JP2011045924A - 鋼管引抜装置、及び引抜鋼管の製造方法 - Google Patents
鋼管引抜装置、及び引抜鋼管の製造方法 Download PDFInfo
- Publication number
- JP2011045924A JP2011045924A JP2009198845A JP2009198845A JP2011045924A JP 2011045924 A JP2011045924 A JP 2011045924A JP 2009198845 A JP2009198845 A JP 2009198845A JP 2009198845 A JP2009198845 A JP 2009198845A JP 2011045924 A JP2011045924 A JP 2011045924A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- hydraulic cylinder
- plug
- drawn steel
- drawn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 229
- 239000010959 steel Substances 0.000 title claims abstract description 229
- 238000000034 method Methods 0.000 title description 11
- 238000001514 detection method Methods 0.000 claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000005520 cutting process Methods 0.000 abstract description 29
- 239000000463 material Substances 0.000 description 17
- 230000003247 decreasing effect Effects 0.000 description 8
- 238000007665 sagging Methods 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 210000000078 claw Anatomy 0.000 description 2
- 238000010622 cold drawing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/16—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
- B21C1/22—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
- B21C1/24—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C51/00—Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Extraction Processes (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
【課題】引抜鋼管の各肉厚部分及び切断位置の寸法精度を向上させると共に、長尺物の引抜鋼管を高精度且つ高速で生産することができる鋼管引抜装置を実現する。
【解決手段】 ダイスとプラグとを鋼管引抜方向に対して正逆方向に相対移動させて段付きの引抜鋼管を製造するとき、第1油圧シリンダで鋼管引抜方向に対応してダイスを相対移動させ、第2油圧シリンダで前記ダイスの移動方向に対して逆方向へプラグを相対移動させる。このとき、位置検出センサが第2油圧シリンダのストローク位置を検出し、コンピュータが位置検出センサの検出した位置情報を受信して第2油圧シリンダの移動速度を制御する。これにより、コンピュータは、d領域の位置検出信号に基づいて、第2油圧シリンダの移動速度v2をb領域の移動速度v1より速くする。従って、引抜鋼管は速い移動速度v2で引き抜かれることでd領域においては肉厚勾配にダレが生じなくなる。
【選択図】図8
【解決手段】 ダイスとプラグとを鋼管引抜方向に対して正逆方向に相対移動させて段付きの引抜鋼管を製造するとき、第1油圧シリンダで鋼管引抜方向に対応してダイスを相対移動させ、第2油圧シリンダで前記ダイスの移動方向に対して逆方向へプラグを相対移動させる。このとき、位置検出センサが第2油圧シリンダのストローク位置を検出し、コンピュータが位置検出センサの検出した位置情報を受信して第2油圧シリンダの移動速度を制御する。これにより、コンピュータは、d領域の位置検出信号に基づいて、第2油圧シリンダの移動速度v2をb領域の移動速度v1より速くする。従って、引抜鋼管は速い移動速度v2で引き抜かれることでd領域においては肉厚勾配にダレが生じなくなる。
【選択図】図8
Description
本発明は、鋼管引抜装置、及び引抜鋼管の製造方法に関するものであり、特に、ダイスとプラグとを鋼管引抜方向に対して正逆方向に相対移動させて引抜鋼管を製造する鋼管引抜装置、及び引抜鋼管の製造方法に関するものである。
従来より、資源開発用のボーリングロッドや自動車のシャフトなどは、軽量化及び材料コストを削減する観点から、所望の肉厚を有した中空のシャフトが好んで用いられている。これらの用途に供される中空のシャフトは、長手方向に複数の外径と複数の内径とを有する段付きの引抜鋼管で形成されている。このような引抜鋼管は、一般的にはダイスとプラグとを用いて素材鋼管を冷間引抜することによって製造される(例えば、特許文献1、特許文献2参照)。このような引抜鋼管の製造方法によれば、鋼管引抜装置を用いて素材鋼管がダイスとプラグとの間で狭圧されながら引き抜かれることにより、所望のサイズの引抜鋼管が製造される。このとき、素材鋼管の引抜位置に応じてダイスのベアリング径とタップのベアリング径とを適宜に変えることにより、長手方向に複数の外径と複数の内径とを有する段付き引抜鋼管を製造することができる。
しかしながら、上記従来の鋼管引抜装置においては、冷間引抜速度に関係なく油圧シリンダの移動速度は一定であった。言い換えると、従来の鋼管引抜装置は、引抜鋼管の肉厚の変化に関わらず引抜速度が一定であったため、段付き引抜鋼管において肉厚が変化する部分の寸法精度が低下していた。具体的には、素材鋼管を引き抜くときに、肉厚が薄くなるように引き抜く第1の肉厚変化領域の肉厚勾配に比べて、肉厚が厚くなるように引き抜く第2の肉厚変化領域の肉厚勾配にダレが生じてしまい、第1の肉厚変化領域に対して第2の肉厚変化領域の寸法精度が極端に低下していた。その結果、長尺物の連続した引抜鋼管の切断位置を高精度に管理することができないなどの不具合が発生していた。
また、従来の鋼管引抜装置はコンピュータ制御が行われていなかったので、引抜鋼管の寸法公差を向上させることができないために引抜鋼管の製品の品質レベルが低下していた。さらには、油圧シリンダの移動ストロークが数回(例えば、4回)に設定されていたために、鋼管引抜装置で製造される連続した引抜鋼管の全長に制限があった。言い換えると、1ストロークは、油圧シリンダが前後に一回移動して生成される1ピース分(1個分)の引抜鋼管を形成するストロークであり、これが4ストロークになると4ピース分(4個分)の連続した引抜鋼管が製造されるが、4ピース程度の長尺物の引抜鋼管になると長さ方向における寸法精度の誤差が大きくなるという不具合が生じる。従って、従来の鋼管引抜装置では、引抜鋼管の長さ方向の寸法精度を高精度に維持するという観点から、油圧シリンダの移動ストロークの回数を4回程度より多くすることができなかった。言い換えると、従来の鋼管引抜装置では、長尺物の引抜鋼管を高精度に製造することができなかった。
そこで、引抜鋼管の各肉厚部分及び切断位置の寸法精度を向上させると共に、長尺物の引抜鋼管を高精度且つ高速で生産することができる鋼管引抜装置、及び引抜鋼管の製造方法を実現するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、ダイスとプラグとを鋼管引抜方向に対して正逆方向に相対移動させて段付きの引抜鋼管を製造する鋼管引抜装置であって、前記鋼管引抜方向に対応して前記ダイスを相対移動させる第1油圧シリンダと、前記ダイスの移動方向に対して逆方向へ前記プラグを相対移動させる第2油圧シリンダと、前記第2油圧シリンダのストローク位置を検出する位置検出センサと、前記位置検出センサが検出した位置情報を受信し、該位置情報に基づいて前記第2油圧シリンダの移動速度を制御するコンピュータとを少なくとも備えることを特徴とする鋼管引抜装置を提供する。
この構成によれば、鋼管引抜装置は、プラグの移動制御を行う第2油圧シリンダのストローク位置を検出する位置検出センサを備えている。そして、コンピュータが、位置検出センサが検出した第2油圧シリンダの位置情報を受信し、該位置情報に基づいて第2油圧シリンダの移動速度の制御を行っている。このとき、コンピュータは、第2油圧シリンダの移動速度と素材鋼管の引抜速度とを対応させているので、結果的に、第2油圧シリンダのストローク位置に対応して素材鋼管の引抜速度を制御することができる。これによって、素材鋼管の位置に応じた引抜速度で引抜鋼管を生産することができるので、引抜鋼管の各部の寸法精度を向上させることができると共に、該引抜鋼管の切断位置を高精度に位置決めすることができるので、引抜鋼管の生産性を向上させることが可能となる。
請求項2記載の発明は、上記第2油圧シリンダが往復の1ストロークにおいて1ピース分の上記引抜鋼管を生成するとき、上記コンピュータは、往きのストロークで上記プラグのベアリングを小径から大径へ移動させるときの上記引抜鋼管の肉厚勾配の傾斜角度と、戻りのストロークで上記プラグのベアリングを大径から小径へ移動させるときの上記引抜鋼管の肉厚勾配の傾斜角度とが同じになるように、上記第2油圧シリンダの移動速度の制御を行うことを特徴とする請求項1記載の鋼管引抜装置を提供する。
この構成によれば、第2油圧シリンダの1ストロークするごとに1ピース分の引抜鋼管が生成され、第2油圧シリンダのストロークを複数回繰り返すことによって連続した複数ピースの長尺物の引抜鋼管が生産される。このとき、第2油圧シリンダの往きのストロークでプラグのベアリングが小径から大径へ移動して肉厚が薄くなる方向への肉厚勾配(第1の肉厚勾配)が生じ、帰りのストロークでプラグのベアリングが大径から小径へ移動して肉厚が厚くなる方向への肉厚勾配(第2の肉厚勾配)が生じる。一方、コンピュータは、第2油圧シリンダの各ストローク位置において移動速度の制御を行っている。従って、ストローク位置に応じて移動速度の制御を行うことによって、第1の肉厚勾配の傾斜角度と第2の肉厚勾配の傾斜角度とを同じにすることができるので、第2の肉厚勾配にダレが生じることがなくなる。その結果、引抜鋼管の各部の寸法を高精度に管理することができると共に、引抜鋼管の切断位置を高精度に位置決めすることができる。
請求項3記載の発明は、上記コンピュータが、上記プラグのベアリングを小径から大径へ移動させるときの前記第2油圧シリンダの第1移動速度v1に対して、上記プラグのベアリングを大径から小径へ移動させるときの該第2油圧シリンダの第2移動速度v2を高速にするように速度制御を行うことを特徴とする請求項2記載の鋼管引抜装置を提供する。
この構成によれば、第2油圧シリンダの往きのストロークで、プラグのベアリングが小径から大径へ移動して肉厚が薄くなる第1の肉厚勾配を形成するときの第1移動速度v1に対して、第2油圧シリンダの帰りのストロークで、プラグのベアリングが大径から小径へ移動して肉厚が厚くなる第2の肉厚勾配を形成するときの第2移動速度v2を速くしている。これによって、第2の肉厚勾配の領域において勾配にダレが生じなくなるので、第1の肉厚勾配と第2の肉厚勾配を同じ傾斜角度にすることができる。その結果、引抜鋼管の各部の寸法を高精度に管理することができると共に、引抜鋼管の切断位置を高精度に位置決めすることができる。
請求項4記載の発明は、ダイスとプラグとを鋼管引抜方向に対して正逆方向に相対移動させて段付きの引抜鋼管を製造する引抜鋼管の製造方法であって、前記鋼管引抜方向に対応して、第1油圧シリンダによって前記ダイスを相対移動させながら、第2油圧シリンダによって前記ダイスの移動方向に対して逆方向へ前記プラグを相対移動させる第1の工程と、位置検出センサが、前記第2油圧シリンダのストローク位置を検出する第2の工程と、コンピュータが、前記位置検出センサの検出した位置情報を受信し、該位置情報に基づいて前記第2油圧シリンダの移動速度を制御する第3の工程とを含むことを特徴とする引抜鋼管の製造方法を提供する。
この方法によれば、プラグの移動制御を行う第2油圧シリンダのストローク位置を検出する位置検出センサを備えていて、コンピュータが、位置検出センサが検出した第2油圧シリンダの位置情報を受信し、該位置情報に基づいて第2油圧シリンダの移動速度の制御を行っている。このとき、コンピュータは、第2油圧シリンダの移動速度と素材鋼管の引抜速度とを対応させているので、結果的に、第2油圧シリンダのストローク位置に対応して素材鋼管の引抜速度を制御することができる。これによって、素材鋼管の位置に応じた引抜速度で引抜鋼管を生産することができるので、引抜鋼管の各部の寸法精度を向上させることができると共に、該引抜鋼管の切断位置を高精度に位置決めすることができるので、引抜鋼管の生産性を向上させることが可能となる。
請求項5記載の発明は、上記第2油圧シリンダが、上記第1の工程において、往復の1ストロークにおいて1ピース分の上記引抜鋼管を生成し、上記コンピュータが、上記第3の工程において、往きのストロークで上記プラグのベアリングを小径から大径へ移動させるときの上記引抜鋼管の肉厚勾配の傾斜角度と、戻りのストロークで上記プラグのベアリングを大径から小径へ移動させるときの上記引抜鋼管の肉厚勾配の傾斜角度とが同じになるように、上記第2油圧シリンダの移動速度を制御することを特徴とする請求項4記載の引抜鋼管の製造方法を提供する。
この方法によれば、第2油圧シリンダの1ストローク毎に1ピース分の引抜鋼管が生成され、第2油圧シリンダのストロークを複数回繰り返すことによって連続した複数ピースの長尺物の引抜鋼管が生産される。このとき、第2油圧シリンダの往きのストロークでプラグのベアリングが小径から大径へ移動して肉厚が薄くなる方向への肉厚勾配(第1の肉厚勾配)が生じ、帰りのストロークでプラグのベアリングが大径から小径へ移動して肉厚が厚くなる方向への肉厚勾配(第2の肉厚勾配)が生じる。一方、コンピュータは、第2油圧シリンダの各ストローク位置において移動速度の制御を行っている。従って、ストローク位置に応じて移動速度の制御を行うことによって、第1の肉厚勾配の傾斜角度と第2の肉厚勾配の傾斜角度とを同じにすることができるので、第2の肉厚勾配にダレが生じることがなくなる。その結果、引抜鋼管の各部の寸法を高精度に管理することができると共に、引抜鋼管の切断位置を高精度に位置決めすることができる。
請求項6記載の発明は、上記コンピュータが、上記第3の工程において、上記プラグのベアリングを小径から大径へ移動させるときの前記第2油圧シリンダの第1移動速度に対して、上記プラグのベアリングを大径から小径へ移動させるときの該第2油圧シリンダの第2移動速度を高速にするように速度制御を行うことを特徴とする請求項5記載の引抜鋼管の製造方法を提供する。
この方法によれば、第2油圧シリンダの往きのストロークでプラグのベアリングが小径から大径へ移動して肉厚が薄くなる第1の肉厚勾配の移動速度v1に対して、帰りのストロークでプラグのベアリングが大径から小径へ移動して肉厚が厚くなる第2の肉厚勾配の移動速度v2を速くしている。これによって、第2の肉厚勾配の領域において勾配にダレが生じなくなるので、第1の肉厚勾配と第2の肉厚勾配を同じ角度の傾斜にすることができる。その結果、引抜鋼管の各部の寸法を高精度に管理することができるので、引抜鋼管の切断位置を高精度に位置決めすることができる。
請求項1記載の発明は、プラグを移動させる第2油圧シリンダのストローク位置を検出する位置検出センサを備え、コンピュータが、位置検出センサの検出した位置情報に基づいて第2油圧シリンダの速度制御を行っているので、引抜鋼管の各部の寸法精度を向上させることができる。さらに、引抜鋼管の切断位置を高精度に位置決めすることができるので、引抜鋼管の生産性を向上させることが可能となる。
請求項2記載の発明は、第2油圧シリンダの速度制御によって、肉厚が薄くなる方向への肉厚勾配(第1の肉厚勾配)の傾斜角度と、肉厚が薄くなる方向への肉厚勾配(第2の肉厚勾配)の傾斜角度とを同じにしているので、請求項1記載の発明の効果に加えて、引抜鋼管の切断位置をさらに高精度に位置決めすることができる。
請求項3記載の発明は、往きのストロークで肉厚が薄くなる第1の肉厚勾配を形成するときの移動速度v1に対して、帰りのストロークで肉厚が厚くなる第2の肉厚勾配を形成するときの移動速度v2を速くしているので、請求項2記載の発明の効果に加えて、第1の肉厚勾配と第2の肉厚勾配の傾斜角度を同じにすることができるため、より正確に引抜鋼管の切断位置を決めることができる。
請求項4記載の発明は、プラグを移動させる第2油圧シリンダのストローク位置を検出する位置検出センサを備え、コンピュータが、位置検出センサの検出した位置情報に基づいて第2油圧シリンダの速度制御を行っているので、引抜鋼管の各部の寸法精度を向上させることができる。さらに、引抜鋼管の切断位置を高精度に位置決めすることができるので、引抜鋼管の生産性を向上させることが可能となる。
請求項5記載の発明は、第2油圧シリンダの速度制御によって、肉厚が薄くなる方向への肉厚勾配(第1の肉厚勾配)の傾斜角度と肉厚が薄くなる方向への肉厚勾配(第1の肉厚勾配)の傾斜角度とを同じにしているので、請求項4記載の発明の効果に加えて、引抜鋼管の切断位置をさらに高精度に位置決めすることができる。
請求項6記載の発明は、往きのストロークで肉厚が薄くなる第1の肉厚勾配を形成するときの移動速度v1に対して、帰りのストロークで肉厚が厚くなる第2の肉厚勾配を形成するときの移動速度v2を速くしているので、請求項5記載の発明の効果に加えて、第1の肉厚勾配と第2の肉厚勾配の傾斜角度を同じにすることができるため、より正確に引抜鋼管の切断位置を決めることができる。
本発明は、引抜鋼管の各肉厚部分及び切断位置の寸法精度を向上させると共に、長尺物の引抜鋼管を高精度且つ高速で生産することができる鋼管引抜装置、及び引抜鋼管の製造方法を実現するという目的を達成するために、ダイスとプラグとを鋼管引抜方向に対して正逆方向に相対移動させて段付きの引抜鋼管を製造する鋼管引抜装置であって、前記鋼管引抜方向に対応して前記ダイスを相対移動させる第1油圧シリンダと、前記ダイスの移動方向に対して逆方向へ前記プラグを相対移動させる第2油圧シリンダと、前記第2油圧シリンダのストローク位置を検出する位置検出センサと、前記位置検出センサが検出した位置情報を受信し、該位置情報に基づいて前記第2油圧シリンダの移動速度を制御するコンピュータとを少なくとも備えるように構成したことによって実現した。
即ち、本発明に係る鋼管引抜装置は、プラグを移動させる油圧シリンダ(第2油圧シリンダ)に位置検出センサを設置し、該位置検出センサによる位置検出信号によって第2油圧シリンダのストロークの移動速度を制御するフィードバックループを構成する。これによって、鋼管引抜装置は、素材鋼管を引き抜くときの位置に対応して第2油圧シリンダの移動速度を制御しながら引抜鋼管を生産することができる。このとき、素材鋼管の引抜速度と第2油圧シリンダの移動速度に互換性を持たせることにより、生産される引抜鋼管が長手方向に複雑な段付きの肉厚を有したものであっても、引抜鋼管の各部の寸法精度を格段に向上させることができる。更に、後工程である引抜鋼管の切断工程においても、前記位置検出センサの位置情報に基づいて、連続した長尺物の引抜鋼管を1ピースごとに切断すればよいので、従来のような超音波肉厚計を用いた切断位置の判定を行う必要がなくなり、引抜鋼管の切断作業のスピードアップ化と作業の合理化を図ることができる。
また、これらの作業(即ち、位置検出センサのフィードバックに基づく第2油圧シリンダの速度制御及び引抜鋼管の切断作業)はコンピュータによって自動制御されるので、各部の寸法公差を格段に向上させることができる。更には、従来のように第2油圧シリンダの移動ストロークが数ストローク(例えば、4ストローク)に制限されることがないので、引抜鋼管の長さに制限されることなく、長尺物の連続した引抜鋼管を高い寸法精度で生産することができる。即ち、理論的には第2油圧シリンダの連続ストロークによって、無限長の連続した引抜鋼管を高い寸法精度で生産することができる。尚、現実的には、鋼管引抜装置の大きさの制約上の観点から、多ピースの引抜鋼管の連続最大長は10m程度である。
以下、本発明の好適な実施例を図1乃至図8に従って詳細に説明する。尚、以下に説明する実施例に用いる各図面については同一の構成要素は原則として同一の符合を付し、且つ重複する説明は省略する。
先ず、中空の引抜鋼管を製造する鋼管引抜装置の一般的な構成について説明する。図1は、一般的な鋼管引抜装置の側面図であり、図2は、図1のA部の詳細を示す縦断面図である。図1及び図2に示すように、床に固定したフレーム1のほぼ中央部にダイス2を固定するダイス支持台3が設けられている。さらに、プラグ4と該プラグ4を支えるプラグ支持棒5を備え、該プラグ支持棒5は、プラグ支持台6に図示しない油圧シリンダ等を介して固定されている。また、素材鋼管7は、プラグ4及びプラグ支持棒5の外径側に嵌入され、該素材鋼管7の先端部は引抜車9に設けられたハサミ8で狭持されている。さらに、該引抜車9のツメ10が、図示しない強力な駆動源により駆動されたチェーン11によって強力に引張られることにより、素材鋼管7は、ダイス2とプラグ4との間で狭圧されて引き抜かれ、引抜鋼管7bが製造される。
本発明の鋼管引抜装置では、複数の内径及び外径を有する段付きの引抜鋼管7bを製造する場合において、複数箇のベアリング面を持つダイス2と複数箇のベアリング面を持つプラグ4とを組合せ、該ダイス2及び該プラグ4を引抜方向に対して相対的に正逆方向に移動できるように構成されている。これによって、引抜鋼管7bが小内径管であっても内部に皺が発生することはなくなり、且つ、強靭で寸法精度の高い引抜鋼管を製造することができる。
このような鋼管引抜装置を実現するためには、ダイス2とプラグ4の関連保持の仕方が従来と異なるので、先ずこれらの構成について説明する。図3は、本発明の鋼管引抜装置に適用されるダイス支持台の側面図であり、図4は、図3B部の詳細を示す縦断面図である。
図3に示すように、フレーム1にストッパ16を強力に固定して設け、補強部材17で補強する。一方、ダイス2を駆動する第1油圧シリンダ20を装着したダイス支持台30は、台車12に移動可能に装架されていて、台車12はレール12a上を移動する。また、ダイス支持台固定ラム15は、その一端がストッパ16に固定されている。具体的には、図4に示すように、ダイス支持台30における円筒形凹部30cの底部30aに、ダイス支持台固定ラム15の一端の大径フランジ部15bの面15aを、ピストンロッド23とビン25とで結合されたダイス支持台固定ラム15より突出した耳金24を介して、第1油圧シリンダ20の圧力で押圧する。
このとき、第1油圧シリンダ20に発生する押圧力(押付け力)は管引抜力に対抗する力であり、第1油圧シリンダ20の押圧力は管引抜力(例えば、150〜200t)より強力でなければならない。このような強力な力で空間上の存在する点に固定するには、ストッパ16に押付けて固定する方法が最も簡便な方法である。
また、ダイス2はダイス支持台30に取付けられている。従って、ダイス2の固定位置は、ダイス支持台30の右側の固定位置とストツバ16の16d面に、ダイス支持台30の面30bが当接した位置が、左側の固定位置に対応した位置となる。
図5は、本発明の鋼管引抜装置に適用されるプラグ支持台の横断面図である。図5に示すように、ストッパ16aはフレーム1に強固に固定して設けられ、更に、ストッパ16aは補強部材17aで補強されている。また、中空調節ねじ軸18にはプラグ支持棒5が嵌入され、該プラグ支持棒5の端部のつば部5aを係止して支持する中空調節ねじ軸18は、外周にねじを切りナット式ストッパ19がねじ込まれている。ナット式ストッパ19は、引抜鋼管の要求寸法に合せられるようにねじ調整することができる。
左側のナット式ストッパ19が、ストッパ16aの面16bに当接する位置が右側固定位置であり、ストツバ16aの面16cに右側のナット式ストッパ19が当接する位置が左側固定位置である。また、フレーム1に固定されたプラグ駆動用の第2油圧シリンダ20aの押し或いは引き圧力は、当然、管引抜き圧力より強い圧力を発生する。また、ラム21は中空調節ねじ軸18端に嵌入し、該ラム21の先端の雄ねじにラム固定ナット22をねじ込み、中空調節ねじ軸18に固定してある。
尚、ダイス2又はプラグ4の固定或いは管引抜き中の移動については、図3に示すように、第1油圧ユニット13からの油圧が配管14を通じて第1油圧シリンダ20に供給され、該第1油圧シリンダ20によってダイス2が駆動される。また、図5に示すように、第2油圧ユニット13aからの油圧が配管14aを通じて第2油圧シリンダ20aに供給さ、該第2油圧シリンダ20aによってプラグ4が駆動される。即ち、図3の第1油圧シリンダ20はダイス駆動用の油圧シリンダであり、図5の第2油圧シリンダ20aはプラグ駆動用の油圧シリンダである。尚、プラグ4はプラグ支持棒5の先端に装着されているため、図5では図示されていない。
ここで、本発明の特徴とする点は、図5に示すように、プラグ駆動用の第2油圧シリンダ20aに位置検出センサ20bが付設されている点である。具体的には、位置検出センサ20bは第2油圧シリンダ20aとラム21との間に付設することができる。そして、該位置検出センサ20bは、制御系のフィードバックループを構成し、第2油圧シリンダ20aのストローク位置を検出して位置検出信号をコンピュータにフィードバックして、第2油圧シリンダ20aのストローク位置に対応して移動速度の制御を行うように構成されている。
このとき、引抜鋼管の引抜速度と第2油圧シリンダ20aの移動速度には互換性(即ち、1対1の対応関係)が設けられているので、結果的には、第2油圧シリンダ20aのストローク位置に応じて引抜鋼管の引抜速度が制御されることになる。尚、位置検出センサ20bは、例えばエンコーダなどによって容易に実現することができる。
図6(a)、(b)、(c)は、本発明の鋼管引抜装置に適用されるダイスとプラグによる引抜状態を示す縦断面図であり、図7(a)、(b)、(c)は、本発明の鋼管引抜装置で製造された引抜鋼管を例示する縦断面図である。図6(a)、(b)、(c)に示すように、本発明に係るプラグ4とダイス2は夫々二段の径を有している。フラグ4の先端は小径のベアリング径d3に続いて根本側に大径のベアリング径d4を有しており、ダイス2はプラグ4の各ベアリング径d3、d4に対向して素材鋼管7を狭圧する小径のベアリング径d2をプラグ4の根本方向の側に形成し、プラグ4の大径のベアリング径d4に対向して素材鋼管7を狭圧する大径のベアリング径d1をプラグ4の先端方向側に形成している。
従って、引抜鋼管7bの内外径は、プラグ4のベアリング径d3(小径)とダイス2のベアリング径d2(小径)によって決定される図6(a)に示す状態と、プラグ4のベアリング径d4(大径)とダイス2のベアリング径d2(小径)によって決定される図6(b)に示す状態と、プラグ4のベアリング径d4(大径)とダイス2のベアリング径d1(大径)とによって決定される図6(c)に示す状態とを形成することができる。
次に、前述の鋼管引抜装置を使用してダイス2とプラグ4を用いて実施する鋼管引抜作業について説明する。図7は鋼管引抜き状態を示す縦断面図であって、同図(a)は、ダイス支持台30を図3で説明した左側固定位置、プラグ4の支持については図5で説明した右側固定位置に固定して引き抜いている状態を示し、ダイス2のベアリング径d2(小径)、プラグ4のベアリング径d3(小径)によって素材鋼管7が寸法規正されて成形される状態を示している。
図6(b)は、ダイス支持台30は図3で説明した左側固定位置、プラグ4の支持については図5で説明した左側固定拉置に固定して引き抜いている状態を示し、ダイス2のベアリング径d2(小径)、プラグ4のベアリング径d4(大径)によって素材鋼管7が寸法規正されて成形される状態を示している。
図6(c)は、ダイス支持台30は図3で説明した右側固定位置、プラグ4の支持については図5で説明した左側固定位置に固定して引き抜いている状態を示し、ダイス2のベアリング径d1(大径)、プラグ4のベアリング径d4(大径)によって素材鋼管7が寸法規正されて成形される状態を示している。
即ち、図6(a)、(b)、(c)の作業をこの順で続けると、図7(b)に示す引抜鋼管7bが製造され、図6(a)、(b)、(a)の順に作業を続けると図7(a)に示す引抜鋼管が製造され、図6(c)、(b)、(c)の順に作業を続けると図7(c)に示す引抜鋼管が製造される。尚、引抜き作業中にダイス支持台30又はプラグ4の支持位置を移動するには、鋼管の引抜速度とダイス2又はプラグ4の移動速度の関係を考慮して、内部に組込まれた第1油圧ユニット13によって駆動される第1油圧シリンダ20、及び第2油圧ユニット13aによって駆動される第2油圧シリンダ20aによって行われる。
ところで、ダイス2及びプラグ4を正逆方向に相対移動させて図7に示すような段付きの引抜鋼管を製造する場合、鋼管内で肉厚が変化する段付き部分において肉厚勾配がダレるおそれがある。特に、油圧シリンダを1往復させて1ピースの引抜鋼管を製造するとき、往きのストロークにおいてプラグ4が小径ベアリグ(d3)から大径ベアリング(d4)に変化するときの第2油圧シリンダ20aの移動速度(v1)と、帰りのストロークにおいてプラグ4が大径ベアリグ(d4)から小径ベアリング(d3)に変化するときの第2油圧シリンダ20aの移動速度(v2)とを同じ速度(v1=v2)にすると、往きのストロークにおける引抜鋼管の肉厚変化勾配に比べて、帰りのストロークにおける引抜鋼管の肉厚変化勾配がだれる。
そのため、鋼管引抜装置によって連続して生成された引抜鋼管から1ピース毎の引抜鋼管を切断する場合、連続した引抜鋼管の肉厚が厚い領域の中心位置を切断位置とするときに、往きのストロークの切断位置と帰りのストロークの切断位置との対応関係がズレてしまって、切断位置を正確に位置決めすることができなくなってしまう。そこで、従来は超音波肉厚計を用いて、引抜鋼管における各所の肉厚を測定することで切断位置の位置決めを行っていた。しかしながら、そのような方法では、超音波肉厚計によって多数の箇所の肉厚を測定しなければならないために、切断位置を測定する作業に多大な時間を要してしまうので引抜鋼管の生産効率が低下してしまう。
そこで、本発明では、図5に示すように、第2油圧シリンダ20aとラム21との間に付設された位置検出センサ20bが、該第2油圧シリンダ20aのストローク位置を検出し、これを位置検出信号としてコンピュータにフィードバックしている。そして、コンピュータが、位置検出信号(即ち、検出されたストローク位置)を、プラグ支持棒5の先端に接続されたプラグの移動位置(即ち、引抜鋼管の引抜位置)に換算している。さらに、コンピュータは、この位置検出信号(検出されたストローク位置)に基づいて、第2油圧シリンダ20aのストローク位置に対応した移動速度の制御を行っている。言い換えると、該位置検出センサ20bは、制御系のフィードバックループを構成し、第2油圧シリンダ20aのストローク位置をプラグの移動位置として検出して位置検出信号をコンピュータにフィードバックし、コンピュータが第2油圧シリンダ20aのストローク位置に対応した移動速度の制御を行っている。
このとき、引抜鋼管の引抜速度と第2油圧シリンダ20aの移動速度には互換性が設けてあるので、結果的には、第2油圧シリンダ20aの位置に応じて引抜鋼管の引抜速度が制御されることになる。尚、位置検出センサ20bは、例えばエンコーダなどによって容易に実現することができる。
図8は、本発明の鋼管引抜装置において、位置検出センサを用いたフィードバック制御によって製造された1ピース分の引抜鋼管の縦断面図である。図5のプラグ支持台の横断面図に示すように、第2油圧シリンダ20aに設置された位置検出センサ20bが、該第2油圧シリンダ20aのストローク位置を検出してコンピュータ(図示せず)にフィードバックすると、該コンピュータは、第2油圧シリンダ20aのストローク位置に対応して該第2油圧シリンダ20aの移動速度の制御を行う。これによって、図8に示すように、引抜鋼管の各肉厚部分の寸法精度が格段に向上する。
図8を用いてさらに詳しく説明すると、引抜鋼管の肉厚が厚いa領域(即ち、プラグ4の小径ベアリング(d3)を用いた領域)においては、位置検出センサ20bが第2油圧シリンダ20aの対応するストローク位置aを検出してコンピュータへフィードバックするので、コンピュータの速度制御によって第2油圧シリンダ20aは所定の移動速度で駆動する。これによって、引抜鋼管は所定の移動速度で引き抜かれるので、引抜鋼管のa領域においては一定の肉厚となる。
次に、引抜鋼管の肉厚が薄くなる方向へ肉厚勾配を持つb領域(即ち、プラグ4が小径ベアリグ(d3)から大径ベアリング(d4)に変化する領域)においては、位置検出センサ20bが第2油圧シリンダ20aの対応するストローク位置bを検出してコンピュータへフィードバックするので、コンピュータの速度制御によって第2油圧シリンダ20aは移動速度v1で駆動する。これによって、移動速度v1でプラグ4が小径ベアリグ(d3)から大径ベアリング(d4)に変化するので(即ち、引抜鋼管が移動速度v1で引き抜かれるので)、引抜鋼管のb領域においてはダレが生じない所定の肉厚勾配で肉厚が薄くって行く。
次に、引抜鋼管の肉厚が薄いc領域((即ち、プラグ4が大径ベアリグ(d4)を用いた領域)においては、位置検出センサ20bが第2油圧シリンダ20aの対応するストローク位置cを検出してコンピュータへフィードバックするので、コンピュータの速度制御によって第2油圧シリンダ20aは所定の移動速度で駆動する。これによって、引抜鋼管は所定の移動速度で引き抜かれるので、引抜鋼管のc領域においては一定の肉厚となる。
次に、引抜鋼管の肉厚が厚くなる方向へ肉厚勾配を持つd領域(即ち、プラグ4が大径ベアリグ(d4)から小径ベアリング(d3)に変化する領域)においては、位置検出センサ20bが第2油圧シリンダ20aの対応するストローク位置dを検出してコンピュータへフィードバックするので、コンピュータの速度制御によって第2油圧シリンダ20aは移動速度v2で駆動する。このとき、前述のb領域の移動速度v1とこのd領域の移動速度v2とを同じにすると、引抜鋼管のd領域においては肉厚勾配にダレが生じてしまう。従って、コンピュータは、d領域の位置検出信号に基づいて、第2油圧シリンダ20aの移動速度v2をb領域の移動速度v1より速くする(即ち、v2>v1とする)ように速度制御を行う。
これによって、d領域においては、移動速度v1より速い移動速度v2で第2油圧シリンダ20aが移動するので(即ち、速い移動速度v2でプラグ4が大径ベアリグ(d4)から小径ベアリング(d3)に変化するので)、引抜鋼管は速い移動速度v2で引き抜かれることになり、引抜鋼管のd領域においては肉厚勾配にダレが生じるおそれはなくなる。
次に、引抜鋼管の肉厚が厚いe領域(即ち、プラグ4が小径ベアリグ(d3)を用いた領域)においては、位置検出センサ20bが第2油圧シリンダ20aの対応するストローク位置eを検出してコンピュータへフィードバックするので、コンピュータの速度制御によって第2油圧シリンダ20aは所定の移動速度で駆動する。これによって、引抜鋼管は所定の移動速度で引き抜かれるので、引抜鋼管のe領域においては一定の肉厚となる。
以上述べたようなコンピュータによるストローク位置に対応した速度制御によって引抜工程を繰り返し、一連の連続した長尺物の引抜鋼管を生産した後、各ピースごとに引抜鋼管の肉厚が厚い領域の中心位置を切断位置としてマーキングし、寸法fの長さで1ピース分の引抜鋼管を切断する。
このようにして、コンピュータの制御によって第2油圧シリンダ20aのストローク位置に対応した移動速度で引抜制御を行うことにより、第2油圧シリンダ20aの往きのストローク位置aにおける移動速度v1に比べて、帰りのストローク位置dにおける移動速度v2を所望のレベルで速くすることができる。その結果、往きのストローク位置aにおける肉厚変化勾配と帰りのストローク位置dにおける肉厚変化勾配とを同じにすることができる。これによって連続して製造された引抜鋼管の切断位置を高精度に位置決めすることができる。尚、連続した引抜鋼管の全長は、鋼管引抜装置の寸法上の制約などから、凡そ10mである。
ここでは、肉厚が2段の引抜鋼管について説明したが、これに限ることはなく肉厚が多段の引抜鋼管についても本発明が適用されることは言うまでもない。さらに本発明は、具体的な一例として上記の実施例について説明したが、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
本発明の鋼管引抜装置は、長尺物や短尺物の引抜鋼管を高精度且つ安価に生産することができるので、自動車産業や建設機械産業などに有効に利用することができる。
1 フレーム
2ダイス
3 ダイス支持台
4 プラグ
5 プラグ支持棒
5a つば部
6 プラグ支持台
7素材鋼管
7a 先端部
7b 引抜鋼管
8 ハサミ
9 引抜車
10ツメ
11 チェーン
12 台車
12a レール
13 第1油圧ユニット
13a 第2油圧ユニット
14、14a 配管
15 ダイス支持台固定ラム
15b 大径フランジ部
16、16a ストッパ
17 補強材
17a 補強部材
18 中空調節ねじ軸
19 ナット式ストッパ
20 第1油圧シリンダ
20a 第2油圧シリンダ
20b 位置検出センサ
21 ラム
22 ラム固定ナット
23 プストンロッド
24 耳金
25 ピン
30 ダイス支持台
d1 ダイスの大径ベアリング
d2 ダイスの小径ベアリング
d3 プラグの小径ベアリング
d4 プラグの大径ベアリング
2ダイス
3 ダイス支持台
4 プラグ
5 プラグ支持棒
5a つば部
6 プラグ支持台
7素材鋼管
7a 先端部
7b 引抜鋼管
8 ハサミ
9 引抜車
10ツメ
11 チェーン
12 台車
12a レール
13 第1油圧ユニット
13a 第2油圧ユニット
14、14a 配管
15 ダイス支持台固定ラム
15b 大径フランジ部
16、16a ストッパ
17 補強材
17a 補強部材
18 中空調節ねじ軸
19 ナット式ストッパ
20 第1油圧シリンダ
20a 第2油圧シリンダ
20b 位置検出センサ
21 ラム
22 ラム固定ナット
23 プストンロッド
24 耳金
25 ピン
30 ダイス支持台
d1 ダイスの大径ベアリング
d2 ダイスの小径ベアリング
d3 プラグの小径ベアリング
d4 プラグの大径ベアリング
Claims (6)
- ダイスとプラグとを鋼管引抜方向に対して正逆方向に相対移動させて段付きの引抜鋼管を製造する鋼管引抜装置であって、
前記鋼管引抜方向に対応して前記ダイスを相対移動させる第1油圧シリンダと、
前記ダイスの移動方向に対して逆方向へ前記プラグを相対移動させる第2油圧シリンダと、
前記第2油圧シリンダのストローク位置を検出する位置検出センサと、
前記位置検出センサが検出した位置情報を受信し、該位置情報に基づいて前記第2油圧シリンダの移動速度を制御するコンピュータと
を少なくとも備えることを特徴とする鋼管引抜装置。 - 上記第2油圧シリンダが往復の1ストロークにおいて1ピース分の上記引抜鋼管を生成するとき、上記コンピュータは、往きのストロークで上記プラグのベアリングを小径から大径へ移動させるときの上記引抜鋼管の肉厚勾配の傾斜角度と、戻りのストロークで上記プラグのベアリングを大径から小径へ移動させるときの上記引抜鋼管の肉厚勾配の傾斜角度とが同じになるように、上記第2油圧シリンダの移動速度の制御を行うことを特徴とする請求項1記載の鋼管引抜装置。
- 上記コンピュータは、上記プラグのベアリングを小径から大径へ移動させるときの前記第2油圧シリンダの第1移動速度v1に対して、上記プラグのベアリングを大径から小径へ移動させるときの該第2油圧シリンダの第2移動速度v2を高速にするように速度制御を行うことを特徴とする請求項2記載の鋼管引抜装置。
- ダイスとプラグとを鋼管引抜方向に対して正逆方向に相対移動させて段付きの引抜鋼管を製造する引抜鋼管の製造方法であって、
前記鋼管引抜方向に対応して、第1油圧シリンダによって前記ダイスを相対移動させながら、第2油圧シリンダによって前記ダイスの移動方向に対して逆方向へ前記プラグを相対移動させる第1の工程と、
位置検出センサが、前記第2油圧シリンダのストローク位置を検出する第2の工程と、
コンピュータが、前記位置検出センサの検出した位置情報を受信し、該位置情報に基づいて前記第2油圧シリンダの移動速度を制御する第3の工程と
を含むことを特徴とする引抜鋼管の製造方法。 - 上記第2油圧シリンダは、上記第1の工程において、往復の1ストロークにおいて1ピース分の上記引抜鋼管を生成し、
上記コンピュータは、上記第3の工程において、往きのストロークで上記プラグのベアリングを小径から大径へ移動させるときの上記引抜鋼管の肉厚勾配の傾斜角度と、戻りのストロークで上記プラグのベアリングを大径から小径へ移動させるときの上記引抜鋼管の肉厚勾配の傾斜角度とが同じになるように、上記第2油圧シリンダの移動速度を制御することを特徴とする請求項4記載の引抜鋼管の製造方法。 - 上記コンピュータは、上記第3の工程において、上記プラグのベアリングを小径から大径へ移動させるときの前記第2油圧シリンダの第1移動速度v1に対して、上記プラグのベアリングを大径から小径へ移動させるときの該第2油圧シリンダの第2移動速度v2を高速にするように速度制御を行うことを特徴とする請求項5記載の引抜鋼管の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009198845A JP2011045924A (ja) | 2009-08-28 | 2009-08-28 | 鋼管引抜装置、及び引抜鋼管の製造方法 |
TW098141762A TWI376277B (en) | 2009-08-28 | 2009-12-07 | Steel pipe drawing apparatus and drawn steel pipe manufacturing method |
CN2009102588568A CN102000708A (zh) | 2009-08-28 | 2009-12-29 | 钢管拉拔装置和拉拔钢管的制造方法 |
US12/657,042 US8210017B2 (en) | 2009-08-28 | 2010-01-13 | Steel pipe drawing apparatus and drawn steel pipe manufacturing method |
KR1020100031407A KR20110023714A (ko) | 2009-08-28 | 2010-04-06 | 강관 인발 장치 및 인발 강관의 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009198845A JP2011045924A (ja) | 2009-08-28 | 2009-08-28 | 鋼管引抜装置、及び引抜鋼管の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011045924A true JP2011045924A (ja) | 2011-03-10 |
Family
ID=43622855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009198845A Pending JP2011045924A (ja) | 2009-08-28 | 2009-08-28 | 鋼管引抜装置、及び引抜鋼管の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8210017B2 (ja) |
JP (1) | JP2011045924A (ja) |
KR (1) | KR20110023714A (ja) |
CN (1) | CN102000708A (ja) |
TW (1) | TWI376277B (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014131812A (ja) * | 2013-01-07 | 2014-07-17 | Nippon Steel & Sumitomo Metal | 差厚鋼板の製造方法および差厚形成装置 |
JP2021030251A (ja) * | 2019-08-20 | 2021-03-01 | 高周波熱錬株式会社 | 引抜鋼管及びラックバー、並びに引抜鋼管の製造装置及び製造方法 |
KR102647152B1 (ko) * | 2023-09-20 | 2024-03-12 | 이만혁 | 강관 인발장치 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102339030A (zh) * | 2011-10-20 | 2012-02-01 | 河海大学常州校区 | 液压冷拔机在线实时诊断服务系统及其方法 |
US9676016B2 (en) | 2013-09-23 | 2017-06-13 | Manchester Copper Products, Llc | Systems and methods for drawing materials |
KR101502704B1 (ko) * | 2013-11-22 | 2015-03-13 | 한국생산기술연구원 | 역장력 인발기 및 이를 이용한 인발 방법 |
MX2018010764A (es) * | 2016-03-11 | 2018-11-29 | Nippon Steel & Sumitomo Metal Corp | Metodo de fabricacion de tubo de acero de espesor variable de pared y tubo de acero de espesor variable de pared. |
CN106881364B (zh) * | 2017-04-11 | 2019-10-25 | 江西理工大学 | 一种薄壁铜管游动芯头拉拔机自动上料系统 |
CN110523790B (zh) * | 2019-09-06 | 2021-08-06 | 徐州徐工液压件有限公司 | 液压冷拔机扩径、制头自动定尺装置及方法 |
CN112792146A (zh) * | 2020-12-22 | 2021-05-14 | 浙江翊蓝铝业有限公司 | 一种自动铝管冷拔装置 |
CN113426843B (zh) * | 2021-04-27 | 2022-12-16 | 青岛三弘精密器械有限公司 | 一种不锈钢无缝钢管的自动加工系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962807U (ja) * | 1982-10-18 | 1984-04-25 | 山和鋼管株式会社 | 引抜管用プラグとダイス |
JPH10202313A (ja) * | 1997-01-20 | 1998-08-04 | Hitachi Cable Ltd | 内面溝付き管の製造方法及び製造装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5973113A (ja) | 1982-10-18 | 1984-04-25 | Sanwa Kokan Kk | 引抜管の製造方法 |
JPS5973115A (ja) | 1982-10-19 | 1984-04-25 | Sanwa Kokan Kk | 段付引抜鋼管 |
US5119662A (en) * | 1984-04-16 | 1992-06-09 | Sanwa Kokan Co., Ltd. | Methods for cold drawing seamless metal tubes each having an upset portion on each end |
US7114362B2 (en) * | 2004-03-27 | 2006-10-03 | George A. Mitchell Company | Method of making metal workpiece |
-
2009
- 2009-08-28 JP JP2009198845A patent/JP2011045924A/ja active Pending
- 2009-12-07 TW TW098141762A patent/TWI376277B/zh not_active IP Right Cessation
- 2009-12-29 CN CN2009102588568A patent/CN102000708A/zh active Pending
-
2010
- 2010-01-13 US US12/657,042 patent/US8210017B2/en not_active Expired - Fee Related
- 2010-04-06 KR KR1020100031407A patent/KR20110023714A/ko not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962807U (ja) * | 1982-10-18 | 1984-04-25 | 山和鋼管株式会社 | 引抜管用プラグとダイス |
JPH10202313A (ja) * | 1997-01-20 | 1998-08-04 | Hitachi Cable Ltd | 内面溝付き管の製造方法及び製造装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014131812A (ja) * | 2013-01-07 | 2014-07-17 | Nippon Steel & Sumitomo Metal | 差厚鋼板の製造方法および差厚形成装置 |
JP2021030251A (ja) * | 2019-08-20 | 2021-03-01 | 高周波熱錬株式会社 | 引抜鋼管及びラックバー、並びに引抜鋼管の製造装置及び製造方法 |
KR102647152B1 (ko) * | 2023-09-20 | 2024-03-12 | 이만혁 | 강관 인발장치 |
Also Published As
Publication number | Publication date |
---|---|
TW201107055A (en) | 2011-03-01 |
US8210017B2 (en) | 2012-07-03 |
TWI376277B (en) | 2012-11-11 |
CN102000708A (zh) | 2011-04-06 |
KR20110023714A (ko) | 2011-03-08 |
US20110048089A1 (en) | 2011-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011045924A (ja) | 鋼管引抜装置、及び引抜鋼管の製造方法 | |
JP5357112B2 (ja) | 鋼管引抜装置、及び鋼管引抜方法 | |
RU2526348C2 (ru) | Способ и устройство для ротационного выдавливания с утонением стенок | |
US5989466A (en) | Variable section extrusion die set and variable extrusion molding method | |
Wong et al. | Effects of roller path and geometry on the flow forming of solid cylindrical components | |
US11614156B2 (en) | Metal sleeve and method for producing it | |
Wong et al. | Cold rotary forming of thin-wall component from flat-disc blank | |
JPWO2016147982A1 (ja) | 転造加工装置 | |
Rajan et al. | An investigation of the development of defects during flow forming of high strength thin wall steel tubes | |
US4788841A (en) | Method and apparatus for making step wall tubing | |
JP2005211969A (ja) | スピニング加工装置 | |
RU2634821C2 (ru) | Способ прямого или обратного прессования металлических труб, дорн для прессования металлических труб, пресс для экструдирования металлических труб и экструдированная металлическая труба | |
JP2006326637A (ja) | パイプ曲げ加工装置及びパイプ曲げ加工方法 | |
Wang et al. | State⁃ of⁃ the⁃ Art of Stamping⁃ Forging Process with Sheet Metal Blank | |
CN112620369B (zh) | 一种高性能不锈钢无缝钢管的加工装置 | |
JP2010089103A (ja) | スプラインの塑性加工方法 | |
CN113770190B (zh) | 一种测量、调整挤压机同心度的方法 | |
JP4248377B2 (ja) | パイプ曲げ加工装置及びパイプ曲げ加工方法 | |
JP2007144497A (ja) | 鋼管の拡管装置および拡管方法 | |
US6581431B2 (en) | Eccentric pipe sections | |
CN111542404B (zh) | 用于制造中空内部冷却阀的方法及装置 | |
CN110523790B (zh) | 液压冷拔机扩径、制头自动定尺装置及方法 | |
JP5644254B2 (ja) | 異形断面管の製造方法及び装置 | |
CN106270278B (zh) | 汽车仪表板横梁上孔的加工工艺方法 | |
JP2006315077A (ja) | パイプ曲げ加工装置及びパイプ曲げ加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120229 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131203 |