JP2011043427A - 構造物の内部欠陥探知装置 - Google Patents

構造物の内部欠陥探知装置 Download PDF

Info

Publication number
JP2011043427A
JP2011043427A JP2009192172A JP2009192172A JP2011043427A JP 2011043427 A JP2011043427 A JP 2011043427A JP 2009192172 A JP2009192172 A JP 2009192172A JP 2009192172 A JP2009192172 A JP 2009192172A JP 2011043427 A JP2011043427 A JP 2011043427A
Authority
JP
Japan
Prior art keywords
elastic wave
internal defect
amplitude
oscillated
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009192172A
Other languages
English (en)
Inventor
Shohei Momoki
昌平 桃木
Hwa Kian Chai
華堅 蔡
Tomomoto Shiotani
智基 塩谷
Yoshikazu Kobayashi
義和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP2009192172A priority Critical patent/JP2011043427A/ja
Publication of JP2011043427A publication Critical patent/JP2011043427A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【目的】コンクリート構造物などの構造物における損傷進展の初期段階、例えば凍害や中性化といった劣化による初期段階での微少な内部欠陥を確実に検知できて、コンクリート構造物の予防保全的管理にも確実に寄与できる構造物の内部欠陥探知装置を提供することを目的とする。
【構成】構造物に弾性波発振部を形成すると共に、弾性波発振部から発振された弾性波を受振する弾性波受振部を形成し、弾性波発振部より弾性波を発振させると共に、発振させた弾性波を弾性波受振部により受振してなり、弾性波発振波長の振幅あるいはエネルギーと弾性波受振波長の振幅あるいはエネルギーの比を減衰比として取得し、取得した減衰比により構造物の内部欠陥及び/又は内部欠陥箇所を探知する、ことを特徴とする。
【選択図】 図1

Description

本発明は、例えばコンクリート構造物など構造物の内部欠陥及び/又は内部欠陥箇所を探知する構造物の内部欠陥探知装置に関するものである。
従来、例えばコンクリート構造物の内部欠陥を探知する装置としては、弾性波の伝搬速度を利用するものがあり、コンクリート構造物などの構造物内を透過する弾性波の伝播速度の違いからコンクリート構造物の内部欠陥を探知する探知システムや探知装置が一般に知られていた。
すなわち、コンクリート構造物の内部にひび割れや空隙などの欠陥箇所が存在すると、弾性波はその箇所を迂回して伝搬するため、コンクリート構造物に前記のような欠陥のない健全な箇所を伝搬する場合と比べ伝搬時間を多く要するものとなるからである。ここで従来は、この弾性波の伝搬速度が異なるとの性質を用いて、コンクリート構造物の内部欠陥を探知するものとしていたのである。
特開2007−198907号公報
しかしながら、例えば、従来の弾性波伝搬速度の違いを利用した欠陥探知システムや探知装置は、コンクリート構造物などに生じた致命的な欠陥の有無は捉えることが出来るが、構造物内部のひび割れや空隙の進展がいまだ初期段階のときは、当該伝搬速度の低下率がきわめて小さいため、欠陥を有しないいわゆる構造物内部の健全部との判別が可視できないこともあり比較的困難であるとの課題があった。
そして、かかる従来の探知システムあるいは探知装置をコンクリート構造物の予防保全的管理に使用することは不向きであるとも言われていた。
かくして、本発明は、前記従来の課題を解消するために創案されたものであって、例えばコンクリート構造物などの構造物における損傷進展の初期段階、例えば凍害や中性化といった劣化による初期段階での微少な内部欠陥を確実に検知できて、コンクリート構造物の予防保全的管理にも確実に寄与できる構造物の内部欠陥探知装置を提供することを目的とするものである。
本発明による構造物の内部欠陥探知装置は、
構造物に弾性波発振部を形成すると共に、前記弾性波発振部から発振された弾性波を受振する弾性波受振部を形成し、前記弾性波発振部より弾性波を発振させると共に、発振させた弾性波を弾性波受振部により受振してなり、
弾性波発振波形の振幅あるいはエネルギーと弾性波受振波形の振幅あるいはエネルギーの比を減衰比として取得し、取得した減衰比により構造物の内部欠陥及び/又は内部欠陥箇所を探知する、
ことを特徴とし、
または、
構造物に弾性波発振部を形成すると共に、前記弾性波発振部から発振された弾性波を受振する弾性波受振部を形成し、前記弾性波発振部より弾性波を発振させると共に、発振させた弾性波を弾性波受振部により受振してなり、
弾性波発振波形の初動から1波長乃至数波長における振幅あるいはエネルギーと弾性波受振波形の初動から1波長乃至数波長における振幅あるいはエネルギーの比を減衰比として取得し、取得した減衰比により構造物の内部欠陥及び/又は内部欠陥箇所を探知する、
ことを特徴とし、
または、
構造物に弾性波発振部を形成すると共に、前記弾性波発振部から発振された弾性波を受振する弾性波受振部を形成し、前記弾性波発振部より弾性波を複数回発振させると共に、発振させた弾性波を弾性波受振部により複数回受振してなり、
前記複数回発振された弾性波発振波形の初動から1波長乃至数波長における振幅あるいはエネルギーの合計値と前記複数回受振された弾性波受振波形の初動から1波長乃至数波長における振幅あるいはエネルギーの合計値の比を合計減衰比として取得し、取得した合計減衰比により構造物の内部欠陥及び/又は内部欠陥箇所を探知する、
ことを特徴とし、
または、
前記構造物は、コンクリート構造物である、
ことを特徴とするものである。
本発明による構造物の内部欠陥探知装置であれば、
例えばコンクリート構造物などの構造物における損傷進展の初期段階、例えば凍害や中性化といった劣化による初期段階での内部欠陥を確実に検知できて、コンクリート構造物の予防保全的管理にも確実に寄与できるとの優れた効果を奏する。
本発明の基本構成を説明する説明図(その1)である。 本発明の基本構成を説明する説明図(その2)である。 発振波形及び受振波形を説明する説明図である。 本発明の具体的構成を説明する構成説明図である。 本発明による減衰比を説明する説明図(その1)である。 本発明による減衰比を説明する説明図(その2)である。 本発明により内部欠陥箇所が明確化された構造物を説明する説明図である。
以下本発明を図に示す実施例に従って説明する。
以下、本発明を図に示す実施例に基づいて説明する。
例えば、コンクリート構造物など構造物1の内部にひび割れや空隙など欠陥が存在すると、当該構造物1内を透過する弾性波は前記内部欠陥によって散乱してしまうため、その弾性波の受振波の波形における振幅やエネルギーなどが、いわゆる距離減衰以外にも減衰することが確認されている。
さらに、弾性波の波形における振幅やエネルギーの減衰特性は、弾性波の前記構造物1内を透過する弾性波における伝搬速度の減衰特性と比較して、損傷度に対し高感度に変化することが確認されている。
従って、この弾性波の振幅やエネルギーの減衰比を参照することによって、前記伝搬速度の減衰特性検出では明確に判断し得ない初期段階の欠陥をも明確に判別することができるのである。
しかして、本発明では、上記の点に着目し、弾性波発振波形の振幅あるいはエネルギーと弾性波受振波形の振幅あるいはエネルギーの比を減衰比と定義して取得し、取得した減衰比をもとに、コンクリート構造物など構造物1の内部の欠陥あるいは欠陥箇所を確実に探知できるものとした。
まず、図1は本発明の基本的な構成の概略を示す説明図である。
図1に示す例では内部欠陥を探知すべき構造物1としてブロック状の構造物1を用いて説明している。
まず、この構造物1の一方側側面に弾性波発振部2を形成する。図1ではこの弾性波発振部2として、パルス発振器3と当該パルス発振器3からの弾性波発振波を構造物1に入力する発振部14と、発振波センサ6とを備えている。
そして、該発振波センサ6により構造物1に入力された弾性波の発振波形を取得する波形収録センサ4は、計測装置8内に設けられている。
図1に示すようなパルス発振器3を使用すれば、常にほぼ同一波形の弾性波発振波として送出することが出来、後述する様に、複数回発振し、その加算合計振幅値を用いる場合には、波形がほぼ同一の値を示す弾性波発振波形を複数回送出することが出来き、もって明確な加算合計振幅値あるいはエネルギー値を取得できる利点がある。かかる利点については後述する。
なお、図2に示すように、弾性波の発振については、パルス発振器3を使用せず、構造物1の側面を手動で例えば鋼球ハンマなどにより叩き、弾性波を発振させることでも構わないし、他の機械的殴打器を用いて弾性波を発振するものでも構わない。
次に、符号5は弾性波受振部を示し、一例としては、前記コンクリート製からなる構造物1の反対側の側面に形成される。
そして、該弾性波受振部5は、弾性波受振波を探知する受振波センサ7により構成されている。
また、符号8は計測装置であり、該計測装置8は前記弾性波発振部2及び弾性波受振部5から波形の振幅やエネルギーを波形収録センサ4によって取得し、これにより振幅やエネルギーの減衰比を演算して構造物1内部に欠陥があるか否かの計測を行うものである。
以上において、パルス発振器3などを用い、弾性波発振部2により弾性波が発振されると、発振された弾性波は、発振波センサ6によりまず、その弾性波発振波が入力され、波形収録センサ4により、その発振波形が収録される。
次に、弾性波受振部5において弾性波受振波センサ7により、弾性波受振波が探知され、その受振波形が収録される。
ここで図2に、取得された発振波の波形9と受振波の波形10を示す。当該波形9、10から構造物1内を透過する弾性波はかなり減衰することが理解できる。
しかしてこの減衰が、構造物1内に内部欠陥がない、いわゆる健全部で生ずる単なる距離減衰に留まるものなのか、あるいは内部に損傷などの欠陥があるために生じている欠陥による減衰なのかの判断をしなければならない。
ところで、コンクリート構造物などの構造物1には、必ずいわゆる境界条件が存在しており、弾性波の発振波及び受振波共に、この境界条件の影響を受けざるを得ない。
従って、構造物1に衝撃を与えることにより生ずる発振波及び受振波の全体の波形9、10は、構造物1内の健全部を透過する弾性波の全体波形9、10と構造物1の内部欠陥部を透過する弾性波の全体波形9、10と比較してみると、これら全体波形9、10は前記境界条件の影響(反射波などの影響)を受け、ほぼ同一の振幅及びエネルギーを示してしまうことがある。
そこで、本件発明者らは、弾性波の発振波形の初動からから1波長乃至数波長における振幅a(初動から1波長における振幅はa0)あるいはエネルギーb(初動から1波長におけるエネルギーはb0)と弾性波の受振波形の初動からから1波長乃至数波長における振幅a(初動から1波長における振幅はa1)あるいはエネルギーb(初動から1波長におけるエネルギーはb1)に着目したのである。
すなわち、弾性波の発振波形の初動から1波長乃至数波長における振幅a(初動から1波長における振幅はa0)あるいはエネルギーb(初動から1波長におけるエネルギーはb0)及び弾性波の受振波形の初動からから1波長乃至数波長における振幅a(初動から1波長における振幅はa1)あるいはエネルギーb(初動から1波長におけるエネルギーはb1)は、前記境界条件の影響、例えば反射波などの影響を比較的受けないからである。
よって、弾性波の発振波形の初動からから1波長乃至数波長における振幅a0あるいはエネルギーb0及び弾性波の受振波形の初動からから1波長乃至数波長における振幅a1あるいはエネルギーb1を比較し、その減衰比を求めることにより構造物1内部の内部欠陥及び/又は内部欠陥箇所を探知するものとしたのである。
これにより、構造物1内の健全部における減衰比と内部欠陥箇所における減衰比の違いが明確化されるものとなり、コンクリート構造物など構造物1の内部の欠陥あるいは欠陥箇所を確実に探知できるものとなったのである。
ところで、波形収録センサ4および受振波センサ7によって収録した発振波形及び受振波形には、微少ではあるが電気的ノイズから生ずる波形が含まれ、これにより減衰比の計測、欠陥探知作業に誤差が生じてしまうことがある。また、前記発振波及び受振波の波形は、その振幅が小さいために、減衰比の計測、内部欠陥探知作業が困難になることがある。
そこで、本発明においては、パルス発振器3などによる弾性波の起励、あるいは殴打による弾性波の発振を複数回行い、これにより生じた弾性波発振波の波形9及び弾性波受振波の波形10、すなわちこれらの波形の振幅値を加算して波形を形成するものとした。
これにより、初動より1波長乃至数波長における振幅あるいはエネルギーであったとしてもそれらを拡大することが出来、その減衰比が距離減衰によるものなのかあるいは内部損傷など内部欠陥によるものなのかの判断がきわめて明確に行えるものとなる。
さらに、前述した電気ノイズによる波形の揺らぎについても、複数回行った波形を加算することで、結局その電気ノイズによる波形の揺らぎを消滅させることが出来るものとなる。
なお、前述したようにパルス発振器3などによる弾性波の起励においては比較的同一波形の弾性波発振が行えるため、約5回程度の弾性波励起回数で構わないと思われるが、例えば鋼球ハンマなどによる手動での殴打で弾性波を発振させる場合には、ほぼ同一波形で発振させる弾性波発振が比較的困難であるため、約10回程度の弾性波発振が必要と考えられる。
次に、本件発明の一使用状態につき図3を参照して説明する。
<計測>
1.コンクリート構造物などの構造物1を例えば取り囲むように発振波センサ6・・・及び受振波センサ7・・・を配置する(なお、上面と底面はセンサを配置しない)。
図3では、略方形状の構造物1につき、略方形状に同等の大きさの8個のブロックエレメント12・・・に分けている。そして、その一方側の側面につき8個のブロックエレメント12・・・に分けた交点などに9箇所、発振センサ6を設置してある。
さらにこの側面と対向する側面に8個のブロックエレメント12・・・に分けた交点などにやはり9箇所、受振センサ7を設置してある。
また、前記一方側の側面の隣の側面に、同様に9箇所、発振センサ6を設置し、当該側面に対向する側面に同様に9箇所、受振センサ7が設置してある。
従って、1つの発振点(ある発振センサ6の近傍位置)に対し、対面の9箇所の受振センサ7で透過する弾性波を受振するものとなる。
よって、本実施例においては、弾性波の波線11は、発振点が18箇所で、各々9箇所の受振センサ7が受振するために、合計162の波線を有することになる。
すなわち、この162の波線11における弾性波発振波及び弾性波受振波の振幅あるいはエネルギーの減衰比を算出するものとなる。
2.しかして、各発振センサの直近位置において前記構造物1に鋼球ハンマなどを用いて衝撃を与え、あるいはパルス発振器3などにより弾性波を励起して弾性波を発振する。
3.直近のセンサ6で得られた波形を発振波形として取得し、その他のセンサ7・・・で得られた受振波形との減衰比を各々取得していく。
この取得は前記のように、本実施例では162箇所の波形における振幅やエネルギーの減衰比が求められる。
この際、前記したように、パルス発振器3などによる弾性波の起励、あるいは殴打による弾性波の発生を複数回行う。これにより生じた弾性波発振波長の波形9及び弾性波受振波長の波形10、すなわちこれらの波形の振幅値を加算して波形を形成するからである。
よって、初動より1波長乃至数波長における微少な振幅あるいはエネルギーであったとしてもそれらを拡大することが出来、その減衰比が距離減衰によるものなのかあるいは内部損傷など内部欠陥によるものなのかの判断がきわめて明確に行える。
さらに、電気ノイズによる波形の揺らぎについても、複数回行った波形を加算することで、結局その電気ノイズによる波形の揺らぎを消滅させることが出来るものとなる。
図4、図5に上記の探知操作により求めた減衰比を示す。
これらの図ではブロックエレメント12−8が減衰比0.000001%を示し、当該箇所に損傷箇所が存在することが把握できる。当該解析モデルを図6に示す。
1 構造物
2 弾性波発振部
3 パルス発振器
4 波長収録センサ
5 弾性波受振部
6 発振波センサ
7 受振波センサ
8 計測装置
9 発振波形
10 受振波形
11 波線
12 ブロックエレメント
a 振幅
b エネルギー

Claims (4)

  1. 構造物に弾性波発振部を形成すると共に、前記弾性波発振部から発振された弾性波を受振する弾性波受振部を形成し、前記弾性波発振部より弾性波を発振させると共に、発振させた弾性波を弾性波受振部により受振してなり、
    弾性波発振波長の振幅あるいはエネルギーと弾性波受振波長の振幅あるいはエネルギーの比を減衰比として取得し、取得した減衰比により構造物の内部欠陥及び/又は内部欠陥箇所を探知する、
    ことを特徴とする構造物の内部欠陥探知装置。
  2. 構造物に弾性波発振部を形成すると共に、前記弾性波発振部から発振された弾性波を受振する弾性波受振部を形成し、前記弾性波発振部より弾性波を発振させると共に、発振させた弾性波を弾性波受振部により受振してなり、
    弾性波発振波長の初動から1波長乃至数波長における振幅あるいはエネルギーと弾性波受振波長の初動から1波長乃至数波長における振幅あるいはエネルギーの比を減衰比として取得し、取得した減衰比により構造物の内部欠陥及び/又は内部欠陥箇所を探知する、
    ことを特徴とする構造物の内部欠陥探知装置。
  3. 構造物に弾性波発振部を形成すると共に、前記弾性波発振部から発振された弾性波を受振する弾性波受振部を形成し、前記弾性波発振部より弾性波を複数回発振させると共に、発振させた弾性波を弾性波受振部により複数回受振してなり、
    前記複数回発振された弾性波発振波長の初動から1波長乃至数波長における振幅あるいはエネルギーの合計値と前記複数回受振された弾性波受振波長の初動から1波長乃至数波長における振幅あるいはエネルギーの合計値の比を合計減衰比として取得し、取得した合計減衰比により構造物の内部欠陥及び/又は内部欠陥箇所を探知する、
    ことを特徴とする構造物の内部欠陥探知装置。
  4. 前記構造物は、コンクリート構造物である、
    ことを特徴とする請求項1、請求項2あるいは請求項3記載の構造物の内部欠陥探知装置。
JP2009192172A 2009-08-21 2009-08-21 構造物の内部欠陥探知装置 Pending JP2011043427A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192172A JP2011043427A (ja) 2009-08-21 2009-08-21 構造物の内部欠陥探知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192172A JP2011043427A (ja) 2009-08-21 2009-08-21 構造物の内部欠陥探知装置

Publications (1)

Publication Number Publication Date
JP2011043427A true JP2011043427A (ja) 2011-03-03

Family

ID=43830959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192172A Pending JP2011043427A (ja) 2009-08-21 2009-08-21 構造物の内部欠陥探知装置

Country Status (1)

Country Link
JP (1) JP2011043427A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698087A (zh) * 2015-03-30 2015-06-10 河海大学常州校区 基于递归奇异熵的预应力孔道浆体剥离度检测装置及方法
WO2022041660A1 (zh) * 2020-08-28 2022-03-03 青岛理工大学 一种水下混凝土构件冻融损伤原位监测装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618950U (ja) * 1992-08-11 1994-03-11 財団法人シップ・アンド・オーシャン財団 液体の物性値計測装置
JP2001311724A (ja) * 2000-04-28 2001-11-09 Sato Kogyo Co Ltd コンクリート健全度判定方法及び装置
JP2004205430A (ja) * 2002-12-26 2004-07-22 Sumitomo Chem Co Ltd 超音波検査方法
JP2004294261A (ja) * 2003-03-27 2004-10-21 Central Giken:Kk 既設トンネルの健全性診断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618950U (ja) * 1992-08-11 1994-03-11 財団法人シップ・アンド・オーシャン財団 液体の物性値計測装置
JP2001311724A (ja) * 2000-04-28 2001-11-09 Sato Kogyo Co Ltd コンクリート健全度判定方法及び装置
JP2004205430A (ja) * 2002-12-26 2004-07-22 Sumitomo Chem Co Ltd 超音波検査方法
JP2004294261A (ja) * 2003-03-27 2004-10-21 Central Giken:Kk 既設トンネルの健全性診断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
桃木昌平,外: "弾性波減衰特性を用いたコンクリート内部損傷可視化技術の開発", 土木学会年次学術講演会講演概要集, JPN6012042981, 3 August 2009 (2009-08-03), pages 195, ISSN: 0002307105 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698087A (zh) * 2015-03-30 2015-06-10 河海大学常州校区 基于递归奇异熵的预应力孔道浆体剥离度检测装置及方法
WO2022041660A1 (zh) * 2020-08-28 2022-03-03 青岛理工大学 一种水下混凝土构件冻融损伤原位监测装置及方法
US11946923B2 (en) 2020-08-28 2024-04-02 Qingdao university of technology Device and method for monitoring freezing-thawing damage of underwater concrete member in situ

Similar Documents

Publication Publication Date Title
JP4667228B2 (ja) 杭検査方法及びセンサー圧着装置
JP6171214B2 (ja) トモグラフィ解析を利用した構造物の非破壊検査システム
JP5403976B2 (ja) コンクリート構造物品質検査方法
US20180031525A1 (en) Shear wave sensors for acoustic emission and hybrid guided wave testing
JP2011133410A (ja) トンネル覆工の変状監視方法
JP5271941B2 (ja) 非破壊検出システムおよび非破壊検出方法
JP5432618B2 (ja) 固有振動モードを利用したコンクリートポールの損傷検知システム及び方法
JP5280407B2 (ja) 柱状構造物の損傷検知方法、損傷検知装置およびプログラム
JP2011043427A (ja) 構造物の内部欠陥探知装置
JP2013156166A (ja) 超音波探傷方法
JP3198840U (ja) 支柱路面境界部調査システム
JP4895383B2 (ja) 充填度検査装置及び充填度検査方法
JP2010025676A (ja) 超音波探傷方法及び装置
JP2008267897A (ja) コンクリート表面の有害な深さのひび割れの測定方法
JP2010071748A (ja) コンクリートポールの損傷検知方法
WO2015059956A1 (ja) 構造物診断装置、構造物診断方法、及びプログラム
JP5614608B2 (ja) 超音波によるコンクリート表面ひび割れの深さ測定方法
JP2008275520A (ja) コンクリート構造物の劣化検査方法
JP3834660B2 (ja) 構造物のひび割れ検知装置
JP2015102405A (ja) 検査方法および検査装置
JP2007033139A (ja) 健全度診断システム及び健全度診断方法
JP2006023215A (ja) 超音波検査方法及び超音波検査装置並びにその装置のガイド波トランスデューサ
JP5841027B2 (ja) 検査装置および検査方法
JP2013088118A (ja) ガイド波を用いた検査方法
JP2005181302A (ja) コンクリート構造物内鉄筋の破断検知方法及び破断検知装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121206