JP2011031707A - 能動型振動騒音制御装置 - Google Patents

能動型振動騒音制御装置 Download PDF

Info

Publication number
JP2011031707A
JP2011031707A JP2009179122A JP2009179122A JP2011031707A JP 2011031707 A JP2011031707 A JP 2011031707A JP 2009179122 A JP2009179122 A JP 2009179122A JP 2009179122 A JP2009179122 A JP 2009179122A JP 2011031707 A JP2011031707 A JP 2011031707A
Authority
JP
Japan
Prior art keywords
vibration noise
reference signal
signal
frequency
waveform data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009179122A
Other languages
English (en)
Other versions
JP4926215B2 (ja
Inventor
Toshiro Inoue
敏郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009179122A priority Critical patent/JP4926215B2/ja
Priority to US12/794,759 priority patent/US8817998B2/en
Publication of JP2011031707A publication Critical patent/JP2011031707A/ja
Application granted granted Critical
Publication of JP4926215B2 publication Critical patent/JP4926215B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17855Methods, e.g. algorithms; Devices for improving speed or power requirements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17883General system configurations using both a reference signal and an error signal the reference signal being derived from a machine operating condition, e.g. engine RPM or vehicle speed
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/121Rotating machines, e.g. engines, turbines, motors; Periodic or quasi-periodic signals in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/511Narrow band, e.g. implementations for single frequency cancellation

Abstract

【課題】振動騒音を能動的に打消制御する能動型振動騒音制御装置において、参照信号を生成するのに必要な演算負荷を低減する。
【解決手段】参照信号生成部22Bは、エンジン回転周波数に基づく制御周波数fに対する音場の伝達特性{G(f)、φ}に対応する補正値{G(f),ic}を格納する補正データ記憶部52Aを有し、当該記憶部52Aから前記補正値{G(f),ic}を読み出し基準信号cos2πftを補正して、参照信号r=G(f)×cos{2πft+φ(f)}を生成する。FIRフィルタ20のタップ数Mに対応する数の参照信号r(r0,r1,…rM−1)をバッファ24に蓄積し、フィルタ係数h0,h1,…,hM−1の更新演算に用いる。参照信号rを生成するのに必要な演算量を大幅に削減することができる。
【選択図】図9

Description

この発明は、適応FIRフィルタを用いて振動騒音を能動的に制御する、車両等に適用して好適な能動型振動騒音制御装置に関する。
従来から、車両の車室内の振動騒音を、エンジンの振動騒音周波数を有する制御信号に応じて適応的に低減する能動型振動騒音制御装置が、例えば、特許文献1及び特許文献2に提案されている。
特許文献1に提案されている能動型振動騒音制御装置では、振動騒音源から発生する振動騒音周波数に基づく周波数を有する基準信号(基準正弦波信号及び基準余弦波信号)を基準信号生成手段により生成し、生成した基準余弦波信号に基づいて第1適応ノッチフィルタにより第1制御信号を生成するとともに、生成した基準正弦波信号に基づいて第2適応ノッチフィルタにより第2制御信号を生成し、前記第1制御信号と前記第2制御信号とを加算した加算信号に基づきスピーカから振動騒音打消音を発生して、振動騒音の打ち消しを図っている。
この振動騒音の打ち消しに際して、前記振動騒音と前記振動騒音打消音との差に基づく誤差信号をマイクロホンによって検出し、前記スピーカから前記マイクロホンまでの前記基準信号の周波数についての信号伝達特性中における位相特性の余弦値に基づく余弦補正値と前記基準余弦波信号との積から前記位相特性の正弦値に基づく正弦補正値と前記基準正弦波信号との積を減算した信号を第1参照信号として生成するとともに、前記正弦補正値と前記基準余弦波信号との積及び前記余弦補正値と前記基準正弦波信号との積を加算した信号を第2参照信号として生成し、前記誤差信号と前記第1及び第2参照信号とに基づいて前記誤差信号が最小となるように前記第1および第2適応ノッチフィルタのフィルタ係数をフィルタ係数更新手段によってそれぞれ逐次更新することで、前記振動騒音を前記スピーカからの出力である振動騒音打消音によって打ち消すように構成している。
特許文献2に提案されている能動型振動騒音制御装置は、基準信号生成手段と参照信号生成手段の具体的かつ簡潔的な構成を有するものであり、この装置では、基準信号生成手段が、1周期の正弦波を所定数で分割したときの各分割位置における各瞬時値データを波形データとして記憶する波形データ記憶手段を有し、サンプリング毎に前記波形データ記憶手段から順次波形データを読み出して基準正弦波信号を生成し、基準正弦波信号の読み出しアドレスに対して4分の1周期分だけシフトした前記波形データ記憶手段のアドレスから順次波形データを読み出して基準余弦波信号を生成する。
そして、参照信号生成手段は、スピーカからマイクロホンまでの伝達特性中の前記基準信号の周波数に対する位相特性を表す補正値に基づいて、前記基準正弦波信号及び前記基準余弦波信号を補正して参照信号として出力するに際し、前記基準信号の周波数に対して前記補正値を記憶する補正データ記憶手段を有し、前記基準信号の周波数を参照して前記補正データ記憶手段から前記補正値を読み出し、前記波形データ記憶手段から波形データが読み出されるアドレスに前記補正値だけシフトしたアドレスから波形データを読み出して参照信号を生成するように構成している。
特許第3843082号([0012]、[0013]、[0014]、[0016]) 特許第4074612号([0012]、[0015]、[0016]、[0169])
上記した特許文献1に係る技術では、前記補正値は、前記各基準信号の周波数に対応した振動音の前記スピーカから前記マイクロホンまでの信号伝達特性中の位相遅れの正弦値に基づいた正弦補正値と位相遅れの余弦値に基づいた余弦補正値とからなり、基準信号の周波数に対応して予め記憶手段に格納されていて、基準信号の周波数に対応して読み出され、読み出された余弦補正値及び正弦補正値と、基準余弦波信号及び基準正弦波信号とが乗算され、乗算結果が加算されて参照信号を得ることができるため、参照信号を得るために必要とする演算量はFIRフィルタを用いた場合に比較して大幅に少なくて済み、能動型振動騒音制御装置を安価に構成することができる、と開示されている。
また、上記した特許文献2に係る技術では、スピーカからマイクロホンまでの信号伝達特性中の位相特性に基づくアドレスシフト値を基準信号の周波数に応じて補正データ記憶手段に予め格納し、基準信号の周波数を参照して波形データ記憶手段から基準余弦波信号及び基準正弦波信号を読み出すアドレスデータに補正データ記憶手段から読み出したアドレスシフト値だけシフトさせたアドレスから読み出した波形データを第1および第2参照信号としたために、信号伝達特性を最適にモデル化することができ、FIRフィルタを使用した例に比較して、少ない演算量で第1及び第2参照信号を得ることができ、かつ十分な収束性で振動騒音を打ち消すことができる、と開示されている。
上記のように、特許文献1及び2には、適応ノッチフィルタに代替して適応FIRフィルタを使用した場合には、参照信号を生成するための演算負荷が大きく、デジタルシグナルプロセッサなどの演算能力の高いものが必要になると記載されている。
この発明はこのような先行技術を考慮してなされたものであり、制御信号を生成する適応フィルタとして、特許文献1、2のように適応ノッチフィルタではなく、適応FIRフィルタを使用した場合においても、参照信号を生成するのに必要な演算負荷を小さくすることを可能とする能動型振動騒音制御装置を提供することを目的とする。
また、この発明は、複数の次数成分からなる振動騒音を打ち消し対象(制御対象)とした場合において、参照信号を生成するのに必要な演算負荷の増加を、適応ノッチフィルタを使用する場合に比較して小さくすることを可能とする適応FIRフィルタを用いた能動型振動騒音制御装置を提供することを目的とする。
この項では、理解の容易化のために添付図面中の符号を付けて説明する。したがって、この項に記載した内容がその符号を付けたものに限定して解釈されるものではない。
例えば、図1及び図2に示すように、この発明に係る能動型振動騒音制御装置(10)は、振動騒音源(2)から発生する振動騒音周波数に基づく周波数(f)を有する基準正弦波信号(cos)と基準余弦波信号(sin)を基準信号として出力する基準信号生成手段(18)と、前記振動騒音源(2)からの振動騒音(NS)を相殺するために、前記基準余弦波信号(cos)又は前記基準正弦波信号(sin)に基づいて制御信号(Sc)を出力する適応FIRフィルタ(20)と、前記制御信号(Sc)に基づいて振動騒音打消音(SS)を発生する振動騒音打消手段(6)と、前記振動騒音(NS)と前記振動騒音打消音(SS)との差に基づく誤差信号eを出力する誤差信号検出手段(8)と、前記基準信号の周波数(f)に対応する前記振動騒音打消手段(6)から前記誤差信号検出手段(8)までの伝達特性に関する補正値(図5、図6も参照)に基づいて前記基準余弦波信号(cos)と前記基準正弦波信号(sin)をそれぞれ補正し、補正した前記基準余弦波信号(C(f)×cos)と補正した前記基準正弦波信号(D(f)×sin)を加算し参照信号(r)として出力する参照信号生成手段(22)と、前記適応FIRフィルタ(20)のタップ数(M)に対応した数(M)の前記参照信号(r0,r1,…rM−1)を蓄積するバッファ(24)と、前記誤差信号(e)と前記バッファ(24)に蓄積された前記参照信号(r0,r1,…rM−1)とに基づいて前記誤差信号(e)が最小となるように前記適応FIRフィルタ(20)のフィルタ係数(h0,h1,…hM−1)を逐次更新するフィルタ係数更新手段(26)と、を備えることを特徴とする。
この発明によれば、適応FIRフィルタを用いた能動型振動騒音制御装置において、参照信号生成手段は、振動騒音周波数に基づく周波数を有する基準信号の当該周波数に対応する伝達特性に関する補正値により基準信号を補正することで参照信号を生成し、バッファは、前記適応FIRフィルタのタップ数に対応した数の参照信号を順次蓄積する。フィルタ係数更新手段は、前記振動騒音と前記振動騒音打消音との差に基づく誤差信号が最小となるように前記参照信号と前記誤差信号を用いて適応FIRフィルタのフィルタ係数を更新する。適応FIRフィルタを用いているので、参照信号を生成するのに必要な演算量を大幅に作成することができる。
また、例えば、図1及び図11に示すように、この発明に係る能動型振動騒音制御装置(10C)は、振動騒音源(2)から発生する振動騒音周波数に基づく周波数(f)を有する基準信号(cos2πft)を出力する際に、1周期の正弦波又は余弦波を所定数で分割したときの各分割位置における各瞬時値データを波形データとして記憶する波形データ記憶手段(30:図3も参照)を有し、サンプリング毎に前記波形データ記憶手段(30)から波形データを読み出して前記基準信号(cos2πft)を生成する基準信号生成手段(18B)と、前記振動騒音源(2)からの振動騒音(NS)を相殺するために、前記基準信号(cos2πft)に基づいて制御信号(Sc)を出力する適応FIRフィルタ(20)と、前記制御信号(Sc)に基づいて振動騒音打消音(SS)を発生する振動騒音打消手段(6)と、前記振動騒音(NS)と前記振動騒音打消音(SS)との差に基づく誤差信号(e)を出力する誤差信号検出手段(8)と、前記基準信号(cos2πft)の周波数(f)に対応する前記振動騒音打消手段(6)から前記誤差信号検出手段(8)までの伝達特性に関する補正値(図5、図6も参照)に基づいて前記基準信号(cos2πft)を補正し参照信号(r)として出力する際に、前記基準信号(cos2πft)の周波数(f)に対して前記補正値を記憶する補正データ記憶手段(52A)を有し、前記基準信号(cos2πft)の周波数(f)を参照して前記補正データ記憶手段(52A)から前記補正値(ic)を読み出し、前記基準信号生成手段(18B)が前記波形データ記憶手段(30)から前記波形データを読み出すアドレス(i)から前記補正値(ic)分だけシフトさせた位置から、前記波形データを読み出して前記参照信号(r)を生成する参照信号生成手段(22C)と、前記適応FIRフィルタ(20)のタップ数(M)に対応した数(M)の前記参照信号(r0,r1,…rM−1)を蓄積するバッファ(24)と、前記誤差信号(e)と前記バッファ(24)に蓄積された前記参照信号(r0,r1,…rM−1)とに基づいて前記誤差信号(e)が最小となるように前記適応FIRフィルタ(20)のフィルタ係数(h0,h1,…hM−1)を逐次更新するフィルタ係数更新手段(26)と、を備えることを特徴とする。
この発明によれば、適応FIRフィルタを用いた能動型振動騒音制御装置において、参照信号生成手段は、振動騒音周波数に基づく周波数を有する基準信号の当該周波数に対応する伝達特性に関する補正値に基づいて前記基準信号を補正し参照信号として出力する際に、前記基準信号の周波数に対して前記補正値を記憶する補正データ記憶手段を有し、前記基準信号の周波数を参照して前記補正データ記憶手段から前記補正値を読み出し、前記波形データ記憶手段から前記波形データを読み出すアドレスから前記補正値分だけシフトさせた位置から、前記波形データを読み出して前記FIRフィルタのタップ数に対応した数の参照信号を生成し、バッファに蓄積する。そして、適応FIRフィルタのタップ数に対応した数の参照信号を適応FIRフィルタのフィルタ係数の更新演算に用いている。適応FIRフィルタを用いているので参照信号を生成するのに必要な演算量を大幅に削減することができる。
そして、さらに、例えば、図12に示すように、基準信号生成手段18Cは、前記振動騒音周波数に基づく複数次数の周波数を有する基準信号(cos=cos2πf1t+cos2πf2t+cos2πf3t)を出力し、参照信号生成手段(22D)は、前記複数次数の周波数を有する基準信号に対応した参照信号[cos{2πf1t+φ(f1)},cos{2πf2t+φ(f2)},cos{2πf3t+φ(f3)}]を出力することを特徴とする。
このように、複数の次数成分を制御対象としても、参照信号を生成する演算量を抑制することができる。これに対し、適応ノッチフィルタを使用した場合には、参照信号生成系統が並列となるため、次数の増加に応じて比例的に演算量が増加する。
この発明によれば、制御信号を生成する適応フィルタとして、適応FIRフィルタを使用したので、参照信号を生成するのに必要な演算負荷を小さくすることができる。
また、この発明によれば、複数の次数成分からなる振動騒音を打ち消し対象(制御対象)とした場合においても、制御信号を生成する適応フィルタとして、適応FIRフィルタを使用したので、参照信号を生成するのに必要な演算負荷の増加を、抑制することができる。
この発明の第1〜第6実施例に係る能動型振動騒音制御装置が搭載された車両の模式図である。 図1に示す能動型振動騒音制御装置の第1実施例の詳細構成を示すブロック図である。 正弦波1周期分の波形データを記憶する波形データ記憶部の説明図である。 図4Aは、基準正弦波信号の生成方法を模式的に示し、図4Bは基準余弦波信号の生成方法を模式的に示す説明図である。 車両に設けたスピーカとマイクロホンとの間における車室空間の制御周波数に対する信号伝達特性の測定値テーブルを示す説明図である。 制御周波数に対応する、算出された余弦補正値及び正弦補正値が格納された補正データ記憶部を示す説明図である。 この発明の第1実施例に係る能動型振動騒音制御装置を車両に適用した場合におけるエンジンコモリ音の打消前後の特性図である。 図1に示す能動型振動騒音制御装置の第2実施例の詳細構成を示すブロック図である。 図1に示す能動型振動騒音制御装置の第3実施例の詳細構成を示すブロック図である。 第3実施例に係る補正データ記憶部の内容例を示す説明図である。 図1に示す能動型振動騒音制御装置の第4実施例の詳細構成を示すブロック図である。 図1に示す能動型振動騒音制御装置の第5実施例の詳細構成を示すブロック図である。 図1に示す能動型振動騒音制御装置の第6実施例の詳細構成を示すブロック図である。
以下、この発明の実施形態について図面を参照して説明する。
図1は、この発明の第1〜第6実施例に係る能動型振動騒音制御装置10、10A、10B、10C、10D、10Eのいずれかが搭載された車両1の模式的な構成を示している。
能動型振動騒音制御装置10(10A〜10E)は、基本的には、車両1のエンジン2(振動騒音源)を制御するエンジン制御器3から出力されるエンジンパルス4を、スピーカ6(振動騒音打消手段)及びマイクロホン8(誤差信号検出手段)と協働するマイクロコンピュータにより構成される能動型振動騒音制御部12(12A〜12E)(能動型振動制御手段)に入力し、マイクロホン8からの出力が最小となるようにフィルタ係数が適応制御された適応FIRフィルタ20の出力によりスピーカ6を駆動し、車両1の室内のマイクロホン8の位置(受聴位置)における振動騒音(エンジンこもり音)をスピーカ6から出力される振動騒音打消音により打ち消すように構成される。
例えば、スピーカ6は車両1の後部座席背後の所定位置に設けられ、マイクロホン8は車両1の車室中央の車室天井部に設けられる。
図2は、第1実施例に係る能動型振動騒音制御装置10を構成する能動型振動騒音制御部12の詳細構成を示すブロック図である。
図2に示すように、能動型振動騒音制御部12は、基本的には、周波数検出器16と、基準信号生成部18(基準信号生成手段)と、適応FIRフィルタ20と、参照信号生成部22(参照信号生成手段又は補正手段)と、バッファ24と、フィルタ係数更新部26(フィルタ係数更新手段又はLMSアルゴリズム演算器)とから構成される。
サンプリングパルス生成器としても機能する周波数検出器16は、エンジンパルス4の周波数からエンジン2のガス燃焼の周波数を振動騒音の周波数である制御周波数fとして検出し、基準信号生成部18と参照信号生成部22に供給するとともに、能動型振動騒音制御部12の標本化周期を有するサンプリングパルス(タイミング信号)を生成し、各部に供給する。ここでは、例えば、サンプリング周波数fsがfs=3[kHz]と固定周波数であり、サンプリング間隔(サンプリング周期)tsがts=1/3000[s]のサンプリングパルスが各部に供給されるものとする。
マイクロホン8に入力される振動騒音NSとしてのエンジンこもり音はエンジン回転によって発生した加振力が車体に伝達されて発生する振動放射音であることから、エンジン2の回転数に同期した顕著な周期性を有する振動騒音である。例えば、4サイクル4気筒エンジンであれば、エンジン出力軸の1/2回転ごとに起こるガス燃焼によるトルク変動によりエンジンを基点とした加振振動が発生し、これが原因で車室内に振動騒音NSが発生する。
したがって、4サイクル4気筒エンジンであれば、エンジン出力軸の回転数(エンジン回転数Ne[rpm])の2倍の周波数を有する回転2次成分と称される振動騒音NSが多く発生するため、周波数検出器16は、上述したように、エンジンパルス4からの検出周波数、すなわちエンジン回転数Neの2倍の周波数を振動騒音周波数である制御周波数f[Hz]{f=(Ne/60)×2}として出力する。制御周波数fは、打ち消すべき振動騒音NSの周波数である。以下、制御周波数fを単に周波数fとも記す。
実際上、2次成分が抑制されると、次に4次成分、さらに6次成分…というように、より高次成分の振動騒音が相対的に大きく聞こえるようになってくるので、これらの高次成分も抑制することが好ましいが、これについては後述する。
基準信号生成部18は、波形データ記憶部30と、基準余弦波信号生成部31と、基準正弦波信号生成部32とを備える。
図3に模式的に示すように、波形データ記憶部30は、正弦波1周期分の波形を時間軸方向に所定数N(この実施形態では、分かり易さを考慮し、分解能を1[Hz]とするため、N=3000とする。)等分したときの各瞬時値を表す各瞬時値データを、アドレスi(n)をi(n)=0から所定数N−1(N−1=2999)まで、各アドレスi(n)(i(n)=0,1,2,…N−1)毎に波形データとして記憶している。
振幅Aは、正の実数であり、アドレスi(n)=iの波形データは、Asin{2π×i/N}で算出される。
このように、波形データ記憶部30は、1サイクルの正弦波を時間方向にN分割して標本化し、各標本化点における正弦波の瞬時値を量子化したデータを波形データとして、対応するアドレスi(n)の位置に格納したものである。なお、正弦波に代替して1サイクルの余弦波を時間方向にN分割して標本化し、各標本化点における正弦波の瞬時値を量子化したデータを波形データとして、対応するアドレスi(n)の位置に格納してもよい。
図3、図4A、図4Bを参照しながら、基準信号生成部18が、基準余弦波信号cos2πft(以下、単にcosともいう。)及び基準正弦波信号sin2πft(以下、単にsinともいう。)からなる基準信号を生成する方法を説明する。ここで、図4A及び図4B中のインデックスnは0以上の整数であって、前記サンプリングパルス毎に+1ずつ増加するものとする。ただし、n=2999の次のサンプリングパルスに対応するインデックスnは、n=0にリセットされる。
図4Aは、基準正弦波信号sinの生成過程を模式的に示し、図4Bは基準余弦波信号cosの生成過程を模式的に示す説明図である。
アドレスi(n)は、上述したように、i(n)=0、1、2、…、N−1=0、1、2、…、2999となり、4分の1周期分のシフト量はN/4=750(個)となる。
基準正弦波信号生成部32は、周波数検出器16が発生するサンプリングパルス毎に、下記の(1)式に示すように、アドレスi(n)を制御周波数fの数(40[Hz]であれば40個)ずつ加算しながら波形データ記憶部30から波形データを順次読み出すことにより図4Aに示すように基準正弦波信号sinを生成する。
すなわち、サンプリング間隔が1/fs=ts=1/3000(=1/N)[s]であるため、基準信号生成部18を構成する基準正弦波信号生成部32は、サンプリングパルス毎に、次の(1)式で示すように、制御周波数fに基づくアドレス間隔iintで波形データ記憶部30の読出アドレスi(n)を指定する。
アドレス間隔iintは、iint=N×f×ts=3000×f×1/3000=fとなる。したがって、あるタイミングの読出アドレスi(n)は、
i(n)=i(n−1)+iint=i(n−1)+f …(1)
ただし、i(n)>2999(=N−1)のときは、i(n)=i(n−1)+f−3000となる。
例えば、制御周波数fがf=40[Hz](エンジン回転数Ne[rpm]が、Ne=f×60/2=40×60/2=1200[rpm])の場合には、制御が開始されると、サンプリングパルス毎、すなわちサンプリング間隔ts=1/3000[s]毎に、アドレスi(n)=0,40,80,120…2960,0,…のインデックスnに相当するアドレスi(n)の波形データが順次読み出されることになり、40[Hz]の基準正弦波信号sinが生成される。また、制御周波数fがf=80[Hz](エンジン回転数Ne[rpm]が、Ne=f×60/2=80×60/2=2400[rpm])の場合には、制御が開始されると、サンプリングパルス毎、すなわちサンプリング間隔ts=1/3000[s]毎に、アドレスi(n)=0,80,160…2960,40,…のインデックスnに相当するアドレスi(n)の波形データが順次読み出されることになり、80[Hz]の基準正弦波信号sinが生成される。
同様に、基準余弦波信号生成部31は、次の(2)式で示すように、基準正弦波信号生成部32で指定された基準正弦波信号sinの読み出しアドレスi(n){(2)式の左辺}に対して、4分の1周期分(N/4)だけシフト(加算)したアドレスを、基準余弦波信号cosの読み出しアドレスi(n){(2)式の左辺}として指定する。
i(n)=i(n)+N/4=i(n)+750 …(2)
ただし、i(n)>2999(=N−1)のときは、i(n)=i(n)+750−3000となる。
したがって、基準余弦波信号生成部31は、読み出し開始アドレスを4分の1周期分だけシフトしたアドレスから、周波数検出器16が発生するサンプリングパルス毎に、制御周波数fに相当するアドレス間隔で波形データ記憶部30から波形データを順次読み出すことにより図4Bに示す基準余弦波信号cosを生成する。
例えば、制御周波数fがf=40[Hz](エンジン回転数Ne[rpm]が、Ne=f×60/2=40×60/2=1200[rpm])の場合には、制御が開始されると、サンプリングパルス毎、すなわちサンプリング間隔tc=1/3000[s]毎に、アドレスi(n)=750,790,830,870…2990,30,70…710,750…のインデックスnに相当するアドレスi(n)の波形データが順次読み出されることになり、40[Hz]の基準余弦波信号cosが生成される。制御周波数fがf=80[Hz](Ne=f×60/2=80×60/2=2400[rpm])の場合には、制御が開始されると、サンプリングパルス毎、すなわちサンプリング間隔tc=1/3000[s]毎に、アドレスi(n)=750,830,910…,2990,70,150…710,790…のインデックスnに相当するアドレスi(n)の波形データが順次読み出されることになり、80[Hz]の基準余弦波信号cosが生成される。
このようにして基準余弦波信号生成部31で生成された基準余弦波信号cosは、図2に示すように、適応FIRフィルタ20に入力される。また、基準余弦波信号生成部31及び基準正弦波信号生成部32で生成された基準余弦波信号cos及び基準正弦波信号sinが参照信号生成部22に入力される。
適応FIRフィルタ20は、基準余弦波信号cosをフィルタして制御信号Scを生成しD/A変換器40に出力する。
ここで、適応FIRフィルタ20は、図2に示すように、フィルタ係数h=h0,h1,…hM−1までのタップ数Mの適応FIRフィルタ20としている。タップ数Mは、制御効果を確認しながら決定すればよい。
この場合、適応FIRフィルタ20の伝達関数H(z)は、次の(3)式により表される。
H(z)=h0+h1z-1+h2z-2+…+hM−1z-(M-1) …(3)
ここで、各z-1の遅延時間Tは、サンプリング間隔(サンプリング周期)ts=1/3000[s]に相当する。
M−1個のz-1は、例えば、FIFOメモリ(先入れ先出しメモリ)により構成され、サンプリングパルス毎に、左側のバッファz-1(メモリとして考えるときには、バッファz-1という。)から右側のバッファz-1にデータが転送され、その際、最も左側のバッファz-1に基準信号生成部18により生成された最新の基準余弦波信号cosの値が記憶され、最も右側のバッファz-1に格納されているデータが削除される。
D/A変換器40は、デジタル信号の制御信号Sc{Sc=H(z)×cos2πft}をアナログ信号の制御信号Scに変換する。この制御信号Scは、図示しない低域通過フィルタ及び増幅器42を介してスピーカ6に入力される。
スピーカ6は、制御信号Scに対応した振動騒音打消音SSを出力する。スピーカ6から出力された振動騒音打消音SSは、車室空間(音場)を伝搬してマイクロホン8に入力される。
このマイクロホン8の位置での振動騒音打消音SSの振幅及び位相が、振動騒音NSと同振幅且つ逆位相になるように能動型振動騒音制御部12での騒音低減制御処理が実行される。
騒音低減制御処理の実行のために、振動騒音NSと振動騒音打消音SSの差が誤差信号e(e=NS−SS)としてマイクロホン8により検出され、検出されたアナログ信号の誤差信号eが、A/D変換器46を介してデジタル信号の誤差信号eとしてフィルタ係数更新部26に入力される。
一方、参照信号生成部22は、補正データ記憶部52と、それぞれ乗算器として機能する余弦補正値設定部54及び正弦補正値設定部56と、加算器58とを備える。
補正データ記憶部52には、スピーカ6とマイクロホン8との間の車室空間の信号伝達特性中の位相遅れの余弦値に基づく余弦補正値C(f)が制御周波数fに対応して格納されるとともに、前記信号伝達特性中の位相遅れの正弦値に基づく正弦補正値D(f)が制御周波数fに対応して格納され、周波数検出器16から出力されるサンプリングパルスによりアクセスされ、制御周波数fに対応する余弦補正値C(f)と正弦補正値D(f)がそれぞれ余弦補正値設定部54と正弦補正値設定部56に設定される。
補正データ記憶部52に予め格納される余弦補正値C(f)と正弦補正値D(f)の数値例について説明する。
図5は、車両1に設けたスピーカ6とマイクロホン8との間における車室空間の各制御周波数fに対する信号伝達特性のゲインG及び位相遅れφの測定値テーブル50を示している。ゲインGは[dB]で示し、位相遅れφは角度[゜]で示している。
ここで、図2に示す参照信号生成部22の構成を参照すれば、参照信号rが次の(4)式(ベクトル加算)及び(5)式で得られることが分かる。
r=C(f)cos2πft+D(f)sin2πft …(4)
=√(C2+D2)tan-1(D/C)=Gtan-1φ …(5)
この(5)式から、図5に示すゲインG及び位相遅れφの測定値に基づき制御周波数fごとにそれぞれ余弦補正値C(f)及び正弦補正値D(f)を算出することができる。
図6に、制御周波数fに対応する、測定値テーブル50のゲインG及び位相遅れφから算出された余弦補正値C(f)及び正弦補正値D(f)が格納された補正データ記憶部52の例を示す。
余弦補正値設定部54、正弦補正値設定部56、及び加算器58からなる参照信号生成部22でサンプリングパルス毎に生成された参照信号r{r=C(f)cos2πft+D(f)sin2πft}は、そのサンプリングパルス毎にバッファ24に記憶される。
バッファ24は、適応FIRフィルタ20のタップ数Mと同数のM個の記憶領域を有するFIFOメモリにより構成されている。
上述した遅延時間T、すなわちサンプリングパルス毎に、バッファ24の図2中、最上段の記憶領域に参照信号生成部22により生成された最新の参照信号rが参照信号r0として記憶されるとともに、上段の記憶領域から下段の記憶領域に参照信号rが転送される。そして、バッファ24の最下段の記憶領域には最も古い参照信号rM−1が記憶され、その最下段の記憶領域に格納されていたデータが削除される。
次に、フィルタ係数更新部26は、適応FIRフィルタ20の各フィルタ係数h0,h1,…hM−1を、LMS(Least Mean Square)アルゴリズムにより誤差信号eの2乗e2が最小となるように、μをステップサイズパラメータとして、当該技術分野にて公知の次の(6)式により算出する。
h0=h0−μ・e・r0
h1=h1−μ・e・r1

hM−1=(hM−1)−μ・e・(rM−1)
…(6)
すなわち、左辺の次回の各フィルタ係数h0,h1,…,hM−1は、右辺の今回の各フィルタ係数h0,h1,…,hM−1から今回の各μ・e・r0,μ・e・r1,…,μ・e・(rM−1)を差し引くことにより求めることができる。
このように、上述した第1実施例に係る能動型振動騒音制御装置10によれば、制御信号Scを生成する適応フィルタとして、適応FIRフィルタ20を使用しているので、参照信号rが、参照信号生成部22により、2回の乗算と1回の加算の積和演算で求められ、参照信号rを生成するのに必要な演算負荷を小さくすることができる。
図7は、上記のように構成した能動型振動騒音制御装置10を搭載した車両1において、余弦補正値C(f)及び正弦補正値D(f)を用いて参照信号rを生成し、適応FIRフィルタ20を介して生成した振動騒音打音SSによってエンジンこもり音である振動騒音NSを打ち消した場合の結果を、エンジン回転数Neに対して実線で示している。図7に破線で示すエンジンこもり音の打ち消しを行わない場合に比較してエンジンこもり音が十分に打ち消されていることが分かる。
図8は、第2実施例に係る能動型振動騒音制御装置10Aの詳細構成を示すブロック図である。
上述したように、エンジン回転数Neの2倍の周波数、すなわち上述した制御周波数fを有する回転2次成分と称される振動騒音NSを抑制した場合に、マイクロホン8の位置において、4次成分、6次成分、…の振動騒音NSが顕在化する場合がある、ここでは、理解の容易化のために、2次、4次、6次成分が顕在化するものとする。
この場合、制御する次数pの周波数成分としてf1=f×p1=f×1(2次成分)、f2=f×p2=f×2(4次成分)、f3=f×p3=f×3(6次成分)と表すことにする。
このとき、周波数検出器16Aは、検出した制御周波数f=f1に加えて、これを2逓倍、及び3逓倍した制御周波数f2、f3を出力する。
この場合、基準信号生成部18Aの基準余弦波信号生成部31、31a、31b及び基準正弦波信号生成部32、32a、32bにおいて、波形データ記憶部30からサンプリングパルス毎に、アドレスi(n)と、それぞれ1/4周期分だけシフトしたアドレスi(n)とで波形データを、それぞれ制御周波数f1、f2、f3に対応する数ずつアドレスi(n)を飛ばして読み出すことで、次の(7)式に示す、各基準信号を生成することができる。
cos2πf1t、sin2πf1t、cos2πf2t、sin2πf2t、cos2πf3t、sin2πf3t …(7)
加算器33により、基準余弦波信号cos=cos2πf1t+cos2πf2t+cos2πf3tが生成され、適応FIRフィルタ20に入力される。
一方、参照信号rを生成するための補正データ記憶部52Aには、制御周波数f(f=f1、f2、f3)に対応する、測定値テーブル(測定値テーブル50の測定周波数範囲を高周波側に拡張したテーブル)のゲインG及び位相遅れφから算出された余弦補正値C(f)=C(f1)、C(f2)、C(f3)及び正弦補正値D(f)=D(f1)、D(f2)、D(f3)が格納される。
上述した遅延時間T毎、すなわちサンプリング間隔ts毎に適応FIRフィルタ20のタップ数Mに対応する次の(8)式に示す参照信号rが、余弦補正値設定部54、54a、54b、正弦補正値設定部56、56a、56b及び加算器58、58a、58b、59を含む参照信号生成部22Aにより生成され、図8のM個の記憶領域(メモリアドレス)を有するバッファ24の各記憶領域に、参照信号r0,r1,…rM−1として格納される。
r=C(f1)cos2πf1t+D(f1)sin2πf1t
+C(f2)cos2πf2t+D(f2)sin2πf2t
+C(f3)cos2πf3t+D(f3)sin2πf3t …(8)
以下、上述したのと同様に、フィルタ係数更新部26により適応FIRフィルタ20の各フィルタ係数h0,h1,…hM−1が算出される。
この第2実施例に係る能動型振動騒音制御装置10Aによれば、制御信号Scを生成する適応フィルタとして、適応FIRフィルタ20を使用しているので、複数の次数成分、ここでは、3つの次数成分(2次、4次及び6次)に対応する参照信号rが、6回の乗算と5回の加算による積和演算により求められ、参照信号rを生成するのに必要な演算負荷を大幅に小さくすることができる。
図9は、第3実施例に係る能動型振動騒音制御装置10Bの構成を示すブロック図である。
基準余弦波信号cosを生成する基準信号生成部18Bは、周波数検出器16とアドレス設定器60と波形データ記憶部30とから構成され、アドレス設定器60が上述した(2)式での読み出しアドレスi(n){以下、アドレスi(n)は、単純にアドレスiで示す。}で波形データ記憶部30から順次波形データを読み出すことで、基準余弦波信号cosを生成することができる。生成された基準余弦波信号cosは、適応FIRフィルタ20に入力される。
ここで、補正データ記憶部52Aには、図10に示すように、図5に示した測定値テーブル50に基づく、制御周波数fに対応するゲインGと、位相遅れφに対応して、次の(9)式及び(10)式で算出されるアドレスの補正値(補正アドレス値)icが記憶されている。
φ≧0のとき、ic=(φ/360)×f …(9)
φ<0のとき、ic=f+(φ/360)×f …(10)
参照信号生成部22Bは、アドレスiに、この補正アドレス値icをアドレス補正器62により加算したアドレスi+icにより波形データ記憶部30から波形データを読み出すことで、スピーカ6からマイクロホン8までの車室空間の制御周波数fにおける位相遅れφが考慮された参照信号cos{2πft+φ(f)}を生成することができる。
さらに、参照信号生成部22Bは、生成した参照信号cos{2πft+φ(f)}に、補正データ記憶部52Aから同時に読み出されてゲイン設定器64に設定されたゲインGを乗算することで、位相遅れφとゲインGを考慮した参照信号rをr=G・cos{2πft+φ(f)}として生成することができる。この第3実施例に係る能動型振動騒音制御装置10Bを構成する能動型振動騒音制御部12Bによれば、補正データ記憶部52A、アドレス補正器62、波形データ記憶部30及びゲイン設定器64により参照信号生成部22B(参照信号生成手段)が構成される。
生成された参照信号r=G・cos{2πft+φ(f)}は、M個の記憶領域(メモリアドレス)を有するFIFOメモリであるバッファ24の各記憶領域に、上述した遅延時間T毎に、参照信号r0,r1,…rM−1として格納される。
以下、上述したのと同様に、フィルタ係数更新部26により適応FIRフィルタ20の各フィルタ係数h0,h1,…hMが算出される。
この第3実施例に係る能動型振動騒音制御装置10Bによれば、制御信号Scを生成する適応フィルタとして、適応FIRフィルタ20を使用しているので、基準余弦波信号cos2πftを生成するアドレスiに対して、制御周波数fの車室空間の伝達特性に対応する補正値(ゲインGと位相遅れφ)に対応するアドレスの補正値(補正アドレス値又はアドレスシフト値)ic分をシフトしたアドレス値i+icにより波形データを読み込んで参照信号rを生成するようにしているので、参照信号rを生成するのに必要な演算負荷を大幅に小さくすることができる。
より詳しく説明すると、この第3実施例に係る能動型振動騒音制御装置10Bは、Mタップのフィルタ係数h0,h1,…hM−1を有する適応FIRフィルタ20を用いた能動型振動騒音制御装置10Bにおいて、参照信号生成部22Bは、振動騒音周波数に基づく制御周波数fを有する基準余弦波信号cos2πftの当該制御周波数fに対応する伝達特性{G(f)、φ}に関する補正値{ゲインG(f)と位相φに対応するアドレスシフト値ic:図10参照}を格納している補正データ記憶部52Aから補正値{G(f),ic}を読み出して基準信号cos2πftを補正して、参照信号r=G(f)×cos{2πft+φ(f)}を生成し、バッファ24にFIRフィルタ20のタップ数Mに対応する数Mの参照信号r(r0,r1,…rM−1)を蓄積する。
参照信号r(r0,r1,…rM−1)を適応FIRフィルタのフィルタ係数h0,h1,…,hM−1の更新演算に用いる。適応FIRフィルタ20を用いているので参照信号r(r0,r1,…rM−1)を生成するのに必要な演算量を大幅に削減することができる。
なお、ゲインG(f)は、FIRフィルタ20の補正係数h0、h1、…hM−1により補償することができるので、図11に示す第4実施例に係る能動型振動騒音制御装置10Cに示すように、能動型振動騒音制御部12Cの参照信号生成部22Cを、ゲイン設定器64を除いた、補正データ記憶部52A(ただし、図10の補正データ記憶部52Aに格納されているデータ中、ゲインGのデータは使用しない。)、アドレス補正器62、及び波形データ記憶部30により構成することができる。
また、上記図9例及び図11例の能動型振動騒音制御装置10B、10Cにおいても、図8例の複数次数を対象とした能動型振動騒音制御装置10Aに対応した、例えば、模式的に図12に第5実施例に係る能動型振動騒音制御装置10Dとして示すように、エンジン回転数Neの2倍の周波数、すなわち上述した制御周波数fを有する回転2次成分と称される振動騒音NSの他、マイクロホン8の位置において、4次成分、6次成分、…の振動騒音NSを振動打消音の対象とすることができる。
この場合においても、制御する次数pの周波数成分としてf1=f×p1=f×1(2次成分)、f2=f×p2=f×2(4次成分)、f3=f×p3=f×3(6次成分)と表す。
このとき、周波数検出器16Aは、検出した制御周波数f=f1に加えて、これを2逓倍、及び3逓倍した制御周波数f2、f3を出力する。
そして、基準信号生成部18Cを構成するアドレス設定器60Aにおいて、波形データ記憶部30から対応するサンプリングパルス毎に、アドレスi1、i2、i3で波形データを読み出すことで、次の(11)式に示す、各基準信号を生成することができる。
cos2πf1t、cos2πf2t、cos2πf3t …(11)
この場合、加算器33で、基準信号cos=cos2πf1t+cos2πf2t+cos2πf3tが生成され、適応FIRフィルタ20に入力される。
一方、参照信号rを生成するための補正データ記憶部52Bには、制御周波数f(f=f1、f2、f3)に対応する各位相遅れφの補正アドレス値ic1、ic2、ic3が格納され、アドレスシフト値としてアドレス補正器62Aに供給される。
参照信号生成部22Cは、アドレス補正器62Aから補正アドレス値ic1、ic2、ic3分をシフトしたアドレスi1+ic1、i2+ic2、及びi3+ic3で波形データを読み出し、加算器59で加算して次の(12)式に示す参照信号rを生成する。
cos{2πf1t+φ(f1)}+cos{2πf2t+φ(f2)}+cos{2πf3t+φ(f3)} …(12)
そして、適応FIRフィルタ20のタップ数Mの数に対応する(12)式に示す参照信号rがM個の記憶領域(メモリアドレス)を有するバッファ24の各記憶領域に、遅延時間T毎に参照信号r0,r1,…rMとして先入れ先出し方式により格納される。
以下、上述したのと同様に、フィルタ係数更新部26により適応FIRフィルタ20の各フィルタ係数h0,h1,…hM−1が算出される。
この第5実施例に係る能動型振動騒音制御装置10Dによれば、制御信号Scを生成する適応フィルタとして、適応FIRフィルタ20を使用しているので、複数の次数成分対応する参照信号rを、基準余弦波信号cos2πf1t、cos2πf2t、cos2πf3tを生成する各アドレスi1、i2、i3に対して、制御周波数fの車室空間の伝達特性に対応する補正値(ここでは、位相遅れφ)に対応するアドレスの補正値(補正アドレス値又はアドレスシフト値)ic1、ic2、ic3分をシフトしたアドレス値i1+ic1、i2+ic2、i3+ic3により波形データを読み出して参照信号rを生成するようにしているので、参照信号rを生成するのに必要な演算負荷を大幅に小さくすることができる。
なお、この場合においても、図9に示した第3実施例と同様に、図13に、第6実施例に係る能動型振動騒音制御装置10Eとして示すように、補正データ記憶部52Cには、制御周波数f1、f2、f3に対応するゲインG(f1)、G(f2)、G(f3)を格納して、ゲイン設定器64A、64B、64Cに設定できるようにした参照信号生成部22Eの構成に変更してもよい。このように参照信号生成部22Eにおいて、ゲインG(f1)、G(f2)、G(f3)を個別に設定できるようにすることで、該当する制御周波数f(f1、f2又はf3)の次数成分のフィルタ係数更新部26による収束時間を短くすることができる。
なお、この発明は、上述の実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。
10(10A〜10E)…能動型振動騒音制御装置
12(12A〜12E)…能動型振動騒音制御部(能動型振動騒音制御手段)
16、16A…周波数検出器 18、18A〜18C…基準信号生成部
20…適応FIRフィルタ 22(22A〜22E)…参照信号生成部
24…バッファ 26…フィルタ係数更新部
30…波形データ記憶部 50…測定値テーブル
52、52A、52B、52C…補正データ記憶部
60、60A…アドレス設定器 62、62A…アドレス補正器

Claims (3)

  1. 振動騒音源から発生する振動騒音周波数に基づく周波数を有する基準正弦波信号と基準余弦波信号を基準信号として出力する基準信号生成手段と、
    前記振動騒音源からの振動騒音を相殺するために、前記基準余弦波信号又は前記基準正弦波信号に基づいて制御信号を出力する適応FIRフィルタと、
    前記制御信号に基づいて振動騒音打消音を発生する振動騒音打消手段と、
    前記振動騒音と前記振動騒音打消音との差に基づく誤差信号を出力する誤差信号検出手段と、
    前記基準信号の周波数に対応する前記振動騒音打消手段から前記誤差信号検出手段までの伝達特性に関する補正値に基づいて前記基準余弦波信号と前記基準正弦波信号をそれぞれ補正し、補正した前記基準余弦波信号と補正した前記基準正弦波信号を加算し参照信号として出力する参照信号生成手段と、
    前記適応FIRフィルタのタップ数に対応した数の前記参照信号を蓄積するバッファと、
    前記誤差信号と前記バッファに蓄積された前記参照信号とに基づいて前記誤差信号が最小となるように前記適応FIRフィルタのフィルタ係数を逐次更新するフィルタ係数更新手段と、
    を備えることを特徴とする能動型振動騒音制御装置。
  2. 振動騒音源から発生する振動騒音周波数に基づく周波数を有する基準信号を出力する際に、1周期の正弦波又は余弦波を所定数で分割したときの各分割位置における各瞬時値データを波形データとして記憶する波形データ記憶手段を有し、サンプリング毎に前記波形データ記憶手段から波形データを読み出して前記基準信号を生成する基準信号生成手段と、
    前記振動騒音源からの振動騒音を相殺するために、前記基準信号に基づいて制御信号を出力する適応FIRフィルタと、
    前記制御信号に基づいて振動騒音打消音を発生する振動騒音打消手段と、
    前記振動騒音と前記振動騒音打消音との差に基づく誤差信号を出力する誤差信号検出手段と、
    前記基準信号の周波数に対応する前記振動騒音打消手段から前記誤差信号検出手段までの伝達特性に関する補正値に基づいて前記基準信号を補正し参照信号として出力する際に、前記基準信号の周波数に対して前記補正値を記憶する補正データ記憶手段を有し、前記基準信号の周波数を参照して前記補正データ記憶手段から前記補正値を読み出し、前記基準信号生成手段が前記波形データ記憶手段から前記波形データを読み出すアドレスから前記補正値分だけシフトさせた位置から、前記波形データを読み出して前記参照信号を生成する参照信号生成手段と、
    前記適応FIRフィルタのタップ数に対応した数の前記参照信号を蓄積するバッファと、
    前記誤差信号と前記バッファに蓄積された前記参照信号とに基づいて前記誤差信号が最小となるように前記適応FIRフィルタのフィルタ係数を逐次更新するフィルタ係数更新手段と、
    を備えることを特徴とする能動型振動騒音制御装置。
  3. 請求項1又は2記載の能動型振動騒音制御装置において、
    前記基準信号生成手段は、前記振動騒音周波数に基づく複数次数の周波数を有する基準信号を出力し、
    前記参照信号生成手段は、前記複数次数の周波数を有する基準信号に対応した参照信号を出力する
    ことを特徴とする能動型振動騒音制御装置。
JP2009179122A 2009-07-31 2009-07-31 能動型振動騒音制御装置 Expired - Fee Related JP4926215B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009179122A JP4926215B2 (ja) 2009-07-31 2009-07-31 能動型振動騒音制御装置
US12/794,759 US8817998B2 (en) 2009-07-31 2010-06-06 Active vibratory noise control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179122A JP4926215B2 (ja) 2009-07-31 2009-07-31 能動型振動騒音制御装置

Publications (2)

Publication Number Publication Date
JP2011031707A true JP2011031707A (ja) 2011-02-17
JP4926215B2 JP4926215B2 (ja) 2012-05-09

Family

ID=43527016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179122A Expired - Fee Related JP4926215B2 (ja) 2009-07-31 2009-07-31 能動型振動騒音制御装置

Country Status (2)

Country Link
US (1) US8817998B2 (ja)
JP (1) JP4926215B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110599997A (zh) * 2019-09-25 2019-12-20 西南交通大学 一种鲁棒性强的冲击噪声有源控制方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208367B1 (en) 2007-10-12 2017-09-27 Earlens Corporation Multifunction system and method for integrated hearing and communiction with noise cancellation and feedback management
CN102124757B (zh) 2008-06-17 2014-08-27 依耳乐恩斯公司 传输音频信号及利用其刺激目标的系统、装置和方法
EP2342905B1 (en) 2008-09-22 2019-01-02 Earlens Corporation Balanced armature devices and methods for hearing
EP3758394A1 (en) 2010-12-20 2020-12-30 Earlens Corporation Anatomically customized ear canal hearing apparatus
CN103477116B (zh) * 2011-04-05 2016-01-20 株式会社普利司通 车辆减振系统
US9451368B2 (en) * 2012-04-11 2016-09-20 Envoy Medical Corporation Feedback scan for hearing aid
US9190071B2 (en) * 2012-09-14 2015-11-17 Sikorsky Aircraft Corporation Noise suppression device, system, and method
US9237399B2 (en) * 2013-08-09 2016-01-12 GM Global Technology Operations LLC Masking vehicle noise
US10034103B2 (en) 2014-03-18 2018-07-24 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
EP3169396B1 (en) 2014-07-14 2021-04-21 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US9924276B2 (en) 2014-11-26 2018-03-20 Earlens Corporation Adjustable venting for hearing instruments
CN106796783B (zh) * 2015-07-09 2021-12-24 松下知识产权经营株式会社 有源型噪声降低装置
US20170095202A1 (en) 2015-10-02 2017-04-06 Earlens Corporation Drug delivery customized ear canal apparatus
EP3185241B1 (en) * 2015-12-23 2020-02-05 Harman Becker Automotive Systems GmbH Externally coupled loudspeaker system
US11350226B2 (en) 2015-12-30 2022-05-31 Earlens Corporation Charging protocol for rechargeable hearing systems
US20170195806A1 (en) 2015-12-30 2017-07-06 Earlens Corporation Battery coating for rechargable hearing systems
US10492010B2 (en) 2015-12-30 2019-11-26 Earlens Corporations Damping in contact hearing systems
JP6351887B2 (ja) * 2016-02-09 2018-07-04 三菱電機株式会社 能動騒音制御装置
JP6671036B2 (ja) * 2016-07-05 2020-03-25 パナソニックIpマネジメント株式会社 騒音低減装置、移動体装置、及び、騒音低減方法
CN109952771A (zh) 2016-09-09 2019-06-28 伊尔兰斯公司 接触式听力系统、设备和方法
WO2018093733A1 (en) 2016-11-15 2018-05-24 Earlens Corporation Improved impression procedure
CN109218175A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 一种路径数据的删除方法、一种消息转发方法和装置
JP6847816B2 (ja) * 2017-11-10 2021-03-24 本田技研工業株式会社 車両用プラントの制御装置
WO2019173470A1 (en) 2018-03-07 2019-09-12 Earlens Corporation Contact hearing device and retention structure materials
WO2019199680A1 (en) * 2018-04-09 2019-10-17 Earlens Corporation Dynamic filter
JP6961023B2 (ja) * 2020-01-21 2021-11-05 本田技研工業株式会社 能動型振動騒音低減装置
CN112328949B (zh) * 2020-10-26 2024-02-27 中科上声(苏州)电子有限公司 一种汽车发动机主动降噪系统的参考信号生成方法及装置
RU2763309C1 (ru) * 2021-03-22 2021-12-28 Павел Романович Громов Адаптивный способ активного гашения шума в салоне автомобиля и устройство для его реализации
KR102606332B1 (ko) 2021-10-20 2023-11-29 넥센타이어 주식회사 타이어 소음 제어 시스템 및 타이어 소음 제어 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057437A (ja) * 2003-08-01 2005-03-03 Sony Corp マイクロホン装置、ノイズ低減方法および記録装置
JP2008239098A (ja) * 2007-03-28 2008-10-09 Honda Motor Co Ltd 車両用能動型騒音制御システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8502892D0 (en) * 1985-02-05 1985-03-06 Sterwin Ag Aerosol composition
JP3843082B2 (ja) 2003-06-05 2006-11-08 本田技研工業株式会社 能動型振動騒音制御装置
JP4074612B2 (ja) 2004-09-14 2008-04-09 本田技研工業株式会社 能動型振動騒音制御装置
US7639995B2 (en) * 2005-06-24 2009-12-29 Agere Systems Inc. Reconfigurable communications circuit operable with data channel and control channel
EP1909262A4 (en) * 2005-07-27 2013-07-31 Panasonic Corp ACTIVE VIBRATION / NOISE CONTROLLER
EP2133866B1 (en) * 2008-06-13 2016-02-17 Harman Becker Automotive Systems GmbH Adaptive noise control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057437A (ja) * 2003-08-01 2005-03-03 Sony Corp マイクロホン装置、ノイズ低減方法および記録装置
JP2008239098A (ja) * 2007-03-28 2008-10-09 Honda Motor Co Ltd 車両用能動型騒音制御システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110599997A (zh) * 2019-09-25 2019-12-20 西南交通大学 一种鲁棒性强的冲击噪声有源控制方法
CN110599997B (zh) * 2019-09-25 2022-04-12 西南交通大学 一种鲁棒性强的冲击噪声有源控制方法

Also Published As

Publication number Publication date
US8817998B2 (en) 2014-08-26
JP4926215B2 (ja) 2012-05-09
US20110026723A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP4926215B2 (ja) 能動型振動騒音制御装置
JP4074612B2 (ja) 能動型振動騒音制御装置
JP4077383B2 (ja) 能動型振動騒音制御装置
JP5002302B2 (ja) 能動型騒音制御装置
JP5189307B2 (ja) 能動型騒音制御装置
JP3843082B2 (ja) 能動型振動騒音制御装置
JP5189679B2 (ja) 能動型振動騒音制御装置
JP4328766B2 (ja) 能動型振動騒音制御装置
JP4967000B2 (ja) 効果音発生装置
JP4881913B2 (ja) 能動型騒音制御装置
JP5757346B2 (ja) 能動振動騒音制御装置
JP2012003240A (ja) 適応性ノイズコントロール
JP5335985B2 (ja) 能動型振動騒音制御装置
JP2007272008A (ja) 能動型騒音制御装置及び能動型振動制御装置
WO2018008487A1 (ja) 騒音低減装置、移動体装置、及び、騒音低減方法
JP4456578B2 (ja) 能動型騒音・振動制御装置及び車両
JP2003241767A (ja) ノイズキャンセル装置
JPH11325168A (ja) アクティブ振動騒音抑制装置
JP2015169915A (ja) アクティブノイズ制御装置およびアクティブノイズ制御方法
JP2020086206A (ja) 能動騒音低減装置、移動体装置、及び、騒音低減方法
JP2021162857A (ja) 能動型振動騒音低減装置
JP5090272B2 (ja) 能動型振動騒音制御装置
JP2996770B2 (ja) 適応制御装置および適応形能動消音装置
JP3411611B2 (ja) 騒音キャンセル方式
JP3417022B2 (ja) 能動型騒音制御装置及び能動型振動制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4926215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees