を超えると種々の物性(例えば、電子移動度)がバルクグラファイトとほとんど同じになり、グラフェンとしての特長が希薄となるためである。10層以下のグラフェン膜であることがより好ましい。
また、本発明は、上記目的を達成するため、上記の発明に係るグラフェン膜と金属電極とが電気的接合した回路装置において、以下のような改良や変更を加えることができる。
(i)前記コーン状凹部は、開口部分の口径に対する深さの比「(凹部の深さ)/(開口部分の口径)」が1.5以上10以下である。
(ii)前記酸化アルミニウム膜における前記コーン状凹部以外の部分の平均厚さが10 nm以上500 nm以下である。
(iii)前記接合箇所における接合面積と接合箇所占有面積との比「(接合面積)/(接合箇所占有面積)」が3以上20以下である。
(iv)前記グラフェン膜自体の単位面積あたりの電気抵抗をrgp[単位:Ω/μm2]と表記し、前記グラフェン膜と前記金属電極との単位面積あたりの界面抵抗をrc[単位:Ωμm2]と表記した場合に、前記接合面積S[単位:μm2]が下記式(1)または式(2)の関係を満たす。
Figure 2011155098
Figure 2011155098
また、本発明に係るグラフェン膜と金属電極とが電気的接合した回路装置は、前記グラフェン膜を電界効果トランジスタのチャネル材料や、前記デバイス内の配線材料、発受光素子に用いている。
本発明によれば、グラフェン膜と金属電極との間の接触抵抗を低減してグラフェン膜と金属電極とが良好に電気的接合された回路装置を提供することができる。また、該回路装置を低コストで実現することができる。
本発明の実施形態に係るグラフェン膜が成長された基板の製造手順例を示す断面模式図である。 回路配線部となる部分における金属電極を接合する領域(接合箇所)の1例を示した斜視模式図である。 グラフェン膜/金属層の接触抵抗と接触面積との関係を示す計算結果の1例である。 成長したグラフェン膜の光透過スペクトルの1例を示すグラフである。 グラフェン膜が成長した基板の電気伝導の面内分布測定結果(100 nm角)の1例を示すマップである。 グラフェン膜の平均ドメインサイズと酸化アルミニウム膜の組成(Al2-xO3+x中のx)との関係を示したグラフである。 グラフェン膜の平均ドメインサイズと電気伝導率・電気抵抗率との関係を示すグラフである。 本発明に係るグラフェン膜と金属電極とが電気的接合した回路装置の1例として電子・光集積回路装置を示した斜視模式図である。
以下、図を参照しながら本発明に係る実施の形態を製造手順に沿って説明する。ただし、本発明はここで取り上げた実施の形態に限定されることはなく、要旨を変更しない範囲で適宜改良や組み合わせを行ってもよい。なお、図面中で同義の部分には同一の符号を付して重複する説明を省略する。
図1は、本発明の実施形態に係るグラフェン膜が成長された基板の製造手順例を示す断面模式図である。まず、基板100として、酸化シリコン膜102(例えば、厚さ20〜300 nmの熱酸化膜)が表面に形成されたシリコン単結晶基板101(例えば、2インチ径、厚さ500〜600μm)を用意する。次に、スパッタ法やイオンビーム法、レーザ蒸発法等の気相成長の手法により基板100の表面(酸化シリコン膜102の表面)にコランダム構造の酸化アルミニウム膜103を形成する。これを「下地形成工程」と称す。
ここで、酸化アルミニウム膜103の形成にあたり、その組成がAl2-xO3+x(x ≧ 0)となるように制御することが望ましく、Al2-xO3+x(x > 0)となるように制御することがより望ましい。該組成制御は、例えば、気相成長中の酸素分圧を制御することによって可能である。化学量論組成以上の酸素リッチな組成を有する酸化アルミニウム膜103を形成することにより、平均サイズの大きいグラフェンドメインを成長させることができ、成膜したグラフェン膜の電気抵抗を低減することができる(詳細は後述する)。
酸化アルミニウム膜103の算術平均表面粗さRaは1 nm以下であることが望ましい。より望ましくは0.3 nm以下である。算術平均表面粗さRaが1 nmより大きくなると、グラフェン膜が酸化アルミニウム膜103の表面に対して平行に成長しにくくなる。これは、グラフェン膜成長の核生成と算術平均表面粗さRaとの間に何かしらの相関関係があるためと考えられる。さらに、酸化アルミニウム膜103の表面最大高さRzは10 nm以下であることが望ましい。より望ましくは3 nm以下である。
形成した酸化アルミニウム膜103の算術平均表面粗さRaが1 nmより大きい場合は、研磨(例えば、化学機械研磨)等により1 nm以下となるように加工する。これを「表面平坦化工程」と言う。なお、酸化アルミニウム膜103を形成する前に、あらかじめシリコン単結晶基板101または酸化シリコン膜102の算術平均表面粗さRaを1 nm以下とするように加工することも「表面平坦化工程」に含まれるものとする。また、算術平均表面粗さRaおよび表面最大高さRzはJIS B 0601に準拠するものとする。
形成する酸化アルミニウム膜103の平均厚さとしては、10 nm以上500 nm以下が好ましい。多結晶体である酸化アルミニウム膜103の平均厚さが10 nm未満になると結晶粒同士の接点が減って面内方向の被覆率が低下する(例えば、酸化アルミニウム膜103が島状になる)ことから好ましくない(結果として表面平坦性が劣化する)。一方、500 nmより厚くなると後工程における熱歪み等に起因したクラック等が発生しやすくなり、結果として表面平坦性(例えば算術平均表面粗さRa)が劣化することから好ましくない。なお、酸化アルミニウム膜103の算術平均表面粗さRa、表面最大高さRz、および平均厚さに関しては、グラフェン膜と金属電極との接合領域以外(凹凸構造領域以外)での規定とする。
酸化アルミニウム膜103を形成する方法に特段の制限はなく、結果として組成と平均膜厚とを所望の範囲に制御できれば気相成長法以外の手法でもよい。例えば、金属アルミニウム膜を基板100の表面上(酸化シリコン層102の表面上)に成膜した後、酸素プラズマ処理等により酸化アルミニウム膜103とする方法でも良い。なお、酸化アルミニウム膜103を成膜する基板100としては、上述の酸化シリコン膜102が表面に形成されたシリコン単結晶基板101に限定されるものではなく、後工程での熱履歴に対する耐熱性およびグラフェン膜が成長された基板の用途(例えば、電子・光集積回路装置)を考慮して適宜選択できる。例えば、表面に絶縁膜が形成された各種の半導体基板や各種の絶縁体基板などを用いることができる。
次に、従来の半導体プロセス技術と同様のフォトリソグラフィーとリフトオフのプロセスにより、基板100に形成した酸化アルミニウム膜103を所望の回路パターンとなるように加工する。これを「回路パターニング工程」と称す。このとき、回路配線部となる部分104に酸化アルミニウム膜103を残し、他の部分の酸化アルミニウム膜103を除去する。また、酸化シリコン膜102は絶縁層として残しておいた方が好ましい。なお、「回路パターニング工程」の後に「表面平坦化工程」を行ってもよい。
さらに、従来の半導体プロセス技術と同様のフォトリソグラフィーとエッチング(例えば、反応性イオンエッチング:RIE)のプロセスにより、回路配線部となる部分104における金属電極を接合する領域(接合箇所)107に接合面積を増大させるための凹凸構造(コーン状凹部108)を形成する。これを「凹凸構造形成工程」と称す。凹凸構造の詳細については後述する。なお、「凹凸構造形成工程」は、「回路パターニング工程」の前、同時、後の何れに行ってもよい。
次に、炭素含有化合物を原料として化学気相成長法(CVD: chemical vapor deposition)によりグラフェン膜105を回路配線部となる部分104(酸化アルミニウム膜103)上に成膜する「グラフェン膜成膜工程」を行う。これにより、接合箇所107を含む回路配線部となる部分104(酸化アルミニウム膜103)の表面形状に沿って該表面と平行にグラフェン膜105が一様な膜厚で成長して回路配線部106が形成され、グラフェン膜が成長された基板200が製造される。
成膜条件の1例としては、原料ガスとしてプロピレン、キャリアガスとしてアルゴンガスを用い、平均原料濃度0.15〜3 体積%の混合ガスを平均流速15〜50 cm/min(基板上の平均流速で標準状態換算)で供給し、成長温度450〜1000℃(好ましくは750〜1000℃)で0.1〜60分間(好ましくは0.1〜10分間)の成長を行う。なお、原料としてはプロピレン以外にもアセチレン、メタン、プロパン、エチレン等の他の炭素含有化合物を用いることができる。
次に、回路配線部106のグラフェン膜105における接合箇所107に金属層201を形成する「金属層形成工程」を行う。金属層201を形成する方法に特段の制限はないが、接合箇所107の凹凸構造の隅々まで金属層201を充填する観点から気相成長法(例えば、スパッタ法や各種蒸着法)を用いることは好ましい。形成した金属層201を金属電極や金属配線としてそのまま利用してもよいし、金属層201を介してボンディングワイヤ等の金属バルク体との接合を行ってもよい。また、金属層201の材料にも特段の制限はなく、金属電極として常用される金属(例えば、金、白金、チタンなど)を用いることができる。
〔接合箇所の凹凸構造〕
コーン状凹部108は、開口部分の口径に対する深さの比「(凹部の深さD)/(開口部分の口径d)」が1.5以上10以下となるように形成されることが好ましい。「(凹部の深さD)/(開口部分の口径d)」が1.5未満だと、接合面積の増大効果が小さ過ぎて接触抵抗を低減できない。一方、「(凹部の深さD)/(開口部分の口径d)」が10よりも大きいと、凹凸構造の隅々まで(特にコーン状凹部108の最深部まで)金属層201を充填することが難しくなり、接合面積の増大効果が飽和する。コーン状凹部108は、エッチングプロセスによって作り易い形状であり、かつ金属層201を充填し易い形状であることから、製造コスト抑制と製造信頼性向上の効果がある。
上記の効果に加えて、凹凸構造が制御された形状を有するコーン状凹部であることは、その表面形状に沿って該表面と平行にグラフェン膜を成長させる上で大変重要である。接合箇所に成長させたグラフェン膜の微細構造を走査型トンネル顕微鏡および高分解能走査型電子顕微鏡で観察したところ、立体的な面の境目(例えば、平坦面とコーン状凹部との境界)でグラフェンドメインが分断されることは無く、グラフェンシート自体が折れ曲がるようにして表面形状に沿って成長していることが確認された。これにより、本発明におけるグラフェン膜は、凹凸構造を有する接合箇所と凹凸構造を有しない平坦部とで同等の電気的特性を有していると考えられた。
一方、無秩序な(制御されていない)凹凸構造を有する箇所(例えば、多孔質体)に成長させたグラフェン膜の微細構造を比較として別途観察したところ、成長したグラフェンドメインも無秩序な方向を向いており、多数のグラフェンシートの端部が表面で観察された。言い換えると、グラフェンドメイン同士の電気的接合性が弱いものと考えられた。
また、開口部分の口径は5 nm以上であることが好ましい。これにより、接合箇所105の凹凸構造の表面形状に沿って該表面と平行にグラフェン膜106が成長しやすくなる。なお、コーン状凹部108の開口部分の形状は、真円形状に限定されるものではなく、例えば楕円形状や多角形状であってもよい。このとき、口径は最も大きい開口幅と定義する。
前述したように、グラフェンは平面構造であるため金属電極との接合面積をカーボンナノチューブの場合に比して大きくしやすい。一方、当然のことながら、回路装置においては金属電極を接合する領域(接合箇所)の占有面積が小さいことが望ましい。図2は、回路配線部となる部分における金属電極を接合する領域(接合箇所)の1例を示した斜視模式図である。接合箇所107にコーン状凹部108を形成し、コーン状凹部における「(凹部の深さ)/(開口部分の口径)」を上述の範囲に制御することにより、接合箇所107における接合面積と接合箇所占有面積との比「(接合面積)/(接合箇所占有面積)」を3〜20と増大させることができる。
〔接触抵抗に関する考察〕
グラフェン膜105自体の単位面積あたりの電気抵抗をrgp[単位:Ω/μm2]、グラフェン膜105と金属層201との単位面積あたりの界面抵抗をrc[単位:Ωμm2]、接合面積をS[単位:μm2]と表記した場合、グラフェン膜105と金属層201との接触抵抗RはSの関数R(S)として下記式(3)で与えられる。
Figure 2011155098
ここで、rgp = 10Ω/μm2、rc = 10Ωμm2とした場合のR(S)の計算結果を図3に示す。図3は、グラフェン膜/金属層の接触抵抗と接触面積との関係を示す計算結果の1例である。式(3)および図3から解るように、接合面積Sが大きくなるとともに接触抵抗R(S)は(rgp・rc)1/2に収束する。すなわち、接合面積Sを大きく取れる本発明は、非特許文献1のカーボンナノチューブの場合よりも接触抵抗の観点で有利と言える。
また、式(3)における余接関数項(hyperbolic cotangent function term)を下記式(1)または式(2)の関係を満たすように設定することにより、接触抵抗Rを収束値(rgp・rc)1/2の30%増以内または10%増以内の値で留めることができる。
Figure 2011155098
Figure 2011155098
一方、収束値(rgp・rc)1/2において、グラフェン膜105自体の単位面積あたりの電気抵抗rgpを低減することにより、接触抵抗Rを更に低減できることが解る。本発明では、成膜したグラフェン膜の平均ドメインサイズを増大させてグラフェン膜自体の電気抵抗を低減できることを見出した。以下、それらについて説明する。
〔成長したグラフェンの平均層数の測定〕
本発明において、成長したグラフェン膜を構成する平均層数は、成長したグラフェン膜の光透過率測定により求めた。グラフェン1層の光透過率Tは、下記式(4)のように物理定数(e:電子の電荷、c:光速、h bar:換算プランク定数)により与えられ、可視光から遠赤外領域では波長に依存せず一定の光透過率Tcに収束することが理論的に予想されている。
Figure 2011155098
また、非特許文献2において、グラフェン1層の光透過率は97.7%で収束すると報告されている。そこで、本発明においてもTc = 97.7%と仮定し、下記式(5)を用いて成長したグラフェン膜を構成する平均層数Lgを算出した。
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim: "Fine Structure Constant Defines Visual Transparency of Graphene", SCIENCE 320, 1308 (2008).
Figure 2011155098
酸化アルミニウム(α−アルミナ)単結晶基板上に、次の成長条件(原料ガス:プロピレン、キャリアガス:アルゴン、平均原料濃度:1.2 体積%、標準状態換算平均流速:41 cm/min、成長温度:800℃、成長時間:2.5分間)でグラフェン膜を成膜し、測定用試料を作製した。該測定用試料を用いて光透過率測定を行った結果を図4に示す。図4は、成長したグラフェン膜の光透過スペクトルの1例を示すグラフである。なお、グラフェン膜を成膜していない酸化アルミニウム単結晶基板を参照試料として光透過率測定を行い、グラフェン膜の測定結果を補正した。
図4に示したように、測定された光透過率は、短波長側(400 nm)からなだらかに増加し、長波長側(約2000 nm以上)で一定値Tcに収束していた。なお、1800〜1900 nmおよび2200 nm以上における揺らぎは、大気中の水分による影響と考えられた。得られたTcから前述の式(5)を用いて平均層数を求めたところLg = 0.7と算出された。
〔成長したグラフェンの基板表面との層間距離およびドメインサイズの測定〕
成長したグラフェンの基板表面との層間距離およびドメインサイズの測定には、走査型トンネル顕微鏡を用いた。測定用試料には、光透過率測定に用いた試料と同様に、酸化アルミニウム単結晶基板上に平均層数Lg < 1.0となるように成長させたグラフェン膜を利用した。これは、平均層数Lg < 1.0のグラフェン膜においては、基板上に単層のグラフェンが成長している部分とグラフェン自体が成長していない部分が混在するため、上記の測定が容易になるからである。
平均層数Lg < 1.0の測定用試料を用いて、単層のグラフェンと基板表面との距離(基板表面に隣接するグラフェン膜の原子層と基板表面の原子層との層間距離)を計測したところ、0.30〜0.34 nmと計測された。この値は複数層からなるグラフェン膜内の層間距離と略等しいことから、基板上に形成されたグラフェン膜は「付着」ではなく「成長」しており、かつ基板表面と平行に成長したことを強く示唆するものと言える。
一方、成長したグラフェンのドメインサイズの測定において、ドメインサイズが10 nmを超えると、通常の走査型トンネル顕微鏡像からドメインサイズを求めることが難しくなることが判った。そこで、本発明においては、走査型トンネル顕微鏡を用いてグラフェンが成長した基板の電気伝導の面内分布測定を行い、ドメインサイズを求めた。すなわち、単層のグラフェンが成長している部分とグラフェン自体が成長していない部分との電気伝導特性の差異を利用して、グラフェンのドメインサイズを測定した。
電気伝導の面内分布測定は、次のように行った。100 nm角の領域で100×100の測定点(1 nmピッチ)において、印加電圧2.5 Vで20 pA以上の電流が流れた計測点を「グラフェンが成長している部分」と判定し、印加電圧2.5 Vで20 pA未満の電流であった計測点を「グラフェンが成長していない部分」と判定した。なお、グラフェンの有無による電気伝導特性の測定を別途行い、単層のグラフェンが成長している部分では印加電圧2.5 Vで100 pA以上の電流が流れ、グラフェンが存在しない部分では電流がほとんど流れないこと(印加電圧2.5 Vで5 pA未満)を確認した。
図5は、グラフェン膜が成長した基板の電気伝導の面内分布測定結果(100 nm角)の1例を示すマップである。なお、図5において、測定した試料は平均層数が0.7のグラフェン膜を成膜した基板(酸化アルミニウム単結晶基板、原料ガス:プロピレン、キャリアガス:アルゴン、平均原料濃度:1.2 体積%、標準状態換算平均流速:41 cm/min、成長温度:800℃、成長時間:2.5分間)であり、「グラフェンが成長している部分」と判定した測定点を白ドットで表記し、「グラフェンが成長していない部分」と判定した測定点を黒ドットで表記した。
図5に示したように、黒ドットの帯がグラフェンドメインの外縁と考えられることから、黒ドットの帯同士の間隔をグラフェンのドメインサイズとして計測した(例えば、図中の両矢印)。グラフェンドメインの平均サイズは、グラフェン膜が成長した基板における異なる10箇所の100 nm角の領域において、各領域で3点ずつ、合計30点の測定値を平均することにより算出した。
〔グラフェン膜の成長における成長条件の影響〕
グラフェン膜の成長における成長条件の影響を調査した。基板としては酸化アルミニウム単結晶基板を用いた。はじめに、成長温度・成長時間とグラフェン膜の平均層数との関係を調査した。原料ガスであるプロピレンの流量を固定しキャリアガスであるアルゴンの流量を変化させて、平均原料濃度と標準状態換算平均流速が異なる条件について調べたところ、成長したグラフェン膜の平均層数は、成長時間に比例し平均原料濃度に反比例するという結果が得られた。この結果から、主に成長時間を制御することによりグラフェン膜の平均層数を制御できることが判った。
次に、それぞれの成長温度で成長したグラフェン膜の平均層数が1.0未満となる試料を作製し、グラフェンの平均ドメインサイズを調査した。その結果、成長温度800℃の場合で平均ドメインサイズが約29 nm、成長温度900℃の場合で平均ドメインサイズが約31 nmであり、平均ドメインサイズに対する成長温度の影響はそれほど大きくない(平均ドメインサイズに影響する主要因ではない)と考えられた。
また、グラフェン膜の成長条件において成長時間だけを変化させて平均層数が0.5〜1.0のグラフェン膜を成長させた試料を作製し、各試料の平均ドメインサイズを比較したところ平均ドメインサイズの変化は10%程度以内であった。このことから、成長時間は平均ドメインサイズにあまり影響を与えない(平均ドメインサイズに影響する主要因ではない)と考えられた。
〔酸化アルミニウム膜の組成Al2-xO3+xとグラフェンドメインサイズとの関係〕
下地層となる酸化アルミニウム膜の組成Al2-xO3+xとグラフェンのドメインサイズとの関係について調査した。前述したように、スパッタ法やイオンビーム法、レーザ蒸発法等の気相成長法により酸化アルミニウム膜103を成膜するにあたり、成長雰囲気中の酸素分圧を制御することによって酸化アルミニウム膜103中の酸素量を制御することが可能である。そこで、一例としてスパッタ法により酸化アルミニウム膜を成膜するにあたり、スパッタ雰囲気中のアルゴンに対する酸素分圧を変化させて酸素含有量の異なる(アルミニウムサイトに酸素が置換した)酸化アルミニウム膜(Al2-xO3+x、膜厚150 nm)を基板上に形成した。基板としては、熱酸化膜付きシリコン単結晶基板(外径2インチ、基板厚さ525μm、熱酸化膜厚さ200 nm)を用いた。
XPS(X線光電子分光、株式会社島津製作所製)を用いて成膜した酸化アルミニウム膜(Al2-xO3+x)の組成を測定したところ、x = -0.3〜0.32と組成の異なる酸化アルミニウム膜であることを確認した。成膜した酸化アルミニウム膜(Al2-xO3+x)の算術平均表面粗さRaが1 nm以下であることを確認した後、該酸化アルミニウム膜(Al2-xO3+x)上に、平均層数が0.7のグラフェン膜を成膜した(原料ガス:プロピレン、キャリアガス:アルゴン、平均原料濃度:1.2 体積%、標準状態換算平均流速:41 cm/min、成長温度:800℃、成長時間:2.5分間)。成長したグラフェンの平均ドメインサイズは、前述の電気伝導の面内分布測定により計測した。
図6は、グラフェン膜の平均ドメインサイズと酸化アルミニウム膜の組成(Al2-xO3+x中のx)との関係を示したグラフである。図6に示したように、グラフェンの平均ドメインサイズは、Al2-xO3+x中のxと共に大きく変化し、x ≧ 0すなわち化学量論組成以上の酸素リッチな組成を有する酸化アルミニウム膜を下地膜とすることで成長するグラフェンの平均ドメインサイズを大きくできることが明らかになった。また、x > 0であることがより好ましいことが判った。
〔グラフェン膜における平均ドメインサイズと電気抵抗率との関係〕
前述したように、成膜したグラフェン膜の電気抵抗を低減することができれば、グラフェン膜と金属層との接触抵抗を低減できることが理論的に予想される。また、グラフェン膜は多数のグラフェンドメインから構成される多結晶膜の一種であることから、グラフェンドメイン間での電気的導通特性が大変重要である。そこで、成長したグラフェン膜の電気抵抗率を調査した。
調査用試料の作製は、図1に示した手順に従って行った。熱酸化膜が表面に形成されたシリコン単結晶基板の表面上に、スパッタ法によりコランダム構造の酸化アルミニウム膜を形成した。このとき、スパッタ中の雰囲気酸素分圧を制御することにより、酸素含有量の異なる酸化アルミニウム膜(Al2-xO3+x)を形成した。それぞれの酸化アルミニウム膜の算術平均表面粗さRaが1 nm以下であることを確認した後、フォトリソグラフィーとリフトオフのプロセスにより、酸化アルミニウム膜のストリップライン(幅2μm、長さ1 mm)を複数形成し、他の部分の酸化アルミニウム膜を除去した基板を用意した。次に、各基板上に平均層数が約1.0となる条件でグラフェン膜を成膜して(原料ガス:プロピレン、キャリアガス:アルゴン、成長温度:800℃)、平均ドメインサイズが異なるグラフェン膜を成長させた。
グラフェン膜を成膜した各試料を走査型トンネル顕微鏡により観察したところ、何れの試料も、酸化アルミニウム膜のストリップライン上にのみグラフェン膜が成長し、酸化アルミニウム膜を除去した熱酸化膜上にはグラフェン膜が成長していなかった。言い換えると、グラフェン膜は酸化アルミニウム膜のストリップライン上に選択成長していることが確認された。この結果から、酸化アルミニウム膜上と熱酸化膜(酸化シリコン膜)上とでは、グラフェン膜の核生成機構や成長機構が異なることが示唆された。
次に、ストリップライン上のグラフェン膜の電気伝導率・電気抵抗率を四端子法により測定した。なお、該測定における電圧端子間距離は0.2 mmとした。図7は、グラフェン膜の平均ドメインサイズと電気伝導率・電気抵抗率との関係を示すグラフである。図7には、グラフの左側縦軸に電気伝導率、右側縦軸に電気抵抗率を表記した。図7に示したように、平均ドメインサイズの増大と共に電気抵抗率が劇的に減少し(電気伝導率が劇的に向上し)、平均ドメインサイズが10 nm程度から30 nm程度に増大することにより、グラフェン膜の電気抵抗率は約1桁減少して1×10-4Ωcm以下となった。この結果から、グラフェンの平均ドメインサイズを増大させることにより、グラフェン膜の電気抵抗率を低減できることが明らかになった。言い換えると、本発明におけるグラフェン膜は、グラフェンドメイン間で良好な電気的導通特性を有する連続的なグラフェン膜であることが実証された。
〔グラフェン膜を利用した電子・光集積回路装置〕
図8は、本発明に係るグラフェン膜と金属電極とが電気的接合した回路装置の1例として電子・光集積回路装置を示した斜視模式図である。電子・光集積回路装置300は、例えば前述したグラフェン膜が成長された基板200を用い、グラフェン膜が形成された回路配線部106の一部をそれぞれ電界効果トランジスタのグラフェンチャネル301やグラフェン発光素子のグラフェン受発光層302として利用したものである。製造方法としては、例えば図1に示した手順で製造することができる。
電界効果トランジスタのグラフェンチャネル301には、ソース電極303、ドレイン電極304、ゲート絶縁膜306を介してゲート電極305が形成されている。このとき、ソース電極303とドレイン電極304とを形成する領域(すなわち接合箇所)に凹凸構造を形成して各電極と接合させる。一方、ゲート電極305はゲート絶縁膜306を介して接合することから、凹凸構造を形成しなくてもよいし、形成してもよい。このようにして、高移動度を有するグラフェントランジスタを製造することができる。
また、グラフェン受発光層302には、プラス電極307とマイナス電極308が形成されている。ここにおいても、プラス電極307とマイナス電極308とを形成する領域(すなわち接合箇所)には凹凸構造を形成してから各電極を接合させる。なお、グラフェン発光素子とは、バンドギャップを有するグラフェンに対して、一方の電極から電子を注入し、もう一方の電極からホールを注入することにより、直接遷移による発光を得る素子のことである。一方、グラフェン受光素子とは、バンドギャップを有するグラフェンに接続した2つの電極間に電圧を印加し、光照射によって生じた電子とホールを検出することにより光を検知する素子である。
以上示したように、本発明は、グラフェン膜と金属電極との間の接触抵抗を低減してグラフェン膜と金属電極とが良好に電気的接合された回路装置を提供することができる。また、本発明に係るグラフェン膜と金属電極とが電気的接合した回路装置は、その製造において超高真空プロセスや特殊な製造装置を用いないことから、製造装置のコストを低く抑えることができる。さらに、グラフェン膜の成長温度が比較的低温であることから、従来から電子デバイスに広く利用されている安価で大面積の基板を活用することができる。すなわち、次世代の電子・光集積回路装置を実現する上で、低コスト化に大きく貢献し工業化に適した発明と言える。
100…基板、101…シリコン単結晶基板、102…酸化シリコン膜、
103…酸化アルミニウム膜、104…回路配線部となる部分、
105…グラフェン膜、106…回路配線部、
107…金属電極を接合する領域(接合箇所)、108…コーン状凹部、
200…グラフェン膜が成長された基板、201…金属層、
300…電子・光集積回路装置、301…グラフェンチャネル、302…グラフェン受発光層、
303…ソース電極、304…ドレイン電極、305…ゲート電極、306…ゲート絶縁膜、
307…プラス電極、308…マイナス電極。

Claims (7)

  1. 単層または複数層からなるグラフェン膜を利用した回路装置であって、
    前記グラフェン膜と直接接触する下地層としての酸化アルミニウム膜が前記グラフェン膜の下部のみに形成されており、
    前記酸化アルミニウム膜の組成がAl2-xO3+x(x ≧ 0)であり、
    前記グラフェン膜と金属層とが直接接合し、該接合箇所には凹凸構造が形成され、
    前記凹凸構造は、前記酸化アルミニウム膜に形成された少なくとも1つのコーン状凹部と、前記コーン状凹部を含む前記酸化アルミニウム膜の表面に沿って該表面と平行に成長した前記グラフェン膜と、前記グラフェン膜を覆いかつ前記コーン状凹部を埋めるように形成された前記金属層とから構成されていることを特徴とするグラフェン膜と金属電極とが電気的接合した回路装置。
  2. 請求項1に記載のグラフェン膜と金属電極とが電気的接合したデバイスにおいて、
    前記コーン状凹部は、開口部分の口径に対する深さの比「(凹部の深さ)/(開口部分の口径)」が1.5以上10以下であることを特徴とするグラフェン膜と金属電極とが電気的接合した回路装置。
  3. 請求項1または請求項2に記載のグラフェン膜と金属電極とが電気的接合した回路装置において、
    前記酸化アルミニウム膜における前記コーン状凹部以外の部分の平均厚さが10 nm以上500 nm以下であることを特徴とするグラフェン膜と金属電極とが電気的接合した回路装置。
  4. 請求項1乃至請求項3のいずれかに記載のグラフェン膜と金属電極とが電気的接合した回路装置において、
    前記接合箇所における接合面積と接合箇所占有面積との比「(接合面積)/(接合箇所占有面積)」が3以上20以下であることを特徴とするグラフェン膜と金属電極とが電気的接合した回路装置。
  5. 請求項1乃至請求項4のいずれかに記載のグラフェン膜と金属電極とが電気的接合した回路装置において、
    前記グラフェン膜自体の単位面積あたりの電気抵抗をrgp[単位:Ω/μm2]と表記し、前記グラフェン膜と前記金属電極との単位面積あたりの界面抵抗をrc[単位:Ωμm2]と表記した場合に、前記接合面積S[単位:μm2]が下記式(1)の関係を満たすことを特徴とするグラフェン膜と金属電極とが電気的接合した回路装置。
    Figure 2011155098
  6. 請求項1乃至請求項4のいずれかに記載のグラフェン膜と金属電極とが電気的接合した回路装置において、
    前記グラフェン膜自体の単位面積あたりの電気抵抗をrgp[単位:Ω/μm2]と表記し、前記グラフェン膜と前記金属電極との単位面積あたりの界面抵抗をrc[単位:Ωμm2]と表記した場合に、前記接合面積S[単位:μm2]が下記式(2)の関係を満たすことを特徴とするグラフェン膜と金属電極とが電気的接合した回路装置。
    Figure 2011155098
  7. 請求項1乃至請求項6のいずれかに記載のグラフェン膜と金属電極とが電気的接合した回路装置において、
    前記グラフェン膜を電界効果トランジスタのチャネル材料や、前記デバイス内の配線材料、発受光素子に用いていることを特徴とするグラフェン膜と金属電極とが電気的接合した回路装置。
JP2010015081A 2010-01-27 2010-01-27 グラフェン膜と金属電極とが電気的接合した回路装置 Expired - Fee Related JP4967034B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010015081A JP4967034B2 (ja) 2010-01-27 2010-01-27 グラフェン膜と金属電極とが電気的接合した回路装置
US13/013,984 US8471237B2 (en) 2010-01-27 2011-01-26 Circuit board including a graphene film having contact region covering a recessed region and a patterned metal film covering the contact region and in direct electrical contact therewith, and device including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015081A JP4967034B2 (ja) 2010-01-27 2010-01-27 グラフェン膜と金属電極とが電気的接合した回路装置

Publications (2)

Publication Number Publication Date
JP2011155098A true JP2011155098A (ja) 2011-08-11
JP4967034B2 JP4967034B2 (ja) 2012-07-04

Family

ID=44369004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015081A Expired - Fee Related JP4967034B2 (ja) 2010-01-27 2010-01-27 グラフェン膜と金属電極とが電気的接合した回路装置

Country Status (2)

Country Link
US (1) US8471237B2 (ja)
JP (1) JP4967034B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016002277A1 (ja) * 2014-07-04 2017-07-06 アンヴァール株式会社 多孔質体およびその製造方法、構造体、蓄電装置、触媒、トランジスタ、センサー、太陽電池、リチウム電池および気化装置
JP2017152645A (ja) * 2016-02-26 2017-08-31 住友電気工業株式会社 電子装置およびその製造方法
JP2018014360A (ja) * 2016-07-19 2018-01-25 住友電気工業株式会社 グラフェントランジスタおよびその製造方法
CN111498931A (zh) * 2020-01-14 2020-08-07 盐城师范学院 一种石墨烯-铝基水伏与海水淡化器件功能区的制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112002B2 (en) * 2012-02-13 2015-08-18 Tyco Electronics Corporation Electrical conductors and methods of manufacturing electrical conductors
US9575018B2 (en) * 2013-09-16 2017-02-21 Cerium Laboratories, Llc System and method for testing ceramic coatings
CN106133965B (zh) * 2013-11-15 2019-10-11 加利福尼亚大学董事会 混合纳米结构材料和方法
JP6176224B2 (ja) * 2013-12-25 2017-08-09 日亜化学工業株式会社 半導体素子及びそれを備える半導体装置、並びに半導体素子の製造方法
CN103745829B (zh) * 2013-12-30 2015-05-20 深圳市华星光电技术有限公司 石墨烯复合电极材料的制备方法
KR102216543B1 (ko) 2014-06-16 2021-02-17 삼성전자주식회사 그래핀-금속 접합 구조체 및 그 제조방법, 그래핀-금속 접합 구조체를 구비하는 반도체 소자
KR102175623B1 (ko) 2016-08-08 2020-11-06 아사히 가세이 가부시키가이샤 기체 분리용 막 모듈
US10312389B2 (en) 2016-10-13 2019-06-04 University Of Central Florida Research Foundation, Inc. Optical detector device with patterned graphene layer and related methods
US10580886B2 (en) 2018-05-29 2020-03-03 International Business Machines Corporation Increased source and drain contact edge width in two-dimensional material field effect transistors by directed self-assembly
US10593798B2 (en) 2018-08-05 2020-03-17 International Business Machines Corporation Vertical transistor with one atomic layer gate length
US10586864B2 (en) * 2018-08-05 2020-03-10 International Business Machines Corporation Vertical transistor with one-dimensional edge contacts
CN111477466B (zh) * 2019-01-23 2021-04-02 清华大学 自充电超级电容器的充电方法
CN111477472B (zh) * 2019-01-23 2021-04-02 清华大学 自充电超级电容器
CN111477459B (zh) * 2019-01-23 2021-04-02 清华大学 自充电超级电容器
CN111800941A (zh) * 2019-04-08 2020-10-20 武汉理工大学 一种石墨烯电路板及其制备方法
CN111952080B (zh) * 2019-05-17 2022-08-16 清华大学 可原位充电的储能装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315613A (ja) * 1992-05-13 1993-11-26 Oki Electric Ind Co Ltd 半導体装置およびシリサイド層の形成方法
JPH06267912A (ja) * 1993-03-15 1994-09-22 Matsushita Electric Ind Co Ltd 薄膜の加工方法、容量素子の製造方法及び半導体装置の製造方法
JP2004039694A (ja) * 2002-06-28 2004-02-05 Toshiba Corp 電界効果型トランジスタ及びその製造方法
JP2005060146A (ja) * 2003-08-08 2005-03-10 Sharp Corp 炭素薄膜ならびにそれを用いた電界放出電子源および作用電極
JP2009094190A (ja) * 2007-10-05 2009-04-30 Fujitsu Ltd 半導体装置
JP2009143761A (ja) * 2007-12-13 2009-07-02 Fujitsu Ltd グラフェンシートの製造方法、半導体装置の製造方法および半導体装置
JP2011071281A (ja) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc 半導体装置とその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124373B2 (ja) * 2008-07-11 2013-01-23 株式会社日立製作所 電子デバイス,受光・発光デバイス、それを用いた電子集積回路および光集積回路
JP5453045B2 (ja) * 2008-11-26 2014-03-26 株式会社日立製作所 グラフェン層が成長された基板およびそれを用いた電子・光集積回路装置
US8614435B2 (en) * 2009-11-03 2013-12-24 International Business Machines Corporation Utilization of organic buffer layer to fabricate high performance carbon nanoelectronic devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315613A (ja) * 1992-05-13 1993-11-26 Oki Electric Ind Co Ltd 半導体装置およびシリサイド層の形成方法
JPH06267912A (ja) * 1993-03-15 1994-09-22 Matsushita Electric Ind Co Ltd 薄膜の加工方法、容量素子の製造方法及び半導体装置の製造方法
JP2004039694A (ja) * 2002-06-28 2004-02-05 Toshiba Corp 電界効果型トランジスタ及びその製造方法
JP2005060146A (ja) * 2003-08-08 2005-03-10 Sharp Corp 炭素薄膜ならびにそれを用いた電界放出電子源および作用電極
JP2009094190A (ja) * 2007-10-05 2009-04-30 Fujitsu Ltd 半導体装置
JP2009143761A (ja) * 2007-12-13 2009-07-02 Fujitsu Ltd グラフェンシートの製造方法、半導体装置の製造方法および半導体装置
JP2011071281A (ja) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc 半導体装置とその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016002277A1 (ja) * 2014-07-04 2017-07-06 アンヴァール株式会社 多孔質体およびその製造方法、構造体、蓄電装置、触媒、トランジスタ、センサー、太陽電池、リチウム電池および気化装置
JP2017152645A (ja) * 2016-02-26 2017-08-31 住友電気工業株式会社 電子装置およびその製造方法
JP2018014360A (ja) * 2016-07-19 2018-01-25 住友電気工業株式会社 グラフェントランジスタおよびその製造方法
CN111498931A (zh) * 2020-01-14 2020-08-07 盐城师范学院 一种石墨烯-铝基水伏与海水淡化器件功能区的制备方法

Also Published As

Publication number Publication date
US20110198558A1 (en) 2011-08-18
US8471237B2 (en) 2013-06-25
JP4967034B2 (ja) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4967034B2 (ja) グラフェン膜と金属電極とが電気的接合した回路装置
US8410474B2 (en) Graphene grown substrate and electronic/photonic integrated circuits using same
Shi et al. Temperature‐Mediated Selective Growth of MoS2/WS2 and WS2/MoS2 Vertical Stacks on Au Foils for Direct Photocatalytic Applications
Bae et al. Towards industrial applications of graphene electrodes
JP5462737B2 (ja) グラフェン膜が成長された基板およびそれを用いた電子・光集積回路装置
TWI588285B (zh) 在基板上成長碳薄膜或無機材料薄膜的方法
Azizi et al. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides
Han et al. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition
Lin et al. Heterogeneous graphene nanostructures: ZnO nanostructures grown on large‐area graphene layers
US9306099B2 (en) Material including graphene and an inorganic material and method of manufacturing the material
TWI355746B (en) Bottom gate type thin film transistor, method of m
Wan et al. Controlled Electrochemical Deposition of Large‐Area MoS2 on Graphene for High‐Responsivity Photodetectors
Hibino et al. Growth and electronic transport properties of epitaxial graphene on SiC
JP5629570B2 (ja) グラフェン膜と金属電極とが電気的接合した回路装置
JP2013008680A (ja) グラフェンを含む導電性薄膜および透明導電膜
JP6268419B2 (ja) 電子装置及びその製造方法
KR101685791B1 (ko) 도선 및 반도체 소자 배선용 나노 카본 재료 및 육방정계 질화붕소 적층구조물 및 이의 제조 방법
Song et al. Graphene/h‐BN heterostructures: recent advances in controllable preparation and functional applications
KR102037469B1 (ko) 그래핀 전자 소자 및 그 제조 방법
US20130249093A1 (en) Conductive film and semiconductor device
Park et al. Wafer-scale single-domain-like graphene by defect-selective atomic layer deposition of hexagonal ZnO
WO2014038243A1 (ja) グラフェン-cnt構造及びその製造方法
US20100270512A1 (en) Electrically connected graphene-metal electrode device, and electronic device, electronic integrated circuit and electro-optical integrated circuit using same
JP6241398B2 (ja) グラフェン積層体の製造方法
Lu et al. Characterization of graphene grown on bulk and thin film nickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees