JP2011040601A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2011040601A
JP2011040601A JP2009187209A JP2009187209A JP2011040601A JP 2011040601 A JP2011040601 A JP 2011040601A JP 2009187209 A JP2009187209 A JP 2009187209A JP 2009187209 A JP2009187209 A JP 2009187209A JP 2011040601 A JP2011040601 A JP 2011040601A
Authority
JP
Japan
Prior art keywords
value
lot
semiconductor wafers
manufacturing
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009187209A
Other languages
English (en)
Inventor
Toshihide Kawachi
敏秀 河内
Takeshi Tashiro
健 田城
Akihiro Yamamoto
暁博 山本
Makoto Otsuka
良 大塚
Toshiharu Miwa
俊晴 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2009187209A priority Critical patent/JP2011040601A/ja
Publication of JP2011040601A publication Critical patent/JP2011040601A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】半導体ウェハ単位でAPCを行う場合の運用性を向上可能な半導体装置の製造方法を提供する。
【解決手段】例えば、今回ロット(#1)を対象として露光処理後にレジストパターン寸法の計測が行われ、この計測値を反映して次回ロット(#2)における各半導体ウェハ単位の露光条件が算出される際に、今回ロット(#1)の露光着工枚数が足りないような状況や、今回ロット(#1)内の計測枚数が不足するような状況が生じる。そこで、露光着工枚数が足りない状況(例えば、スロット1〜12内の11,12が存在しない状況)では、近似式による外挿計算を利用して12枚分の計測値を導出し、計測枚数が不足する状況(例えば、スロット1〜12内の1,6,12の分しか得られない状況)では、近似式による内挿計算を用いて12枚分の計測値を導出する。
【選択図】図2

Description

本発明は、半導体装置の製造方法に関し、特に半導体ウェハ単位でAPC(Advanced Process Control)を行う半導体製造工程に適用して有効な技術に関する。
例えば、特許文献1には、露光量モニタパターンおよびフォーカスモニタパターンを半導体ウェハ上に形成し、1ロットの中から当該パターンが形成された半導体ウェハを十分な枚数抽出し、この抽出された半導体ウェハ上の当該パターンの計測値を、次ロットの露光条件にフィードバックする半導体製造装置の制御方法が示されている。このように、露光量モニタパターンとフォーカスモニタパターンを用いて制御を行うことで、ロット内、及び、ロット間の半導体ウェハが均一に常に最大の露光マージンが得られる状態での露光が可能となる。
また、特許文献2には、エッチング寸法の長期的及び短期的な経時変化を抑制可能な半導体装置の製造方法が示されている。具体的には、まず、あるロットにおいて、リソグラフィ処理、エッチング処理およびエッチング寸法の計測処理を介してエッチングパラメータとエッチング寸法との相関関係の式を作成する。そして、以降の各ロットにおいては、前ロットのエッチングパラメータを相関関係の式に代入することで現ロットのエッチング寸法を予測し、この予測値に基づいて現ロットにおける各半導体ウェハ毎のリソグラフィ条件を設定する。
また、特許文献3には、MOSトランジスタのソース・ドレインのコンタクト形成工程に際し、オゾンTEOS膜およびプラズマTEOS膜を順に堆積した後、CMPによる研磨を行い、その後、異方性ドライエッチングによるエッチバックを行う方法が示されている。この方法を用いると、仮にCMP時の圧力によってプラズマTEOS膜にクラックが生じた場合にも、当該クラックをエッチバックによって除去することが可能となる。
特開2002−299205号公報 特開2007−35777号公報 特開2009−21471号公報
近年、半導体装置の微細化に伴い、高精度な半導体プロセスが益々重要となってきている。例えば、ホトリソグラフィ工程においては、ロット間のみならずロット内の各半導体ウェハ間で、寸法/フォーカスのばらつきの低減が必要となっている。また、例えば、CMP(Chemical Mechanical Polishing)による研磨やCVD(Chemical Vapor Deposition)による堆積等を介した絶縁膜形成工程においては、ロット間のみならずロット内の各半導体ウェハ間で、絶縁膜の膜厚ばらつきの低減が必要となっている。これらのばらつきは、露光装置・塗布現像装置や、CMP装置・CVD装置等での保証精度が限界に達していることが主な背景にある。
このようなばらつきを低減する技術として、APC技術が知られている。従来においては、例えば、前ロットの代表な計測値を反映して次ロットのプロセス条件を定めるといったロット単位でのAPCが行われていた。しかしながら、近年では、前述したような背景から、特許文献1や特許文献2に記載されているようなロット内の各半導体ウェハ単位でのAPCが必要とされている。
各半導体ウェハ単位でAPCを行うためには、特許文献1や特許文献2に記載されているように、十分な枚数の半導体ウェハを計測し、これによって各種相関関係を得る必要がある。しかしながら、実際の製造工程では、必ずしも十分な枚数の半導体ウェハが計測できるとは限らない。例えば、少量多品種の製品等では、1個のロットが通常よりも少ない枚数の半導体ウェハで構成される場合がある。あるいは、何らかの目的で1個のロット内から数枚の半導体ウェハが抜き取られるような場合もある。また、別の観点として、1個のロットを構成する全ての半導体ウェハではなく、一部の半導体ウェハに対して計測を行うことで、計測に伴う製造コストを削減したいという要望もある。このように、十分な枚数の半導体ウェハを計測できないような状況が生じると、特許文献1や特許文献2のような技術を用いて半導体ウェハ単位でのAPCを実行することが困難となる。
本発明は、このような問題を見出すことによってなされたものであり、その目的の一つは、半導体ウェハ単位でAPCを行う場合の運用性を向上可能な半導体装置の製造方法を提供することにある。また、他の目的の一つは、検査コストを低減可能な半導体装置の製造方法を提供することにある。本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的な実施の形態の概要を簡単に説明すれば、次のとおりである。
本実施の形態による半導体装置の製造方法は、第1ロットを構成するN枚の半導体ウェハに対して所定の加工処理を行う第1工程と、その後、N枚の中からM(<N)枚の半導体ウェハを抽出し、これに対して計測を行う第2工程と、この計測状況を反映して各半導体ウェハ単位の製造条件となる第1条件を算出し、この条件で所定の加工処理を行う第3工程とを備えるものとなっている。ここで、第3工程では、第2工程でのM枚分の計測状況に応じてそれぞれ異なる方式によりN枚分の各計測値が定められ、このN枚分の各計測値に基づいて第1条件が定められることが特徴となっている。
このように、本来よりも少ない枚数の計測結果しか得られない場合でも、その計測状況に応じた方式によって本来の枚数分の計測値を定めることで、第3工程において、半導体ウェハ単位でのAPCを実現することが可能となる。これによって、製造工程の運用性が向上可能となり、また、検査コストの低減も実現可能となる。
前述した製造方法の具体例として、例えば、第1および第3工程は、ホトリソグラフィ工程であり、第2工程は、レジストパターンの寸法計測工程である。この場合、第1条件の基となるN枚分の各計測値は、ロット間での計測値変動を反映した第1パラメータとロット内での計測値変動を近似式によって表す第2パラメータとを含んだ第1傾向式が各ロット毎に更新されることで算出される。そして、第2工程での計測状況となる枚数Mの値が予め設定した値を満たす場合には、第2工程での計測値に基づいて第1傾向式内の第1および第2パラメータが更新され、Mの値が予め設定した値を満たさない場合には、第1傾向式内の第1パラメータのみが更新される。
これによって、ホトリソグラフィ工程において、計測枚数が十分に得られないような状況が生じても半導体ウェハ単位でのAPCを実現することが可能となる。これによって、ホトリソグラフィ工程の運用性が向上可能となる。また、半導体ウェハ単位でのAPCに伴い寸法ばらつきの低減が図れる。さらに、計測枚数を敢えて低減することが可能となり、検査コストの低減が図れる。
また、前述した製造方法の他の具体例として、例えば、第1工程は、エッチバック工程であり、第2工程は、膜厚計測工程であり、第3工程は、CVD工程である。この場合、第1条件の基となるN枚分の各計測値は、第2工程での計測状況となるM枚分の計測値が予め定めた規格値を満たす場合には、予め定めた第2傾向式に基づいて算出され、M枚分の計測値が規格値を満たさない場合には、第2工程で計測対象外であった(N−M)枚に対しても更に膜厚計測を行うことで取得される。ここで、前述した第2傾向式は、エッチバック工程前の膜厚とエッチバック工程後の膜厚の相関関係を予め規定したものであり、前述した規格値は、この膜厚の相関関係における許容可能なばらつき量を規定したものである。
これによって、エッチバック工程後の膜厚計測結果が全枚数分(N枚分)得られないような状況が生じても、当該ロットに対するその後のCVD工程において、半導体ウェハ単位でのAPCを実現することが可能となる。これによって、当該一連の製造工程の運用性が向上可能となる。また、半導体ウェハ単位でのAPCに伴い膜厚ばらつきの低減が図れる。さらに、計測枚数を敢えて低減することが可能となり、検査コストの低減が図れる。
本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、半導体装置の製造工程において、半導体ウェハ単位でAPCを行う場合の運用性が向上可能となる。また、検査コストの低減が実現可能となる。
本発明の実施の形態1による半導体装置の製造方法において、そこで用いる半導体製造システムの主要部の構成例および動作例を示す概略図である。 (a)、(b)は、図1の生産制御システムにおいて、ロットを構成する本来の半導体ウェハ枚数よりも少ない枚数の計測値しか得られなかった場合の動作例を示す概念図である。 図1における生産制御システムの処理内容の一例を示す説明図である。 図1の生産制御システムにおいて、多項近似式の適用が困難な場合の動作例を示す概念図である。 図1の生産制御システムにおいて、その主要部の動作例を示すフロー図である。 本発明の実施の形態2による半導体装置の製造方法において、その主要部の処理内容の一例を示すフロー図である。 図6のフローで用いられる膜厚外層計算式ならびに膜厚規格値を説明するための図である。 本発明の実施の形態2による半導体装置の製造方法において、そこで用いる半導体製造システムの主要部の構成例および動作例を示す概略図である。 本発明の実施の形態3による半導体装置の製造方法において、その主要部の処理内容の一例を示すフロー図である。 本発明の前提として検討した半導体装置の製造方法において、MOSトランジスタのソース・ドレインのコンタクト形成工程に伴い層間絶縁膜を形成する際の処理内容の一例を示す概略図である。 図10において、その一部の詳細な処理内容を示すフロー図である。 図11の補足図である。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
図1は、本発明の実施の形態1による半導体装置の製造方法において、そこで用いる半導体製造システムの主要部の構成例および動作例を示す概略図である。図1に示す半導体製造システム100は、露光装置101、レジスト塗布・現像装置102、寸法計測装置103、生産制御システム104を含んで構成され、ホトリソグラフィ工程を行う。まず、レジスト塗布・現像装置102は、今回着工ロット(ロット#1とする)内の各半導体ウェハに対してレジストの塗布を行い、露光装置101は、レジストが塗布された各半導体ウェハを対象に各半導体ウェハ単位で定められる露光条件で露光を行う。次いで、レジスト塗布・現像装置102は、この露光後の各半導体ウェハを現像し、これによって各半導体ウェハ上に所定のレジストパターンが形成される(S100)。なお、1個のロットは、例えばFOUP(Front Opening Unified Pod)等と呼ばれる1個のウェハ容器に対応し、1個のウェハ容器内には12枚や25枚といった半導体ウェハが格納可能となっている。
その後、レジストパターンが形成された各半導体ウェハを含む露光・現像済みロット(ロット#1)106は、寸法計測装置103に送られる(S101)。寸法計測装置103は、この露光・現像済みロット(ロット#1)106の各半導体ウェハを対象にレジストパターンの寸法計測を行い、その計測値を生産制御システム104に通知する(S102)。計測値には、特に限定はされないが、例えばレジストパターン内に露光量を計測するためのレジストパターンが含まれている場合には、当該レジストパターンの寸法計測値(ここではCD値と呼ぶ)が含まれ、また、特許文献1のようにフォーカス値を計測するためのレジストパターンが含まれる場合には、その寸法計測値等も含まれる。なお、計測が行われたロット#1は、次の工程(エッチング工程等)へ送られる。
生産制御システム104は、コンピュータシステムによって実現され、その一機能としてAPC機能を搭載している。生産制御システム104内のAPC機能は、S100におけるロット#1の露光条件(露光量やフォーカス等)を参照すると共に(S103)、これに前述したS102でのロット#1の計測値を反映して、次回着工ロット(ロット#2とする)105に対する各半導体ウェハ単位の露光条件を算出し、露光装置101に設定する(S104)。次いで、露光装置101およびレジスト塗布・現像装置102、ならびに寸法計測装置103は、ロット#1の場合と同様に、ロット#2に対して露光等や寸法計測を行い(S100,S101)、ロット#2の計測値が生産制御システム104に通知される(S102)。生産制御システム104内のAPC機能は、ロット#2の露光条件とロット#2の計測値に基づいて次回着工ロット(ロット#3とする)105の露光条件を算出し、露光装置101に設定する(S103,S104)。以降、同様にしてこのような処理が繰り返される。
このようなホトリソグラフィ工程においては、例えば、少量多品種の製品等でロット内の半導体ウェハの一部を分割して別のロットにしたり、あるいはロット内の半導体ウェハの一部が破損することなどにより、通常より少ない枚数の半導体ウェハで構成されたロットが着工対象となる場合がある。また、別の観点として、ロット内で計測する半導体ウェハの枚数を低減したいという要望がある。すなわち、寸法計測装置103として、例えば、CD−SEM(Critical Dimension-Scanning Electron Microscope)装置を用いた場合、1枚の半導体ウェハを計測するのに10分を超える時間を要することがあり、OCD(Optical Critical Dimension)装置を用いた場合であっても、1枚につき数分程度の時間を要することがある。したがって、装置コストおよび時間的コストの観点から、計測する枚数を可能な限り低減することが望まれる。図2(a)、(b)は、図1の生産制御システムにおいて、前述したような状況により、ロットを構成する本来の半導体ウェハ枚数よりも少ない枚数の計測値しか得られなかった場合の動作例を示す概念図である。
図2(a)においては、半導体ウェハの着工枚数が少なく、本来、1個のロットを構成する12枚分の計測値が得られるのに対して10枚分(スロット1〜10)の計測値(ここでは前述したCD値を例とする)しか得られていない。一方、図2(b)においては、1個のロットを構成する12枚の半導体ウェハの内、前述したコスト削減のため3枚分(スロット1,6,12)しか計測を行っていない。このような場合、次回着工ロットの半導体ウェハの内、この欠落したスロット位置に対応する半導体ウェハの露光条件を適切に定められず、半導体ウェハ単位でのAPC制御が行えなくなる。そこで、図1の生産制御システム104は、図2(a)のような場合、スロット11,12に対応する箇所の計測値を外挿計算によって推測し、図2(b)のような場合、スロット2〜5,7〜11に対応する箇所の計測値を内挿計算によって推測する。そして、生産制御システム104内のAPC機能は、前回着工ロットの露光条件にこの推測値を含む計測値を反映して、次回着工ロットにおける各半導体ウェハ単位の露光条件を算出および設定する。以降、この外挿計算および内挿計算の具体例について説明する。
図3は、図1における生産制御システムの処理内容の一例を示す説明図である。図3においては、便宜上、例えば1個のウエハ容器(ロット)が本来7枚(スロット1〜7)の半導体ウェハから構成されるものとして、その内のスロット2と5の半導体ウェハが欠落している場合を示している。まず、前提として、露光処理においては、ロット内での各半導体ウェハの着工順番に依存してレジストパターン寸法の変動が生じることが経験的に知られている。ここで、図3の場合には、露光処理の際の着工順番とスロット番号が不一致となるが、寸法計測処理の際にはスロット番号に関連付けた計測値が生産制御システム104に通知される。そこで、生産制御システム104は、図3のデータ構造300のように、露光処理における着工順番とスロット番号の対応関係を記憶しておくことで、この着工順番に基づいて外挿計算および内挿計算を行うことが可能となる。
具体的な計算方法の例として、生産制御システム104は、まず、ロット(番号:I)内の各半導体ウェハ(番号:w)の計測値y(l,w)を、式(1)のようなロット傾向式でモデル化する。yLOT(I)は、ロット(I)の代表値(オフセット値)であり、例えば、ロット(I)内で最初に露光処理が行われた半導体ウェハの計測値とする。このyLOT(I)は、ロット間の傾向を表すことになる。Δy(l,w)は、ロット(I)内の各半導体ウェハ(w)毎の代表値からの変動量である。このΔy(l,w)は、ロット内の傾向を表すことになる。なお、「w」は半導体ウェハの着工順番を示す番号である。
y(l,w)=yLOT(I)+Δy(l,w) (1)
ロット内傾向Δy(l,w)は、例えば、広く知られている最小二乗法に基づいた多項近似式によって規定される。ロット(I)に対して本来の枚数分の計測が行われなかった場合(図2(a)の例では10枚、図2(b)の例では3枚)、生産制御システム104は、まず、この計測した枚数分の計測値を用いてΔy(l,w)に該当する多項近似式を算出する。次いで、この多項近似式に本来の枚数分(ここでは12枚)のw(1,2,…,12)を代入することで、本来の枚数分のロット内傾向Δy(l,w)の計測値を算出する。一方、ロット(I)に対して本来の枚数分の計測が行われた場合も、同様にして多項近似式を算出し、これに基づいて本来の枚数分のロット内傾向Δy(l,w)の計測値を算出する。
本来の枚数分の計測が行われた場合には、多項近似式を介さずに実際の計測値をそのまま用いることも可能であるが、多項近似式を介すことで例えばノイズ的に生じた過剰なロット内傾向を緩和することが可能となる。また、全数か否かで場合分けを行う必要がないため、システムのアルゴリズム上の容易化が図れる。ただし、このような方式に限らず、例えば、実際の計測値が存在する場合には、その計測値をそのまま用い、実際の計測値が存在しない箇所のみ多項近似式によって計測値を補うような方式を適用することも可能である(例えば図2(a)の例では多項近似式によって2枚分だけ算出する)。例えば、本来の枚数分の計測値が得られるケースが大多数で、得られないケースが希に存在するような製造工程では、後者の方式の方が有益な可能性も考えられる。
ここで、前述した多項近似式の項の次数は、ユーザによって任意に設定可能とする。例えば図2(a),(b)の例では、便宜上、半導体ウェハの着工順番に対してCD値が1次の傾向を持つものとし、この場合は項の次数として1次を設定すればよいが、実際上は、3次や2次に、場合によってはそれ以上に設定することが考えられる。また、このような多項近似式を適用する関係上、例えば、図2(b)のように一部の枚数を抜き取って計測を行うような場合には、少なくとも着工順番が1番目と最終番目(ここでは12番目)の半導体ウェハは、計測対象とされることが望ましい。
以上のような処理を用いることで、ロット内の半導体ウェハの枚数が本来の枚数から欠落する状況が生じた場合においても、各半導体ウェハ単位でのAPCを実現することが可能となり、各半導体ウェハのロット間およびロット内での寸法ばらつきを低減可能となる。しかしながら、次の[1]〜[3]のような場合には、多項近似式を適用できないか、または適用できたとしても十分な精度が得られず、これに伴い寸法ばらつきの低減が図れないことが懸念される。
[1]まず、多項近似式を適用するために必要な最低限の枚数の半導体ウェハが計測されない場合が挙げられる。多項近似式を適用するためには、最少でも、「項の次数+1枚」の半導体ウェハが計測される必要がある。
[2]次に、ロット内に含まれる半導体ウェハの枚数自体が少なく、これにより多項近似式による外挿計算の精度が低下する場合が挙げられる。すなわち、図2(a)を例として、仮にスロット7〜12の半導体ウェハが欠落し、この分の露光処理が行われない場合、最大でも本来の半分の枚数分の計測値しか得られない。この半分の計測値で残りの半分の計測値を多項近似式により高精度に推測するのは、通常、困難と言える。
[3]次に、ロット内で計測される半導体ウェハの枚数が少なく、これにより多項近似式による内挿計算の精度が低下する場合が挙げられる。すなわち、図2(b)の例のように、1次の近似式の場合には比較的少ない枚数の計測値(図2(b)の例では3点)でも残りの枚数を十分な精度で推測可能であるが、項の次数が大きく設定されるほど、精度を確保するためにある程度の計測枚数が必要となる。なお、この内容は、実質的には前述した[1]の内容を包含することになる。
そこで、前述した[1]〜[3]のような状況により多項近似式による計測値の算出が困難な場合には、前回ロットの計測値に基づくロット内傾向をそのまま流用し、これに対して、今回ロットのロット間傾向のみを反映させることで今回ロットの計測値を算出する。すなわち、前述したロット傾向式(式(1))のΔy(l,w)は更新せずに、yLOT(I)のみを更新することで対応する。
図4は、図1の生産制御システムにおいて、前述したような状況により、多項近似式の適用が困難な場合の動作例を示す概念図である。例えば、今回ロット#1において、図4(a)に示すように、前回ロット#0のロット傾向式(代表値およびロット内傾向)に基づいてスロット1〜スロット6の6枚の半導体ウェハに対する露光処理が行われたとする。この場合、今回ロット#1は、前述した[2]の状況に該当し、6枚全てに対して寸法計測を行ってもスロット7〜スロット12の計測値を十分な精度で推定することができない。そこで、生産制御システム104は、今回ロット#1においても、それを計測した結果、前回ロット#0と同じロット内傾向が生じるものと仮定し、ロット間傾向のみを反映させる。すなわち、図4(b)に示すように、今回ロット#1で最初に露光が行われた半導体ウェハ(ここではスロット1)に対する計測値(代表値)をオフセット値として、これに前回ロット#0でのロット内傾向を組み合わせて今回ロット#1のロット傾向式を算出する。そして、これによって得られた12枚分の計測値を反映して、次ロット#2が露光される。
図5は、図1の生産制御システムにおいて、その主要部の動作例を示すフロー図である。図5に示すように、現ロット(ロット#1)を対象として、生産制御システム104は、前述した多項近似式の適用が困難となる[1]〜[3]の状況に該当しないかを判定する(S501〜S503)。すなわち、S501では、「計測ウェハ枚数≧(近似式次数+1)」を満たすかが判定され、S502では、「着工ウェハ枚数≧n」を満たすかが判定され、S503では、「計測ウェハ枚数≧m」を満たすかが判定される。これらを全て満たす場合、生産制御システム104は、図2や図3で述べたように、ロット#1の計測値に基づいてロット傾向式(式(1))を更新し、APC機能は、このロット傾向式に基づく計測値を反映して次ロット#2の露光条件を設定する(S504)。一方、いずれか一つでも満たさない場合、生産制御システム104は、図4で述べたように、ロット#1の代表値をオフセット(式(1)のyLOT(I))とし、これにロット#0のロット内傾向(式(1)でのΔy(l−1,w)に該当)を組み合わせてロット傾向式を更新する。そして、APC機能は、このロット傾向式に基づく計測値を反映して次ロット#2の露光条件を設定する(S505)。なお、「n」や「m」の値は、ユーザによって任意設定可能とする。また、場合によっては、S501〜S503の一部の処理を省略することも可能である。
以上のように、本実施の形態1による半導体装置の製造方法は、ロット内の半導体ウェハの計測状況が所定の条件を満たすか否かに応じてAPCへのフィードバック方式を変更するものとなっている。すなわち、ロット内の半導体ウェハの計測枚数が十分な枚数ならば、その計測値に基づいてロット傾向式内のロット間傾向(オフセット)とロット内傾向(多項近似式)を更新し、これに基づいて算出された通常枚数分の計測値をフィードバックする。一方、計測枚数が十分な枚数でないならば、当該ロットの計測値に基づいてロット傾向式内のロット間傾向(オフセット)のみを更新し、ロット内傾向(多項近似式)は前ロットのものをそのまま流用する。そして、これに基づいて得られた通常枚数分の計測値をフィードバックする。
これによって、代表的には、ロット内の半導体ウェハ枚数が不足するような場合やロット内で計測する半導体ウェハ枚数が少ないような場合においても、各半導体ウェハ単位でのAPCを実現することが可能となり、製造工程の運用性を向上させることが可能となる。その結果、ロット間ならびにロット内での製造ばらつき(パターン寸法ばらつき)が低減され、製造品質の向上が可能となる。さらに、ロット内で計測する半導体ウェハの枚数を少なくすることができることから、検査コストの低減が実現可能となる。
(実施の形態2)
まず、本実施の形態2による半導体装置の製造方法の説明に先立ち、その前提として検討した製造方法について説明する。図10は、本発明の前提として検討した半導体装置の製造方法において、MOSトランジスタのソース・ドレインのコンタクト形成工程に伴い層間絶縁膜を形成する際の処理内容の一例を示す概略図である。まず、S1001のように、半導体基板の主面1000(SUB)上に、ゲート電極となるポリシリコン膜1001(poly)と、その両サイドに絶縁膜となるスペーサ1002(spacer)とが形成された状態で、その上層にシリコン窒化膜1003(SiN)が堆積される(S1002)。次いで、シリコン窒化膜1003(SiN)上に、オゾンTEOS膜1004(O3TEOS)とプラズマTEOS膜1005a(PTEOS)が順に堆積される(S1003,S1004)。
続いて、CMP装置を用いて、プラズマTEOS膜1005a(PTEOS)が研磨および平坦化される(S1005)。この際に、前述した特許文献3に記載されているように、CMPに伴いプラズマTEOS膜1005a(PTEOS)にクラックが生じることが知られている。そこで、このクラックの影響を低減するため、CMPの後にエッチング装置を用いてエッチバックが行われ(S1006)、次いで、プラズマCVD装置を用いて再びプラズマTEOS膜1005b(PTEOS)が堆積される(S1007)。図示は省略するが、その後は、ホトリソグラフィ工程により、MOSトランジスタのソース・ドレイン上の層間絶縁膜(SiN,O3TEOS,PTEOS)にコンタクトホールが形成され、その箇所にコンタクトプラグが埋め込まれる。
図11は、図10において、その一部(S1005〜S1007)の詳細な処理内容を示すフロー図である。前述した図10において、MOSトランジスタのソース・ドレインのコンタクトホールが非開口となることを防止するためには、ロット間およびロット内の各半導体ウェハで層間絶縁膜の膜厚が一定となるように制御する必要がある。そこで、図11に示すように、まず、CMP装置によってプラズマTEOS膜1005a(PTEOS)が研磨される際に、CMP装置のIM(Integrated Metrology)膜厚計測機能を用いて、各半導体ウェハ毎の層間絶縁膜の膜厚が計測される(S1005)。次いで、プラズマTEOS膜1005a(PTEOS)がエッチバックされた後(S1006)、別個独立に設けた膜厚計測装置を用いて各半導体ウェハ毎の層間絶縁膜の膜厚が計測される(S1101)。
その後は、APC機能が、このS1101での膜厚計測値を用いて各半導体ウェハ毎の最適なCVD処理時間を計算し(S1102)、プラズマCVD装置が、各半導体ウェハ毎に前述した処理時間に基づいてプラズマTEOS膜1005b(PTEOS)を堆積する(S1007)。すなわち、図12に示すように、プラズマCVDの加工前においては、各半導体ウェハ毎の層間絶縁膜の膜厚値にばらつきが生じているが、APC機能によってその後のCVD処理時間が各半導体ウェハ毎に制御されることで、最終的には、各半導体ウェハの膜厚値が一定となる。
しかしながら、特に、エッチバック工程(S1006)の後に、別個独立に設けた膜厚計測装置を用いて半導体ウェハ全数の膜厚が計測されるため(S1101)、実施の形態1の場合と同様に、時間的コストならびに装置コストの面から検査コストの増大が懸念される。その一方で、プラズマTEOS膜1005b(PTEOS)の堆積(S1007)を行う前の各半導体ウェハ毎の膜厚が判らない限り、S1007において、各半導体ウェハ単位でAPCを用いた制御を行うことができない。そこで、図11の処理フローに代わり、図6の処理フローを適用する。
図6は、本発明の実施の形態2による半導体装置の製造方法において、その主要部の処理内容の一例を示すフロー図である。図6に示す処理フローは、図10におけるS1005〜S1007の詳細な処理内容に該当するものである。図6においては、まず、図11で説明したS1005およびS1006と同様に、CMP装置によって各半導体ウェハの絶縁膜が研磨されると共に、各半導体ウェハ毎の研磨後の絶縁膜の膜厚が計測され(S601)、次いで、エッチング装置(エッチバック装置)を用いて各半導体ウェハの絶縁膜がエッチバックされる(S602)。続いて、各ロット毎に、各ロットを構成する半導体ウェハ(例えば、12枚や25枚)の中から1枚を対象として、別個独立に設けた膜厚計測装置を用いて当該半導体ウェハの絶縁膜の膜厚が計測される(S603)。
次いで、S603の半導体ウェハを対象として、当該半導体ウェハのエッチバックで使用されたエッチバック装置の特定が行われる(S604)。通常、各ロット単位で、複数のエッチバック装置の中から使用される装置が割り当てられる。続いて、当該半導体ウェハにおけるエッチバック前後での膜厚の差分(すなわち、エッチバックされた膜厚)が予めエッチバック装置毎に設定された膜厚規格値に入っているかどうかが判定される(S605,S608)。膜厚規格値に入っている場合には、各エッチバック装置毎に定められた膜厚外層計算式を用いて、当該半導体ウェハが所属するロットの残りの半導体ウェハの膜厚が算出される(S606,S609)。一方、膜厚規格値に入っていない場合には、当該半導体ウェハが所属するロットの残りの半導体ウェハの膜厚が前述した膜厚計測装置を用いて計測される(S607)。その後、このS606,S609またはS607によって得られた各半導体ウェハ毎の膜厚値に基づいて、図11のS1102およびS1007と同様に各半導体ウェハ毎の最適条件が定められ、この最適条件によって各半導体ウェハ単位でCVD装置による所定の堆積処理が行われる(S610)。
ここで、図6のS606,S609において、残りの半導体ウェハの膜厚が算出できるのは、エッチバック前後における膜厚の関係に非常に高い一次相関があることが本発明者等によって見出されたためである。図7は、図6のフローで用いられる膜厚外層計算式ならびに膜厚規格値を説明するための図である。図7に示すように、本発明者等の実験によって、例えばエッチバック装置Aとエッチバック装置Bとで機差が生じるものの、各装置においてはエッチバック前後の膜厚の関係に非常に高い一次相関が得られることが判明した。したがって、各エッチバック装置毎に、エッチバック前の膜厚とエッチバック後の膜厚との間で、最小二乗法等により一次の関係式(膜厚外層計算式)を定義することができる。
ただし、このような機差によるばらつきの他に、実際上は、エッチバック装置の時系列的な状態変化によってばらつきが生じることが懸念される。そこで、図7に示すように、各エッチング装置毎に膜厚規格値を設定し、図6で述べたS603での計測値が膜厚規格値外(例えば図7に示す規格外膜厚測定データ)となる場合には、外層計算を行わずに全数計測を行うようにする。ここで、膜厚規格値は、特に限定はされないが、例えば次のように定義する。
図6のS610でのCVD処理では、CVD後の膜厚が一定になることを目的としているので、膜厚規格値は、膜厚計測工程を省略したときのCVD後の膜厚に対する工程能力Cpを基準に定義する。過去のCVD後膜厚バラツキをσCVD、エッチバック前後の膜厚変動バラツキをσETCHとすると、Cp計算に必要である膜厚計測省略時のCVD後の膜厚バラツキσCVD’は式(2)で与えられる。また、膜厚上限値をUL、膜厚下限値をLLとすると、CVD後膜厚のCpは式(3)で与えられる。一般に、Cp=1.33で工程能力が十分であるとされるので、膜厚規格値は式(3)がCp=1.33を満たす式(2)の3σETCHで定義する。このような膜厚規格値を設けることで、エッチバック装置の時系列的な状態変化を管理可能となる。
(3σCVD’)={(3σCVD+(3σETCH1/2 (2)
Cp=(UL−LL)/(6σCVD’) (3)
図8は、本発明の実施の形態2による半導体装置の製造方法において、そこで用いる半導体製造システムの主要部の構成例および動作例を示す概略図である。図8に示す半導体製造システム800は、生産制御システム801と、APCシステム802と、オンラインコントローラ803a〜803cと、CMP(+膜厚計測)装置804と、エッチバック装置805と、膜厚計測装置806と、CVD装置807を含んで構成される。なお、APCシステム802は、図1と同様に、生産制御システム801の一機能として含まれていてもよい。
図8においては、まず、図6で述べたように、CMP装置804がFOUP等に格納された着工ロット(例えば12枚の半導体ウェハ)に対して研磨ならびに膜厚計測を行う。これによる各半導体ウェハ毎の計測値は、オンラインコントローラ803aを介して生産制御システム801に送信される(S800)。次いで、エッチバック装置805が着工ロットに対してエッチバックを行い、膜厚計測装置806が、着工ロットの中から1枚を選択してエッチバック後の膜厚を計測する。この計測値は、オンラインコントローラ803bを介して生産制御システム801に送信される(S801)。
ここで、生産制御システム801は、前述したS800の計測値とS801の計測値との関係が、図6および図7で述べたような膜厚規格値に入っているかを判定する。入っている場合には、図6および図7で述べたようにS800での測定結果に対して膜厚外層計算式を用いることで着工ロット内の全ての半導体ウェハの膜厚値を算出する。一方、入っていない場合には、着工ロット内の残りの半導体ウェハに対しても膜厚計測を行うように膜厚計測装置806に指示し、これに応じて得られた残りの半導体ウェハの計測値が生産制御システム801に送信される(S801)。
次いで、着工ロットがCVD装置に搬送されると、生産制御システム801は、前述したロット内の全ての半導体ウェハに対する膜厚値の算出結果あるいは実際の計測値(すなわちCVD前膜厚値)を添えてAPCシステム802に対して問合せを行う(S802)。APCシステム802は、CVD前膜厚値、及びAPC用DB(DataBase)内に記憶しておいた制御対象装置(CVD装置807)の成膜速度と対象製品の目標膜厚値を用いて、計算ロジック部にて最適制御条件を算出し、この最適制御条件を生産制御システム801側へ回答する(S803)。この制御条件を受けた生産制御システム801は、オンラインコントローラ803cを介して製品レシピ名と共に最適制御条件をCVD装置807へ指示する(S804)。CVD装置807は、指示された制御条件が処理可能範囲内かを生産制御システム801側へ回答し(S805)、処理可能範囲であれば加工を開始する。
以上のように、本実施の形態2による半導体装置の製造方法は、ロット内の半導体ウェハの計測状況が所定の条件を満たすか否かに応じてAPCへのフィードバック方式を変更するものとなっている。すなわち、ロット内の半導体ウェハから選定した一部の半導体ウェハの計測値が所定の規格値内に収まっている場合には、予め定めた近似式によりロット内の全枚数の計測値を推定することで全枚数分の計測値をフィードバックし、所定の規格値内に収まっていない場合には、残りの枚数の実計測を行うことで全枚数分の計測値をフィードバックする。
これによって、実施の形態1の場合と同様に、代表的には、ロット内で計測する半導体ウェハ枚数が少ないような場合においても、各半導体ウェハ単位でのAPCを実現することが可能となり、製造工程の運用性を向上させることが可能となる。その結果、ロット間ならびにロット内での製造ばらつき(膜厚ばらつき)が低減され、製造品質の向上が可能となる。さらに、ロット内で計測する半導体ウェハの枚数を少なくすることができることから、検査コストの低減が実現可能となる。
なお、ここでは、エッチバック後に膜厚計測を行う半導体ウェハの枚数を1枚としたが、場合によっては、ロット内の通常枚数(例えば12枚)に満たない複数枚(例えば2,3枚)を計測し、各膜厚計測値が膜厚規格値内である場合に外挿計算を行うように構成することも可能である。計測枚数を増加させると、検査コストが増大するものの、その分、外層計算適用有無の判断を高精度に行うことが可能となる。また、ここでは、MOSトランジスタのコンタクト形成工程を例に説明を行ったが、これに限定されるものではなく、CMP→エッチバック→CVDが行われる工程に対して広く適用可能である。例えば、多層配線層間の層間絶縁膜を形成する場合等にも適用可能である。
(実施の形態3)
図9は、本発明の実施の形態3による半導体装置の製造方法において、その主要部の処理内容の一例を示すフロー図である。前述した図10におけるS1005〜S1007の詳細な処理内容に該当し、前述した図6の処理フローから一部の処理を省略したものとなっている。すなわち、図9の処理フローは、図6の処理フローと比較して、1枚の半導体ウェハに対する計測処理(S603)が省略され、これに伴い膜厚規格値との対比処理(S605,S608)と、その結果に応じて行われる全枚数に対する計測処理(S607)が省略されたものとなっている。それ以外の処理に関しては、図6と同様であるため、詳細な説明は省略する。
本実施の形態3による半導体装置の製造方法を用いると、実施の形態2の場合と比較して、エッチバック後の膜厚計測が行われないため、更に検査コストの低減が実現可能となる。但し、この場合において、エッチバック装置が極めて高い信頼性を備え、装置の状態変動が殆ど生じないことが前提となる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
本実施の形態による半導体装置の製造方法は、特に、ばらつき低減の要求が非常に高くなる高集積(例えば45nm以降)な半導体製品の製造工程に適用して有益な技術であり、これに限らず、各種半導体製品の製造工程全般に対して広く適用可能である。
100,800 半導体製造システム
101 露光装置
102 レジスト塗布・現像装置
103 寸法計測装置
104,801 生産制御システム
105,106 ロット
300 データ構造
802 APCシステム
803a〜803c オンラインコントローラ
804 CMP装置
805 エッチバック装置
806 膜厚計測装置
807 CVD装置
1000 半導体基板の主面
1001 ポリシリコン膜
1002 スペーサ
1003 シリコン窒化膜
1004 オゾンTEOS膜
1005a,1005b プラズマTEOS膜

Claims (15)

  1. 第1ロットを構成するN枚の半導体ウェハに対して所定の加工処理を行う第1工程と、
    前記第1工程の後に、前記第1ロットを構成する前記N枚の半導体ウェハの中からM(<N)枚の半導体ウェハを抽出し、このM枚の半導体ウェハに対して計測を行う第2工程と、
    前記第2工程の計測状況を反映して前記第1ロットを構成する前記N枚の半導体ウェハまたは新たな第2ロットを構成する前記N枚の半導体ウェハに対して、各半導体ウェハ単位で定められる第1条件で所定の加工処理を行う第3工程とを備え、
    前記第3工程では、前記第2工程での前記M枚分の計測状況に応じてそれぞれ異なる方式により前記N枚分の各計測値が定められ、このN枚分の各計測値に基づいて前記第1条件が定められることを特徴とする半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法において、
    前記第1工程と前記第3工程は、ホトリソグラフィ工程であり、
    前記第2工程は、レジストパターンの寸法計測工程であり、
    前記第1条件の基となる前記N枚分の各計測値は、ロット間での計測値変動を反映した第1パラメータとロット内での計測値変動を近似式で表す第2パラメータとを含んだ第1傾向式が各ロット毎に更新されることで算出され、
    前記第2工程での計測枚数となる前記Mの値が予め設定した値を満たす場合には、前記第2工程での計測値に基づいて前記第1傾向式内の前記第1および第2パラメータが更新され、前記Mの値が前記予め設定した値を満たさない場合には、前記第2工程での計測値に基づいて前記第1傾向式内の前記第1パラメータのみが更新されることを特徴とする半導体装置の製造方法。
  3. 請求項1記載の半導体装置の製造方法において、
    前記第1工程は、エッチバック工程であり、
    前記第2工程は、膜厚計測工程であり、
    前記第3工程は、CVD工程であり、
    前記第1条件の基となる前記N枚分の各計測値は、前記第2工程での計測値が予め定めた規格値を満たす場合には、予め定めた第2傾向式に基づいて算出され、前記第2工程での計測値が前記規格値を満たさない場合には、前記第2工程で計測対象外であった(N−M)枚に対しても更に膜厚計測を行うことで取得され、
    前記第2傾向式は、前記エッチバック工程前の膜厚と前記エッチバック工程後の膜厚の相関関係を予め規定したものであり、
    前記規格値は、前記膜厚の相関関係における許容可能なばらつき量を規定したものであることを特徴とする半導体装置の製造方法。
  4. ロット内での半導体ウェハの処理順番に対するレジストパターン寸法の変化を表す第1傾向式を反映して、第1ロットを構成するN枚の半導体ウェハを対象に、その処理順番毎に異なる条件でホトリソグラフィ処理を行う第1工程と、
    前記第1ロットを構成する前記N枚の半導体ウェハの中から抽出したM(M≦N)枚の半導体ウェハを対象に前記ホトリソグラフィ処理で形成されたレジストパターンの寸法を計測し、この計測値と前記Nの値および前記Mの値に応じて前記第1傾向式を更新する第2工程と、
    前記第2工程で更新された前記第1傾向式を反映して、第2ロットを構成するK枚の半導体ウェハを対象に、その処理順番毎に異なる条件でホトリソグラフィ処理を行う第3工程とを備え、
    前記第1傾向式は、ロット間での計測値変動を反映した第1パラメータとロット内での計測値変動を近似式で表す第2パラメータとを含んで構成され、
    前記第2工程では、前記Nの値と前記Mの値が共に予め定めた規定値を満たす第1の場合には、前記計測値に基づいて前記第1傾向式の前記第1パラメータと前記第2パラメータが更新され、前記Nの値か前記Mの値の少なくとも一方が前記規定値を満たさない第2の場合には、前記計測値に基づいて前記第1傾向式の前記第1パラメータが更新され、前記第2パラメータは最新の状態がそのまま保持されることを特徴とする半導体装置の製造方法。
  5. 請求項4記載の半導体装置の製造方法において、
    前記第2工程では、前記M枚の半導体ウェハとして、少なくとも、前記第1工程における処理順番が1番目の半導体ウェハが選択され、
    前記第1の場合および前記第2の場合において、前記第1傾向式の前記第1パラメータは、この処理順番が1番目の半導体ウェハの前記計測値に基づいて更新されることを特徴とする半導体装置の製造方法。
  6. 請求項4記載の半導体装置の製造方法において、
    前記第2パラメータは、最小二乗法に基づくJ(≧1)次の近似式であり、
    前記第2工程では、さらに、前記第1の場合かつ「M≧J+1」の場合に、前記第1傾向式の前記第1パラメータと前記第2パラメータが更新され、前記第2の場合または「M<J+1」の場合に、前記第1傾向式の前記第1パラメータが更新され、前記第2パラメータは最新の状態がそのまま保持されることを特徴とする半導体装置の製造方法。
  7. 請求項6記載の半導体装置の製造方法において、
    前記Mの値はM<Nであり、
    前記第2工程では、前記M枚の半導体ウェハとして、少なくとも、前記第1工程における処理順番が1番目の半導体ウェハとN番目の半導体ウェハが選択されることを特徴とする半導体装置の製造方法。
  8. 請求項6記載の半導体装置の製造方法において、
    前記ロットを構成する半導体ウェハの通常の枚数が前記K枚であり、前記Nの値がN<Kであることを特徴とする半導体装置の製造方法。
  9. 1個のロットを構成するN枚の半導体ウェハを対象に第1絶縁膜を堆積する第1工程と、
    CMP装置を用いて、前記第1絶縁膜を研磨すると共に、前記N枚の半導体ウェハ毎の前記研磨後の前記第1絶縁膜の膜厚を計測する第2工程と、
    エッチング装置を用いて、前記N枚の半導体ウェハを対象に前記研磨後の前記第1絶縁膜をエッチバックする第3工程と、
    前記N枚の半導体ウェハの中からM(<N)枚の半導体ウェハを抽出し、膜厚計測装置を用いて、前記M枚の半導体ウェハ毎の前記エッチバック後の前記第1絶縁膜の膜厚を計測し、この計測値が予め定めた規格内に収まっているか否かを判定する第4工程と、
    前記第4工程の計測値が前記規格内に収まっている場合を対象とし、前記第2工程で計測された前記N枚の半導体ウェハ毎の前記研磨後の膜厚から前記N枚の半導体ウェハ毎の前記エッチバック後の膜厚を予め定めた関係式を用いて算出し、この算出された膜厚を基準として目標とする絶縁膜の膜厚に達するように、前記N枚の半導体ウェハ毎に個別の条件によって第2絶縁膜を堆積する第5工程と、
    前記第4工程の計測値が前記規格内に収まっていない場合を対象とし、前記第4工程で抽出されなかった(N−M)枚の半導体ウェハに対しても前記エッチバック後の前記第1絶縁膜の膜厚を計測し、これによって得られる前記N枚の半導体ウェハ毎の前記エッチバック後の膜厚を基準として前記目標とする絶縁膜の膜厚に達するように、前記N枚の半導体ウェハ毎に個別の条件によって前記第2絶縁膜を堆積する第6工程とを有することを特徴とする半導体装置の製造方法。
  10. 請求項9記載の半導体装置の製造方法において、
    前記第3工程で用いる前記エッチング装置毎に、前記エッチバックされる膜厚量の上限値と下限値が定められ、
    前記第4工程では、前記第3工程で用いた前記エッチング装置に対応する前記上限値と前記下限値を前記規格として、前記第4工程の計測値と前記第2工程の計測値との差分から得られる膜厚量が前記規格内に収まっているか否かが判定されることを特徴とする半導体装置の製造方法。
  11. 請求項10記載の半導体装置の製造方法において、
    前記上限値と前記下限値は、工程能力に基づいて定められることを特徴とする半導体装置の製造方法。
  12. 請求項10記載の半導体装置の製造方法において、
    前記関係式は、前記エッチバック前の膜厚に対する前記エッチバック後の膜厚を定めた一次関数の関係式であることを特徴とする半導体装置の製造方法。
  13. 請求項9記載の半導体装置の製造方法において、
    前記Mの値は1であることを特徴とする半導体装置の製造方法。
  14. 1個のロットを構成するN枚の半導体ウェハを対象に第1絶縁膜を堆積する第1工程と、
    CMP装置を用いて、前記第1絶縁膜を研磨すると共に、前記N枚の半導体ウェハ毎の前記研磨後の前記第1絶縁膜の膜厚を計測する第2工程と、
    エッチング装置を用いて、前記N枚の半導体ウェハを対象に前記研磨後の前記第1絶縁膜をエッチバックする第3工程と、
    前記エッチング装置が第1エッチング装置の場合には第1関係式を、第2エッチング装置の場合には第2関係式を用いて、前記第2工程で計測された前記N枚の半導体ウェハ毎の前記研磨後の膜厚から前記N枚の半導体ウェハ毎の前記エッチバック後の膜厚を算出し、この算出された膜厚を基準として目標とする絶縁膜の膜厚に達するように、前記N枚の半導体ウェハ毎に個別の条件によって第2絶縁膜を堆積する第4工程とを有することを特徴とする半導体装置の製造方法。
  15. 請求項14記載の半導体装置の製造方法において、
    前記第1および第2絶縁膜には、MOSFETのソース・ドレイン拡散層に向けたコンタクトホールが形成されることを特徴とする半導体装置の製造方法。
JP2009187209A 2009-08-12 2009-08-12 半導体装置の製造方法 Pending JP2011040601A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187209A JP2011040601A (ja) 2009-08-12 2009-08-12 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187209A JP2011040601A (ja) 2009-08-12 2009-08-12 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2011040601A true JP2011040601A (ja) 2011-02-24

Family

ID=43768060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187209A Pending JP2011040601A (ja) 2009-08-12 2009-08-12 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2011040601A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204350A (ja) * 2011-03-23 2012-10-22 Toshiba Corp 検査システム、検査方法、および検査プログラム
JP2016051860A (ja) * 2014-09-01 2016-04-11 株式会社東芝 半導体製造装置および半導体製造方法
CN106298636A (zh) * 2015-05-22 2017-01-04 中芯国际集成电路制造(上海)有限公司 一种超低k介质材料刻蚀深度的控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204350A (ja) * 2011-03-23 2012-10-22 Toshiba Corp 検査システム、検査方法、および検査プログラム
JP2016051860A (ja) * 2014-09-01 2016-04-11 株式会社東芝 半導体製造装置および半導体製造方法
US9793102B2 (en) 2014-09-01 2017-10-17 Toshiba Memory Corporation Semiconductor manufacturing apparatus and semiconductor manufacturing method
CN106298636A (zh) * 2015-05-22 2017-01-04 中芯国际集成电路制造(上海)有限公司 一种超低k介质材料刻蚀深度的控制方法
CN106298636B (zh) * 2015-05-22 2019-05-14 中芯国际集成电路制造(上海)有限公司 一种超低k介质材料刻蚀深度的控制方法

Similar Documents

Publication Publication Date Title
US20100081285A1 (en) Apparatus and Method for Improving Photoresist Properties
TW200305250A (en) Methodology for repeatable post etch cd in a production tool
JP2007294905A (ja) 半導体製造方法およびエッチングシステム
TWI327644B (en) Method and apparatus for controlling a fabrication process based on a measured electrical characteristic
TW200416931A (en) Method and apparatus employing integrated metrology for improved dielectric etch efficiency
KR102399364B1 (ko) 기판 제조 동안의 피처 토포그래피에 대한 스핀 코트 평탄화의 용이화
US8143138B2 (en) Method for fabricating interconnect structures for semiconductor devices
CN101673701A (zh) 形成浅沟槽隔离结构的方法及浅沟槽隔离结构
JP2011040601A (ja) 半導体装置の製造方法
US6800494B1 (en) Method and apparatus for controlling copper barrier/seed deposition processes
KR100836945B1 (ko) 게이트 전극 폭의 변동을 감소시키는 방법
US9360858B2 (en) Alignment data based process control system
JP2003133294A (ja) エッチング装置およびエッチング方法
JP2009076785A (ja) 半導体装置の製造方法
JP2009290150A (ja) 半導体装置の製造システムおよび製造方法
JP2005011834A (ja) 半導体装置の製造方法および半導体装置製造システム
Panneerchelvam et al. Evolution of lithography-to-etch bias in multi-patterning processes
KR20200100859A (ko) 텅스텐 탄화물 막에 대한 접착 및 결함들을 개선하기 위한 기법들
US7851234B2 (en) System and method for enhanced control of copper trench sheet resistance uniformity
JP2007266335A (ja) 半導体装置の製造方法
JP5176902B2 (ja) 電子デバイスの製造方法及び設定装置
CN101459048B (zh) 获得刻蚀工艺试片线宽的方法及刻蚀方法
TWI803262B (zh) 疊置測量及疊置誤差的校正標記
JP3913145B2 (ja) パターン形成方法
KR20070069982A (ko) 포토레지스트 패턴의 임계치수 제어 방법