KR100836945B1 - 게이트 전극 폭의 변동을 감소시키는 방법 - Google Patents
게이트 전극 폭의 변동을 감소시키는 방법 Download PDFInfo
- Publication number
- KR100836945B1 KR100836945B1 KR1020037000452A KR20037000452A KR100836945B1 KR 100836945 B1 KR100836945 B1 KR 100836945B1 KR 1020037000452 A KR1020037000452 A KR 1020037000452A KR 20037000452 A KR20037000452 A KR 20037000452A KR 100836945 B1 KR100836945 B1 KR 100836945B1
- Authority
- KR
- South Korea
- Prior art keywords
- strip
- gate electrode
- width
- tool
- ratio
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 230000003247 decreasing effect Effects 0.000 title description 2
- 239000006117 anti-reflective coating Substances 0.000 claims abstract description 42
- 239000010410 layer Substances 0.000 claims abstract description 42
- 238000005530 etching Methods 0.000 claims abstract description 7
- 235000012431 wafers Nutrition 0.000 claims description 29
- 238000012545 processing Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 abstract description 38
- 230000008859 change Effects 0.000 abstract description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 13
- 238000005259 measurement Methods 0.000 description 11
- 229910019142 PO4 Inorganic materials 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32096—Batch, recipe configuration for flexible batch control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45031—Manufacturing semiconductor wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32139—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Automation & Control Theory (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Drying Of Semiconductors (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Weting (AREA)
Abstract
게이트 전극 폭들의 변동들을 줄이는 방법이 제공된다. 상기 방법은 웨이퍼 위에 형성된 게이트 전극(230)을 갖는 상기 웨이퍼와 상기 게이트 전극(230)의 적어도 한 부분 위에 형성된 반사 방지 코팅층(240)을 제공하는 단계를 포함한다. 상기 게이트 전극(230)은 폭을 갖는다. 상기 게이트 전극(230)의 폭은 측정된다. 상기 반사 방지 코팅(240)을 제거하는 스트립툴(130)에 대한 스트립 비율이 결정된다. 상기 스트립 비율에 기초하여 초과식각 시간을 결정하기 위해 상기 게이트 전극(230)의 측정된 폭은 타겟 게이트 전극 임계 치수와 비교된다. 상기 스트립툴(130)의 동작 레시피는 상기 초과식각 시간에 기초하여 변경된다. 공정 라인(100)은 제 1 계측툴(120), 스트립툴(130) 및 공정 제어기(150)를 포함한다. 상기 제 1 계측 툴(120)은 웨이퍼 위에 형성된 게이트 전극(230)의 상기 폭을 측정한다. 상기 게이트 전극(230)은 상기 게이트 전극(230)의 적어도 한 부분 위에 형성된 반사 방지 코팅층(240)을 갖는다. 상기 스트립툴(130)은 상기 반사 방지 코팅(240)을 제거한다. 상기 공정 제어기(150)는 상기 스트립툴(130)에 대한 스트립 비율을 결정하고, 상기 스트립 비율에 기초하여 초과식각 시간을 결정하기 위해 상기 게이트 전극(230)의 상기 폭과 타겟 게이트 전극 임계 치수를 비교하고, 그리고 상기 초과식각 시간에 기초하여 상기 스트립툴(130)의 동작 레시피를 변경한다.
트랜지스터, 웨이퍼, 임계 치수, 전극, 폭, 피드백, 피드포워드
Description
본 발명은 일반적으로 반도체 디바이스 제조 분야에 관한 것으로, 특히, 트랜지스터 게이트 전극에서 스트립 후 임계 치수 변동을 줄이기 위해 스트립 시간의 피드백 제어를 이용하는 방법 및 장치에 관한 것이다.
반도체 기술에 있어서의 계속적인 추세는 더욱더 빠른 반도체 디바이스를 갖는 집적 회로를 만드는 것이다. 이러한 극초대규모 집적회로(ULSI)를 향한 추세는 디바이스와 회로 치수와 최소 배선폭(features)의 지속적인 축소를 야기하였다. 전계 효과 트랜지스터를 갖는 집적회로에서, 예를 들어, 하나의 매우 중요한 공정 단계는 특히 상기 게이트 전극의 치수에 중점을 두고, 상기 트랜지스터들의 각각에 대해 게이트 전극을 형성하는 것이다. 많은 어플리케이션에서, 성능 특성(예를 들어, 스위칭 속도)과 트랜지스터의 크기는 디바이스의 채널 길이의 함수이며, 이는 상기 트랜지스터의 게이트 전극의 폭에 거의 대응한다. 따라서, 예를 들어, 더 작은 채널 길이를 갖는 더 좁은 디바이스는 크기에 있어서 본질적으로 더 작은 고성능 트랜지스터(예를 들어, 더 빠른 트랜지스터)를 생성하는 경향이 있다.
전형적으로, 통상적인 포토리소그래픽 기술을 이용하여 상기 게이트 전극 물질(예를 들어, 폴리실리콘)로 이루어진 공정층을 패터닝함으로써 게이트 전극이 형성된다. 통상적인 실행에 따르면, 포토리소그래픽 기술 동안에 반사에 의해 생긴 노치(notch)들을 최소화하기 위해 때때로 반사 방지 코팅(anti-reflective coating)(ARC)이 이용된다. 전형적으로, 폴리실리콘층 위에 ARC 층이 형성된다. 상기 ARC 층 위에 포토레지스트층이 형성된다. 상기 ARC 층은 반사를 줄이고, 상기 포토레지스트층을 더 효율적으로 패터닝하도록 해주어, 결국 상기 폴리실리콘층으로부터 상기 게이트 전극을 더 효율적으로 형성시키는 결과를 가져온다. 예시적인 ARC 층 물질은 실리콘 옥시나이트라이드 및 실리콘 리치 나이트라이드(silicon rich nitride)이다.
상기 게이트 전극의 형성에 후속하여, 상기 ARC 층은 핫(hot) 플루오르화수소산(hydrofluoric acid)(HF) 스트립 다음에 핫(hot) 인산(phosphoric acid)(H3PO4) 스트립이 오는 식각 공정을 이용하여 제거된다. 상기 제 1 플루오르화수소산 스트립은 비교적 짧으며, 대기중의 산소에 노출됨으로써 상기 ARC 층의 표면에서 성장하는 실리콘 다이옥사이드의 박층(thin layer)을 제거하는 기능을 한다. 또한 이러한 실리콘 다이옥사이드는 상기 폴리실리콘 게이트 전극의 노출면 위에 형성되지만, 그것의 제거는 상기 플루오르화수소산 스트립을 자극하지 않는다. 상기 인산 스트립은 실리콘 다이옥사이드를 제거하기에 특별히 적합하지 않으며, 상기 게이트 전극의 윗면을 덮는 상기 ARC 층을 제거한다.
상기 인산 스트립은 또한 상기 폴리실리콘 게이트 전극을 천천히 식각함으로써, 그것의 임계 치수를 줄인다. 상기 ARC 층을 제거하는데 이용되는 인산 바스(bath)의 스트립 비율(strip rate)은 그것의 유효 수명(service life)을 변화시킨다. 따라서, 상기 스트립 툴의 동작 레시피(operating recipe)에 사용되는 스트립 시간은 소정의 초과식각 시간(overetch time)을 포함하여, 상기 바스가 그것의 가장 저하된 레벨에 있을 때조차도 상기 ARC 층의 모두가 제거되는 것을 보장한다. 상기 바스의 스트립 비율은 반응 생성물(reaction product)의 강화로 인해 식각된 웨이퍼의 수에 기초하여 저하한다. 또한 상기 바스는 상기 바스내의 인산 산화 상태들의 상대 농도 변화로 인해 초과 시간을 저하시킨다. 따라서, 웨이퍼들은 상기 바스 유효 수명의 초기에서 처리될 수록 더 높은 비율로 스트립될 것이며, 그러므로써 상기 게이트 전극의 임계 치수가 더욱 감소된다. 상기 바스의 스트립 비율의 변동은 상기 게이트 전극의 임계 치수에 있어서의 유출 변동(outgoing variation)으로 바뀐다. 상기 게이트 전극의 임계 치수의 변동은 디바이스 속도, 누출 및 다른 트랜지스터 성능 파라미터들의 변동으로 바뀐다. 일반적으로, 변동의 증가는 처리량, 양품률 및 수익성을 감소시킨다.
본 발명은 상기 설명된 하나 또는 그 이상의 문제점들의 효과를 극복하거나, 적어도 줄이는 것에 관한 것이다.
본 발명의 일 양상은 게이트 전극 폭의 변동을 줄이는 방법이 제공되어 알게된다. 상기 방법은 웨이퍼 위에 형성된 게이트 전극을 갖는 상기 웨이퍼와 상기 게 이트 전극의 적어도 한 부분 위에 형성된 반사 방지 코팅층을 제공하는 단계를 포함한다. 상기 게이트 전극은 폭을 갖는다. 상기 게이트 전극의 폭은 측정된다. 상기 반사 방지 코팅을 제거하는 스트립툴에 대한 스트립 비율이 결정된다. 상기 스트립 비율에 기초하여 초과식각 시간을 결정하기 위해 상기 게이트 전극의 측정된 폭은 타겟 게이트 전극 임계 치수와 비교된다. 상기 스트립툴의 동작 레시피는 상기 초과식각 시간에 기초하여 변경된다.
본 발명의 다른 양상은 제 1 계측툴, 스트립툴 및 공정 제어기를 포함하는 공정 라인에서 알게된다. 상기 제 1 계측툴은 웨이퍼에 형성된 게이트 전극의 폭을 측정한다. 상기 게이트 전극은 상기 게이트 전극의 적어도 한 부분 위에 형성된 반사 방지 코팅층을 갖는다. 상기 스트립툴은 상기 반사 방지 코팅을 제거한다. 상기 공정 제어기는 상기 스트립툴에 대한 스트립 비율을 결정하고, 상기 스트립 비율에 기초하여 초과식각 시간을 결정하기 위해 상기 게이트 전극의 상기 폭과 타겟 게이트 전극 임계 치수를 비교하고, 그리고 상기 초과식각 시간에 기초하여 상기 스트립툴의 동작 레시피를 변경한다.
본 발명은 첨부 도면과 결합된 하기의 설명을 참조하여 이해할 수 있으며, 동일한 참조 부호는 동일한 요소를 나타낸다.
도 1은 본 발명의 하나의 예시적인 실시예에 따른 공정 라인의 간략한 블럭도이고,
도 2a-2b는 도 1의 공정 제어기의 동작을 예시하기 위한 트랜지스터의 형성 시 다양한 과정의 단계들에 대한 개략적인 단면도를 도시하고,
도 3a-3b는 도 1의 공정 제어기의 동작을 예시하기 위한 트랜지스터의 형성시 다양한 과정의 단계들에 대한 개략적인 단면도를 도시하고, 그리고
도 4는 본 발명의 하나의 예시적인 실시예에 따라 게이트 전극 폭의 변동을 줄이는 방법의 간략한 흐름선도이다.
본 발명은 다양한 수정들과 변동들을 갖지만, 본원의 특정 실시예들은 예시적으로 도면에 도시되어 상세하게 설명된다. 그러나, 본원에서 특정 실시예들의 설명은 본 발명을 개시된 특정 형태들로 한정하는 것이 아니라, 첨부된 청구항들에 의해 정의된 본 발명의 정신과 범위내에 있는 모든 수정들, 등가물들 및 대안들을 포함한다는 것을 이해해야 한다.
본 발명의 예시적인 실시예들이 하기에 설명된다. 명료성을 위하여, 본 명세서에서는 실제 구현시의 모든 특성들을 다 설명하지는 않는다. 물론, 어떠한 실제 실시예의 전개에 있어서, 실행마다 변하게 되는 시스템 관련 및 사업 관련 제약들과의 호환성과 같은 개발자의 특정 목표를 달성하기 위해서는 다수의 실행지정 결정들이 이루어져야 한다는 것을 알 수 있을 것이다. 또한, 이러한 전개 노력은 복잡하고 시간 소모적이지만, 그럼에도 불구하고 본원의 개시의 이득을 갖는 이 기술분야의 당업자에게 있어서는 일상적인 일이라는 것을 알 수 있을 것이다.
이제 도 1을 참조하면, 본 발명에 따라 공정 웨이퍼(110)를 위한 예시적인 공정 라인(100)의 한 부분의 간략도가 제공된다. 상기 공정 라인(100)은 스트립 전 계측툴(120), 스트립툴(130), 스트립 후 계측툴(140) 및 공정 제어기(150)를 포함한다. 상기 스트립툴(130)은 패터닝 후에 트랜지스터 게이트 전극에 존재하는, 실리콘 옥시나이트라이드와 같은 ARC 층을 제거한다. 상기 스트립툴(130)은 단일툴로서 예시되지만, 실제 구현시에, 상기 스트립툴(130)은 플루오르화수소산 스트립과 인산 스트립과 같은 다수의 스트립핑 동작을 수행하는 다수의 스트립핑 툴일 수 있다.
상기 공정 제어기(150)는 상기 계측툴들(120, 140)로부터 데이터를 수신하고, 유출 트랜지스터 게이트 전극들(outgoing transistor gate electrodes)의 임계 치수의 변동을 줄이기 위해 상기 스트립툴(130)의 동작 레시피를 조정한다. 상기 예시적인 실시예에 있어서, 상기 계측툴들(120, 140)은 주사 전자 현미경(scanning electron microscope)이다. 비록 개별적인 계측툴들(120, 140)이 예시되지만은, 스트립 전 및 스트립 후 측정에 단일툴이 사용될 수도 있다. 또한, 각각의 계측툴(120, 140)은 하나 이상의 계측툴을 포함할 수도 있다. 예를 들어, 상기 스트립 전 계측툴(120)은 (예를 들어, 주사 전자 현미경을 이용하여) 상기 게이트 전극의 상기 폭과, 또한 (예를 들어, 옵티프로브 두께 측정툴(Optiprobe thickness measurement tool)을 이용하여) 상기 ARC 층의 두께를 측정할 수 있다.
상기 예시된 실시예에 있어서, 상기 공정 제어기(150)는 설명된 기능들을 구현하기 위한 소프트웨어로 프로그램된 컴퓨터이다. 그러나, 이 기술분야의 당업자에 의해 알게 될 것인 바, 상기 특정 기능들을 구현하기 위해 설계된 하드웨어 제어기가 또한 이용될 수도 있다. 또한, 본원에 설명된 상기 공정 제어기(150)에 의 해 수행되는 상기 기능들은 시스템 전체에 분배된 복합 제어기 장치들(multiple controller devices)에 의해 수행될 수 있다. 또한, 상기 공정 제어기(150)는 상기 스트립툴(130)에 설치될 수 있거나, 집적 회로 제조 시설(integrated circuit manufacturing facility)의 동작을 제어하는 시스템의 부분일 수 있는, 독립형 제어기(stand-alone controller)일 수 있다. 본 발명 부분들 및 대응하는 상세한 설명은 소프트웨어 또는, 컴퓨터 메모리 내에서 데이터 비트들의 동작에 대한 알고리즘과 심볼 표현에 의해 제공된다. 이들 설명과 표현은 이 기술분야의 당업자들이 이 기술분야의 당업자들에게 그들의 연구 내용을 효율적으로 전달하기 위한 것이다. 알고리즘은, 이 용어가 본원에서 사용될 때와 일반적으로 사용될 때, 원하는 결과에 이르는 단계들의 일관성 있는 시퀀스라고 생각된다. 상기 단계들은 물리량의 물리적 조작을 필요로 하는 것들이다. 보통, 반드시 그런 것은 아니지만, 이 물리량은 저장, 전송, 결합, 비교 및 기타 방법으로 처리될 수 있는 광, 전기 또는 자기 신호의 형태를 취한다. 원칙적으로 공통-사용의 이유로, 이들 신호들을 비트, 값, 요소, 심볼, 문자, 용어, 번호, 또는 등등으로 지칭하는 것이 항상 편리하였다.
그러나, 이들 및 유사한 용어들 모두는 적절한 물리량과 관련된 것이며, 단지 이 물리량에 적용된 편리한 라벨일 뿐임을 명심해야 한다. 특정하게 다른 규정이 없는 한 즉, 논의로부터 명백할 때, "처리" 또는 "컴퓨팅(computing)" 또는 "계산" 또는 "결정" 또는 "디스플레이" 또는 이와 유사한 용어들은 상기 컴퓨터 시스템의 레지스터 및 메모리내의 물리, 전기량으로 나타낸 데이터를, 컴퓨터 시스템 메모리 또는 레지스터 또는 다른 이러한 정보 저장, 전송 또는 디스플레이 장치내의 물리량으로 유사하게 나타낸 다른 데이터로 조작 및 변환시키는 컴퓨터 시스템 또는, 유사한 전기적 컴퓨팅 장치의 동작 및 처리를 나타낸다.
설명된 상기 공정 제어기(150)의 기능을 수행할 수 있는 예시적인 소프트웨어 시스템은 KLA-텐코 사(KLA-Tencor, Inc)에 의해 제공된 Catalyst 시스템(Catalyst system)이다. 상기 Catalyst 시스템은 국제 반도체 설비 및 물질(Semiconductor Equipment and Materials International)(SEMI) 컴퓨터 집적 제조(Computer Integrated Manufacturing)(CIM) 체제 호환 시스템 기술들을 이용하며, 진보된 공정 제어(APC) 체제를 기초로 한다. CIM(SEMI E81-0699 - CIM 체제 도메인 구조에 대한 가 사양) 및 APC(SEMI E93-0999 - CIM 체제 진보된 공정 제어 성분에 대한 가 사양) 사양은 SEMI로부터 공개적으로 이용가능하다.
도 2a-2b 및 3a-3b는 트랜지스터의 형성시 다양한 단계들에 대한 개략적인 단면도를 도시한다. 도 2a에 있어서, 기판(200) 위에 형성된 얕은 트렌치 분리(STI) 구조들(210)을 갖는 상기 기판(200)이 도시된다. 상기 기판(200) 상에 게이트 절연층(220)이 형성된다. 상기 게이트 절연층(220) 위에 게이트 전극(230)이 형성된다. 상기 게이트 절연층(220)은 상기 기판(200)으로부터 상기 게이트 전극(230)을 분리시킨다. 상기 게이트 전극(230)을 패터닝하는 동안에, 포토리소그래픽 기술 동안 반사에 의해 생긴 노치들을 최소화하기 위해서 반사 방지 코팅(ARC) 층(240)이 적용된다. 상기 게이트 전극에 대한 타겟 임계 치수(250)는 대시선(dashed line)에 의해 표시된다. 상기 타겟 임계 치수(250)는 대시선(252)에 의해 표시된, 상기 게이트 전극(230)의 실제 폭(W)보다 작다는 것에 주목한다.
도 1의 상기 스트립 전 계측툴(120)은 상기 게이트 전극(230)의 폭을 측정하고, 상기 공정 제어기(150)에 상기 측정치를 제공한다. 도 2b에 보여진 바와 같이, 상기 공정 제어기(150)는, 상기 ARC 층(240)을 제거하고 그것의 폭이 상기 타겟 임계 치수(250)에 정합할 때까지 계속해서 상기 게이트 전극(230)을 식각하도록, 상기 스트립툴(130)의 레시피를 수정한다. 상기 스트립툴(130)의 레시피를 조정하는 상기 공정 제어기의 기능은 하기에 더 상세하게 설명된다.
도 3a에 예시된 실시예에 있어서, 상기 타겟 임계 치수(250)는 대시선(252)에 의해 표시된 상기 게이트 전극(230)의 실제 폭(W)보다 더 크다. 상기 스트립 전 계측툴(120)의 측정에 기초하여, 상기 공정 제어기(150)는 상기 ARC 층(240)을 제거하지만, 상기 게이트 전극(230)의 초과식각량을 최소화하기 위해 최소 스트립 시간에 도달하자마자 식각을 중단하도록 상기 스트립툴(130)의 레시피를 수정한다(도 3b 참조). 상기 게이트 전극(230)의 폭은 여전히 약간 감소될 수 있지만, 상기 초과식각 시간은 상기 게이트 전극(230)의 폭에 대한 너무 큰 감소를 막기 위해 최소화된다.
요약하여, 상기 공정 제어기(150)는 상기 ARC 층(240)을 제거하는 최소 스트립 시간과 상기 타겟 임계 치수(250)에 도달하기 위해 상기 게이트 전극(230)의 폭을 줄이는 초과식각 시간을 결정한다. 스트립 전에 상기 게이트 전극(230)의 폭이 이미 상기 타겟 임계 치수(250)보다 더 좁은 경우, 상기 초과식각 시간은 0으로 설정된다. 상기 공정 제어기(150)는 상기 최소 스트립 시간과 상기 초과식각 시간 중 더 큰 것을 선택하여 상기 스트립툴(130)의 레시피를 수정한다.
상기 공정 제어기(150)는 상기 최소 스트립 시간과 상기 초과식각 시간을 결정하는 하나 또는 그 이상의 모델을 이용할 수 있다. 이 모델들은 비교적 간단한 등식을 기반으로 한 모델(예를 들어, 선형, 지수, 가중 평균 등) 또는 신경망 모델, 주요 성분 분석(principal component analysis)(PCA) 모델 또는 잠재 구조에 대한 투영(projection to latent structures)(PLS) 모델과 같은 더 복잡한 모델을 포함할 수 있다. 상기 모델의 특정 구현은 선택된 모델링 기술에 따라 변할 수 있으며, 이러한 특정 구현은 이 기술분야의 당업자들에게 잘 알려져 있다. 따라서, 예시의 명확성과 용이성을 위해, 본원에서는 이러한 특정 상세 설명을 더 상세하게 설명하지 않는다.
상기 공정 제어기(150)는 피드백 제어 모드 또는 피드포워드 제어 모드에서 동작할 수 있다. 피드백 모드에서, 상기 공정 제어기는 스트립 비율을 결정하기 위해 상기 게이트 전극(230)에 대한 스트립 전 및 스트립 후 폭 측정치를 수신한다. 후속하여 처리된 웨이퍼(110)에 대해서, 상기 스트립 비율은 상기 후속 웨이퍼(110)에 대한 초과식각 시간을 결정하기 위해 게이트 전극(230)의 폭에 관한 유입 데이터 및 타겟 게이트 전극 임계 치수와 관련하여 이용된다. 바스 저하로 인한 상기 스트립툴(130)에서 명백한 일반적인 감소 스트립 비율 추세(general decreasing strip rate trend)를 계산하기 위해 지수 가중 평균이 이용될 수 있다. 상기 공정 제어기(150)는 또한 상기 스트립 전 계측툴(120)로부터 유입 ARC 층(240) 두께를 수신할 수 있다. 상기 ARC 층 두께(240)는 상기 최소 스트립 시간 을 결정하는데 이용될 수 있다. 대안적으로, 고정된 최소 스트립 시간이 이용될 수 있으며, 상기 초과식각 시간은 상기 최소 스트립 시간보다 더 큰 경우에만 상기 공정 제어기(150)에 의해 상기 스트립툴(130)의 레시피로 통합될 것이다.
상기 공정 제어기(150)는 상기 플루오르화수소산 바스와 상기 인산 바스 중 하나 또는 둘다에 대해 상기 스트립 시간을 변경하도록 상기 스트립툴(130)의 동작 레시피를 조정할 수 있다. 전형적으로, 상기 플루오르화수소산 바스의 스트립 시간이 상기 인산 바스의 스트립 시간보다 현저하게 작아서, 상기 공정 제어기(150)는 상기 인산 바스에 대한 스트립 시간을 단지 변경할 수 있다.
상기 공정 제어기(150)는 로트(lot)에서 웨이퍼의 샘플로부터의 측정치에 기초하여 로트-바이-로트 원리(lot-by-lot basis)로 상기 스트립툴(130)의 동작 레시피를 조정할 수 있다. 대안적으로, 상기 공정 제어기(150)는 각각의 웨이퍼에 대한 측정치를 수신하여 웨이퍼-바이-웨이퍼 원리(wafer-by-wafer basis)로 상기 스트립툴(130)의 동작 레시피를 조정할 수 있다. 선택된 특정 빈도수는 유입 게이트 전극 폭에 제공된 변동량과 원하는 정확도에 따른다.
피드포워드 모드에서 동작할 때, 상기 공정 제어기(150)는 상기 스트립 툴(130)의 상기 스트립 비율을 예측하기 위해 예측 모델링 기술을 실시할 수 있다. 상기 예측된 스트립 비율은 상기 초과식각 시간을 결정하기 위해 상기 유입 게이트 전극(230) 폭 및 타겟 게이트 전극 임계 치수와 관련하여 이용될 수 있다. 또한, 상기 ARC 층(240)의 유입 두께는 상기 최소 스트립 시간을 결정하기 위해 이용될 수 있다. 상기 스트립 후 계측툴(140)로부터의 피드백은 상기 모델을 주기적으로 갱신하는데 이용될 수 있다. 상기 피드백 측정은 상기 유입 웨이퍼(110)의 측정보다 덜 빈번하게 수행될 수 있다. 상기 예측 모델로의 입력은 상기 스트립툴(130)에서 이용되는 바스의 생활 연령(chronological age)(즉, 시간에 기반한 저하를 계산한다)과 상기 스트립툴(130)에서 처리된 웨이퍼의 수(즉, 반응 생성물 강화에 의해 생긴 저하를 계산한다)를 포함한다.
이제 도 4를 보면, 본 발명의 하나의 예시적인 실시예에 따른 게이트 전극 폭의 변동을 줄이는 방법에 대한 간략한 흐름도가 제공된다. 블럭(400)에서, 웨이퍼 위에 형성된 게이트 전극을 갖는 상기 웨이퍼와 상기 게이트 전극의 적어도 한 부분 위에 형성된 반사 방지 코팅층이 제공된다. 블럭(410)에서, 상기 게이트 전극의 폭이 측정된다. 블럭(420)에서, 상기 반사 방지 코팅을 제거하는 스트립툴에 대한 스트립 비율이 결정된다. 상기 스트립 비율은 예측 성능 모델을 이용하여 결정될 수 있거나, 대안적으로, 상기 스트립 비율은 이전에 처리된 웨이퍼의 스트립 전 및 스트립 후 게이트 전극 폭 측정치에 기초할 수 있다. 블럭(430)에서, 상기 스트립 비율에 기초하여 초과식각 시간을 결정하기 위해 상기 게이트 전극의 폭은 타겟 게이트 전극 임계 치수와 비교된다. 블럭(440)에서, 상기 스트립툴의 동작 레시피는 상기 초과식각 시간에 기초하여 변경된다.
상기 설명된 스트립툴(130)의 동작 제어는 스트립 후 상기 게이트 전극(230)의 임계 치수의 변동을 줄이는 동시에, 상기 ARC 층(240)을 제거하는데 필요한 최소 스트립 시간을 제공한다. 상기 변동 감소에 영향을 주기 위해 실시간 제어 모델을 이용함으로써, 상기 공정 라인(100)의 처리량과 최종 생성물의 품질이 증가될 수 있다. 증가된 처리량과 감소된 변동은 바로 수익성을 증가시킨다.
상기 개시된 특정 실시예들은 단지 예시적인 것으로서, 본 발명은 서로 다르지만, 본원의 가르침의 이득을 갖는 이 기술분야의 당업자에게 명백한 등가적인 방식으로 변경 및 실행될 수 있다. 또한, 본 발명은 본원에 도시된 구조 또는 설계의 세부적인 사항들에 한정되지 않으며, 하기의 청구범위에 의해서만 규정된다. 따라서, 상기 개시된 특정 실시예들은 본 발명의 범위 및 정신 내에서 변동 또는 변경될 수 있다. 그러므로, 본원에서 보호받고자 하는 권리는 하기의 청구범위들에서 규정된다.
Claims (18)
- 게이트 전극 폭의 변동을 감소시키는 방법으로서,소정의 폭을 갖는 게이트 전극이 형성되고 그리고 상기 게이트 전극의 적어도 한 부분 위에 반사 방지 코팅층이 형성된 웨이퍼를 제공하는 단계와;상기 게이트 전극의 폭을 측정하는 단계와;상기 반사 방지 코팅층을 제거하는 스트립툴에 대한 스트립 비율을 결정하는 단계와;상기 스트립 비율에 기초하여 초과식각 시간(overetch time)을 결정하기 위해 상기 게이트 전극의 측정된 폭과 타겟 게이트 전극 임계 치수를 비교하는 단계와; 그리고상기 초과식각 시간에 기초하여 상기 스트립툴의 동작 레시피(operating recipe)를 변경하는 단계를 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 1 항에 있어서,상기 스트립툴에 대한 스트립 비율을 결정하는 단계는,상기 스트립툴의 성능을 모델링하는 단계와; 그리고상기 스트립툴의 특성과 상기 스트립툴의 성능 모델에 기초하여 상기 스트립 비율을 예측하는 단계를 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 2 항에 있어서,상기 스트립 비율을 예측하는 단계는,상기 스트립 툴에서 이용되는 스트립 바스의 생활 연령과 상기 스트립 바스에서 처리되는 웨이퍼의 수 중 적어도 하나에 기초하여 상기 스트립 비율을 예측하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 1 항에 있어서,상기 스트립툴에 대한 스트립 비율을 결정하는 단계는,이전에 처리된 웨이퍼의 스트립 전 게이트 전극 폭 및 스트립 후 게이트 전극 폭에 기초하여 상기 스트립 비율을 결정하는 단계를 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 1 항에 있어서,상기 반사 방지 코팅층의 두께를 측정하는 단계와; 그리고상기 반사 방지 코팅층의 상기 두께에 기초하여 최소 스트립 시간을 결정하는 단계를 더 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 5 항에 있어서,상기 스트립툴의 동작 레시피를 변경하는 단계는 상기 초과 식각 시간과 상기 최소 스트립 시간 중 더 큰 것에 기초하여 상기 스트립 툴의 동작 레시피를 변경하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 6항에 있어서,상기 게이트 전극의 폭이 상기 타겟 게이트 전극 임계 치수보다 작은 경우에 응답하여, 상기 초과 식각 시간을 0으로 설정하는 단계를 더 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 2 항에 있어서,상기 스트립 툴에서 상기 웨이퍼를 처리하는 단계와;상기 웨이퍼를 처리한 후, 상기 게이트 전극의 폭을 측정하는 단계와; 그리고상기 웨이퍼를 처리한 후 측정된 게이트 전극의 폭에 기초하여 상기 성능 모델을 갱신하는 단계를 더 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 1항에 있어서,상기 스트립 비율을 결정하는 단계는:상기 반사 방지 코팅층을 제거하는 제 1 스트립 비율을 결정하는 단계와; 그리고상기 게이트 전극의 폭을 감소시키는 제 2 스트립 비율을 결정하는 단계를 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 게이트 전극 폭의 변동을 감소시키는 방법으로서,게이트 전극이 형성되고 그리고 상기 게이트 전극의 적어도 한 부분 위에 반사 방지 코팅층이 형성된 웨이퍼를 제공하는 단계와;상기 게이트 전극 폭을 측정하는 단계와;초과 식각 시간(overetch time)을 결정하기 위해, 상기 측정된 게이트 전극 폭과 타겟 게이트 전극 임계 치수를 비교하는 단계와;반사 방지 코팅층을 제거하기 위해 최소 스트립 시간을 결정하는 단계와;상기 게이트 전극 폭이 타겟 게이트 전극 임계 치수보다 큰 경우에 응답하여 상기 게이트 전극의 폭을 줄이기 위한 초과 식각 시간을 결정하는 단계와; 그리고상기 최소 스트립 시간과 상기 초과 식각 시간 중 더 큰 것과 동일한 시간 주기 동안 상기 웨이퍼를 스트립 툴에서 처리하는 단계를 포함하는 것을 특징으로하는 게이트 전극 폭 변동 감소 방법.
- 제 10항에 있어서,상기 스트립 툴에 대한 스트립 비율을 결정하는 단계와; 그리고상기 스트립 비율에 기초하여 상기 최소 스트립 시간과 상기 초과 시각 시간중 적어도 하나를 결정하는 단계를 더 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 11 항에 있어서,상기 스트립 툴에 대한 스트립 비율을 결정하는 단계는,상기 반사 방지 코팅층을 제거하는 제 1 스트립 비율을 결정하는 단계와; 그리고상기 게이트 전극의 폭을 감소시키는 제 2 스트립 비율을 결정하는 단계를 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 11 항에 있어서,상기 스트립툴에 대한 스트립 비율을 결정하는 단계는,상기 스트립툴의 성능을 모델링하는 단계와; 그리고상기 스트립툴의 특성과 상기 스트립툴의 성능 모델에 기초하여 상기 스트립 비율을 예측하는 단계를 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 13 항에 있어서,상기 스트립 비율을 예측하는 단계는,상기 스트립 툴에서 이용되는 스트립 바스의 생활 연령과 상기 스트립 바스에서 처리되는 웨이퍼의 수 중 적어도 하나에 기초하여 상기 스트립 비율을 예측하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 11 항에 있어서,상기 스트립툴에 대한 스트립 비율을 결정하는 단계는,이전에 처리된 웨이퍼의 스트립 전 게이트 전극 폭 및 스트립 후 게이트 전극 폭에 기초하여 상기 스트립 비율을 결정하는 단계를 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 10항에 있어서,상기 반사 방지 코팅층의 두께를 측정하는 단계와; 그리고상기 반사 방지 코팅층의 상기 두께에 기초하여 최소 스트립 시간을 결정하는 단계를 더 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 10항에 있어서,상기 게이트 전극의 폭이 상기 타겟 게이트 전극 임계 치수보다 작은 경우에 응답하여, 상기 초과 식각 시간을 0으로 설정하는 단계를 더 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
- 제 13항에 있어서,상기 스트립 툴에서 상기 웨이퍼를 처리하는 단계와;상기 웨이퍼를 처리한 후, 상기 게이트 전극의 폭을 측정하는 단계와; 그리고상기 웨이퍼를 처리한 후 측정된 게이트 전극의 폭에 기초하여 상기 성능 모델을 갱신하는 단계를 더 포함하는 것을 특징으로 하는 게이트 전극 폭 변동 감소 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/614,666 US6461878B1 (en) | 2000-07-12 | 2000-07-12 | Feedback control of strip time to reduce post strip critical dimension variation in a transistor gate electrode |
US09/614,666 | 2000-07-12 | ||
PCT/US2001/021338 WO2002005300A2 (en) | 2000-07-12 | 2001-07-03 | Feedback control of strip time to reduce post strip critical dimension variation in a transistor gate electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030016397A KR20030016397A (ko) | 2003-02-26 |
KR100836945B1 true KR100836945B1 (ko) | 2008-06-11 |
Family
ID=24462231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020037000452A KR100836945B1 (ko) | 2000-07-12 | 2001-07-03 | 게이트 전극 폭의 변동을 감소시키는 방법 |
Country Status (8)
Country | Link |
---|---|
US (1) | US6461878B1 (ko) |
EP (1) | EP1303874A2 (ko) |
JP (1) | JP2004503104A (ko) |
KR (1) | KR100836945B1 (ko) |
CN (1) | CN1196186C (ko) |
AU (1) | AU2001273203A1 (ko) |
TW (1) | TWI282134B (ko) |
WO (1) | WO2002005300A2 (ko) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7261745B2 (en) * | 2003-09-30 | 2007-08-28 | Agere Systems Inc. | Real-time gate etch critical dimension control by oxygen monitoring |
US20050221513A1 (en) * | 2004-03-31 | 2005-10-06 | Tokyo Electron Limited | Method of controlling trimming of a gate electrode structure |
US6852584B1 (en) * | 2004-01-14 | 2005-02-08 | Tokyo Electron Limited | Method of trimming a gate electrode structure |
US20080281438A1 (en) * | 2004-04-23 | 2008-11-13 | Model Predictive Systems, Inc. | Critical dimension estimation |
US6980873B2 (en) | 2004-04-23 | 2005-12-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for real-time fault detection, classification, and correction in a semiconductor manufacturing environment |
US7437404B2 (en) | 2004-05-20 | 2008-10-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for improving equipment communication in semiconductor manufacturing equipment |
US7069098B2 (en) * | 2004-08-02 | 2006-06-27 | Advanced Micro Devices, Inc. | Method and system for prioritizing material to clear exception conditions |
US7296103B1 (en) | 2004-10-05 | 2007-11-13 | Advanced Micro Devices, Inc. | Method and system for dynamically selecting wafer lots for metrology processing |
US7076321B2 (en) * | 2004-10-05 | 2006-07-11 | Advanced Micro Devices, Inc. | Method and system for dynamically adjusting metrology sampling based upon available metrology capacity |
KR20160045299A (ko) * | 2014-10-17 | 2016-04-27 | 도쿄엘렉트론가부시키가이샤 | 기판 처리 장치, 연계 처리 시스템 및 기판 처리 방법 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5503707A (en) | 1993-09-22 | 1996-04-02 | Texas Instruments Incorporated | Method and apparatus for process endpoint prediction based on actual thickness measurements |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3633062B2 (ja) * | 1994-12-22 | 2005-03-30 | 株式会社デンソー | 研磨方法および研磨装置 |
US5646870A (en) | 1995-02-13 | 1997-07-08 | Advanced Micro Devices, Inc. | Method for setting and adjusting process parameters to maintain acceptable critical dimensions across each die of mass-produced semiconductor wafers |
US5637185A (en) * | 1995-03-30 | 1997-06-10 | Rensselaer Polytechnic Institute | Systems for performing chemical mechanical planarization and process for conducting same |
US5591299A (en) * | 1995-04-28 | 1997-01-07 | Advanced Micro Devices, Inc. | System for providing integrated monitoring, control and diagnostics functions for semiconductor spray process tools |
KR0161887B1 (ko) * | 1995-12-26 | 1999-02-18 | 문정환 | 용기를 갖는 습식에치 장치의 에치 종말점 측정방법 |
US5639342A (en) | 1996-03-15 | 1997-06-17 | Taiwan Semiconductor Manufacturing Company Ltd. | Method of monitoring and controlling a silicon nitride etch step |
TW346649B (en) * | 1996-09-24 | 1998-12-01 | Tokyo Electron Co Ltd | Method for wet etching a film |
US5913102A (en) | 1997-03-20 | 1999-06-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for forming patterned photoresist layers with enhanced critical dimension uniformity |
US5926690A (en) | 1997-05-28 | 1999-07-20 | Advanced Micro Devices, Inc. | Run-to-run control process for controlling critical dimensions |
US6191038B1 (en) * | 1997-09-02 | 2001-02-20 | Matsushita Electronics Corporation | Apparatus and method for chemical/mechanical polishing |
US6228769B1 (en) * | 1998-05-06 | 2001-05-08 | International Business Machines Corporation | Endpoint detection by chemical reaction and photoionization |
US6194230B1 (en) * | 1998-05-06 | 2001-02-27 | International Business Machines Corporation | Endpoint detection by chemical reaction and light scattering |
US6190494B1 (en) * | 1998-07-29 | 2001-02-20 | Micron Technology, Inc. | Method and apparatus for electrically endpointing a chemical-mechanical planarization process |
US6197604B1 (en) * | 1998-10-01 | 2001-03-06 | Advanced Micro Devices, Inc. | Method for providing cooperative run-to-run control for multi-product and multi-process semiconductor fabrication |
CN1239969C (zh) | 1999-06-22 | 2006-02-01 | 布鲁克斯自动化公司 | 用于微电子学器件生产的逐次运行控制器 |
US6368879B1 (en) | 1999-09-22 | 2002-04-09 | Advanced Micro Devices, Inc. | Process control with control signal derived from metrology of a repetitive critical dimension feature of a test structure on the work piece |
-
2000
- 2000-07-12 US US09/614,666 patent/US6461878B1/en not_active Expired - Lifetime
-
2001
- 2001-07-03 WO PCT/US2001/021338 patent/WO2002005300A2/en active Application Filing
- 2001-07-03 EP EP01952452A patent/EP1303874A2/en not_active Withdrawn
- 2001-07-03 JP JP2002508816A patent/JP2004503104A/ja not_active Withdrawn
- 2001-07-03 CN CNB018125603A patent/CN1196186C/zh not_active Expired - Fee Related
- 2001-07-03 AU AU2001273203A patent/AU2001273203A1/en not_active Abandoned
- 2001-07-03 KR KR1020037000452A patent/KR100836945B1/ko not_active IP Right Cessation
- 2001-07-06 TW TW090116544A patent/TWI282134B/zh not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5503707A (en) | 1993-09-22 | 1996-04-02 | Texas Instruments Incorporated | Method and apparatus for process endpoint prediction based on actual thickness measurements |
Also Published As
Publication number | Publication date |
---|---|
KR20030016397A (ko) | 2003-02-26 |
US6461878B1 (en) | 2002-10-08 |
WO2002005300A3 (en) | 2002-04-11 |
AU2001273203A1 (en) | 2002-01-21 |
JP2004503104A (ja) | 2004-01-29 |
TWI282134B (en) | 2007-06-01 |
WO2002005300A2 (en) | 2002-01-17 |
CN1196186C (zh) | 2005-04-06 |
EP1303874A2 (en) | 2003-04-23 |
CN1441962A (zh) | 2003-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100847368B1 (ko) | 식각 선택도를 제어하기 위한 방법 및 장치 | |
US6133132A (en) | Method for controlling transistor spacer width | |
US7324866B2 (en) | Method for manufacturing semiconductor device | |
EP1393365B1 (en) | Method for determining process layer conformality | |
CN106444365B (zh) | 晶圆刻蚀的控制方法及晶圆制造方法 | |
KR100836945B1 (ko) | 게이트 전극 폭의 변동을 감소시키는 방법 | |
KR101275838B1 (ko) | 샘플링되지 않은 워크피스에 관한 데이터 표시 | |
US7402257B1 (en) | Plasma state monitoring to control etching processes and across-wafer uniformity, and system for performing same | |
US6895295B1 (en) | Method and apparatus for controlling a multi-chamber processing tool | |
US7118926B2 (en) | Method of optimizing seasoning recipe for etch process | |
US6352870B1 (en) | Method of endpointing plasma strip process by measuring wafer temperature | |
US7064085B2 (en) | Feed forward spacer width control in semiconductor manufacturing | |
US20090299512A1 (en) | Semiconductor manufacturing system and method | |
US20100120177A1 (en) | Feature Dimension Control in a Manufacturing Process | |
US5908791A (en) | Method of forming a polycide gate of a semiconductor device | |
JP2003133294A (ja) | エッチング装置およびエッチング方法 | |
US7851370B2 (en) | Patterning method | |
US6352867B1 (en) | Method of controlling feature dimensions based upon etch chemistry concentrations | |
US6734088B1 (en) | Control of two-step gate etch process | |
US6348289B1 (en) | System and method for controlling polysilicon feature critical dimension during processing | |
US7405165B2 (en) | Dual-tank etch method for oxide thickness control | |
US6808591B1 (en) | Model based metal overetch control | |
JP2011040601A (ja) | 半導体装置の製造方法 | |
JP5176902B2 (ja) | 電子デバイスの製造方法及び設定装置 | |
CN101459048B (zh) | 获得刻蚀工艺试片线宽的方法及刻蚀方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130522 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140521 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150430 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |