JP2011137953A - 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ - Google Patents

電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ Download PDF

Info

Publication number
JP2011137953A
JP2011137953A JP2009297370A JP2009297370A JP2011137953A JP 2011137953 A JP2011137953 A JP 2011137953A JP 2009297370 A JP2009297370 A JP 2009297370A JP 2009297370 A JP2009297370 A JP 2009297370A JP 2011137953 A JP2011137953 A JP 2011137953A
Authority
JP
Japan
Prior art keywords
group
charge transport
component
photosensitive member
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009297370A
Other languages
English (en)
Other versions
JP5445763B2 (ja
Inventor
Takafumi Iwamoto
貴文 岩本
Naohiro Toda
直博 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009297370A priority Critical patent/JP5445763B2/ja
Priority to US12/979,986 priority patent/US8617778B2/en
Publication of JP2011137953A publication Critical patent/JP2011137953A/ja
Application granted granted Critical
Publication of JP5445763B2 publication Critical patent/JP5445763B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】機械的耐久性と高離型性の両立が可能であり、長期繰り返し使用しても高画質を安定に出力可能な電子写真感光体を提供する。
【解決手段】導電性支持体上に電荷発生層、電荷輸送層、および架橋型電荷輸送層を順次積層した電子写真感光体において、該架橋型電荷輸送層が第1成分と、第2成分および第3成分由来の構造単位とを含むことを特徴とする電子写真感光体。第1成分:炭素数8以上、34以下の直鎖状の飽和脂肪族炭化水素基をエステル成分として含有するアクリル酸エステル重合体第2成分:電荷輸送性構造を有しないラジカル重合性モノマーまたはオリゴマー第3成分:電荷輸送性構造を有するラジカル重合性化合物
【選択図】なし

Description

本発明は複写機やレーザープリンター及びファクシミリ等の画像形成装置、プロセスカートリッジ及びそれらに用いられる電子写真感光体に関する。具体的には画質安定性や耐久性に優れた電子写真感光体、それを用いた画像形成装置用プロセスカートリッジ、画像形成装置に関する。
近年、電子写真感光体(以下、単に感光体ともいう)には有機感光体が広く用いられている。有機感光体は可視光から赤外光まで各種露光光源に対応した材料が開発しやすいこと、環境汚染の影響が少ない材料を選択できること、製造コストが安いことなどの理由により、無機感光体に対して有利な点が多い。無機感光体に対して不利な点としては、機械的耐久性に劣ることが挙げられる。資源の有効利用という点から、機械的耐久性が十分あり、長寿命であることが好ましい。
・機械的耐久性について
電子写真方式の画像形成装置とは一般に、電子写真感光体と、電子写真感光体を帯電させる帯電器と、帯電器によって帯電させられた電子写真感光体表面に静電潜像を形成する潜像形成器と、潜像形成器によって形成された静電潜像にトナーを付着させる現像器と、付着したトナーを被転写物に転写を行なう転写手段と転写されずに感光体表面に残留したトナーを除去するクリーニング器等を一体に備えたものである。
有機感光体は、上記のような帯電、現像、転写及びクリーニング等の各工程を繰り返すことによって感光体表面が化学的あるいは物理的に劣化し、摩耗が促進されたり、傷が形成されたりする。これによって早期に画質が劣化してしまうため、有機感光体の機械的耐久性は最も重要な課題の一つとされていた。それに対し、有機感光体の機械的耐久性を高める目的で保護層を設ける技術が数多く開示されている。
例えば、感光体最表面に保護層を設けると共に、保護層中に無機微粒子を分散させることで機械的耐久性を向上させる技術が多く開示されている。一例として特許文献1などには、導電性支持体上に少なくとも感光層、フィラーを含有する保護層を順次形成してなる電子写真感光体が提案されている。また、別の手段として、感光体表面の硬度を上げることで改善する技術も多く開示されている。例えば、特許文献2及び特許文献3においては、帯電器として磁気ブラシ型を適用した場合に、感光体上に不随意に磁性粒子の転写が生じ、その粒子が転写部やクリーニング部で感光体に強く押しつけられることにより傷が付くことを防ぐために感光体保護層の硬度を上げることが提案されている。また、特許文献4ではブレード型クリーニング方式を適用した場合の感光体表面摩耗を抑制するために感光体の硬度を上げることが提案されている。上記のような感光体の表面硬度を高めるための具体的な手段として、熱硬化型樹脂、UV硬化型樹脂などの架橋性材料を感光体保護層の構成成分とすることが提案されている。例えば、保護層のバインダー成分として熱硬化性樹脂を適用することにより、保護層の機械的耐久性、耐傷性を向上させる手法が、特許文献5〜7で提案されている。また、特許文献8〜10などでは電荷輸送能付与基を結合させたシロキサン樹脂を保護層に含有させ、機械的耐久性、耐傷性を向上させる技術が開示されている。さらに特許文献11では、機械的耐久性、耐傷性を向上させるために、電荷輸送層を炭素−炭素の二重結合を有するモノマー、炭素―炭素二重結合を有する電荷輸送物質及びバインダー樹脂を用いて作製する手法が報告されている。また、特許文献12には電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより電荷輸送層を形成する方法が記載されている。さらに、特許文献13には電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと、電荷輸送性構造を有するラジカル重合性化合物を硬化し、さらにフィラーを分散させた保護層を形成する方法が記載されている。上記のような手段を用いることによって感光体の機械的耐久性は飛躍的に向上されている。特に、特許文献12や特許文献22に記載の硬化型樹脂を保護層に用いた感光体は機械的耐久性や耐傷性に優れる。
しかしながら、機械的耐久性を高めるのみでは長寿命化の達成は困難である。感光体長寿命化のためには、異物付着防止およびトナー転写性向上が必須である。
機械的耐久性に優れた感光体であっても、長期間使用すると異常画像が発生することがある。紙粉やトナー添加剤の付着がその原因となることがある。これらが付着した部分は正しく帯電や露光が行われず、異常画像が発生する場合がある。機械的耐久性に劣る感光体であれば、最表面が磨耗するため、異常画像の発生が抑制可能であるが、長寿命化の達成は困難である。
トナー転写率が上がれば、無駄なトナーを使用せずに済む。転写残トナーが多いと、クリーニング部に負担がかかる。結果、クリーニング効果が持続しないことになり、プロセスカートリッジの寿命が短くなる。このようにトナーの転写率を上げることは非常に重要である。
異物付着防止とトナー転写率向上は同様の性質を表すことが多いため、両者を合わせて離型性と表現する。機械的耐久性向上と離型性付与には最表面の低エネルギー化が有効である。感光体表面低表面エネルギー化は、低表面エネルギー化材料を塗布する外添系と膜内に低表面エネルギー化材料を含有させる内添系がある。外添系としては、一般的にはステアリン酸亜鉛などを感光体表面に塗布する機構が知られている。この機構があることで、感光体表面に離型性を付与することができる。しかしながら、表面の低表面エネルギー化材料が放電により劣化し、異常画像の原因となることがある。また塗布機構を設けることで、作像部が大きくなり、レイアウトの自由度が低下する。さらに、作像部のコストが上昇する。膜内に低表面エネルギー化材料を含有させる内添系も離型性向上には有効である。しかしながら、低表面エネルギー化材料を常に表面に析出させるためには、感光体表面を常に磨耗させる必要がある。そのため、機械的耐久性が犠牲にされる。
機械的耐久性と離型性の両立について述べる。感光体表面に高離型性を付与するために、特許文献14には、表面層にフッ素置換されたポリシロキサン樹脂を用いた感光体が記載されている。しかしながら、シロキサン結合は分極を生じ、水素結合することが知られている。そのため、高湿下ではトナーとの付着力が大きくなることがある。これにより高湿下で離型性が低下することがある。
また、特許文献15には、保護層中に潤滑性微粒子を含有させた感光体が記載されている。また、特許文献16には、フッ素化アルキル基含有(メタ)アクリレートと光重合開始剤とを含有した含フッ素光硬化性組成物の硬化物からなる表面保護層を有する感光体が記載されている。また、特許文献17には架橋型表面層にフッ素系UV硬化型ハードコート剤と1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化し、さらに潤滑性微粒子を含有した保護層を有する感光体が記載されている。フッ素系材料を使用することは、感光体とトナー間の付着力を低減する有効な手段である。特に架橋型電荷輸送層に含有させると、機械的高耐久と、感光体とトナー間の付着力低減の両立が可能となる。しかしながら、十分に付着力を低減するためには、相当量のフッ素材料を含有させる必要がある。これらフッ素系材料は、電荷輸送性を有していないため、大量に添加すると、明部電位が上昇することがある。さらに膜強度が低下する傾向がある。
また、特許文献18には、炭素数7以上の脂肪族炭素環構造を有し重合性官能基を有する化合物とバインダー樹脂と電荷輸送材料からなる表面層を有する感光体の記載がある。この場合、離型性向上には効果を発揮するが、樹脂とバインダー樹脂が架橋されていないため膜の機械的強度が低い。そのため感光体の長寿命化には不適である。さらに膜中の共重合体が多いため、その部分で電荷輸送が妨げられ電位が上昇しやすい。結果、画質に問題が出る可能性が高い。また特許文献19、20には共重合体をラジカル重合性モノマー、ラジカル重合性の電荷輸送物質で作製した架橋型電荷輸送層を有する感光体の記載がある。この構成の場合、耐摩耗性は向上する。しかしながら、離型性という部分では大きく劣るため異物付着が発生しやすく、長寿命化の達成は困難である。また、特許文献21には感光層に長鎖アルキル基を有するワックスを含有させて機械的耐久性と離型性を両立するとの記載がある。この方法では初期的には離型性が発揮されるが、膜の機械的強度が不十分である。また、特許文献22には、保護層を低表面エネルギー剤としてフッ素系化合物、珪素系化合物と電荷輸送剤とを架橋させて作製している。この構成であれば離型性向上に有効である。しかしながらこのような構成の架橋膜はガス透過性が高いため、帯電機から発生するガスによるダメージを受け易い。長期間使用後は画質に問題が出る可能性が高い。
これまで述べてきたように、機械的耐久性と高離型性の両立は困難であり、いずれかの特性に特化した電子写真感光体を設計せざるを得ないのが現状である。
本発明は、機械的耐久性と高離型性の両立が可能であり、長期繰り返し使用しても高画質を安定に出力可能な電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジを提供することを課題とする。
上記課題は以下の(1)〜(10)によって解決される。
(1)導電性支持体上に少なくとも電荷発生層、電荷輸送層、および架橋型電荷輸送層を順次積層した電子写真感光体において、
該架橋型電荷輸送層が下記第1成分、第2成分および第3成分由来の構造単位を含むことを特徴とする電子写真感光体。
第1成分:繰り返し単位として、一般式(1)で表される構造を含む重合体
(式中、Raは、水素原子又はメチル基である。Rbは炭素数が8以上、34以下の直鎖状の飽和脂肪族炭化水素基を表す。)
第2成分:電荷輸送性構造を有しないラジカル重合性モノマーまたは電荷輸送性構造を有しないラジカル重合性オリゴマー
第3成分:電荷輸送性構造を有するラジカル重合性化合物
(2)前記一般式(1)において、Rbの炭素数が15以上、30以下であることを特徴とする(1)に記載の電子写真感光体。
(3)前記第1成分が第一の繰り返し単位と、第二の繰り返し単位とを含む共重合体であり、前記第一の繰り返し単位は少なくとも1種類の環状構造を含み、前記第二の繰り返し単位は前記一般式(1)で表されることを特徴とする(1)又は(2)に記載の電子写真感光体。
(4)前記第1成分の重合体が、一般式(1)で表される構造の共重合比がモル比で0.3以上0.9以下の共重合体であることを特徴とする(1)乃至(3)のいずれか一項に記載の電子写真感光体。
(5)前記第1成分中の第一の繰り返し単位に含まれる環状構造がアダマンタン環、ノルボルナン環、シクロヘキシル環から選択される少なくとも1種類であることを特徴とする(3)又は(4)に記載の電子写真感光体。
(6)前記電荷輸送層に、電荷輸送物質として下記一般式(2)で表されるジスチリルベンゼン誘導体を少なくとも1種類含むことを特徴とする(1)乃至(5)のいずれか一項に記載の電子写真感光体。
〔上式中、R1〜R30は水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のアルキル基もしくは炭素数1〜4のアルコキシ基で置換されたアリール基、無置換のアリール基、炭素数1〜4のアルキル基もしくは炭素数1〜4のアルコキシ基で置換されたベンジル基を表し、それぞれ同一でも異なっていてもよい。〕
(7)前記架橋型電荷輸送層に、少なくとも1種類のフィラー微粒子を含むことを特徴とする(1)乃至(6)のいずれか一項に記載の電子写真感光体。
(8)少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体を具備してなる画像形成装置において、該電子写真感光体が(1)乃至(7)のいずれか一項に記載の電子写真感光体であることを特徴とする画像形成装置。
(9)少なくとも帯電手段、露光手段、現像手段、及び電子写真感光体からなる画像形成要素が複数配列され、該電子写真感光体が(1)乃至(7)のいずれか一項に記載の電子写真感光体であることを特徴とする画像形成装置。
(10)電子写真感光体と帯電手段、露光手段、現像手段、転写手段、及びクリーニング手段から選ばれる少なくとも1つの手段とが一体となった画像形成装置用プロセスカートリッジにおいて、該電子写真感光体が(1)乃至(7)のいずれか一項に記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ。
本発明の電子写真感光体は、表面に架橋型電荷輸送層を設けていることにより耐摩耗性及び耐傷性に優れ、かつ異物付着を低減することができ、トナー転写率も高い。そのため、長期繰り返し使用しても高画質を安定に出力可能な電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジを提供できる。
本発明における電子写真感光体の構成例を示す断面図である。 本発明における画像形成装置の一例を示す概略図である。 本発明におけるプロセスカートリッジの一例を示す図である。 本発明における画像形成要素が複数配列された装置の一例を示す概略図である。 実施例で用いた電荷発生物質のX線回折スペクトル図であり、縦軸は一秒当りのカウント数(cps:counts per second)を表し、横軸は角度(2θ)を表す。 本発明で用いた電子写真感光体のSPM像である。横軸のScan Sizeは10μmスケール、縦軸のData Scaleは50nmである。 本発明で用いた電子写真感光体のSPM像である。横軸のScan Sizeは10μmスケール、縦軸のData Scaleは50nmである。
本発明において、機械的高耐久性と、高離型性を両立できた理由を考察する。本発明の架橋型電荷輸送層は下記第1成分、第2成分および第3成分由来の構造単位を含む。
第1成分:繰り返し単位として、一般式(1)で表される構造を含む重合体
(式中、Raは、水素原子又はメチル基である。Rbは炭素数が8以上、34以下の直鎖状の飽和脂肪族炭化水素基を表す。)
第2成分:電荷輸送性構造を有しないラジカル重合性モノマーまたは電荷輸送性構造を有しないラジカル重合性オリゴマー
第3成分:電荷輸送性構造を有するラジカル重合性化合物
このような構成にすることで、一般式(1)の直鎖状の飽和脂肪族炭化水素基に起因する潤滑性が発揮され、離型性が向上する。第1成分は他の成分に比べ、溶解性が小さいため乾燥時や光照射時に共重合成分が膜表面に析出し、微細な海島構造をとっていると考えられる。この海島構造があることで、膜表面に離型性を付与できたと考えられる。すなわち、相分離によって生成した微細凹凸と、微細凹凸の表面に配向した炭化水素基の潤滑性の効果であると考えられる。さらに高密度に架橋した膜であるために機械的耐久性に優れる。特開2003−302779号公報(特許文献18)には、環状構造を含む共重合体を表面層に含み、相分離させる内容が記載されているが、これは膜が架橋されておらず、機械的強度が不十分である。したがって本発明は、特開2003−302779号公報(特許文献18)とは根本的に異なる構成であり、効果も優れる。また、特開2005−55589号公報(特許文献20)と異なり、重合体中に極性基がない。そのため、膜の低抵抗化が起こりにくく、像流れや帯電性低下も起こりにくい。
一般式(1)で表される構造単位において、Rbの炭素数は8以上34以下が好ましい。7以下の場合、炭素鎖が短く、潤滑性が発揮されにくいと考えられる。また35以上の場合には炭化水素基が配向しにくくなるため、潤滑性が十分に発揮されないと考えられる。離型性を発揮させるためには、15以上30以下がより好ましい。
また、第1成分が共重合体であり、かつ繰り返し単位中に環状構造を含む場合に離型性が向上するが、これは共重合体の相分離が進みやすくなったことに起因していると考えられる。よりよい状態の相分離とし、離型性を向上させるには環状構造がアダマンタン環、ノルボルナン環、シクロヘキシル環から選択される少なくとも1種類であるのが好ましい。
また、上記共重合体中の一般式(1)で表される構造の共重合比はモル比で0.3以上0.9以下が好ましい。この範囲であれば離型性向上に有利な相分離状態となる。
本発明の架橋型電荷輸送層は帯電機から発生するNOxガスやオゾンガスにも強い。これは炭化水素基が高蜜度に存在しているため、ガス透過性が下がっているためであると考えられる。そのため帯電性の低下が小さくなっていると考えられる。また、ガス透過性が低いため、電荷輸送性には優れるがNOxガスやオゾンガスと反応しやすい反応性の高い一般式(2)で表されるジスチリルベンゼン誘導体を使用しても画質安定性に優れると考えられる。
また、本発明の架橋型電荷輸送層にフィラーを含有させると、膜の機械的強度が向上する。これは架橋膜中にフィラーが強固に固定されるためであると考えられる。またフィラーを含有させた方が均一に相分離が起こる。理由は定かではないが、表面近傍のフィラーが相分離のコアとなっている可能性がある。
以下、図面を参照して本発明の画像形成装置について実施形態により詳細に説明する。
<<電子写真感光体の構成>>
本実施形態の感光体は、図1に示されるように導電性支持体31上に、少なくとも電荷発生層32、電荷輸送層33、架橋型電荷輸送層34をこの順に有することを特徴とする積層型である。
<導電性支持体について>
導電性支持体としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいはアルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板及びそれらを押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理を施した管などを使用することができる。また、特開昭52−36016号公報に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体として用いることができる。
この他、上記支持体上に導電性粉体を適当なバインダー樹脂に分散して塗工したものについても、本発明の導電性支持体として用いることができる。この導電性粉体としては、カーボンブラック、アセチレンブラック、また、アルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などが挙げられる。
また、同時に用いられるバインダー樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱架橋性樹脂または光架橋性樹脂が挙げられる。このような導電性層は、これらの導電性粉体とバインダー樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
さらに、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、ポリテトラフロロエチレン系フッ素樹脂などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体として良好に用いることができる。
<<感光層について>>
次に電荷発生層と電荷輸送層について説明する。
<電荷発生層について>
電荷発生層は、電荷発生機能を有する電荷発生物質を主成分とする層で、必要に応じてバインダー樹脂を併用することもできる。
電荷発生層は、電荷発生物質を主成分とする層である。電荷発生層には、公知の電荷発生物質を用いることが可能である。例えば、モノアゾ顔料、ジスアゾ顔料、非対称ジスアゾ顔料、トリスアゾ顔料、カルバゾール骨格を有するアゾ顔料(特開昭53−95033号公報に記載)、ジスチリルベンゼン骨格を有するアゾ顔料(特開昭53−133445号公報)、トリフェニルアミン骨格を有するアゾ顔料(特開昭53−132347号公報に記載)、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料(特開昭54−21728号公報に記載)、フルオレノン骨格を有するアゾ顔料(特開昭54−22834号公報に記載)、オキサジアゾール骨格を有するアゾ顔料(特開昭54−12742号公報に記載)、ビススチルベン骨格を有するアゾ顔料(特開昭54−17733号公報に記載)、ジスチリルオキサジアゾール骨格を有するアゾ顔料(特開昭54−2129号公報に記載)、ジスチリルカルバゾール骨格を有するアゾ顔料(特開昭54−14967号公報に記載)等のアゾ系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料、また下記一般式(7)で表される金属フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料等が挙げられる。なお、これらの電荷発生物質は、単独で用いても2種以上混合して用いてもよい。
これらの電荷発生物質の中でも、金属フタロシアニン系顔料、後述のアゾ顔料が有効に使用できる。
金属フタロシアニン系顔料としては、下記一般式(7)で示される金属フタロシアニンが挙げられる。これらの電荷発生物質は、単独又は2種以上の混合物として用いることができる。
(式中M(中心金属)は、金属の元素を表す。ここであげられるM(中心金属)は、Li、Be、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、TI、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Th、Pa、U、Np、Am等の単体、もしく酸化物、塩化物、フッ化物、水酸化物、臭化物などの2種以上の元素からなる。中心金属は、これらの元素に限定されるものではない。)
本発明における金属フタロシアニン系の電荷発生物質は、一例として一般式(7)で示されるような基本骨格を有していればよく、2量体、3量体など多量体構造を持つもの、さらに高次の高分子構造を持つものでもかまわない。また、基本骨格に様々な置換基があるものでもかまわない。これらの様々な金属フタロシアニンのうち、中心金属にTiOを有するチタニルフタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン等は感光体特性上特に好ましい。また、これらの金属フタロシアニンは、様々な結晶系を持つことが知られており、例えばチタニルフタロシアニンの場合、α、β、γ、m、Y型等、銅フタロシアニンの場合、α、β、γ等の結晶多系を有している。同じ中心金属を持つ金属フタロシアニンにおいても、結晶系が変わることにより種々の特性も変化する。これらの種々の結晶系を有する金属フタロシアニン系顔料を用いた感光体の特性もそれに伴って変化することが報告されている(電子写真学会誌 第29巻 第4号(1990))。このことから、金属フタロシアニンの結晶系の選択は感光体特性上非常に重要である。
これらの金属フタロシアニン系顔料の中でも、チタニルフタロシアニン顔料は有効に用いられ、中でもCuKαの特性X線(1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は特に高い感度を有しており、本発明においては画像形成の高速化が可能となるため特に有効に用いられる。さらに、その中でも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、最も低角側の回折ピークとして7.3゜にピークを有し、該7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さないチタニルフタロシアニン結晶は、電荷発生効率が大きく、静電特性も良好で、地汚れが発生しにくい等、本発明の電荷発生物質として極めて有効に使用できる。これらの電荷発生物質は、単独または2種以上の混合物として用いることができる。
アゾ顔料の中でも下記式(11)で表されるアゾ顔料は有効に使用される。特に、アゾ顔料のCp1とCp2が互いに異なるものである非対称アゾ顔料は、キャリア発生効率が大きく、本発明の電荷発生物質として有効に使用できる。
式中、Cp1,Cp2はカップラー残基を表す。R201,R202はそれぞれ、水素原子、ハロゲン原子、アルキル基、アルコキシ基、シアノ基のいずれかを表し、同一でも異なっていても良い。またCp1,Cp2は下記式(12)で表され、
式中、R203は、水素原子、メチル基、エチル基などのアルキル基、フェニル基などのアリール基を表す。R204,R205,R206,R207,R208はそれぞれ、水素原子、ニトロ基、シアノ基、フッ素、塩素、臭素、ヨウ素などのハロゲン原子、トリフルオロメチル基等のハロゲン化アルキル基、メチル基、エチル基などのアルキル基、メトキシ基、エトキシ基などのアルコキシ基、ジアルキルアミノ基、水酸基を表し、Zは置換もしくは無置換の芳香族炭素環または置換もしくは無置換の芳香族複素環を構成するのに必要な原子群を表す。
電荷発生層に必要に応じて用いられるバインダー樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。これらのバインダー樹脂は、単独または2種以上の混合物として用いることができる。バインダー樹脂の量は、電荷発生物質100質量部に対し0〜500質量部が好ましく、より好ましくは10〜300質量部が適当である。バインダー樹脂の添加は、分散前あるいは分散後どちらでも構わない。
また、用いられる溶剤としては、イソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等の一般に用いられる有機溶剤が挙げられるが、中でも、ケトン系溶媒、エステル系溶媒、エーテル系溶媒を使用することが好ましい。これらは、単独で用いても2種以上混合して用いてもよい。
電荷発生層は、電荷発生物質を必要に応じてバインダー樹脂と共に、ボールミル、アトライター、サンドミル、ビーズミル、超音波等の公知の分散方法を用いて溶剤中に分散して、塗工液を得ることができる。なお、バインダー樹脂の添加は、電荷発生物質の分散前及び分散後のどちらでも構わない。電荷発生層の塗工液は、電荷発生物質、溶媒及びバインダー樹脂を主成分とするが、その中には、増感剤、分散剤、界面活性剤、シリコーンオイル等の添加剤が含まれていてもよい。場合によっては、電荷発生層に後述の電荷輸送物質を添加することも可能である。バインダー樹脂の添加量は、電荷発生物質100質量部に対して、通常、0〜500質量部であり、10〜300質量部が好ましい。
電荷発生層は上記塗工液を用いて導電性支持体上あるいは下引き層等の上に塗工し、乾燥することにより形成される。塗工方法としては、浸漬塗工法、スプレーコート、ビードコート、ノズルコート、スピナーコート、リングコート等の公知の方法を用いることができる。電荷発生層の膜厚は、通常、0.01〜5μm程度であり、0.1〜2μmが好ましい。また塗工後の乾燥はオーブン等を用いて加熱乾燥される。電荷発生層の乾燥温度は、50〜160℃であることが好ましく、80〜140℃がさらに好ましい。
<電荷輸送層について>
電荷輸送層は、電荷輸送機能を有する層で、電荷輸送物質及びバインダー樹脂を主成分とする層である。
本発明の電荷輸送層には電荷輸送物質として正孔輸送物質は含有されるが、必要に応じて電子輸送物質を含有してもよい。各々の例を以下に示す。なお、電荷輸送物質とは電子輸送物質および正孔輸送物質を意味する。
電子輸送物質としては、たとえばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2、4、7−トリニトロ−9−フルオレノン、2、4、5、7−テトラニトロ−9−フルオレノン、2、4、5、7−テトラニトロキサントン、2、4、8−トリニトロチオキサントン、2、6、8−トリニトロ−4H−インデノ〔1、2−b〕チオフェン−4−オン、1、3、7−トリニトロジベンゾチオフェン−5、5−ジオキサイド、ジフェノキノン誘導体、ナフタレンテトラカルボン酸ジイミド誘導体などの電子受容性物質が挙げられる。これらの電子輸送物質は、単独又は2種以上の混合物として用いることができる。
正孔輸送物質としては、ポリ−N−ビニルカルバゾール及びその誘導体、ポリ−γ−カルバゾリルエチルグルタメート及びその誘導体、ピレン−ホルムアルデヒド縮合物及びその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ジスチリル誘導体、エナミン誘導体等、その他公知の物質が挙げられる。正孔輸送物質の中でもトリアリールアミン構造を有する物質は電荷輸送適している。これらの正孔輸送物質は、単独又は2種以上混合して用いられる。
電荷輸送層に含まれる電荷輸送物質の中でも本発明においてはジスチリル化合物が有効に用いられる。ジスチリル化合物とは、スチリル基を2つ有する材料を示す。これらの材料はπ共役が大きく、高移動度であることから電荷の移動が起こりやすい。その結果、同等のイオン化ポテンシャルを有する電荷輸送物質に比べ、明部電位の上昇を抑制する効果があると考えられる。
さらにジスチリル化合物の中でも一般式(2)で表されるジスチリルベンゼン誘導体が特に好ましい。
〔上式中、R1〜R30は水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のアルキル基もしくは炭素数1〜4のアルコキシ基で置換されたアリール基、無置換のアリール基、炭素数1〜4のアルキル基もしくは炭素数1〜4のアルコキシ基で置換されたベンジル基を表し、それぞれ同一でも異なっていてもよい。〕
一般式(2)で表されるジスチリルベンゼン誘導体は、電荷輸送機能の高いトリアリールアミン構造を複数有する上、構造式中央の芳香環基を介したπ共役が大きい特徴を有する。また、分子骨格が大きくトリアリールアミン構造が互いに離れているため、分子間で電荷移動が起こりやすい。
なお、本発明に用いるジスチリルベンゼン誘導体は特許第2552695号公報などの公知の方法で合成可能である。
以下に上記ジスチリル化合物の一例を挙げる。ただし、本発明はこれらの化合物に限定されるものではない。
以下に、本発明において有効な一般式(2)で表されるジスチリルベンゼン誘導体の一例を挙げる。ただし、本発明はこれらの化合物に限定されるものではない。
バインダー樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。
電荷輸送層に含有される電荷輸送物質の量はバインダー樹脂100質量部に対し、20〜300質量部が好ましく、より好ましくは40〜150質量部が適当である。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。これらは単独で使用しても2種以上混合して使用してもよい。
また、必要により可塑剤、レベリング剤を添加することもできる。電荷輸送層に用いられる可塑剤としては、ジブチルフタレート、ジオクチルフタレート等の一般の可塑剤として使用されているものがそのまま使用でき、その使用量は、バインダー樹脂100質量部に対して0〜30質量部程度が適当である。電荷輸送層に併用できるレベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが使用され、その使用量は、バインダー樹脂100質量部に対して0〜1質量部程度が適当である。
電荷輸送層の膜厚は解像度・応答性の点から、30μm以下とすることが好ましく、25μm以下がより好ましい。下限値に関しては、使用するシステム(特に帯電電位等)により異なるが、5μm以上が好ましい。
<その他添加剤について>
また、本発明においては、耐環境性の改善のため、とりわけ、画質の安定性を向上させる目的で、架橋型電荷輸送層、電荷発生層、電荷輸送層、下引き層、中間層等の各層に酸化防止剤を添加することができる。
本発明に用いることができる酸化防止剤として、下記のものが挙げられる。
<フェノール系化合物>
2、6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2、6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3、5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2、2′−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2、2′−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4、4′−チオビス−(3−メチル−6−t−ブチルフェノール)、4、4′−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、1、1、3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1、3、5−トリメチル−2、4、6−トリス(3、5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3′、5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネート]メタン、ビス[3、3′−ビス(4′−ヒドロキシ−3′−t−ブチルフェニル)ブチリックアシッド]グリコ−ルエステル、トコフェロール類など。
<パラフェニレンジアミン類>
N−フェニル−N′−イソプロピル−p−フェニレンジアミン、N、N′−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N、N′−ジ−イソプロピル−p−フェニレンジアミン、N、N′−ジメチル−N、N′−ジ−t−ブチル−p−フェニレンジアミンなど。
<ハイドロキノン類>
2、5−ジ−t−オクチルハイドロキノン、2、6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなど。
<有機硫黄化合物類>
ジラウリル−3、3′−チオジプロピオネート、ジステアリル−3、3′−チオジプロピオネート、ジテトラデシル−3、3′−チオジプロピオネートなど。
<有機燐化合物類>
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2、4−ジブチルフェノキシ)ホスフィンなど。
これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。
本発明における酸化防止剤の添加量は、添加する層の総質量に対して、好ましくは0.01〜10質量部である。
<<架橋型電荷輸送層>>
本発明の感光層、架橋型電荷輸送層には特開2007−279678号公報に記載の一般式(2)〜(5)のアリールメタン化合物、特開2007−272192号公報に記載の一般式(2)の化合物、特開2007−272191号公報に記載の一般式(2)、(3)に記載の化合物を含有してもよい。これらの化合物は酸化防止機能と電荷輸送機能を有するため、有用な化合物である。
次に、本発明の架橋型電荷輸送層の構成材料について説明する。
架橋型電荷輸送層には、耐摩耗性を維持しつつ電荷を輸送させる必要があるため、電荷輸送性構造を有しないラジカル重合性モノマーまたは電荷輸送性構造を有しないラジカル重合性オリゴマーと電荷輸送性構造を有するラジカル重合性化合物を硬化させる。第1成分の重合体にラジカル重合性の反応性基を導入し、硬化させてもよい。この場合、相分離構造がより強固となる。
なお、本明細書でいう「オリゴマー」とは、繰り返し単位を有する重合体であって、この繰り返し単位の数が2〜10であるものをいう。
本発明の架橋型電荷輸送層は硬化しており、機械的耐久性に優れ、さらに離型性に優れる。現時点で明確な理由は定かではないが、離型性に優れるのは、共重合体が層分離し、表面に微細な海島構造を有しているためであると考えられる。この構造があることで、トナーや異物との接触面積が小さくなり付着力が低減されていると考えられる。さらに長鎖炭化水素基起因の潤滑性が付与されているため、離型性に優れる。
硬化とは、一般に複数の官能基を有する低分子化合物の分子間反応や高分子化合物が、熱、光、電子線等のエネルギーを与えることによって分子間で結合(例えば、共有結合)し、三次元網目構造を形成する反応である。
電荷輸送性構造を有しないラジカル重合性化合物は硬化性樹脂の一種である。硬化性樹脂としては、熱によって重合する熱硬化性樹脂、紫外線や可視光線等の光によって重合する光硬化性樹脂、電子性によって重合する電子線硬化性樹脂等があり、必要に応じて硬化剤や触媒、重合開始剤等と組み合わせて用いられる。
上記硬化性樹脂を硬化させるには、反応性化合物(例えば、モノマーやオリゴマー等)中に重合反応を起こす官能基を有していることが必要である。それらの官能基の一例として、アクリロイル基及び/またはメタクリロイル基が挙げられる。また、硬化反応において、反応性モノマーの1分子に有する官能基数は、より多い方が3次元網目構造はより強固になり、3官能以上で特に有効である。これにより、硬化密度が高まり、高硬度で高弾性、かつ均一で平滑性も向上し、感光体の高耐久化や高画質化に有効となる。
本発明においては、前記のように導電性支持体上に電荷輸送性構造を有さないラジカル重合性モノマーまたはオリゴマーと、電荷輸送性構造を有する反応性化合物とを硬化反応させ、3次元的に発達した網目構造を形成する。第1成分の重合体または共重合体にこれらと反応する官能基を入れて硬化させてもよい。この場合、硬化剤や触媒、重合開始剤等を予め混合することで、硬化度をさらに高めることが可能であり、本発明においては特に有効である。これにより、架橋型電荷輸送層の耐摩耗性が一段と向上し、さらに未反応官能基も残存しにくくなるため、耐摩耗性の向上や静電特性劣化の抑制に有効である。また、反応が均一であるためにクラックや歪みが生じにくくなる。
前記電荷輸送性構造を有しないラジカル重合性化合物とは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を有するモノマーまたはオリゴマーを指す。このラジカル重合性官能基とは、炭素−炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。これらラジカル重合性官能基としては、例えば、下記に示す1−置換エチレン官能基、1、1−置換エチレン官能基等が挙げられる。
(1)1−置換エチレン官能基
1−置換エチレン官能基としては、例えば以下の式で表される官能基が挙げられる。
CH2=CH−X1− ・・・・式(I)
(ただし、式中、X1は、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、−CO−基、−COO−基、−CONR78基(R78は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表す。)、または−S−基を表す。)
これらの置換基を具体的に例示すると、ビニル基、スチリル基、2−メチル−1、3−ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリロイルアミド基、ビニルチオエーテル基等が挙げられる。
(2)1、1−置換エチレン官能基
1、1−置換エチレン官能基としては、例えば以下の式で表される官能基が挙げられる。
CH2=CY−X2− ・・・・式(II)
(ただし、式中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、−COOR79基(R79は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または−CONR8081(R80及びR81は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表し、互いに同一または異なっていてもよい。)、また、X2は上記式(I)のX1と同一の置換基及び単結合、アルキレン基を表す。ただし、Y、X2の少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。)
これらの置換基を具体的に例示すると、α−塩化アクリロイルオキシ基、メタクリロイルオキシ基、α−シアノエチレン基、α−シアノアクリロイルオキシ基、α−シアノフェニレン基、メタクリロイルアミノ基等が挙げられる。
なお、これらX1、X2、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
これらのラジカル重合性官能基の中では、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用である。電荷輸送性構造を有さないラジカル重合性モノマーまたはオリゴマーの官能基数はより多官能の方が好ましく、3官能以上がより好ましい。3官能以上のラジカル重合性モノマーまたはオリゴマーを硬化した場合、3次元の網目構造が発達し、架橋密度が非常に高い高硬度且つ高弾性な層が得られ、高い耐摩耗性、耐キズ性が達成される。しかし、硬化条件や用いる材料によっては硬化反応において瞬時に多数の結合を形成させるため、体積収縮による内部応力が発生し、クラックや膜剥がれが発生しやすくなる場合がある。その場合には1官能あるいは2官能のラジカル重合性化合物を用いたり、あるいはそれらを混合して用いたりすることで改善できる場合がある。
以下、耐摩耗性の向上に有効な電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーについて説明する。
3個以上のアクリロイルオキシ基を有する化合物は、例えば水酸基がその分子中に3個以上ある化合物とアクリル酸(塩)、アクリル酸ハライド、アクリル酸エステルを用い、エステル反応あるいはエステル交換反応させることにより得ることができる。また、3個以上のメタクリロイルオキシ基を有する化合物も同様にして得ることができる。また、ラジカル重合性官能基を3個以上有する単量体中のラジカル重合性官能基は、同一でも異なってもよい。
電荷輸送性構造を有さないラジカル重合性モノマーとしては、以下のものが例示されるが、これらの化合物に限定されるものではない。
すなわち、本発明において使用する電荷輸送性構造を有しないラジカル重合性モノマーとしては、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、HPA変性トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、ECH変性トリメチロールプロパントリアクリレート、HPA変性トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールカプロラクトン変性ヘキサアクリレート、グリセロールトリアクリレート、ECH変性グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、PO変性グリセロールトリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、アルキル変性ジペンタエリスリトールテトラアクリレート、アルキル変性ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、EO変性リン酸トリアクリレート、2、2、5、5、−テトラヒドロキシメチルシクロペンタノンテトラアクリレート、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマー、1、3−ブタンジオールジアクリレート、1、4−ブタンジオールジアクリレート、1、4−ブタンジオールジメタクリレート、1、6−ヘキサンジオールジアクリレート、1、6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、EO変性ビスフェノールAジアクリレート、EO変性ビスフェノールFジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられ、その中でもトリメチロールプロパントリアクリレート(TMPTA)、HPA変性トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、ECH変性トリメチロールプロパントリアクリレートが例示されるが、本発明においてはこれに限定されるものではない。なおエチレンオキシ変性をEO変性、プロピレンオキシ変性をPO変性、エピクロロヒドリン変性をECH変性、アルキレン変性をHPA変性と記載している。
ラジカル重合性オリゴマーとしては、例えばエポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。
これらは、単独又は2種類以上を併用しても差し支えない。
また、本発明に用いられる電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーとしては、架橋型電荷輸送層中に緻密な架橋結合を形成するために、該モノマー中の官能基数に対する分子量の割合(分子量/官能基数)は250以下が望ましい。また、この割合が250より大きい場合、架橋型電荷輸送層は柔らかく耐摩耗性が幾分低下するため、上記例示したモノマー等中、EO、PO、カプロラクトン等の変性基を有するモノマーにおいては、極端に長い変性基を有するものを単独で使用することは好ましくはない。
電荷輸送性構造を有しない3官能以上のラジカル重合性モノマー及びラジカル重合性オリゴマーは膜の高硬度化に特に有効であるが、1官能及び2官能のラジカル重合性モノマー及びラジカル重合性オリゴマーを用いることも可能であり、材料によっては非常に有効な場合がある。これらのラジカル重合性モノマー、オリゴマーとしては、公知のものが利用できる。
1官能のラジカル重合性モノマーとしては、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマーなどが挙げられる。
2官能のラジカル重合性モノマーとしては、例えば、1、3−ブタンジオールジアクリレート、1、4−ブタンジオールジアクリレート、1、4−ブタンジオールジメタクリレート、1、6−ヘキサンジオールジアクリレート、1、6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ビスフェノールA−EO変性ジアクリレート、ビスフェノールF−EO変性ジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられる。
その他モノマーとしては、例えば、オクタフルオロペンチルアクリレート、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2−パーフルオロイソノニルエチルアクリレートなどのフッ素原子を置換したもの、特公平5−60503号公報、特公平6−45770号公報記載のシロキサン繰り返し単位:20〜70のアクリロイルポリジメチルシロキサンエチル、メタクリロイルポリジメチルシロキサンエチル、アクリロイルポリジメチルシロキサンプロピル、アクリロイルポリジメチルシロキサンブチル、ジアクリロイルポリジメチルシロキサンジエチルなどのポリシロキサン基を有するビニルモノマー、アクリレート及びメタクリレート、メタクリル酸が挙げられる。
ラジカル重合性オリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。
また、電荷輸送性構造を有しないラジカル重合性モノマー及び電荷輸送性構造を有しないラジカル重合性オリゴマーの成分割合は、架橋型電荷輸送層全量に対し20〜80質量%、好ましくは30〜70質量%である。これらが20質量%未満では架橋型電荷輸送層の3次元架橋結合密度が少なく、従来の熱可塑性バインダー樹脂を用いた場合に比べ飛躍的な耐摩耗性向上が達成されない。また、80質量%を超えると電荷輸送性化合物の含有量が低下し、電気的特性の劣化が生じる。使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本感光体の架橋型電荷輸送層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70質量%の範囲が最も好ましい。
続いて、本発明の架橋型電荷輸送層に用いられる第1成分について述べる。この第1成分は繰り返し単位として、一般式(1)で表される構造を含む重合体であれば何れでもよい。
(式中、Raは、水素原子又はメチル基である。Rbは炭素数が8以上、34以下の直鎖状の飽和脂肪族炭化水素基を表す。)
一般式(1)で表される構造を作製するには、原料を公知の方法で重合させる必要がある。原料としては、例えばアクリル酸もしくはメタクリル酸と、炭素数が8以上、34以下の直鎖状の飽和脂肪族第一級アルコールとのエステル化によって得られるラジカル重合性化合物が挙げられる。
アルコールの種類は、目的とする構造の炭化水素基部分の種類に応じて適宜決定すればよく、炭素数が8以上、34以下の飽和高級アルコールを用いる。具体例としては、1−オクタノール、1−ノナノール、1− デカノール、1−ウンデカノール、1−ドデカノール、1−トリデカノール、1−テトラデカノール、1−ペンタデカノール、1−ヘキサデカノール、1−ヘプタデカノール、1−オクタデカノール、1−ノナデカノール、1−イコサノール 、1−ヘンイコサノール、1−ドコサノール、1−トリコサノール、1−テトラコサノール、1−ヘキサコサノール、1−オクタコサノール、1−トリアコンタノール、1−ドトリアコンタノール、1−テトラトリアコンタノールなどの炭素数8〜34からなる直鎖の脂肪族1価アルコールが挙げられる。
アクリル酸、又はメタアクリル酸とアルコールとの反応は、脱水エステル化反応によって進行する。このとき、エステル化反応時に水が生成するため、副生した水を除去しながら反応を行うことが好ましい。
なお、アクリル酸、又はメタアクリル酸とアルコールとの反応の際には、触媒および重合防止剤を適宜用いることができる。
触媒としては、脱水触媒を用いることができ、例えば、硫酸、パラトルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、メタンスルホン酸などが挙げられ、これらは、それぞれ単独でまたは2種以上を混合して用いることができる。これらのなかでは、パラトルエンスルホン酸が好ましい。
触媒の量としては、アルコール1モルあたり、0.001〜0.1モル、好ましくは0.01〜0.05モルであることが望ましい。
また重合防止剤としては、例えば、ハイドロキノン、メトキノン(ハイドロキノンモノメチルエーテル)、2,6−ジ−t−ブチル−4−メチルフェノール、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス(4-エチル−6−t−ブチルフェノール)、2,4’−チオ−ビス[3−メチル−6−t−ブチルフェノール)、3−(4’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)プロピオン酸n−オクタデシル、1,3,5−トリス(3’,5’−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌル酸、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、ブチリデン(メチルブチルフェノール)、テトラビス〔メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート〕メタン、3,6−ジオキサオクタメチレン-ビス〔3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオナート〕、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼンなどのフェノール系化合物;4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン−N−オキシルなどのN−オキシル化合物;塩化第一銅などの銅化合物;フェノチアジン、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジンなどのアミノ化合物;1,4−ジヒドロキシ−2,2,6,6−テトラメチルピペリジン、1−ヒドロキシ−4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジンなどのヒドロキシルアミンなどが挙げられ、これらはそれぞれ単独でまたは2種以上を混合して用いることができる。
重合防止剤の中では、メトキノンおよびフェノール系化合物が好ましく、メトキノンおよび2,6−ジ−t−ブチル−4−メチルフェノールがより好ましい。
重合防止剤の量は、生成する(メタ)アクリル酸エステルの重合を十分に防止するとともに、(メタ)アクリル酸エステルに酸化防止剤が多量に残存することによって(メタ)アクリル酸エステルの重合性が阻害されるのを抑制する観点から、アルコールの質量に対して、10〜10000ppm、好ましくは50〜1000ppmであることが望ましい。
また、アクリル酸又はメタアクリル酸とアルコールとを反応させる際には、有機溶媒を用いることができる。
有機溶媒としては、過酸化物を生成しがたいものが好ましい。かかる有機溶媒としては、例えば、n−ペンタン、i−ペンタン、n−ヘキサン、2−メチルペンタン、n−ヘプタン、i−ヘプタン、n−オクタン、i−オクタンなどの脂肪族炭化水素化合物、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンなどの脂環式炭化水素化合物、ベンゼン、トルエン、キシレンなどの芳香族炭化水素化合物などが挙げられ、特にシクロヘキサンが好ましい。
有機溶媒の量は、その種類などによって異なるので一概には決定することができないが、エステル化反応またはエステル交換反応の際に生じる水またはアルキルアルコールを系外に効率よく除去する観点から、通常、アルコール100質量部あたり、5〜200質量部、好ましくは20〜100質量部であることが望ましい。
触媒および酸化防止剤の存在下で、アクリル酸又はメタアクリル酸とアルコールとを反応させる方法としては、例えば、アクリル酸又はメタアクリル酸、アルコール、触媒、酸化防止剤および有機溶媒を混合し、得られた混合物を加熱する方法などが挙げられる。その際の加熱温度は、通常、好ましくは50〜150℃、より好ましくは70〜120℃である。
アクリル酸又はメタアクリル酸とアルコールとを反応させる際の系内の雰囲気は、特に限定されず、通常、大気であればよい。
アクリル酸又はメタアクリル酸とアルコールとを反応は、生成する(メタ)アクリル酸エステルの重合を抑制する観点から、アルコールに含まれている過酸化物の量が20ppm以下、好ましくは10ppm以下となるまで行うことが望ましい。
一般式(1)で表される構造を作製するには市販のアクリルモノマーを用いても良い。
原料を具体的に示すと、セチルアクリレート、ミルアクリレート、デアイルアクリレート、オクチルアクリレート、ステアリルアクリレート、ミリスチルアクリレート、ラウリルアクリレート、アクリルメタクリレート(ライトエステルL−5,7,8:共栄社化学)、アルキルメタクリレート(ブレンマーPMA、DSMA、XMA−70:日本油脂)、セチルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、ステアリルメタクリレート、トリデシルメタクリレート、ベヘニルメタクリレート、などが挙げられる。
本発明に用いる第1成分の重合体は第一の繰り返し単位と、第二の繰り返し単位とを含む共重合体であり、前記第一の繰り返し単位は少なくとも1種類の環状構造を含み、前記第二の繰り返し単位は前記一般式(1)で表される構造であることが好ましい。なお、共重合体中の一般式(1)で表される構造の共重合比はモル比で0.3以上0.9以下が好ましい。また第1成分に含まれる共重合体の環状構造を含む第一の繰り返し単位の材料としては、ラジカル重合性官能基を有する環状化合物であれば何れでもよく、重合反応時に環状構造をとるものでもよい。好ましくは環状構造が炭素同士の結合からなり、かつ環状構造を構成する炭素数が6以上である。より好ましくはアダマンタン環、ノルボルナン環、シクロヘキシル環である。環状構造が炭素同士の結合からなり、かつ環状構造を構成する炭素数が6以上である方が離型性に優れていた。さらにアダマンタン環、ノルボルナン環、シクロヘキシル環構造を有するものはさらに耐摩耗性に優れていた。
これら環状構造を有するラジカル重合性化合物の共重合比はモル比で0.05以上0.5以下が好ましい。
また、第1成分の重合体の重量平均分子量は、好ましくは2000〜100000である。この範囲であれば、相分離が進み易くなるためであると考えられる。
以下に本発明に用いられる共重合体環状部分の材料の例を示す。本発明の範囲は以下の材料に限定されるものではない。
共重合体の材料としては、上記以外にも前述のラジカル重合性モノマーを使用することができる。現時点で理由は定かではないが共重合体材料として、メタクリル酸を含むと離型性が大きくなった。これは層分離を促し、微細凹凸形成に寄与していると考えられる。
<電荷輸送性構造を有するラジカル重合性化合物の説明>
本発明に用いられる電荷輸送性構造を有するラジカル重合性化合物としては、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しており、且つラジカル重合性官能基を有する化合物を指す。このラジカル重合性官能基とは、炭素−炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。
本発明の架橋型電荷輸送層に用いられる電荷輸送性構造を有するラジカル重合性化合物としては、官能基がいくつのものでも使用可能であるが、1官能のものが静電特性の安定性や膜質の点からより好ましい。2官能の場合は複数の結合で架橋構造中に固定され架橋密度はより高まるが、電荷輸送性構造が非常に嵩高いため硬化層構造の歪みが大きくなり、層の内部応力が高まる可能性がある。また、電荷輸送時の中間体構造(カチオンラジカル)が安定して保てず、電荷のトラップによる感度の低下、残留電位の上昇が発生しやすくなる恐れがある。3官能以上のものはその傾向が特に顕著である。
電荷輸送性構造を有するラジカル重合性化合物の電荷輸送性構造としては、電荷輸送機能を付与できるものであれば如何なる材料でも使用可能であるが、中でもトリアリールアミン構造が高い効果を有し有用である。これは、ホッピングサイトを多く有し、π共役が広がっているためであると考えられる。また、トリアリールアミンは、ラジカルカチオン状態時に互いに共役しやすい。これらの理由から、トリアリールアミン構造は電荷輸送機能に優れる。特に、式(3)又は(4)で示される化合物を用いた場合、感度、残留電位等の電気的特性が良好に持続される。
〔式中、R40は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR41(R41は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を表わす。)、ハロゲン化カルボニル基若しくはCONR4243(R42及びR43は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい。)を表わし、Ar2、Ar3は置換もしくは無置換のアリーレン基を表わし、同一であっても異なってもよい。Ar4、Ar5は置換もしくは無置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル基、アルキレンオキシカルボニル基を表わす。m、nは0〜3の整数を表わす。〕
以下に、一般式(3)、(4)における置換基の具体例を示す。
前記一般式(3)、(4)において、R40の置換基中、アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていてもよい。
40の置換基のうち、特に好ましいものは水素原子、メチル基である。
Ar4、Ar5は置換もしくは無置換のアリール基であり、本発明において該アリール基としては縮合多環式炭化水素基、非縮合環式炭化水素基及び複素環基が含まれる。
該縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。該非縮合環式炭化水素基としては、ベンゼン、ジフェニルエーテル、ポリエチレンジフェニルエーテル、ジフェニルチオエーテル及びジフェニルスルホン等の単環式炭化水素化合物の1価基、あるいはビフェニル、ポリフェニル、ジフェニルアルカン、ジフェニルアルケン、ジフェニルアルキン、トリフェニルメタン、ジスチリルベンゼン、1、1−ジフェニルシクロアルカン、ポリフェニルアルカン、及びポリフェニルアルケン等の非縮合多環式炭化水素化合物の1価基、あるいは9、9−ジフェニルフルオレン等の環集合炭化水素化合物の1価基が挙げられる。複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オキサジアゾール、及びチアジアゾール等の1価基が挙げられる。
また、前記Ar4、Ar5で表わされるアリール基は、例えば以下に示すような置換基を有してもよい。
(1)ハロゲン原子、シアノ基、ニトロ基等。
(2)アルキル基;
好ましくは、C1〜C12とりわけC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。
具体的にはメチル基、エチル基、n−ブチル基、i−プロピル基、t−ブチル基、s−ブチル基、n−プロピル基、トリフルオロメチル基、2−ヒドロキシエチル基、2−エトキシエチル基、2−シアノエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−フェニルベンジル基等が挙げられる。
(3)アルコキシ基(−OR82);
(式中、R82は(2)で定義したアルキル基を表わす。)
具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
(4)アリールオキシ基;
アリール基としてはフェニル基、ナフチル基が挙げられる。これは、C1〜C4のアルコキシ基、C1〜C4アルキル基またはハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メトキシフェノキシ基、4−メチルフェノキシ基等が挙げられる。
(5)アルキルメルカプト基またはアリールメルカプト基;
具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。
(6)以下の式で表わされる置換基;
(式中、R及びRは各々独立に水素原子、前記(2)で定義したアルキル基、またはアリール基を表わす。アリール基としては、例えばフェニル基、ビフェニル基又はナフチル基が挙げられ、これらはC1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。R及びRは共同で環を形成してもよい。)
具体的には、アミノ基、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N、N−ジフェニルアミノ基、N、N−ジ(トリール)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。
(7)メチレンジオキシ基、又はメチレンジチオ基等のアルキレンジオキシ基又はアルキレンジチオ基等。
(8)置換又は無置換のスチリル基、置換又は無置換のβ−フェニルスチリル基、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等。
前記Ar2、Ar3で表わされるアリーレン基としては、前記Ar4、Ar5で表わされるアリール基から誘導される2価基が挙げられる。
前記Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。
置換もしくは無置換のアルキレン基としては、C1〜C12、好ましくはC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n−ブチレン基、i−プロピレン基、t−ブチレン基、s−ブチレン基、n−プロピレン基、トリフルオロメチレン基、2−ヒドロキシエチレン基、2−エトキシエチレン基、2−シアノエチレン基、2−メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4−クロロフェニルエチレン基、4−メチルフェニルエチレン基、4−ビフェニルエチレン基等が挙げられる。
置換もしくは無置換のシクロアルキレン基としては、C5〜C7の環状アルキレン基であり、これらの環状アルキレン基にはフッ素原子、水酸基、C1〜C4のアルキル基、C1〜C4のアルコキシ基を有していてもよい。具体的にはシクロヘキシリデン基、シクロへキシレン基、3、3−ジメチルシクロヘキシリデン基等が挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ基、プロピレンオキシ基等のアルキレンオキシ基、エチレングリコール、プロピレングリコール等から誘導されるアルキレンジオキシ基、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等から誘導されるジまたはポリ(オキシアルキレン)オキシ基等が挙げられ、アルキレンエーテル基のアルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。
ビニレン基としては、以下の一般式で表わされる置換基が挙げられる。
〔式中、Rfは水素、アルキル基(前記(2)で定義されるアルキル基と同じ)、アリール基(前記Ar4、Ar5で表わされるアリール基と同じ)、aは1または2、bは1〜3を表わす。〕
前記Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル基、アルキレンオキシカルボニル基を表わす。
置換もしくは無置換のアルキレン基としは、前記Xのアルキレン基と同様なものが挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、前記Xのアルキレンエーテル基が挙げられる。
アルキレンオキシカルボニル基としては、カプロラクトン変性基が挙げられる。
また、本発明の1官能の電荷輸送構造を有するラジカル重合性化合物として更に好ましくは、下記一般式(10)で表される構造の化合物が挙げられる。
(式中、o、p、qはそれぞれ0又は1の整数、Rは水素原子、メチル基を表わし、R、Rは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なってもよい。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、
を表わす。)
上記一般式(10)で表わされる化合物としては、R、Rの置換基として、特にメチル基、エチル基である化合物が好ましい。
本発明で用いる上記一般式(3)及び(4)、特に(10)の1官能性の電荷輸送性構造を有するラジカル重合性化合物は、炭素−炭素間の二重結合が両側に開放されて重合するため、末端構造とはならず、連鎖重合体中に組み込まれ、電荷輸送性構造を有しないラジカル重合性モノマーとの重合で架橋形成された重合体中では、高分子の主鎖中に存在し、かつ主鎖−主鎖間の架橋鎖中に存在(この架橋鎖には1つの高分子と他の高分子間の分子間架橋鎖と、1つの高分子内で折り畳まれた状態の主鎖のある部位と主鎖中でこれから離れた位置に重合したモノマー由来の他の部位とが架橋される分子内架橋鎖とがある)するが、主鎖中に存在する場合であってもまた架橋鎖中に存在する場合であっても、鎖部分から懸下するトリアリールアミン構造は、窒素原子から放射状方向に配置する少なくとも3つのアリール基を有し、バルキーであるが、鎖部分に直接結合しておらず鎖部分からカルボニル基等を介して懸下しているため立体的位置取りに融通性のある状態で固定されているので、これらトリアリールアミン構造は重合体中で相互に程よく隣接する空間配置が可能であるため、分子内の構造的歪みが少なく、また、電子写真感光体の架橋型電荷輸送層とされた場合に、電荷輸送経路の断絶を比較的免れた分子内構造をとりうるものと推測される。
本発明に用いる電荷輸送性構造を有するラジカル重合性化合物の具体例を以下に示すが、これらの構造の化合物に限定されるものではない。
また、本発明に用いられる電荷輸送性構造を有するラジカル重合性化合物は、架橋型電荷輸送層全量に対し20〜80質量%、好ましくは30〜70質量%である。この成分が20質量%未満では架橋型電荷輸送層の電荷輸送性能が充分に保てず、繰り返しの使用で感度低下、残留電位上昇などの電気特性の劣化が現れる。また、80質量%を超えると電荷輸送構造を有しないラジカル重合性モノマーもしくはオリゴマーの含有量が低下し、架橋結合密度の低下を招き高い耐摩耗性が発揮されない。使用されるプロセスによって要求される電気特性や耐摩耗性が異なるため一概には言えないが、両特性のバランスを考慮すると30〜70質量%の範囲が最も好ましい。
また、前記第1成分は、第1成分と第2成分と第3成分の合計量に対し、質量比で0.1%以上10%以下が好ましい。質量比が0.1%を切ると、離型性がやや低下する傾向にある。これは膜の層分離が不十分となり、微細凹凸が形成されにくくなるためであると考えられる。また、10%を超えると、残留電位がやや上昇する傾向にある。これは膜の電荷輸送性がやや低下するためであると考えられる。
<開始剤の説明>
本発明の架橋型電荷輸送層は、次の3成分からなる。第1成分:繰り返し単位として、一般式(1)で表される構造を含む重合体
(式中、Raは、水素原子又はメチル基である。Rbは炭素数が8以上、34以下の直鎖状の飽和脂肪族炭化水素基を表す。)、第2成分:電荷輸送性構造を有しないラジカル重合性モノマーまたは電荷輸送性構造を有しないラジカル重合性オリゴマー、第3成分:電荷輸送性構造を有するラジカル重合性化合物。これらを熱、光、電離性放射線の少なくとも何れかを用いて同時に硬化させた架橋型電荷輸送層であるが、熱エネルギーや光エネルギーを用いて架橋型電荷輸送層を形成する場合には、必要に応じてこの架橋反応を効率よく進行させるために架橋型電荷輸送層中に重合開始剤を使用してもよい。電離性放射線を用いた架橋を行う場合は、通常重合開始剤を用いることなく架橋反応を得ることが可能であるが、電離性放射線照射後に残存する未硬化成分を硬化させるために、後処理として熱エネルギー及び/又は光エネルギーを付与することも可能であり、その場合でも下記に示す重合開始剤を添加すると効果的である。
熱重合開始剤としては、2、5−ジメチルヘキサン−2、5−ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルクミルパーオキサイド、2、5−ジメチル−2、5−ジ(パーオキシベンゾイル)ヘキシン−3、ジ−t−ブチルベルオキサイド、t−ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイドなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4、4’−アゾビス−4−シアノ吉草酸などのアゾ系開始剤が挙げられる。
光重合開始剤としては、ジエトキシアセトフェノン、2、2−ジメトキシ−1、2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−2−モルフォリノ(4−メチルチオフェニル)プロパン−1−オン、1−フェニル−1、2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、などのアセトフェノン系またはケタール系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、などのベンゾインエーテル系光重合開始剤、ベンゾフェノン、4−ヒドロキシベンゾフェノン、o−ベンゾイル安息香酸メチル、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルフェニールエーテル、アクリル化ベンゾフェノン、1、4−ベンゾイルベンゼン、などのベンゾフェノン系光重合開始剤、2−イソプロピルチオキサントン、2−クロロチオキサントン、2、4−ジメチルチオキサントン、2、4−ジエチルチオキサントン、2、4−ジクロロチオキサントン、などのチオキサントン系光重合開始剤、ビス(シクロペンタジエニル)−ジ−クロロ−チタニウム、ビス(シクロペンタジエニル)−ジ−フェニル−チタニウム、ビス(シクロペンタジエニル)−ビス(2、3、4、5、6ペンタフルオロフェニル)チタニウム、ビス(シクロペンタジエニル)−ビス(2、6−ジフルオロ−3−(ピロール−1−イル)フェニル)チタニウムなどのチタノセン系光重合開始剤、その他の光重合開始剤としては、エチルアントラキノン、2、4、6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2、4、6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、ビス(2、4、6−トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2、4−ジメトキシベンゾイル)−2、4、4−トリメチルペンチルホスフィンオキサイド、メチルフェニルグリオキシエステル、9、10−フェナントレン、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、が挙げられる。
また、光重合促進効果を有するものを単独または上記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4、4’−ジメチルアミノベンゾフェノン、などが挙げられる。 これらの重合開始剤は単独で用いてもよいし、2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100質量部に対し、0.5〜40質量部、好ましくは1〜20質量部である。
<フィラー添加の説明>
本発明の架橋型電荷輸送層には、耐摩耗性の向上、安定な層分離、機能性付与を目的としてフィラー微粒子を含有させることができる。
本発明のフィラー微粒子含有架橋型電荷輸送層は、架橋密度が高く、架橋していないフィラー含有バインダー樹脂層に比べて、樹脂部の耐摩耗性が高く、上記不均一な摩耗が抑制される。これに加えて、樹脂中に分散されたフィラー微粒子は、硬化樹脂架橋マトリックスに捉えられ、該架橋マトリックスのフィラー保持力が大きいため、フィラーの脱落も防止される。したがって、非常に耐摩耗性が高まると考えられる。さらにフィラーには層分離を安定に発生させる効果もあると考えられる。
このフィラー微粒子としては、以下のようなものが使用できる。有機性フィラー材料としては、ポリテトラフルオロエチレンのようなフッ素樹脂粉末、シリコーン樹脂粉末、カーボン微粒子などが挙げられる。カーボン微粒子とは、炭素が主成分の構造を有する粒子のことであり、非晶質、ダイヤモンド、グラファイト、無定型炭素、フラーレン、ツェッペリン、カーボンナノチューブ、カーボンナノホーン等の構造を有する粒子である。これらの構造の中で水素を含有するダイヤモンド状カーボン若しくは非晶質カーボン構造を有する粒子は、機械的及び化学的耐久性が良好である。水素を含有するダイヤモンド状カーボン若しくは非晶質カーボン膜とは、SP3 軌道を有するダイヤモンド構造、SP2軌道を有するグラファイト構造、非晶質カーボン構造などの類似構造が混在した粒子のことである。ダイヤモンド状カーボンもしくは非晶質カーボン微粒子は、炭素だけで構成されるのではなく、水素、酸素、窒素、フッ素、硼素、リン、塩素、臭素、沃素等の他の元素が含有されていてもかまわない。
無機性フィラー材料としては、銅、スズ、アルミニウム、インジウムなどの金属粉末、酸化珪素、酸化錫、酸化亜鉛、酸化チタン、酸化インジウム、酸化アンチモン、酸化ビスマス等の金属酸化物、チタン酸カリウムなどの無機材料が挙げられる。特に、フィラーの硬度の点からは、この中でも無機材料を用いることが有利である。特に金属酸化物が良好であり、さらには、酸化珪素、酸化アルミニウム、酸化チタンが有効に使用できる。また、コロイダルシリカやコロイダルアルミナなどの微粒子も有効に使用できる。
また、フィラーの平均一次粒径は、0.01〜0.9μmであることが架橋型電荷輸送層の光透過率や耐摩耗性の点から好ましく、0.1μm〜0.5μmがより好ましい。フィラーの平均一次粒径が0.01μm以下の場合は、耐摩耗性の低下、分散性の低下等を引き起こし、0.9μm以上の場合には、分散液中においてフィラーの沈降性が促進されたり、トナーのフィルミングが発生したりする可能性がある。
架橋型電荷輸送層中のフィラー材料濃度は、高いほど耐摩耗性が高いので良好であるが、高すぎる場合には残留電位の上昇、表面層の書き込み光透過率が低下し、副作用を生じる場合がある。従って、概ね全固形分に対して、50質量%以下、好ましくは30質量%以下程度である。また更に、これらのフィラーは少なくとも一種の表面処理剤で表面処理させることが可能であり、そうすることがフィラーの分散性の面から好ましい。フィラーの分散性の低下は残留電位の上昇だけでなく、塗膜の透明性の低下や塗膜欠陥の発生、さらには耐摩耗性の低下をも引き起こすため、高耐久化あるいは高画質化を妨げる大きな問題に発展する可能性がある。
表面処理剤としては、従来用いられている表面処理剤を使用することができるが、フィラーの絶縁性を維持できる表面処理剤が好ましい。例えば、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤、高級脂肪酸等、あるいはこれらとシランカップリング剤との混合処理や、Al23、TiO2、ZrO2、シリコーン、ステアリン酸アルミニウム等、あるいはそれらの混合処理がフィラーの分散性及び画像流れ防止の点からより好ましい。シランカップリング剤による処理は、画像流れの影響が強くなるが、上記の表面処理剤とシランカップリング剤との混合処理を施すことによりその影響を抑制できる場合がある。表面処理量については、用いるフィラーの平均一次粒径によって異なるが、3〜30質量%が適しており、5〜20質量%がより好ましい。表面処理量がこれよりも少ないとフィラーの分散効果が得られず、また多すぎると残留電位の著しい上昇を引き起こす。これらフィラー材料は単独もしくは2種類以上混合して用いられる。
<その他添加剤の説明>
更に、本発明の架橋型電荷輸送層塗工液は必要に応じて各種可塑剤(応力緩和や接着性向上の目的)、レベリング剤、ラジカル反応性を有しない低分子電荷輸送物質などの添加剤が含有できる。これらの添加剤は公知のものが使用可能であり、可塑剤としてはジブチルフタレート、ジオクチルフタレート等の一般の樹脂に使用されているものが利用可能で、その使用量は塗工液の総固形分1質量部に対し20質量部以下、好ましくは10質量部以下に抑えられる。また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが利用でき、その使用量は塗工液の総固形分に対し3質量部以下が適当である。
<膜作製方法について>
本発明の架橋型電荷輸送層は、次の3成分を含有する塗工液を、前述電荷輸送層上に塗布、硬化することにより形成される。
第1成分:繰り返し単位として、一般式(1)で表される構造を含む重合体
(式中、Raは、水素原子又はメチル基である。Rbは炭素数が8以上、34以下の直鎖状の飽和脂肪族炭化水素基を表す。)
第2成分:電荷輸送性構造を有しないラジカル重合性モノマーまたは電荷輸送性構造を有しないラジカル重合性オリゴマー
第3成分:電荷輸送性構造を有するラジカル重合性化合物。
塗布に用いられる塗工液はラジカル重合性モノマーまたはオリゴマーが液体である場合、これに他の成分を溶解して塗布することも可能であるが、必要に応じて溶媒により希釈して塗布される。ここで用いられる溶剤としては、通常用いられるものであれば特に限定されない。例えば、メタノール、エタノール、プロパノール、ブタノールなどのアルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラヒドロフラン、ジオキサン、プロピルエーテルなどのエーテル系、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系、ベンゼン、トルエン、キシレンなどの芳香族系、メチルセロソルブ、エチルセロソルブ、セロソルブアセテートなどのセロソルブ系などが挙げられる。これらの溶媒は単独または2種以上を混合して用いてもよい。
架橋型電荷輸送層形成の際に用いる塗工方法としては、一般に用いられている塗工方法であれば特に限定されない。塗工液の粘性、所望とする架橋型電荷輸送層の膜厚などによって適宜塗工方法を選択するとよい。例えば、浸漬塗工法やスプレーコート、ビードコート、リングコート法などが例示される。
本発明においては、かかる塗工液を塗布後、外部からエネルギーを与えることにより、架橋型電荷輸送層を硬化させる。このとき用いられる外部エネルギーとしては、熱エネルギー、光エネルギー、電離性放射線を用いたエネルギーを用いることが可能であるが、電離性放射線を用いた場合には、そのエネルギー浸入深さ、エネルギー強度のために、電子写真感光体の構成材料の劣化に伴う電子写真特性の低下が懸念されることから、好ましくは熱エネルギー、光エネルギーを用いて硬化するとよい。また、光エネルギーを用いた硬化は製造時に使用する溶剤量低減や架橋に必要なエネルギーの低減、さらには架橋膜の強度増加が期待できるため、より好ましくは光エネルギーを用いるとよく、効果的に架橋させるために前記いずれか2つの手段を併用してもよい。
熱エネルギーとしては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用いることができ、塗工面側あるいは支持体側から加熱することによって行なわれる。加熱温度は100℃以上、170℃以下が好ましい。100℃未満の場合、反応速度が遅いために生産性が低下するとともに、未反応の材料が膜中に残留する原因となる。一方、170℃より高い温度で処理した場合、架橋による膜の収縮が大きくなり、表面にゆず肌状の欠陥や亀裂が生じたり、隣接層との界面で剥離が生じることがある。また、感光層中の揮発性成分が外部に霧散するなどした場合には、所望の電気特性を得られなくなるなどのことがあるため好ましくない。架橋による収縮が大きい樹脂を使用する際には、100℃未満の低温で予備架橋した後に100℃以上の高温で架橋を完結させる方法も有効である。
光エネルギーとしては、主に超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアークメタルハライドランプ等の光源を利用してもよく、好ましくは使用する電荷輸送性構造を有しないラジカル重合性モノマーや電荷輸送性構造を有するラジカル重合性化合物(好ましくは1官能)、さらには併用する光重合開始剤の吸収特性を考慮して選定することがよい。使用光源の発光照度としては、一般に365nmの波長を基準として50〜2000mW/cm2の照度で露光されるのがよい。また、最大発光波長近傍における照度測定が可能である場合は、上記照度域で露光することがさらに好ましい。照度が小さい場合には硬化に要する時間が多くなるため、生産性の観点から好ましくない。一方、照度が大きい場合には硬化収縮が起こりやすく、表面にゆず肌状の欠陥や亀裂が生じたり、隣接層との界面で剥離が生じることがある。
電離性放射線とは、物質に電離作用を及ぼすことができる放射線であり、アルファ線や電子線に代表される直接電離性放射線や、X線や中性子線に代表される間接電離性照射線が挙げられる。本発明において用いることのできる電離性放射線は一般に用いられるものであれば特に限定されないが、人体への影響を鑑みた場合、好ましくは電子線がよい。電子線照射装置としては、コックロフトワルトン型、バンデグラフ型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型等の各種電子線加速器等を用いた装置を使用するとよい。電子線の照射量は用いる材料、架橋型電荷輸送層の厚みに応じて適宜決定するとよいが、通常100〜1000keV、好ましくは100〜3000keVのエネルギーを持つ電子を0.1〜30Mrad程度照射すると好ましい。照射量が0.1Mrad未満の場合、電子線が架橋型電荷輸送層内部まで到達することができず、層深部の硬化不良が生じる恐れがあり好ましくない。又、照射量が30Mradを超えると、電子線が前述の電荷輸送層や電荷発生層に到達し、各層の構成材料に影響を及ぼす恐れがあるため好ましくない。
UV照射時または電離性放射線照射時には光源からの生じる熱線などの影響により、感光体架橋型電荷輸送層の温度が上昇する。感光体表面温度が上昇しすぎると、架橋型電荷輸送層の硬化収縮が起こりやすいこと、隣接層中に含まれる低分子成分が架橋型電荷輸送層に移行するために、硬化阻害などが生じたり、電子写真感光体としての電気特性が低下するなど好ましくない。そのためUV照射時の感光体表面温度は100℃以下、好ましくは80℃以下にするとよい。冷却方法としては感光体内部への助冷剤封入、感光体内部の気体や液体による冷却などを使用することができる。
硬化後の架橋型電荷輸送層に対して、必要に応じて後加熱をしてもよい。例えば、膜中に残留溶媒が多く残留している場合などは、電気的特性の低下や経時劣化の原因となりうるため、後加熱により残留溶媒を揮発させることが好ましい。
架橋型電荷輸送層の膜厚としては、感光層の保護の観点から1〜15μmが好ましく、より好ましくは3〜10μmがよい。架橋型電荷輸送層が薄い場合には感光体への当接部材による機械的摩耗や帯電器などによる近接放電などから感光層を保護できなくなるだけでなく、膜形成時にレベリングされにくくなるために、膜表面がゆず肌状になることがある。一方、架橋型電荷輸送層が厚い場合には感光体全層が厚くなり、電荷の拡散による画像の再現性が低下するため好ましくない。ただし、電荷輸送層の膜厚よりも架橋型電荷輸送層の膜厚が厚くなると、明部電位が上昇する傾向が強くなり好ましくない。本発明においては、電荷輸送層の膜厚をT1(μm)、架橋型電荷輸送層の膜厚をT2(μm)としたとき、下式(4)の関係を満たすことにより、それらの影響を抑制できるためより好ましい。
T1 > T2×2 ・・・式(4)
<接着層について>
架橋型電荷輸送層/電荷輸送層間での接着性不良による層間剥離を防ぐことを目的として、必要に応じて両層間に接着層を設けてもよい。
接着層としては前記ラジカル重合性モノマーを用いてもよいし、非架橋系の高分子化合物を用いてもよい。非架橋系の高分子化合物としてはポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられるがこれに限定されない。また、ラジカル重合性モノマーと非架橋系高分子化合物はいずれを用いる場合についても単独で用いてもよいし、2種以上の混合物として用いてもよい。さらには、十分な接着性が得られるならばラジカル重合性モノマーと非架橋系高分子化合物を併用してもよい。もちろん、本明細書に記載の電荷輸送物質を用いても、併用してもよい。また、接着性を向上することを目的とすれば、適宜添加剤を用いてもよい。
接着層は所定の配合に処方された化合物をテトラヒドロフラン、ジオキサン、ジクロロエタン、シクロヘキサン等の溶媒に溶解・分散した塗工液を浸漬塗工法やスプレーコート、ビードコート、リングコートなどで塗工して形成できる。接着層の膜厚は、0.1〜5μm程度が適当であり、好ましくは0.1〜3μmが最も適当である。
<下引き層について>
本発明の感光体においては、導電性支持体と電荷発生層との間に下引き層を設けることができる。下引き層は一般には樹脂を主成分とするが、これらの樹脂はその上に電荷発生層を溶剤で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。また、下引き層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてもよい。
これらの下引き層は、前述の感光層の如く適当な溶媒及び塗工法を用いて形成することができる。更に本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の下引き層には、Al23を陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物やSiO2、SnO2、TiO2、ITO、CeO2等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。
下引き層の膜厚は0〜5μmが適当である。
<ブロッキング層について>
また、導電性支持体と下引き層の間もしくは下引き層と電荷発生層との間にさらにブロッキング層を設けることも可能である。ブロッキング層は、導電性支持体からのホールの注入を抑制するために加えられるもので、主目的は地汚れの抑制にある。ブロッキング層には、一般にバインダー樹脂を主成分として用いる。これら樹脂としては、ポリアミド、アルコール可溶性ポリアミド(可溶性ナイロン)、水溶性ポリビニルブチラール、ポリビニルブチラール、ポリビニルアルコール等が挙げられる。ブロッキング層の形成法としては、前記した方法、さらに公知の塗布法が採用される。なお、ブロッキング層の厚さは、0.05〜2μmが適当である。ブロッキング層と下引き層の2層構成とすることにより、地汚れ抑制効果は飛躍的に高まるが、残留電位上昇の影響が増加する傾向にある。そのため、ブロッキング層及び下引き層の組成や膜厚を十分考慮して決める必要がある。
<<画像形成装置の構成について>>
次に図面に基づいて本発明の画像形成装置を詳しく説明する。
本発明の画像形成装置とは、本発明の架橋型電荷輸送層を有した電子写真感光体を用い、例えば少なくとも感光体に帯電、画像露光、現像の過程を経た後、画像保持体(転写紙)へのトナー画像の転写の各手段よりなり、さらに必要により定着及び感光体表面のクリーニングという手段よりなるものである。 場合により、静電潜像を直接転写体に転写し現像する画像形成装置では、感光体に配した上記手段を必ずしも有するものではない。
図2は、画像形成装置の一例を示す概略図である。感光体を平均的に帯電させる手段として、帯電チャージャ(3)が用いられる。この帯電手段としては、コロトロンデバイス、スコロトロンデバイス、固体放電素子、針電極デバイス、ローラー帯電デバイス、導電性ブラシデバイス等が用いられ、公知の方式が使用可能である。
次に、均一に帯電された感光体(1)上に静電潜像を形成するために画像露光部(5)が用いられる。この光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
次に、感光体(1)上に形成された静電潜像を可視化するために現像ユニット(6)が用いられる。現像方式としては、乾式トナーを用いた一成分現像法、二成分現像法、湿式トナーを用いた湿式現像法がある。感光体に正(負)帯電を施し、画像露光を行なうと、感光体表面上には正(負)の静電潜像が形成される。これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られるし、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。
次に、感光体上で可視化されたトナー像を転写体(9)上に転写するために転写チャージャ(10)が用いられる。また、転写をより良好に行なうために転写前チャージャ(7)を用いてもよい。これらの転写手段としては、転写チャージャ、バイアスローラーを用いる静電転写方式、粘着転写法、圧力転写法等の機械転写方式、磁気転写方式が利用可能である。静電転写方式としては、前記帯電手段が利用可能である。
次に、転写体(9)を感光体(1)より分離する手段として分離チャージャ(11)、分離爪(12)が用いられる。その他分離手段としては、静電吸着誘導分離、側端ベルト分離、先端グリップ搬送、曲率分離等が用いられる。分離チャージャ(11)としては、前記帯電手段が利用可能である。
次に、転写後感光体上に残されたトナーをクリーニングするためにファーブラシ(14)、クリーニングブレード(15)が用いられる。また、クリーニングをより効率的に行なうためにクリーニング前チャージャ(13)を用いてもよい。その他クリーニング手段としては、ウェブ方式、マグネットブラシ方式等があるが、それぞれ単独又は複数の方式を一緒に用いてもよい。次に、必要に応じて感光体上の潜像を取り除く目的で除電手段が用いられる。除電手段としては除電ランプ(2)、除電チャージャが用いられ、それぞれ前記露光光源、帯電手段が利用できる。図2において、8はレジストローラである。
その他、感光体に近接していない原稿読み取り、給紙、定着、排紙等の手段は公知のものが使用できる。
本発明の画像形成装置は、少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成要素が複数配列された構成とすることもできる。
また本発明は、このような画像形成手段に本発明に係る電子写真感光体を用いる画像形成方法及び画像形成装置用プロセスカートリッジに関するものである。
この画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形態でそれら装置内に組み込まれ、着脱自在としたものであってもよい。プロセスカートリッジの一例を図3に示す。
画像形成装置用プロセスカートリッジとは、感光体(101)を内蔵し、他に帯電手段(102)、現像手段(104)、転写手段(106)、クリーニング手段(107)、除電手段(図示せず)の少なくとも一つを具備し、画像形成装置本体に着脱可能とした装置(部品)である。
図3に例示される装置による画像形成方法について示すと、感光体(101)は、矢印方向に回転しながら、帯電手段(102)による帯電、露光手段(103)による露光により、その表面に露光像に対応する静電潜像が形成され、この静電潜像は、現像手段(104)でトナー現像され、該トナー現像は転写手段(106)により、転写体(105)に転写され、プリントアウトされる。次いで、像転写後の感光体表面は、クリーニング手段(107)によりクリーニングされ、さらに除電手段(図示せず)により除電されて、再び以上の操作を繰り返すものである。
次に、本発明の帯電手段、露光手段、現像手段、及び電子写真感光体からなる画像形成要素が複数配列された画像形成装置について、説明する。
画像形成要素は、電子写真感光体と、その周りに少なくとも帯電部材、現像部材およびクリーニング部材が配置されたユニットとして構成され、複数色のトナーが用いられるカラー電子写真画像形成装置の場合には、その色の数に応じた数の画像形成要素が搭載され、また各画像形成要素は画像形成装置に固定しても、また個別に差し替え使用可能とすることもできる。
図4は、画像形成要素を複数具備してなる電子写真画像形成装置(一般的には、タンデム方式のフルカラー電子写真画像形成装置と呼ばれる)を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
図4において、符号(1C,1M,1Y,1K)はドラム状の感光体であり、この感光体(1C,1M,1Y,1K)は図中の矢印方向に回転し、その周りに少なくとも回転順に帯電部材(2C,2M,2Y,2K)、現像部材(4C,4M,4Y,4K)、クリーニング部材(5C,5M,5Y,5K)が配置されている。帯電部材(2C,2M,2Y,2K)は、感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。
この帯電部材(2C,2M,2Y,2K)と現像部材(4C,4M,4Y,4K)の間のより、図示しない露光部材からのレーザー光(3C,3M,3Y,3K)が照射され、感光体(1C,1M,1Y,1K)に静電潜像が形成されるようになっている。そして、このような感光体(1C,1M,1Y,1K)を中心とした4つの画像形成要素(6C,6M,6Y,6K)が、転写材搬送手段である転写搬送ベルト(10)に沿って並置されている。転写搬送ベルト(10)は各画像形成ユニット(6C,6M,6Y,6K)の現像部材(4C,4M,4Y,4K)とクリーニング部材(5C,5M,5Y,5K)の間で感光体(1C,1M,1Y,1K)に当接しており、転写搬送ベルト(10)の感光体側の裏側に当たる面(裏面)には転写バイアスを印加するための転写ブラシ(11C,11M,11Y,11K)が配置されている。各画像形成要素(6C,6M,6Y,6K)は現像装置内部のトナーの色が異なることであり、その他は全て同様の構成となっている。
図4に示す構成のカラー電子写真画像形成装置において、画像形成動作は次のようにして行なわれる。まず、各画像形成要素(6C,6M,6Y,6K)において、感光体(1C,1M,1Y,1K)が矢印方向(感光体と連れ周り方向)に回転する帯電部材(2C,2M,2Y,2K)により帯電され、次に感光体の内側に配置された露光部(図示しない)でレーザー光(3C,3M,3Y,3K)により、作成する各色の画像に対応した静電潜像が形成される。
次に現像部材(4C,4M,4Y,4K)により潜像を現像してトナー像が形成される。現像部材(4C,4M,4Y,4K)は、それぞれC(シアン),M(マゼンタ),Y(イエロー),K(ブラック)のトナーで現像を行なう現像部材で、4つの感光体(1C,1M,1Y,1K)上で作られた各色のトナー像は転写紙上で重ねられる。
転写紙(7)は給紙コロ(8)によりトレイから送り出され、一対のレジストローラ(9)で一旦停止し、上記感光体上への画像形成とタイミングを合わせて転写搬送ベルト(10)に送られる。転写搬送ベルト(10)上に保持された転写紙(7)は搬送されて、各感光体(1C,1M,1Y,1K)との当接位置(転写部)で各色トナー像の転写が行なわれる。
感光体上のトナー像は、転写ブラシ(11C,11M,11Y,11K)に印加された転写バイアスと感光体(1C,1M,1Y,1K)との電位差から形成される電界により、転写紙(7)上に転写される。そして4つの転写部を通過して4色のトナー像が重ねられた記録紙(7)は定着装置(12)に搬送され、トナーが定着されて、図示しない排紙部に排紙される。また、転写部で転写されずに各感光体(1C,1M,1Y,1K)上に残った残留トナーは、クリーニング装置(5C,5M,5Y,5K)で回収される。なお、図の例では画像形成要素は、転写紙搬送方向上流側から下流側に向けて、C(シアン),M(マゼンタ),Y(イエロー),K(ブラック)の色の順で並んでいるが、この順番に限るものではなく、色順は任意に設定されるものである。
また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素(6C,6M,6Y)が停止するような機構を設けることは本発明に特に有効に利用できる。更に、図4において帯電部材は感光体と当接しているが、両者の間に適当なギャップ(10〜200μm程度)を設けることにより、両者の摩耗量が低減できると共に、帯電部材へのトナーフィルミングが少なくて済み良好に使用できる。
本発明の電子写真感光体は、離型性に優れるため,クリーニングにかかる負担が小さい。そのためクリーニング部が長寿命化する。またクリーニング部の小型化にも寄与する。さらにトナー転写率が高いため、廃トナーを減らし、トナーを有効に使用することができる。
次に、実施例によって本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、部及び%は質量基準である。
最初に、電荷発生物質(チタニルフタロシアニン結晶)の合成例について記載する。
(合成例1)
(チタニルフタロシアニン結晶の合成)
はじめに、本発明に用いたチタニルフタロシアニン結晶の合成方法について述べる。合成は、特開2004−83859号公報に準じた。即ち、1、3−ジイミノイソインドリン292部とスルホラン1800部を混合し、窒素気流下でチタニウムテトラブトキシド204部を滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行った。反応終了後、放冷した後、析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、次にメタノールで数回洗浄し、更に80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶を濾過し、次いで、洗浄液が中性になるまでイオン交換水(pH:7.0、比伝導度:1.0μS/cm)により水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8、比伝導度は2.6μS/cmであった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。
得られたこのウェットケーキ(水ペースト)40部をテトラヒドロフラン200部に投入し、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行った。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶8.5部を得た。前記ウェットケーキの固形分濃度は、15質量%であった。結晶変換溶媒は、前記ウェットケーキに対する質量比で33倍の量を用いた。なお、合成例1の原材料には、ハロゲン含有化合物を使用していない。得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定したところ、CuKα線(波長1.542Å)に対するブラッグ角2θが27.2±0.2°に最大ピークと最低角7.3±0.2°にピークを有し、更に9.4±0.2°、9.6±0.2°、24.0±0.2°に主要なピークを有し、かつ7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3°にピークを有さないチタニルフタロシアニン粉末を得られた。その結果を図5に示す。
<X線回折スペクトル測定条件>
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°〜40°
時定数:2秒
電荷発生層用塗工液
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノン溶液及びチタニルフタロシアニン結晶を投入し、ローター回転数1200r.p.m.にて30分間分散を行い、電荷発生層用塗工液を作製した。
チタニルフタロシアニン結晶 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
(合成例2)
次に、後述する感光体作製例の架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有する化合物の合成例について記載する。
(1官能の電荷輸送性構造を有する化合物の合成例)
本発明における1官能の電荷輸送性構造を有する化合物は、例えば特許第3164426号公報記載の方法にて合成される。また、下記にこの一例を示す。
(1)ヒドロキシ基置換トリアリールアミン化合物(下記式B)の合成
メトキシ基置換トリアリールアミン化合物(下記式A)113.85部(0.3mol)と、ヨウ化ナトリウム138部(0.92mol)にスルホラン240部を加え、窒素気流中で60℃に加温した。この液中にトリメチルクロロシラン99部(0.91mol)を1時間かけて滴下し、約60℃の温度で4時間半撹拌し反応を終了させた。
この反応液にトルエン約1500部を加え室温まで冷却し、水と炭酸ナトリウム水溶液で繰り返し洗浄した。
その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン:酢酸エチル=20:1)にて精製した。
得られた淡黄色オイルにシクロヘキサンを加え、結晶を析出させた。
この様にして下記式Bの白色結晶88.1部(収率=80.4%)を得た。
融点:64.0〜66.0℃
元素分析値を表1に示す。
(2)トリアリールアミノ基置換アクリレート化合物(例示化合物No.7)の合成
上記(1)で得られたヒドロキシ基置換トリアリールアミン化合物(式B)82.9部(0.227mol)をテトラヒドロフラン400mlに溶解し、窒素気流中で水酸化ナトリウム水溶液(NaOH:12.4部、水:100ml)を滴下した。この溶液を5℃に冷却し、アクリル酸クロライド25.2部(0.272mol)を40分かけて滴下した。その後、5℃で3時間撹拌し反応を終了させた。この反応液を水に注ぎ、トルエンにて抽出した。この抽出液を炭酸水素ナトリウム水溶液と水で繰り返し洗浄した。その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン)にて精製した。得られた無色のオイルにn−ヘキサンを加え、結晶を析出させた。この様にして例示化合物No.7の白色結晶80.73部(収率=84.8%)を得た。
融点:117.5〜119.0℃
元素分析値を表2に示す。
[実施例1〜52、比較例1〜5]
導電性支持体としての直径100mmのアルミニウムシリンダーに、下記組成の下引き層塗工液、電荷発生層塗工液、電荷輸送層塗工液、架橋型電荷輸送層塗工液を、順次塗布・乾燥し、約3.5μmの下引き層、約0.2umの電荷発生層、約23μmの電荷輸送層、約5μmの架橋型電荷輸送層を形成し、積層感光体を作製した。なお、各層の塗工後に指触乾燥を行った後、下引き層は130℃、電荷発生層は95℃、電荷輸送層は120℃で各々20分乾燥を行った。
架橋型電荷輸送層は、架橋型電荷輸送層塗工液を前記導電性支持体/下引き層/電荷発生層/電荷輸送層からなる積層感光体上に塗布した後にUVランプ(バルブ種 Hバルブ)(FusionUVシステムズ社製)を用いて、ランプ出力200W/cm、照度:450mW/cm、照射時間:30秒の条件で光照射を行なうことで架橋させた。この後、130℃20分の乾燥を行なうことにより、導電性支持体/下引き層/電荷発生層/電荷輸送層/架橋型電荷輸送層からなる電子写真感光体を得た。なお、実施例29〜32は導電性支持体として直径60mmのアルミニウムシリンダーを用い、同様に積層感光体を作製した。
(下引き層用塗工液)
酸化チタン(CR−EL、平均一次粒径:約0.25μm、石原産業(株)製):
50部
アルキッド樹脂
(ベッコライトM6401−50、固形分:50%、大日本インキ化学工業(株) 製): 14部
メラミン樹脂
(L−145−60、固形分:60%、大日本インキ化学工業(株)製):8部
2−ブタノン: 70部
(電荷輸送層塗工液)
ビスフェノールZポリカーボネート 10部
(パンライトTS−2050、帝人化成製)
電荷輸送物質 7部
テトラヒドロフラン 68部
1%シリコーンオイルのテトラヒドロフラン溶液 0.2部
(KF50−1CS、信越化学工業製)
電荷輸送物質は下記構造式の化合物から選択して用いた。
〔架橋型電荷輸送層用塗工液〕
第1成分 0.1部
第2成分 9.9部
第3成分 20部
光重合開始剤 2部
(1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製))
テトラヒドロフラン 200部
第1成分、第2成分、第3成分は下記化合物から選択して用いた。
第1成分材料
下記一般式(1)の構造を作製するため、ラジカル重合性化合物を合成した。
(式中、Raは、水素原子又はメチル基である。Rbは炭素数が8以上、34以下の直鎖状の飽和脂肪族炭化水素基を表す。)
(合成例1)
フラスコ内に、触媒としてパラトルエンスルホン酸5質量部、アクリル酸150質量部、炭素数が7の直鎖状の飽和脂肪族アルコールとして1−ヘプタノール600質量部、重合防止剤としてメトキノン0.3質量部、および脱水溶媒としてシクロヘキサン550質量部を入れて空気気流下で攪拌し、得られた混合物を撹拌しながら85℃まで昇温し、還流させながら生成した水を除去した。その際、前記混合物のサンプリングを行い、ガスクロマトグラフィーで分析し、アルコールの残存量が1質量%以下となった時点で、反応を終了した。
反応終了後、得られた反応混合物を水100質量部で洗浄し、未反応のアクリル酸と触媒のパラトルエンスルホン酸を除去した後、5質量%の水酸化ナトリウム水溶液で洗浄し、さらに未反応のアクリル酸を除去した。
次に、系内のアルカリを除去するために、前記処理を施した反応混合物をさらに水で洗浄し、反応混合物が中性付近となったことを確認し、減圧下で70℃に加熱することにより、シクロヘキサンを除去し、以下の炭素数が7の直鎖状の飽和脂肪族炭化水素基を有するラジカル重合性化合物650質量部を得た。これをLC−1とする。同様に各種アルコールを用いてラジカル重合性化合物を合成した。用いたアルコール、合成結果を表3に示す。
共重合体作製例
共重合体作製に用いた材料を以下に示す。
メタクリル酸(ライトエステルA)・・・CPM−4
なお、アダマンチルアクリレートは特開2001−106650号公報に従って合成した。即ち、撹拌機、温度計、Dean−Stark水分離器、ジムロート冷却器、空気導入管および下部に分液弁をつけた2000ml容量のセパラブルフラスコに塩化ナトリウムを0.05質量%含む1,3−アダマンタンジオール86.4g(513mmol)、トルエン400ml、n−オクタン400ml、アクリル酸108g(1500mmol)、濃硫酸1.23g、p−メトキシフェノール0.37gを仕込んだ。少量の空気を吹き込みながら還流状態(112℃)で5時間反応した。この間、Dean−Stark水分離器を用いて副生する水を除去した。反応液を室温まで冷却後、不溶物を濾別した。5質量%水酸化ナトリウム水溶液840gを加えて混合、分液した後、有機相を水400mlで6回洗浄した。有機相を減圧濃縮、濾過、乾燥し、白色粉末状のアダマンチルアクリレート83.8gを得た。
<第1成分No.1の作製>
表3に記載のラジカル重合性化合物LC−9を29.649g(0.1mol)とプロピレングリコールモノメチルエーテル(PGMMEと略す)29.000gを混合した。上記処方液を四径フラスコに取り、室温下窒素で30分間バブリングした。上記混合液を徐々に105℃に昇温して3時間反応させた。その後、上記混合液にターシャリーブチルパーオキシ−2−エチルヘキサエート(Iと略す)1.424gとプロピレングリコールモノメチルエーテル44.138gの混合液を滴下し、30分反応させ、重量平均分子量5500の共重合体を得た。これを第1成分No.1とする。
<第1成分No.2〜22、27〜28の作製>
第1成分No.1の作製と同様の反応条件で、共重合体を得た。その際に用いた材料を表4に示す。noneは使用していないことを表す。表5に使用した材料のモル数を示す。表6に共重合体作製に要した添加量(質量部)、および作製した第1成分の重量平均分子量を示す。
なお第1成分No.23〜26は共重合体合成後、さらに下記の操作を行い、不飽和二重結合を導入した。
(不飽和二重結合含有共重合体の合成)
<第1成分No.23の作製>
表3に記載のラジカル重合性化合物LC−9を23.719g(0.08mol)とイソボロニルメタクリレート2,223g(0.01mol)、メタクリル酸0.861g(0.01mol)、プロピレングリコールモノメチルエーテル(PGMMEと略す)26.601gを混合した。上記処方液を四径フラスコに取り、室温下窒素で30分間バブリングした。上記混合液を徐々に105℃に昇温して3時間反応させた。その後、上記混合液にターシャリーブチルパーオキシ−2−エチルヘキサエート(Iと略す)1.287gとプロピレングリコールモノメチルエーテル39.902gの混合液を滴下し、30分反応させた。
その反応溶液にテトラブチルアンモニウムブロマイド0.201gとハイドロキノン0.08gを含有する0.013gのプロピレングリコールモノメチルエーテル溶液を加え、空気でバブリングしながら、グリシジルメタクリレート3.46gとプロピレングリコールモノメチルエーテル0.005gの溶液を約1時間かけて滴下し、その後5時間反応させた。
<第1成分No.24の作製>
表3に記載のラジカル重合性化合物LC−10を25.963g(0.08mol)とイソボロニルメタクリレート2,223g(0.01mol)、メタクリル酸0.861g(0.01mol)、プロピレングリコールモノメチルエーテル(PGMMEと略す)28.828gを混合した。上記処方液を四径フラスコに取り、室温下窒素で30分間バブリングした。上記混合液を徐々に105℃に昇温して3時間反応させた。その後、上記混合液にターシャリーブチルパーオキシ−2−エチルヘキサエート(Iと略す)1.395gとプロピレングリコールモノメチルエーテル43.242gの混合液を滴下し、30分反応させた。
その反応溶液にテトラブチルアンモニウムブロマイド0.218gとハイドロキノン0.08gを含有する0.014gのプロピレングリコールモノメチルエーテル溶液を加え、空気でバブリングしながら、グリシジルメタクリレート3.749gとプロピレングリコールモノメチルエーテル0.005gの溶液を約1時間かけて滴下し、その後5時間反応させた。
<第1成分No.25の作製>
表3に記載のラジカル重合性化合物LC−11を32.696g(0.08mol)とイソボロニルメタクリレート2,223g(0.01mol)、メタクリル酸0.861g(0.01mol)、プロピレングリコールモノメチルエーテル(PGMMEと略す)35.510gを混合した。上記処方液を四径フラスコに取り、室温下窒素で30分間バブリングした。上記混合液を徐々に105℃に昇温して3時間反応させた。その後、上記混合液にターシャリーブチルパーオキシ−2−エチルヘキサエート(Iと略す)1.719gとプロピレングリコールモノメチルエーテル53.265gの混合液を滴下し、30分反応させた。
その反応溶液にテトラブチルアンモニウムブロマイド0.268gとハイドロキノン0.01gを含有する0.017gのプロピレングリコールモノメチルエーテル溶液を加え、空気でバブリングしながら、グリシジルメタクリレート4.618gとプロピレングリコールモノメチルエーテル0.007gの溶液を約1時間かけて滴下し、その後5時間反応させた。
<第1成分No.26の作製>
表3に記載のラジカル重合性化合物LC−12を37.185g(0.08mol)とイソボロニルメタクリレート2,223g(0.01mol)、メタクリル酸0.861g(0.01mol)、プロピレングリコールモノメチルエーテル(PGMMEと略す)39.965gを混合した。上記処方液を四径フラスコに取り、室温下窒素で30分間バブリングした。上記混合液を徐々に105℃に昇温して3時間反応させた。その後、上記混合液にターシャリーブチルパーオキシ−2−エチルヘキサエート(Iと略す)1.934gとプロピレングリコールモノメチルエーテル59.948gの混合液を滴下し、30分反応させた。
その反応溶液にテトラブチルアンモニウムブロマイド0.302gとハイドロキノン0.011gを含有する0.019gのプロピレングリコールモノメチルエーテル溶液を加え、空気でバブリングしながら、グリシジルメタクリレート5.918gとプロピレングリコールモノメチルエーテル0.008gの溶液を約1時間かけて滴下し、その後5時間反応させた。
第2成分材料
・トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製) ・・・(AM−1)
分子量:296、官能基数:3官能、分子量/官能基数=99
・ジペンタエリスリトールカプロラクトン変性ヘキサアクリレート
(KAYARAD DPCA−120、日本化薬製)・・・(AM−4)
分子量:1947、官能基数:6官能、分子量/官能基数=325
(重合開始剤)
・1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)・・・I−184
第3成分材料
フィラー
アルミナ(平均一次粒径:0.3μm、スミコランダムAA03 住友化学工業製)
・・・F−1
シリカ
疎水化シリカパウダー
(商品名:KMPX−100、平均粒径0.1μm、信越化学工業(株)製)
・・・F−2
アクリル変性ポリオルガノシロキサン化合物からなる粒子
(シャリーヌR―170S、日信化学工業株式会社製) ・・・F−3
上記フィラーを含有する場合の架橋型電荷輸送層塗工液は以下の通り。
第1成分 0.1部
第2成分 9.9部
第3成分 20部
フィラー 4部
光重合開始剤 2部
(1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製))
テトラヒドロフラン 219部
表7に実施例で使用した電子写真感光体の処方表を示す。表8に比較例で使用した電子写真感光体の処方表を示す。
<実機試験>
以下に示す方法で、摩耗量測定、転写率測定、画質評価を行った。
実施例1〜28、33〜52、および比較例にはリコー製imagio Neo753改造機を用いた。また、実施例29〜32はリコー製imagio MP C7500シアンプロセスカートリッジから潤滑剤を取った改造機を用いた。
実機による通紙ランニングは、電子写真用プロセスカートリッジに前記電子写真感光体を装着し、リコー製imagio Neo753改造機およびimagio MP C7500改造機を用いて、最大で10万枚の実機通紙試験(A4、NBSリコー製MyPaper、スタート時帯電電位−700V)を実施した。なお、通紙ランニングは日本画像学会テストチャートNo.8、6%のチャートを用いた。
(転写率測定)
転写率測定は下記式を用いて算出した。
転写率 =1−<転写残トナー率>
=1−<(転写残トナーM/A)/(転写前トナーM/A)>
現像された感光体上のチャートを転写し、転写紙が搬送ベルト上にある時に装置を停止する。チャートの黒ベタ部に着目し、感光体上の黒ベタ部の転写残トナー量を粘着テープで剥がし、感光体上の残トナー量を求める。この際、残トナーID(Image Density、画像濃度)とトナー量とのプロットから係数を算出し、残トナーIDから残トナーM/A(感光体に付着したトナーの単位面積当たりの重量:mg/cm2)を算出した。また転写前トナーはM/A感光体上の転写前トナー量を測定し、算出した。なお、転写率評価チャートは画像面積2cm2のベタ画像が並んだものを用いた。
(摩耗量測定)
ランニング10万枚終了後に感光体を取り出し、ランニング試験前後の感光体の膜厚の差から、摩耗量を測定した。膜厚測定は、渦電流式膜厚計フィッシャースコープMMS(フィッシャー製)を用いた。
(画質評価)
ランニング前、ランニング10万枚終了後に日本画像学会テストチャートNo.3を出力し、画質を評価した。評価は以下の基準で行った。
◎:画像品質にほとんど低下がないレベル
○:画像品質は若干低下したが、目視観察では問題ないレベル
△:目視観察でも画像品質の低下がわかるレベル
×:画像品質上重大な問題があるレベル
上記試験結果を以下の表9、表10に示す。
比較例1、2,3は感光体上に異物が確認され、画像品質に影響した。比較例4は初期画像濃度が非常に薄かったため、転写率測定、ランニング試験を実施していない。
実施例から本発明の電子写真感光体は離型性と機械的耐久性の両立が可能となった。
実施例2、実施例52で用いた電子写真感光体をSPM(D3100,BioScope社製)で観察した結果を図6、7に示す。測定条件は以下の通りである。
プローブ:NCHV−10V
スキャン回数:256
本発明の電子写真感光体はこれらの図に示すように表面に微細な凹凸を有する。これは第1成分と第3成分の相溶性が悪いために層分離を起しているためであると考えられる。本発明の電子写真感光体は表面に微細な凹凸を有しているため、優れた離型性を有していると考えられる。さらに一般式(1)で表される構造由来の潤滑性に由来した離型性も付与されていると考えられる。
1 感光体
2 除電ランプ
3 帯電チャージャ
5 画像露光部
6 現像ユニット
7 転写前チャージャ
8 レジストローラ
9 転写体
10 転写チャージャ
11 分離チャージャ
12 分離爪
13 クリーニング前チャージャ
14 ファーブラシ
15 クリーニングブレード
31 導電性支持体
32 電荷発生層
33 電荷輸送層
34 架橋型電荷輸送層
101 感光体
102 帯電手段
103 露光手段
104 現像手段
105 転写体
106 転写手段
107 クリーニング手段
(図4において)
1C、1M、1Y、1K 感光体
2C、2M、2Y、2K 帯電部材
3C、3M、3Y、3K レーザー光
4C、4M、4Y、4K 現像部材
5C、5M、5Y、5K クリーニング部材
6C、6M、6Y、6K 画像形成要素
7 転写紙
8 給紙コロ
9 レジストローラ
10 転写搬送ベルト
11C、11M、11Y、11K 転写ブラシ
12 定着装置
特開2002−139859号公報 特開2001−125286号公報 特開2001−324857号公報 特開2003−098708号公報 特開平5−181299号公報 特開2002−006526号公報 特開2002−082465号公報 特開2000−284514号公報 特開2000−284515号公報 特開2001−194813号公報 特許第3194392号公報 特開2004−302451号公報 特開2005−99688号公報 特開2007−178815号公報 特開2002−6526号公報 特開2008−139824号公報 特開2008−233893号公報 特開2003−302779号公報 特開平5−216249号広報 特開2005−55589号広報 特開2001−272802 特開2001−166510号公報

Claims (10)

  1. 導電性支持体上に少なくとも電荷発生層、電荷輸送層、および架橋型電荷輸送層を順次積層した電子写真感光体において、
    該架橋型電荷輸送層が下記第1成分、第2成分および第3成分由来の構造単位を含むことを特徴とする電子写真感光体。
    第1成分:繰り返し単位として、一般式(1)で表される構造を含む重合体
    (式中、Raは、水素原子又はメチル基である。Rbは炭素数が8以上、34以下の直鎖状の飽和脂肪族炭化水素基を表す。)
    第2成分:電荷輸送性構造を有しないラジカル重合性モノマーまたは電荷輸送性構造を有しないラジカル重合性オリゴマー
    第3成分:電荷輸送性構造を有するラジカル重合性化合物
  2. 前記一般式(1)において、Rbの炭素数が15以上、30以下であることを特徴とする請求項1に記載の電子写真感光体。
  3. 前記第1成分が第一の繰り返し単位と、第二の繰り返し単位とを含む共重合体であり、前記第一の繰り返し単位は少なくとも1種類の環状構造を含み、前記第二の繰り返し単位は前記一般式(1)で表されることを特徴とする請求項1又は2に記載の電子写真感光体。
  4. 前記第1成分の重合体が、一般式(1)で表される構造の共重合比がモル比で0.3以上0.9以下の共重合体であることを特徴とする請求項1乃至3のいずれか一項に記載の電子写真感光体。
  5. 前記第1成分中の第一の繰り返し単位に含まれる環状構造がアダマンタン環、ノルボルナン環、シクロヘキシル環から選択される少なくとも1種類であることを特徴とする請求項3又は4に記載の電子写真感光体。
  6. 前記電荷輸送層に、電荷輸送物質として下記一般式(2)で表されるジスチリルベンゼン誘導体を少なくとも1種類含むことを特徴とする請求項1乃至5のいずれか一項に記載の電子写真感光体。
    〔上式中、R1〜R30は水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のアルキル基もしくは炭素数1〜4のアルコキシ基で置換されたアリール基、無置換のアリール基、炭素数1〜4のアルキル基もしくは炭素数1〜4のアルコキシ基で置換されたベンジル基を表し、それぞれ同一でも異なっていてもよい。〕
  7. 前記架橋型電荷輸送層に、少なくとも1種類のフィラー微粒子を含むことを特徴とする請求項1乃至6のいずれか一項に記載の電子写真感光体。
  8. 少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体を具備してなる画像形成装置において、該電子写真感光体が請求項1乃至7のいずれか一項に記載の電子写真感光体であることを特徴とする画像形成装置。
  9. 少なくとも帯電手段、露光手段、現像手段、及び電子写真感光体からなる画像形成要素が複数配列され、該電子写真感光体が請求項1乃至7のいずれか一項に記載の電子写真感光体であることを特徴とする画像形成装置。
  10. 電子写真感光体と帯電手段、露光手段、現像手段、転写手段、及びクリーニング手段から選ばれる少なくとも1つの手段とが1体となった画像形成装置用プロセスカートリッジにおいて、該電子写真感光体が請求項1乃至7のいずれか一項に記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ。
JP2009297370A 2009-12-28 2009-12-28 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ Expired - Fee Related JP5445763B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009297370A JP5445763B2 (ja) 2009-12-28 2009-12-28 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ
US12/979,986 US8617778B2 (en) 2009-12-28 2010-12-28 Image bearing member, image forming apparatus, and process cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297370A JP5445763B2 (ja) 2009-12-28 2009-12-28 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ

Publications (2)

Publication Number Publication Date
JP2011137953A true JP2011137953A (ja) 2011-07-14
JP5445763B2 JP5445763B2 (ja) 2014-03-19

Family

ID=44349451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297370A Expired - Fee Related JP5445763B2 (ja) 2009-12-28 2009-12-28 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ

Country Status (1)

Country Link
JP (1) JP5445763B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014150A (ja) * 2010-06-02 2012-01-19 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、電子写真感光体の製造方法
JP2013137517A (ja) * 2011-11-30 2013-07-11 Canon Inc 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
JP2013137492A (ja) * 2011-11-30 2013-07-11 Canon Inc 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
US8962227B2 (en) 2011-05-24 2015-02-24 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, method of producing electrophotographic photosensitive member, and urea compound
JP2015169870A (ja) * 2014-03-10 2015-09-28 コニカミノルタ株式会社 電子写真感光体
JP2018194591A (ja) * 2017-05-12 2018-12-06 キヤノン株式会社 電子写真感光体の製造方法、電子写真感光体、プロセスカートリッジ及び電子写真装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166510A (ja) * 1999-12-13 2001-06-22 Canon Inc 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2003302779A (ja) * 2002-04-10 2003-10-24 Konica Minolta Holdings Inc 電子写真感光体、電子写真感光体の製造方法、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2004046221A (ja) * 2002-07-15 2004-02-12 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2009186984A (ja) * 2008-01-10 2009-08-20 Ricoh Co Ltd 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166510A (ja) * 1999-12-13 2001-06-22 Canon Inc 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2003302779A (ja) * 2002-04-10 2003-10-24 Konica Minolta Holdings Inc 電子写真感光体、電子写真感光体の製造方法、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2004046221A (ja) * 2002-07-15 2004-02-12 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2009186984A (ja) * 2008-01-10 2009-08-20 Ricoh Co Ltd 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014150A (ja) * 2010-06-02 2012-01-19 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、電子写真感光体の製造方法
US8962227B2 (en) 2011-05-24 2015-02-24 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, method of producing electrophotographic photosensitive member, and urea compound
JP2013137517A (ja) * 2011-11-30 2013-07-11 Canon Inc 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
JP2013137492A (ja) * 2011-11-30 2013-07-11 Canon Inc 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
US8859172B2 (en) 2011-11-30 2014-10-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2015169870A (ja) * 2014-03-10 2015-09-28 コニカミノルタ株式会社 電子写真感光体
JP2018194591A (ja) * 2017-05-12 2018-12-06 キヤノン株式会社 電子写真感光体の製造方法、電子写真感光体、プロセスカートリッジ及び電子写真装置

Also Published As

Publication number Publication date
JP5445763B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5549917B2 (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4579151B2 (ja) 感光体及びその製造方法
JP4194973B2 (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP5652641B2 (ja) 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ
JP2004302451A (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2007241158A (ja) 電子写真感光体、その製造方法、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2007241140A (ja) 像担持体及びそれを用いた画像形成方法、並びに画像形成装置、プロセスカートリッジ
JP5418012B2 (ja) 電子写真感光体、及びこれを用いた画像形成方法、画像形成装置、プロセスカートリッジ
JP2004302452A (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP5445763B2 (ja) 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ
JP2010164646A (ja) 電子写真感光体、及びこれを用いた画像形成方法、画像形成装置、プロセスカートリッジ
JP4796519B2 (ja) 像担持体、それを用いた画像形成装置、プロセスカートリッジおよび画像形成方法
JP4485419B2 (ja) 静電潜像担持体及びプロセスカートリッジ、並びに画像形成装置及び画像形成方法
JP2005227761A (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4885014B2 (ja) 像担持体、それを用いた画像形成方法、画像形成装置及びプロセスカートリッジ
JP5652608B2 (ja) 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ
JP5435219B2 (ja) 電子写真感光体、並びにそれを用いた画像形成装置及びプロセスカートリッジ
JP4688718B2 (ja) 電子写真感光体とその製造方法、画像形成装置、プロセスカートリッジ
JP5038839B2 (ja) 像担持体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP5429606B2 (ja) 電子写真感光体の製造方法、電子写真感光体、それを用いた画像形成方法、画像形成装置および画像形成装置用プロセスカートリッジ
JP2007147986A (ja) 感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2008070553A (ja) 画像形成装置及び画像形成用プロセスカートリッジ
JP2006010972A (ja) 像担持体及びプロセスカートリッジ、並びに画像形成装置及び画像形成方法
JP2012098639A (ja) 電子写真感光体、それを用いた画像形成装置及びプロセスカートリッジ
JP5578396B2 (ja) 電子写真感光体、電子写真感光体を有するプロセスカートリッジ、及び電子写真装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R151 Written notification of patent or utility model registration

Ref document number: 5445763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees