JP2011075592A - 受光モジュールおよび受光モジュールの製造方法 - Google Patents

受光モジュールおよび受光モジュールの製造方法 Download PDF

Info

Publication number
JP2011075592A
JP2011075592A JP2009223643A JP2009223643A JP2011075592A JP 2011075592 A JP2011075592 A JP 2011075592A JP 2009223643 A JP2009223643 A JP 2009223643A JP 2009223643 A JP2009223643 A JP 2009223643A JP 2011075592 A JP2011075592 A JP 2011075592A
Authority
JP
Japan
Prior art keywords
light receiving
light
shape
receiving surface
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009223643A
Other languages
English (en)
Other versions
JP5241666B2 (ja
Inventor
Tomoshi Nishikawa
智志 西川
Kohei Sugihara
浩平 杉原
Yuichiro Horiguchi
裕一郎 堀口
Eiji Yagyu
栄治 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009223643A priority Critical patent/JP5241666B2/ja
Publication of JP2011075592A publication Critical patent/JP2011075592A/ja
Application granted granted Critical
Publication of JP5241666B2 publication Critical patent/JP5241666B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】本発明は、光受光部とレンズとの距離のばらつきや多芯フェルールのコア間隔のばらつきによって光学系の倍率がばらついても高効率で光受光部に集光させることが可能な受光モジュールおよび受光モジュールの製造方法を提供することを目的とする。
【解決手段】本発明による受光モジュールは、入射された複数の入射光1の各々を次段に出射する複数の出射部6aと、複数の出射部6aの各々に対応して配列され、複数の出射部6aの各々から出射された複数の入射光1を受光する複数の受光部6bと、複数の出射部6aと複数の受光部6bとの間に配置され、複数の出射部6aの各々から出射された複数の入射光1を複数の受光部6bの各々に集光するレンズ4とを備え、複数の受光部6bの形状は、レンズ4の中心軸に対応する中心点11と、受光部6bの中点とを結ぶ直線に沿って延伸した形状であることを特徴とする。
【選択図】図1

Description

本発明は、受光モジュールおよび受光モジュールの製造方法に関し、特に、複数の光ファイバ等から入力された複数の入力光を複数の受光素子等で受光する受光モジュールおよび受光モジュールの製造方法に関する。
従来において、複数の光ファイバ等から入力された複数の入力光を複数の受光素子等で受光する受光モジュールは、光ファイバ数分のレンズおよび受光素子を組み合わせることによって単純に構成することができる。しかし、このような構成の受光モジュールでは、構成部品が多くなってしまい、小型化や組み立てが難しくなるという問題があった。
上記の問題の対策として、部品数を減らして小型化するために、複数の光ファイバについてはフェルール内に複数の光ファイバを有する多芯フェルールを用い、多芯フェルールの各光ファイバから出射された光を1枚のレンズを介して複数の受光素子に集光させる構成とした受光モジュールがある。しかし、このような構成の受光モジュールでは、レンズと受光素子との間隔が小さくなるため、受光素子およびレンズを受光モジュールのパッケージ内に位置調整して固定した後に、他の構成部品の位置調整をして固定する必要があるため、組み立てが煩雑になるという問題があった。
なお、各光ファイバから出射された光を受光素子の各受光面に容易に集光させるためには、受光面を大きくしてレンズ等の位置調整に要求される精度を緩和させる方法が考えられるが、受光面の大きさは受光する信号のレート(通信速度)が高くなるほど小さくする必要がある。従って、信号のレートが高くなるほどレンズ等の位置調整に要求される精度が厳しくなるため、受光面を大きくすることはできない。
また、フェルール内に複数の光ファイバを有する多芯フェルールを用い、多芯フェルールの各光ファイバから出射された光を2枚のレンズを介して複数の受光素子に集光させる、テレセントリック光学系を用いた受光モジュールがある。このような構成の受光モジュールでは、受光素子と、受光素子に近い側のレンズとの距離のばらつきを、他方のレンズの位置調整によって補正できるため、受光素子に近い側のレンズの位置調整を容易にすることができるが、2枚のレンズを使用することによって組み立てが複雑化するという問題があった。
また、レンズに屈折率分布レンズを用いることによってレンズホルダが不要となり、屈折率分布レンズをV溝やパイプ等の治具に直接取り付けることができるため、取り付けおよび調芯が容易となる受光モジュールが開示されている(例えば、特許文献1参照)。
特開2006−323020号公報
しかし、特許文献1に記載の受光モジュールでは、受光素子およびレンズを受光モジュールのパッケージ内に位置調整して固定した後に、他の構成部品の位置調整をして固定する必要があるため、組み立てが煩雑になるという問題があった。また、2芯フェルール内にて所定の間隔で設けられた2つのコアから出射された各々の光を、1枚のレンズを介して受光素子にて所定の間隔で設けられたツインPD(Photo Diode:フォトダイオード)の各々のPD(光受光部)に集光させる場合において、光学系の倍率、すなわちレンズとPDとの距離を正確に調整しなければならないため調芯が煩雑になるという問題があった。
本発明は、これらの問題を解決するためになされたものであり、光受光部とレンズとの距離のばらつきや多芯フェルールのコア間隔のばらつきによって光学系の倍率がばらついても高効率で光受光部に集光させることが可能な受光モジュールおよび受光モジュールの製造方法を提供することを目的とする。
上記の課題を解決するために、本発明による受光モジュールは、複数の入力光を受光する受光モジュールにおいて、入射された複数の入力光の各々を次段に出射する複数の光出射部と、複数の光出射部の各々に対応して配列され、複数の光出射部の各々から出射された複数の入力光を受光する複数の光受光部と、複数の光出射部と複数の光受光部との間に配置され、複数の光出射部の各々から出射された複数の入力光を複数の光受光部の各々に集光するレンズとを備え、複数の光受光部の形状は、レンズの中心軸に対応する中心点と、光受光部の中点とを結ぶ直線に沿って延伸した形状であることを特徴とする。
本発明によると、複数の光受光部の形状は、レンズの中心軸に対応する中心点と、光受光部の中点とを結ぶ直線に沿って延伸した形状であるため、光受光部とレンズとの距離のばらつきや多芯フェルールのコア間隔のばらつきによって光学系の倍率がばらついても高効率で光受光部に集光させることが可能となる。
本発明の実施形態1による受光モジュールの光学系を示す図である。 本発明の実施形態1による受光面の形状を示す図である。 本発明の実施形態1による受光面の他の形状を示す図である。 本発明の実施形態1による図3の形状における受光面と集光スポットとの位置関係を示す図である。 本発明の実施形態2による出射部および受光面の形状を示す図である。 本発明の実施形態3による出射部および受光面の形状を示す図である。 本発明の実施形態4による受光面の形状を示す図である。 本発明の実施形態5による出射部および受光面の形状を示す図である。 本発明の実施形態6による出射部および受光面の形状を示す図である。 受光面とビームスポットとの位置関係を示す図である。
本発明の実施形態について、図面を用いて以下に説明する。
〈実施形態1〉
図1は、本発明の実施形態1による受光モジュールの光学系を示す図である。図1に示すように、本実施形態1による受光モジュールは、2つの入射光1(入力光)を受光する受光モジュールであり、2本の光ファイバ2によって入射された2つの入射光の各々を次段に出射する2つの出射部6a(光出射部)を有する2芯フェルール3aと、出射部6aの各々に対応して配置され、出射部6aの各々から出射された入射光1を受光する2つの受光部6b(光受光部)を有するツインPD5aと、出射部6aと受光部6bとの間に配置され、出射部6aの各々から出射された入射光1を受光部6bの各々に集光するレンズ4とを備えている。本実施形態では、受光部6bの全体が受光面である。また、受光部6bの形状は、レンズ4の中心軸に対応する中心点11と、受光部6bの中点とを結ぶ直線に沿って延伸した形状である。なお、本実施形態1では2芯フェルール3aおよびツインPD5aを用いているが、多芯フェルールであってもよく、フェルールに設けられる光ファイバの本数と同数の受光部6bを設ければよい。
受光モジュールの製造手順としては、まず初めにツインPD5a(受光素子)を導電性接着剤によって固定し、次に内部にレンズ4を固定されたレンズホルダ(図示せず)を所定の位置にYAGレーザ溶接によって固定する。最後に2芯フェルール3a(多芯フェルール)を調芯して固定する。2芯フェルール3a(多芯フェルール)の固定は、フェルールをフェルール固定用金属製治具にYAGレーザ溶接によって固定した後に、フェルール固定用金属製治具をモジュール筐体に固定する。
本実施形態1では、2芯フェルール3aのコア間隔(出射部6aの間隔)を250nmとし、レンズ4は縮小率が約1/2倍の非球面レンズを用いている。また、受光部6bは中心間隔が125nmとなるように形成されている。このような構成により、2芯フェルール3aの出射部6aから出射された光(入射光1)は、レンズ4を介してビーム径とビーム間隔を1/2に縮小して受光部6bに集光して受光されている。
なお、図1中において、入射光1の伝搬方向をz軸とし、z軸に直交する2軸をそれぞれx軸、y軸とする。また、受光部6bの形状は、従来のように円形ではなく図2に示すような異方性形状となっている。図2の説明については、後に詳細に説明する。
ツインPD5a(受光素子)の応答周波数帯域は、素子の容量が小さいほど高くすることができるが、受光面の面積が大きいほど素子の容量も大きくなるため、高速信号(高周波数の信号)を受信するためには受光面の面積を小さくする必要がある。例えば、周波数帯域が10GHz級の信号を受信するためには、100πμm2(直径20μmの円形の面積)程度の受光面の面積が必要である。受光面の端部にて発生する容量の寄与分もあるが、受光面の面積が概ね同じであれば、形状によらず同程度の素子容量になる。
次に、出射部6aから出射された入射光1が受光部6bの受光面に集光される場合における、調芯の公差について説明する。
図10は、受光面とビームスポットとの位置関係を示す図である。図10に示すように、受光面は従来から用いられている円形受光面7iとする。また、2芯フェルール(多芯フェルール)を調芯して円形受光面7i上での入射光1のビームスポット(集光スポット)径が最小になるように調整する場合を想定している。
組み立て時のばらつきによって受光素子とレンズとの間隔が所定の大きさからずれると、レンズの縮小率(例えば、本実施形態では1/2倍)がずれる。レンズの圧縮率がずれた状態で円形受光面7i上のビームスポット径が最小になるように2芯フェルールを調整すると、ビーム径およびビーム間隔がずれてしまう。図10(a)は、レンズの縮小率が最適に調整されている場合を示しており、ビームスポット10は円形受光面7iの中央に集光されている。図10(b)は、レンズの縮小率が小さい場合を示しており、ビームスポット10は円形受光面7iのビームスポット10の間隔が互いに小さくなる側に集光されている。図10(c)は、レンズの縮小率が大きい場合を示しており、ビームスポット10は円形受光面7iのビームスポット10の間隔が互いに大きくなる側に集光されている。図10(b)および(c)に示すように、ビームスポット10が円形受光面7iの端部近傍に位置しているため、円形受光面7iでのビームスポット10の公差が減少していることが分かる。なお、両図において、ビームスポット10の間隔が大きい場合と小さい場合とでは、光学系(レンズ)の縮小率が異なるため、ビームスポット径もわずかに異なる。また、図10(d)に示すように、レンズの圧縮率が図10(c)よりもさらに大きい方にずれると、入射光1の全てを円形受光面7iに集光させることができなくなって損失が生じる。
上記のことから、レンズの縮小率を所定の範囲内となるように調整するためには、2芯フェルールとレンズとの間隔、および、レンズと受光素子との間隔の各々を許容公差の範囲内に調整する必要がある。そのためには、最初に調整を行うレンズと受光素子との間隔を許容公差の範囲内に調整しなければならない。また、レンズと受光素子との間隔が許容公差の範囲内となるように位置調整できれば、その後に行う2芯フェルールの位置調整は、受光部6bにて受光された光の検出光量が最大となるように、フェルールの回転と3軸(x軸、y軸、z軸)方向の微動による通常の調芯方法によって調整することができる。従来では、レンズと受光素子との間隔を正しく位置調整することが最も難しく、そのため当該調整時における公差の増大(許容公差の範囲の拡大)が求められている。本実施形態では、公差を増大させることを目的としており、以下に本実施形態1の特徴について説明する。
図2は、本発明の実施形態1による受光面の形状を示す図である。図2に示すように、受光面の形状は、レンズ4の中心軸に対応する中心点11と、受光部6bの中点とを結ぶ直線に沿って延伸した方向を長手方向とし、長手方向に対して垂直方向を短手方向とした対称トラック型受光面7a(トラック形状)である。このように、受光面は、レンズ4の中心軸に対応する中心点11を中心として1軸方向に配列されている。なお、本実施形態1において、受光部6bと受光面との形状は同じ形状であるとする。また、受光面の形状は、受光素子を製造するウエハプロセスにて用いられる露光用マスクによって、容易に所望の形状とすることができる。
対称トラック型受光面7aの形状は、例えば、同面積の円形の受光面と比較すると、長手方向の大きさが約1.5倍(33μm)、短手方向の大きさが約0.5倍(10μm)である。また、各対称トラック型受光面7aの中心の間隔は、従来の円形の受光面と同じ125μmである。
上記の条件の場合において、出射部6aから出射される入射光1のビーム径を約10μmとすると、縮小率が1/2のレンズ4(集光光学系)を介して受光部6bに集光された光のビームスポットは、直径約5μmの円形となる。当該ビームスポットが対称トラック型受光面7aの中央に調芯することができた場合は、対称トラック型受光面7aの短手方向に±2.5μm、長手方向に±14.0μmの位置調整の公差を確保できる。一方、従来の円形(直径20μm)の受光面の場合は、何れの方向にも±7.5μmの等方的な位置調整の公差となる。
従来より、受光素子およびレンズを固定した後、受光部にて受光された光の検出量が最大(受光強度が最大)となるように2芯フェルール(多芯フェルール)によって調芯されるが、2芯フェルールによって受光強度が最大となる位置±1μm以内の精度で調芯して固定することができる。
上記のことから、対称トラック型受光面7aの短手方向については、位置調整公差が従来の±7.5μmから±2.5μmに減少しても、レンズの固定位置によらず正しく調整(調芯)することができる。また、対称トラック型受光面7aの長手方向については、2芯フェルールの調芯による精度(±1μm)を考慮しても、±13μm程度の公差がある。当該公差は、光学系の縮小率の変動に伴う各受光面の中心の間隔(ビームスポット間隔)の変動に換算すると、±13μm/125μm=±10.4%の変動に相当し、当該変動をレンズと受光素子との間隔に換算すると概ね1/2の±5%の変動に相当する。
従って、レンズと受光素子との間隔が上記の変動範囲内であれば、レンズの固定位置のばらつきによって光学系の縮小率が変動しても2芯フェルールの調芯によって正しく調整することができる。例えば、レンズと受光素子との間隔を660μm程度とした場合、レンズの固定位置の公差は660μmの±5%=±33μmとなる。一方、受光面が従来の円形で、かつ受光面積が対称トラック型受光面7aと同じである場合、受光面での位置調整の公差は±7.5μmとなる。当該公差は、光学系の縮小率の変動に伴う各受光面の中心の間隔(ビームスポット間隔)の変動に換算すると、±7.5μm/125μm=±約6%の変動に相当し、当該変動をレンズと受光素子との間隔に換算すると概ね1/2の±3%の変動に相当する。例えば、レンズと受光素子との間隔を660μm程度とした場合、レンズの固定位置の公差は660μmの±3%=±20μmとなる。
以上のことから、レンズの固定位置の公差は、受光面の形状を異方性形状(対称トラック型受光面7a)とした方が従来と比べて13μm以上大きくなることが分かる。従って、レンズの固定位置の公差が大きくなることによって光受光部とレンズとの距離のばらつきや多芯フェルールのコア間隔のばらつきによって光学系の倍率がばらついても高効率で光受光部に集光させることが可能となるとともに、レンズの調芯に要する時間を短縮することができ、受光モジュールを歩留まり良く製造することができる。
図3は、本発明の実施形態1による受光面の他の形状を示す図である。図3に示す非対称トラック型受光面7bは、図2に示す対称トラック型受光面7aに対して、短手方向の長さがレンズ4の中心軸に対応する中心点11から長手方向に向かって徐々に長くなる形状となっている。
本発明の実施形態における受光モジュールでは、例えば受光部6bが2つ設けられている場合において、それぞれの受光部6bにて対称となる位置で受光するように調整されると、最も出射部6aの位置調整の公差を大きくすることができる。ビームスポットの間隔が小さい状態で受光する場合(図4(a))と、ビームスポットの間隔が大きい状態で受光する場合(図4(b))とでは、ビームスポットの大きい状態で受光した方が光学系の倍率が大きくなるため、集光されたビームスポットが大きくなる。従って、図2に示す対称トラック型受光面7aにて受光すると、ビームスポットの間隔が大きくなるほどビームスポット径も大きくなるため、その分だけ位置調整の公差が減少してしまう。一方、図3に示す非対称トラック型受光面7bにて受光すると、ビームスポットの間隔が大きくなっても位置調整の公差を確保できるという利点がある。
図3において点線で示される受光エリア8は、光学系のばらつきを考慮した場合に受光する可能性のあるエリアを示しており、非対称トラック形状となる。なお、非対称トラック型受光面7bは、受光エリア8に対して所定の位置調整公差分だけ同じ幅で広がった(相似の)非対称トラック状にすることが望ましい。
また、受光面の形状は、本実施形態1の図2および図3に示した形状だけではなく、受光面積を同一としたままで、短手方向をさらに短くして長手方向をさらに長くすることによって、レンズの固定位置の公差をさらに大きくすることが可能となる。例えば、短手方向の長さを9μmとすると、長手方向の長さは45μmとすることができる。その結果、レンズの固定位置の公差を±20μmと大きくすることが可能となる。短手方向の長さは、出射部6aから出射される出射ビームのビーム径と集光光学系の縮小率で決まる集光ビームのスポット径に対して、±1μm程度の固定精度公差を加えた大きさまで小さくすることが可能であり、本実施形態の場合では約7μm程度まで低減可能であると推考される。
以上のことから、例えば、初めに受光部6bを位置固定した後に、レンズ4を光受光強度をモニタすることなく通常の光モジュールよりも大きな位置公差で固定(無調芯固定)し、その後に2芯フェルール3aの出射部6aを光受光強度をモニタし調芯しながら位置固定するため、レンズの調芯が簡便になって受光モジュールを容易に製造することが可能となる。このとき、受光部6bとレンズ4との間隔、または、レンズ4と出射部6aとの間隔のうちのいずれか一方の間隔を無調芯で設定すればよい。また、光出射部6aによる調芯時の位置調整の公差を大きくできるため、調芯工程における歩留まりを良好にできる。すなわち、光受光部とレンズとの距離のばらつきや多芯フェルールのコア間隔のばらつきによって光学系の倍率がばらついても高効率で光受光部に集光させることが可能となる。
〈実施形態2〉
図5は、本発明の実施形態2による出射部および受光面の形状を示す図である。図5に示すように、本実施形態2による光モジュールは、出射部6aおよび受光面は4個ずつあり、それぞれが正方形状に配列されている。その他の構成は、実施形態1と同様であるため、ここでは説明を省略する。
図5に示す非対称トラック型PDアレイ受光面は、正方形状の中心から延伸された非対称トラック形状となっている。すなわち、レンズ4の中心軸に対応する中心点11を中心として2軸方向に配列されている。
なお、受光面は、受光する可能性のあるエリアに対して所望の位置調整の公差分だけ広がった非対称トラック形状にすることが好ましい。また、出射部6aおよび受光面は、3個以上であればよく、配列状態は正方形状だけではなく長方形状など所望の形状であってもよい。
以上のことから、光学系の倍率がばらついた場合であっても、出射部6aの位置調整の公差を大きくすることができる。
〈実施形態3〉
図6は、本発明の実施形態3による出射部および受光面の形状を示す図である。図6に示すように、本実施形態3による光モジュールは、出射部6aおよび受光面は2個ずつあり、各受光面は円弧状に延伸された形状となっている。すなわち、2つ(複数)の受光面6b(光受光部)の形状は、レンズ4の中心軸に対応する中心点11から所定の距離を半径とし、中心点11を中心として所定の角度だけ回転して描かれた円弧に沿った形状であることを特徴としている。その他の構成は、実施形態1と同様であるため、ここでは説明を省略する。
光学系の調整において、受光部6bとレンズ4との距離、レンズ4と出射部6aとの距離を正確に調整する他に、出射部6aにおける各光ファイバ2のファイバコアの配列方向の角度と、受光部6bの受光面の配列方向の角度とを正確に合わせる必要がある。
本実施形態1および2では、受光部6bとレンズ4との距離のばらつきに対して調整公差を大きくする受光モジュールについて説明したが、本実施形態3では、各受光面が円弧状に延伸して形成されているため、上述の角度がばらついた場合であっても良好に受光することができ、出射部6aの角度調整の公差を大きくすることが可能となる。
なお、角度の公差としては、例えば±1度〜±5度とすることによって、出射部6aの角度調整の工程なしで光学系を調整することができる。また、受光面は、受光する可能性のあるエリア(受光エリア8)に対して、所望の位置調整の公差分だけ広がった円弧形状にすることが好ましい。さらに、出射部6aおよび受光面は3個以上でもよく、出射部6aおよび受光面の配列状態は1軸方向であっても2軸方向であってもよい。
以上のことから、出射部6aにおける各光ファイバ2のファイバコアの配列方向の角度と、受光部6bの受光面の配列方向の角度とがばらついた場合であっても良好に受光することができ、出射部6aの角度調整の公差を大きくすることが可能となる。
〈実施形態4〉
図7は、本発明の実施形態4による受光面の形状を示す図である。図7(a)および(b)に示すように、本実施形態4による受光モジュールは、出射部6aおよび受光面は1個ずつであり、受光部6bは、受光面と非受光面とを混在させ受光面が広範囲に存在することを特徴としている。また、受光面の形状は、受光部6b(光受光部)の各々に照射される入力光の直径よりも小さい幅のパターン形状である。
図7(a)に示す受光面のパターン形状は渦巻き形状(渦巻き型受光面7e)であり、図7(b)に示す受光面のパターン形状は蛇行型形状(蛇行型受光面7f)である。渦巻き型受光面7e(または、蛇行型受光面7f)の総面積は、応答周波数帯域によって変わるが、例えば10GHzの帯域の場合には100μm2以下にする。また、非受光面は上部電極を設けない構造とし、渦巻き型受光面7e(または、蛇行型受光面7f)以外の領域に光が入射しないように金属膜などの遮光膜を設けることが望ましい。
上記の構造では、受光感度が(集光スポット内の受光部面積/集光スポットの面積)の割合だけ減少するが、入射光1の信号を渦巻き型受光面7e(または、蛇行型受光面7f)の受光面が存在する広い面積にわたって高い応答周波数帯域で受信することが可能となる。また、本実施形態4における受光面の面積と非受光面の面積との総和が、実施形態1における受光面の面積と同一である場合において、受光面の面積と非受光面の面積との総和を小さくすると実施形態1よりも高い応答周波数帯域の信号を受信することが可能となる。
なお、出射部6aおよび受光面は複数でもよく、出射部6aおよび受光面の配列状態は1軸方向であっても2軸方向であってもよい。また、受光面および非受光面は、受光面上に集光された場合に想定されるビーム径の1/2の幅、あるいは偶数分の1の幅の受光面のパターン形状で混在することが望ましい。当該パターンとすることによって、受光面および非受光面が混在する受光部6bの如何なる箇所でも同じ感度で受光することができる。
以上のことから、受光面が存在する面積を広くすることによって、受光部6bとレンズ4との距離のばらつきによる位置調整の公差を大きくすることができ、受光モジュール製造時の調芯工程を容易にすることが可能となる。また、受光面の面積を小さくすることによって、さらに高い応答周波数帯域の信号を受信することが可能となる。
〈実施形態5〉
図8は、本発明の実施形態5による出射部および受光面の形状を示す図である。図8(a)は出射部6aの形状(多芯フェルール3bの断面)を示し、図8(b)はPDアレイ6bの受光面の形状を示している。図8に示すように、本実施形態5による受光モジュールでは、出射部6aおよび受光面は2個ずつであり、受光部6bは実施形態4と同様、受光面と非受光面とを混在させ受光面が広範囲に存在することを特徴としている。本実施形態5は、図8に示す受光面の形状に特徴を有しており、その他の構成は実施形態4と同様であるため、ここでは説明を省略する。
図8(b)に示す受光面は、非対称トラック型蛇行型受光面7gである。非対称トラック型蛇行型受光面7gの総面積は、応答周波数帯域によって変わるが、例えば10GHzの帯域の場合には100μm2以下にする。また、さらに高い応答周波数帯域の信号を受信する必要がある場合は、非対称トラック型蛇行型受光面7gの総面積を減少させる。非受光面は上部電極を設けない構造とし、非対称トラック型蛇行型受光面7g以外の領域に光が入射しないように金属膜などの遮光膜を設けることが望ましい。さらに、実施形態1にて説明したように、受光面および非受光面が混在した形状を、光学系の倍率のばらつきを考慮した場合において受光する可能性があるエリア(受光エリア8)に対して、所望の位置調整の公差分だけ広がった非対称トラック形状にすることが好ましい。すなわち、受光面および非受光面が混在した形状は図3に示す非対称トラック型受光面7bと同様であり、トラック形状の短手方向の長さがレンズ4の中心軸に対応する中心点11から長手方向に向かって徐々に長くなる形状となっている。
上記の構造では、受光感度が(集光スポット内の受光部面積/集光スポットの面積)の割合だけ減少するが、入射光1の信号を非対称トラック型蛇行型受光面7gの受光面が存在する広い面積にわたって高い応答周波数帯域で受信することが可能となる。
また、本実施形態4における受光面の面積と非受光面の面積との総和が、実施形態1における受光面の面積と同一である場合において、受光面の面積と非受光面の面積との総和を小さくすると実施形態1よりも高い応答周波数帯域の信号を受信することが可能となる。
なお、出射部6aおよび受光面は3個以上でもよく、出射部6aおよび受光面の配列状態は1軸方向であっても2軸方向であってもよい。
以上のことから、受光面が存在する面積を広くすることによって、受光部6bとレンズ4との距離のばらつきによる位置調整の公差を大きくすることができ、受光モジュール製造時の調芯工程を容易にすることが可能となる。また、受光面の面積を小さくすることによって、さらに高い応答周波数帯域の信号を受信することが可能となる。
また、受光面および非受光面が混在した形状は、レンズ4の中心軸に対応する中心点11と、受光部6bの中点とを結ぶ直線に沿って延伸した方向を長手方向とし、長手方向に対して垂直方向を短手方向とした対称トラック型受光面(図2参照)としてもよい。
また、本実施形態5では、受光面の形状を非対称トラック型蛇行型受光面7gとして説明したが、受光面および非受光面が混在した形状が対称トラック型受光面および非対称トラック型受光面である場合において、受光面のパターン形状を渦巻き形状としてもよい。
〈実施形態6〉
図9は、本発明の実施形態6による出射部および受光面の形状を示す図である。図9(a)は出射部6aの形状(多芯フェルールの断面)を示し、図8(b)はPDアレイ6bの受光面の形状を示している。図9に示すように、本実施形態6による受光モジュールでは、出射部6aおよび受光面は2個ずつであり、受光部6bは実施形態4と同様、受光面と非受光面とを混在させ受光面が広範囲に存在することを特徴としている。本実施形態6は、図9に示す受光面の形状に特徴を有しており、その他の構成は実施形態4と同様であるため、ここでは説明を省略する。
図9(b)に示す受光面は、円弧型蛇行型受光面7hである。円弧型蛇行型受光面7hの総面積は、応答周波数帯域によって変わるが、例えば10GHzの帯域の場合には100μm2以下にする。また、さらに高い応答周波数帯域の信号を受信する必要がある場合は、円弧型蛇行型受光面7hの総面積を減少させる。非受光面は上部電極を設けない構造とし、円弧型蛇行型受光面7h以外の領域に光が入射しないように金属膜などの遮光膜を設けることが望ましい。さらに、受光面および非受光面が混在した形状は、受光する可能性のあるエリア(受光エリア8)に対して、所望の位置調整の公差分だけ広がった円弧形状にすることが好ましい。すなわち、すなわち、受光面および非受光面が混在した形状は、レンズ4の中心軸に対応する中心点11から所定の距離を半径とし、中心点11を中心として所定の角度だけ回転して描かれた円弧に沿った形状となっている。
上記の構造では、受光感度が(集光スポット内の受光部面積/集光スポットの面積)の割合だけ減少するが、入射光1の信号を円弧型蛇行型受光面7hの受光面が存在する広い面積にわたって高い応答周波数帯域で受信することが可能となる。
また、本実施形態4における受光面の面積と非受光面の面積との総和が、実施形態1における受光面の面積と同一である場合において、受光面の面積と非受光面の面積との総和を小さくすると実施形態1よりも高い応答周波数帯域の信号を受信することが可能となる。
なお、出射部6aおよび受光面は3個以上でもよく、出射部6aおよび受光面の配列状態は1軸方向であっても2軸方向であってもよい。
以上のことから、出射部6aにおける各光ファイバ2のファイバコアの配列方向の角度と、受光部6bの受光面の配列方向の角度とがばらついた場合であっても出射部6aの角度調整の公差を大きくすることができ、受光モジュール製造時の調芯工程を容易にすることが可能となる。また、受光面の面積を小さくすることによって、さらに高い応答周波数帯域の信号を受信することが可能となる。
また、本実施形態6では、受光面の形状を円弧型蛇行型受光面7hとして説明したが、受光面のパターン形状を渦巻き形状としてもよい。
1 入射光、2 光ファイバ、3a 2芯フェルール、3b 多芯フェルール、4 レンズ、5a ツインPD、5b PDアレイ、6a 出射部、6b 受光部、7a 対称トラック型受光面、7b 非対称トラック型受光面、7c 非対称トラック型PDアレイ受光部、7d 円弧型受光面、7e 渦巻き型受光面、7f 蛇行型受光面、7g 非対称トラック型蛇行型受光面、7h 円弧型蛇行型受光面、7i 円形受光面、8 受光エリア、9 非受光部、10 集光スポット、11 中心点。

Claims (10)

  1. 複数の入力光を受光する受光モジュールにおいて、
    入射された前記複数の入力光の各々を次段に出射する複数の光出射部と、
    前記複数の光出射部の各々に対応して配列され、前記複数の光出射部の各々から出射された前記複数の入力光を受光する複数の光受光部と、
    前記複数の光出射部と前記複数の光受光部との間に配置され、前記複数の光出射部の各々から出射された前記複数の入力光を前記複数の光受光部の各々に集光するレンズと、
    を備え、
    前記複数の光受光部の各々の形状は、前記レンズの中心軸に対応する中心点と、各前記光受光部の中点とを結ぶ直線に沿って延伸した形状であることを特徴とする、受光モジュール。
  2. 前記複数の光受光部は、前記中心点を含む1軸方向に配列されていることを特徴とする、請求項1に記載の受光モジュール。
  3. 前記複数の光受光部は、前記中心点を中心として2軸方向に配列されていることを特徴とする、請求項1に記載の受光モジュール。
  4. 前記複数の光受光部の各々の形状は、前記延伸した方向を長手方向とし、前記長手方向に対して垂直方向を短手方向としたトラック形状であることを特徴とする、請求項1ないし3のいずれかに記載の受光モジュール。
  5. 前記複数の光受光部の各々の形状は、前記トラック形状の前記短手方向の長さが、前記中心点から前記長手方向に向かって徐々に長くなる形状であることを特徴とする、請求項4に記載の受光モジュール。
  6. 前記複数の光受光部の各々の形状は、前記中心点から所定の距離を半径とし、前記中心点を中心として所定の角度だけ回転して描かれた円弧に沿った形状であることを特徴とする、請求項1ないし3のいずれかに記載の受光モジュール。
  7. 前記複数の光受光部の各々は受光面と非受光面とを有し、
    前記複数の光受光部の各々の形状は、前記レンズの中心軸に対応する中心点と、前記光受光部の中点とを結ぶ直線に沿って延伸した形状であり、
    前記受光面の形状は、前記複数の光受光部の各々に照射される前記複数の入力光の直径よりも小さい幅のパターン形状であることを特徴とする、請求項1に記載の受光モジュール。
  8. 前記受光面のパターン形状は、渦巻き形状または蛇行型形状であることを特徴とする、請求項7に記載の受光モジュール。
  9. 入力光を受光する受光モジュールにおいて、
    前記入力光を受光する光受光部を備え、
    前記光受光部は受光面と非受光面とを有し、
    前記受光面の形状は、前記光受光部に照射される前記入力光の直径よりも小さい幅の渦巻き形状または蛇行型形状であることを特徴とする、受光モジュール。
  10. 請求項1ないし8のいずれかに記載の受光モジュールを製造する方法であって、
    前記光受光部と前記レンズとの間隔、または、前記レンズと前記光出射部との間隔のうちのいずれか一方の間隔を無調芯で設置することを特徴とする、受光モジュールの製造方法。
JP2009223643A 2009-09-29 2009-09-29 受光モジュール Active JP5241666B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223643A JP5241666B2 (ja) 2009-09-29 2009-09-29 受光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223643A JP5241666B2 (ja) 2009-09-29 2009-09-29 受光モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013065459A Division JP5701329B2 (ja) 2013-03-27 2013-03-27 受光モジュール

Publications (2)

Publication Number Publication Date
JP2011075592A true JP2011075592A (ja) 2011-04-14
JP5241666B2 JP5241666B2 (ja) 2013-07-17

Family

ID=44019690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223643A Active JP5241666B2 (ja) 2009-09-29 2009-09-29 受光モジュール

Country Status (1)

Country Link
JP (1) JP5241666B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022154A (ja) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp 波長多重受信モジュール
JP2013207027A (ja) * 2012-03-28 2013-10-07 Nippon Telegr & Teleph Corp <Ntt> フォトダイオードアレイ
JP2015201503A (ja) * 2014-04-07 2015-11-12 日本電信電話株式会社 半導体受光装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271765A (ja) * 1995-03-31 1996-10-18 Sumitomo Electric Ind Ltd レンズ付oeicアレイ
JP2000356545A (ja) * 1999-06-11 2000-12-26 Yokogawa Electric Corp 赤外検出素子とその製造方法
JP2002267895A (ja) * 2001-02-22 2002-09-18 Agilent Technol Inc 部品の特性誤差及びアライメント誤差の許容範囲が広い光レシーバ
JP2007271882A (ja) * 2006-03-31 2007-10-18 Fujinon Corp 光モジュールおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271765A (ja) * 1995-03-31 1996-10-18 Sumitomo Electric Ind Ltd レンズ付oeicアレイ
JP2000356545A (ja) * 1999-06-11 2000-12-26 Yokogawa Electric Corp 赤外検出素子とその製造方法
JP2002267895A (ja) * 2001-02-22 2002-09-18 Agilent Technol Inc 部品の特性誤差及びアライメント誤差の許容範囲が広い光レシーバ
JP2007271882A (ja) * 2006-03-31 2007-10-18 Fujinon Corp 光モジュールおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022154A (ja) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp 波長多重受信モジュール
JP2013207027A (ja) * 2012-03-28 2013-10-07 Nippon Telegr & Teleph Corp <Ntt> フォトダイオードアレイ
JP2015201503A (ja) * 2014-04-07 2015-11-12 日本電信電話株式会社 半導体受光装置

Also Published As

Publication number Publication date
JP5241666B2 (ja) 2013-07-17

Similar Documents

Publication Publication Date Title
US8987655B2 (en) Optical module having at least one light receiving element with a wiring part covers a part of a side surface of a mesa part
KR100884231B1 (ko) 광파워 모니터 및 그 제조방법
US20070086501A1 (en) Diode laser array coupling optic and system
JP2015096878A (ja) 光受信モジュール及び光送信モジュール
JP2006072232A (ja) 光送受信モジュール
JP2007219514A (ja) 光タップモジュール
JP5241666B2 (ja) 受光モジュール
JP2008124358A (ja) レーザモジュール
JP2006295003A (ja) レーザモジュール、およびレーザモジュールを作製する方法
JPH04308804A (ja) 光モジュール
JP2004047831A (ja) 受光素子モジュール
JP5701329B2 (ja) 受光モジュール
JP2007115933A (ja) 光半導体モジュールおよびその組立方法
US5946140A (en) Fiber lens for use with a confocal lens system
JPH05273444A (ja) 受光モジュール
JP2009003007A (ja) 受光素子モジュール
US7406224B2 (en) Diffractive coupler optimized for alignment tolerances
JP2012133191A (ja) 光学装置
JP2005250183A (ja) マイクロレンズ、マイクロレンズアレイ及び光学装置。
JP6053318B2 (ja) 光受信器
JP2009206158A (ja) レーザモジュールおよびレーザ装置
WO2023286164A1 (ja) 受光装置
JP2008233584A (ja) 光通信モジュール及び光通信モジュールの組付方法
JPH0254207A (ja) 光合分波器
JPH08146250A (ja) 集光レンズおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5241666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250