JP2011027035A - 噴射制御方法及び噴射制御装置 - Google Patents

噴射制御方法及び噴射制御装置 Download PDF

Info

Publication number
JP2011027035A
JP2011027035A JP2009174128A JP2009174128A JP2011027035A JP 2011027035 A JP2011027035 A JP 2011027035A JP 2009174128 A JP2009174128 A JP 2009174128A JP 2009174128 A JP2009174128 A JP 2009174128A JP 2011027035 A JP2011027035 A JP 2011027035A
Authority
JP
Japan
Prior art keywords
nox concentration
injection
energization time
pilot injection
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009174128A
Other languages
English (en)
Inventor
Kenji Hatano
健二 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009174128A priority Critical patent/JP2011027035A/ja
Publication of JP2011027035A publication Critical patent/JP2011027035A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】インジェクタの個体差や経年変化によらずパイロット噴射量を適正化する噴射制御方法及び噴射制御装置を提供する。
【解決手段】各気筒#1〜#4の出口におけるNOx濃度を測定し、測定されたNOx濃度が目標NOx濃度より高い気筒のインジェクタ2はパイロット噴射通電時間を減少させ、測定されたNOx濃度が目標NOx濃度より低い気筒のインジェクタ2はパイロット噴射通電時間を増加させる。
【選択図】図1

Description

本発明は、インジェクタの個体差や経年変化によらずパイロット噴射量を適正化する噴射制御方法及び噴射制御装置に関する。
従来より、エンジンの運転状態に応じて、メイン噴射に先行して少量の燃料を噴射するパイロット噴射を行うことにより、燃焼騒音抑制、振動抑制、NOx低減、燃料消費率の改善などのエンジン性能の向上が図られている。
図6に示されるように、通電パルスの時間(インジェクタへの通電時間)は、1燃焼サイクルにおける噴射回数分のそれぞれについてエンジン状態から算出される。1燃焼サイクルでパイロット噴射とメイン噴射の2回噴射であれば、1燃焼サイクルで2つの通電パルスがインジェクタに通電されることになる。
詳しく述べると、メイン噴射のみの噴射では比較的着火遅れが長いエンジンの運転状態において、パイロット噴射が行われると、パイロット噴射による熱発生によりメイン噴射の着火遅れが短くなる。その結果、着火遅れに起因した初期燃焼が、パイロット噴射無しの時に比べて抑えられ、燃焼騒音と振動が抑制される。加えて、着火遅れが短縮されることによる着火性能の改善効果により、燃料消費率が改善される。さらに、パイロット噴射の燃焼生成ガスによる内部EGRの効果により、NOxが低減される。また、メイン噴射時期を遅角とすることが可能となり、NOxが低減される。
その一方で、パイロット噴射量を必要以上に多くした場合、煤の排出量が増える場合があるため、パイロット噴射量及びパイロット噴射時期は運転状態に応じて最適化する必要がある。
特開2006−83719号公報 特開2007−23988号公報
燃料噴射装置であるインジェクタの特性(通電時間に対する噴射量)が固体差によりばらついたり、経年変化により変化したりすると、目標とする最適パイロット噴射量を確保できなくなる。その結果として、多気筒エンジンにおいて、気筒ごとのパイロット噴射量にばらつきが生じる。気筒ごとのパイロット噴射量がばらつくと、パイロット噴射によるエンジン性能の改善効果を十分に発揮できなくなる。
例えば、4気筒エンジンにおいて1つの気筒のみが他の気筒よりもパイロット噴射量が少い場合、その気筒のみメイン噴射の着火遅れが長くなり、初期燃焼が活発となって燃焼騒音と振動が大きくなる。その結果、エンジン回転速度の気筒間変動が引き起こされ、滑らかな回転フィーリングが損なわれ、エンジン全体としての性能が低下する。また、着火遅れが長くなることから燃料消費率が悪化し、エンジン全体としての燃料消費率の悪化に繋がる。
逆に、1つの気筒のみが他の気筒よりもパイロット噴射量が多い場合、その気筒だけが煤の排出量が増加し、エンジン全体としての煤排出量が増加することになる。世界的に強化されている排気ガス規制に対応していくためには、このようなインジェクタの個体差や経年変化の影響を最小限に抑える技術が必要である。
そこで、本発明の目的は、上記課題を解決し、インジェクタの個体差や経年変化によらずパイロット噴射量を適正化する噴射制御方法及び噴射制御装置を提供することにある。
上記目的を達成するために本発明の噴射制御方法は、複数の気筒に通電時間で燃料噴射量が可変のインジェクタをそれぞれ設置し、1燃焼サイクルに少なくともメイン噴射と該メイン噴射に先立つパイロット噴射とを行うエンジンの噴射制御方法において、各気筒の出口におけるNOx濃度を測定し、測定されたNOx濃度が目標NOx濃度より高い気筒のインジェクタはパイロット噴射通電時間を減少させ、測定されたNOx濃度が目標NOx濃度より低い気筒のインジェクタはパイロット噴射通電時間を増加させるものである。
前記測定されたNOx濃度によるパイロット噴射通電時間の増減は、エンジンの状態が所定時間以上継続して安定しているとき許可してもよい。
前記パイロット噴射通電時間の増減値は、パイロット噴射通電時間とNOx濃度との特性線に従い、測定されたNOx濃度と目標NOx濃度とから求めてもよい。
また、本発明の噴射制御装置は、複数の気筒にそれぞれ設置された通電時間で燃料噴射量が可変のインジェクタと、1燃焼サイクルに少なくともメイン噴射と該メイン噴射に先立つパイロット噴射とを行うマルチ噴射制御部とを備えたエンジンの噴射制御装置において、各気筒の出口に設置されたNOx濃度を測定するNOxセンサと、測定されたNOx濃度が目標NOx濃度より高い気筒のインジェクタはパイロット噴射通電時間を減少させ、測定されたNOx濃度が目標NOx濃度より低い気筒のインジェクタはパイロット噴射通電時間を増加させる通電時間増減部とを備えたものである。
エンジン回転速度の変化率が所定値以下であって、かつ、燃料噴射量の変化率が所定値以下である状態が所定時間以上継続しているとき、前記通電時間増減部によるパイロット噴射通電時間の増減を許可するエンジン状態判定部を備えてもよい。
パイロット噴射通電時間とNOx濃度との特性線に基づいて設定され、測定されたNOx濃度と目標NOx濃度とからパイロット噴射通電時間の増減値が参照可能な通電時間増減値マップを備えてもよい。
本発明は次の如き優れた効果を発揮する。
(1)インジェクタの個体差や経年変化によらずパイロット噴射量を適正化することができる。
本発明の一実施形態を示す噴射制御装置の構成図である。 パイロット噴射通電時間対NOx濃度特性を示すグラフである。 本発明の噴射制御装置で行うパイロット噴射通電時間増減のようすを説明するためのパイロット噴射通電時間対NOx濃度特性を示すグラフである。 本発明の噴射制御装置におけるパイロット噴射通電時間増減の手順を示すフローチャートである。 本発明の噴射制御装置における目標NOx濃度の設定手順を示すフローチャートである。 マルチ噴射におけるインジェクタへの通電電流と気筒内圧力の時間変化を示すグラフである。
以下、本発明の一実施形態を添付図面に基づいて詳述する。
図1に示されるように、本発明に係る噴射制御装置1は、複数の気筒にそれぞれ設置された通電時間で燃料噴射量が可変のインジェクタ2と、1燃焼サイクルに少なくともメイン噴射と該メイン噴射に先立つパイロット噴射とを行うマルチ噴射制御部3とを備えたエンジン4の噴射制御装置1において、各気筒の出口に設置されたNOx濃度を測定するNOxセンサ5と、測定されたNOx濃度が目標NOx濃度より高い気筒のインジェクタ2はパイロット噴射通電時間を減少させ、測定されたNOx濃度が目標NOx濃度より低い気筒のインジェクタ2はパイロット噴射通電時間を増加させる通電時間増減部6と、エンジン回転速度の変化率が所定値以下であって、かつ、燃料噴射量の変化率が所定値以下である状態が所定時間以上継続しているとき、通電時間増減部6によるパイロット噴射通電時間の増減を許可するエンジン状態判定部7と、パイロット噴射通電時間とNOx濃度との特性線に基づいて設定され、測定されたNOx濃度と目標NOx濃度とからパイロット噴射通電時間の増減値が参照可能な通電時間増減値マップ8と、エンジン状態から目標NOx濃度が参照可能な目標NOx濃度ベースマップ9と、吸入空気量に依存するNOx濃度の変化分を補正するための空気量依存補正マップ10と、吸入空気温度に依存するNOx濃度の変化分を補正するための吸入空気温度依存補正マップ11とを備える。
マルチ噴射制御部3、通電時間増減部6、エンジン状態判定部7、通電時間増減値マップ8は、従来よりエンジン制御に用いられているECU(電子制御ユニット又はエンジン制御ユニット)に設けられるか、又はそれとは別のECUに設けられる。
エンジン4の周辺に設けられる部材及びセンサ類は、従来公知のものである。すなわち、エンジン4の各気筒#1〜#4の出口は排気マニフォールド12に連通しており、排気マニフォールド12には過給器13のタービン14に接続され、タービン14には大気への排気管15が接続されている。大気からの吸気管16は、エアクリーナ17を介して過給器13のコンプレッサ18に接続されている。吸気管16のエアクリーナ17の下流には、吸気の流量を測定する空気量センサ19が配置されている。
コンプレッサ18からの高圧空気管20は、吸気マニフォールド21に接続されている。排気マニフォールド12には、EGRクーラ22、EGRバルブ23を備えたEGR配管24が接続され、EGR配管24の下流は高圧空気管20に接続されている。高圧空気管20の吸気マニフォールド21の上流に、吸気の温度を測定する温度センサ25が配置されている。
各気筒#1〜#4のインジェクタ2は、サプライポンプ26からの燃料がコモンレール27を介して供給されるようになっている。各気筒#1〜#4のインジェクタ2は、ECUからの信号(通電パルス)を受けて、そのパイロット噴射通電時間だけ芯弁をリフトさせることで所望の噴射量を噴射する。噴射量は、パイロット噴射通電時間とコモンレール圧力とにより決まる。ここでは、コモンレール圧力は一定として説明する。
次に、噴射制御装置1の動作を説明する。
本発明は、個体差や経年変化のあるインジェクタのパイロット噴射量を適正化する方法として、図2の特性に注目したものである。すなわち、ある気筒においてパイロット噴射量が少ないときには、その気筒の出口におけるNOx濃度は低く、パイロット噴射量が多いときには、その気筒の出口におけるNOx濃度は高い。インジェクタの個体差や経年変化のため通電時間に対する噴射量がずれていれば、パイロット噴射量が本来の値からずれ、NOx濃度が本来の値からずれる。しかし、気筒の出口におけるNOx濃度が低いときにその気筒のパイロット噴射量を増やすとNOx濃度は高くなり、気筒の出口におけるNOx濃度が高いときにその気筒のパイロット噴射量を減らすとNOx濃度は低くなるので、パイロット噴射量を増減することでNOx濃度を目標NOx濃度に制御できる。つまり、パイロット噴射通電時間を増減することで、インジェクタの個体差や経年変化による噴射量の増減分を補正することができる。
具体的には、図3に示されるように、測定されたNOx濃度を、あらかじめ実験により求めて設定した目標NOx濃度と比較することにより、パイロット噴射量が本来の値より多いか少ないか又は適正であるかが判定できる。ここでは、測定されたNOx濃度が目標NOx濃度より高い。そこで、図3のグラフに従い、パイロット噴射通電時間を補正量だけ短縮すれば、NOx濃度を目標NOx濃度に制御することができる。実際には、図3に示したパイロット噴射通電時間とNOx濃度との特性線に基づいて、測定されたNOx濃度と目標NOx濃度とからパイロット噴射通電時間の増減値(補正量に相当)が参照可能な通電時間増減値マップ8を設定しておき、この通電時間増減値マップ8を参照してパイロット噴射通電時間の増減値を決めることになる。
このように、気筒ごとのNOx濃度に基づいてパイロット噴射通電時間を増減することにより、インジェクタの個体差や経年変化によるパイロット噴射量の増減分を補正することができ、目標とする最適パイロット噴射量を気筒ごとのばらつきなく確保することが可能となる。その結果、燃焼騒音抑制、振動抑制、NOx低減、燃料消費率の改善、煤の排出抑制など、エンジン性能の向上が図られる。
次に、本発明の噴射制御装置におけるパイロット噴射通電時間増減の詳しい手順を図4に基づき説明する。
ステップS1;エンジン状態判定部7は、エンジン冷却水温度が所定値Twx以上かどうか判定する。NOであれば、ステップS1を繰り返し、YESであればステップS2へ進む。これは、エンジンが十分に暖気されているときのみ、ステップS5以降の通電時間増減部6によるパイロット噴射通電時間の増減を許可するためである。
ステップS2;エンジン状態判定部7は、エンジン回転速度の変化率が所定値NEx以下かどうか判定する。NOであれば、ステップS1に戻り、YESであればステップS3へ進む。これは、エンジン回転速度がほぼ一定であるときのみ、ステップS5以降の通電時間増減部6によるパイロット噴射通電時間の増減を許可するためである。
ステップS3;エンジン状態判定部7は、燃料噴射量の変化率が所定値Qx以下かどうか判定する。NOであれば、ステップS1に戻り、YESであればステップS4へ進む。これは、燃料噴射量がほぼ一定であるときのみ、ステップS5以降の通電時間増減部6によるパイロット噴射通電時間の増減を許可するためである。
ステップS4;エンジン状態判定部7は、安定時間が所定時間TSx以上かどうか判定する。NOであれば、ステップS1に戻り、YESであればステップS5へ進む。これは、ステップS1〜S3での判定において、エンジン冷却水温度が所定値Twx以上で、かつ、エンジン回転速度の変化率が所定値NEx以下で、かつ、燃料噴射量の変化率が所定値Qx以下と判定されたエンジン状態が所定時間TSx以上継続しているときのみ、ステップS5以降の通電時間増減部6によるパイロット噴射通電時間の増減を許可するためである。このように、本発明の噴射制御装置1は、エンジン4が所定の定常運転で行われているときNOx濃度を測定することで、NOx濃度を精度良く測定するようになっている。
ステップS5;通電時間増減部6は、各気筒のNOxセンサ5によるNOx濃度測定、空気量センサ19による吸入空気量測定、温度センサ25による吸入空気温度測定を開始する。
ステップS6;通電時間増減部6は、各センサによる測定値が集まると測定を終了する。
ステップS7;通電時間増減部6は、測定されたNOx濃度と目標NOx濃度との乖離値(差分の絶対値)を算出する。
ステップS8;通電時間増減部6は、乖離値が所定の閾値以上かどうか判定する。NOであれば、ステップS1に戻り、YESであればステップS9へ進む。これは、測定されたNOx濃度と目標NOx濃度との乖離が大きいときのみパイロット噴射通電時間の増減を実行するためである。
ステップS9;通電時間増減部6は、図3で説明した方法でパイロット噴射通電時間の補正量を算出する(通電時間増減値マップ8を参照して増減値を決める)。
ステップS10;通電時間増減部6は、補正前のパイロット噴射通電時間に補正量を加算する。
次に、本発明の噴射制御装置1における目標NOx濃度の設定手順を図5に基づき説明する。
NOx濃度は、エンジン状態に依存して変化する。エンジン状態の指標であるエンジン回転速度と指示噴射量(1燃焼サイクルの総燃料噴射量)を縦横軸としたグラフ上でNOx濃度が一意的に決まることが実験で確かめられている。そこで、目標NOx濃度は、エンジン回転速度と指示噴射量とを座標とする二次元マップである目標NOx濃度ベースマップ9に設定しておくとよい。さらに、NOx濃度は、吸入空気量と吸入空気温度とにそれぞれ依存して変化する。したがって、目標NOx濃度は、吸入空気量と吸入空気温度を測定してその影響を考慮して決めるために、目標NOx濃度の補正量が吸入空気量で決まる一次元マップである空気量依存補正マップ10と目標NOx濃度の補正量が吸入空気温度で決まる一次元マップである吸入空気温度依存補正マップ11を用いる。
図5に示されるように、エンジン回転速度と指示噴射量で目標NOx濃度ベースマップ9を参照して基本の目標NOx濃度を求め、空気量依存補正マップ10を参照して空気量に依存するNOx濃度の変化分を補正すると共に、吸入空気温度依存補正マップ11を参照して吸入空気温度に依存するNOx濃度の変化分を補正する。すなわち、
目標NOx濃度
=基本の目標NOx濃度+空気量による補正量+温度による補正量
となる。
なお、本実施形態では、1燃焼サイクルでパイロット噴射とメイン噴射の2回噴射を行うものとしたが、3回以上の噴射を行う場合でも、本発明は適用することができる。
1 噴射制御装置
2 インジェクタ
3 マルチ噴射制御部
4 エンジン
5 NOxセンサ
6 通電時間増減部
7 エンジン状態判定部
8 通電時間増減値マップ
9 目標NOx濃度ベースマップ
10 空気量依存補正マップ
11 吸入空気温度依存補正マップ
12 排気マニフォールド
13 過給器
14 タービン
15 排気管
16 吸気管
17 エアクリーナ
18 コンプレッサ
19 空気量センサ
20 高圧空気管
21 吸気マニフォールド
22 EGRクーラ
23 EGRバルブ
24 EGR配管
25 温度センサ
26 サプライポンプ
27 コモンレール

Claims (6)

  1. 複数の気筒に通電時間で燃料噴射量が可変のインジェクタをそれぞれ設置し、1燃焼サイクルに少なくともメイン噴射と該メイン噴射に先立つパイロット噴射とを行うエンジンの噴射制御方法において、
    各気筒の出口におけるNOx濃度を測定し、
    測定されたNOx濃度が目標NOx濃度より高い気筒のインジェクタはパイロット噴射通電時間を減少させ、測定されたNOx濃度が目標NOx濃度より低い気筒のインジェクタはパイロット噴射通電時間を増加させることを特徴とする噴射制御方法。
  2. 前記測定されたNOx濃度によるパイロット噴射通電時間の増減は、エンジンの状態が所定時間以上継続して安定しているとき許可することを特徴とする請求項1記載の噴射制御方法。
  3. 前記パイロット噴射通電時間の増減値は、パイロット噴射通電時間とNOx濃度との特性線に従い、測定されたNOx濃度と目標NOx濃度とから求めることを特徴とする請求項1又は2記載の噴射制御方法。
  4. 複数の気筒にそれぞれ設置された通電時間で燃料噴射量が可変のインジェクタと、1燃焼サイクルに少なくともメイン噴射と該メイン噴射に先立つパイロット噴射とを行うマルチ噴射制御部とを備えたエンジンの噴射制御装置において、
    各気筒の出口に設置されたNOx濃度を測定するNOxセンサと、
    測定されたNOx濃度が目標NOx濃度より高い気筒のインジェクタはパイロット噴射通電時間を減少させ、測定されたNOx濃度が目標NOx濃度より低い気筒のインジェクタはパイロット噴射通電時間を増加させる通電時間増減部とを備えたことを特徴とする噴射制御装置。
  5. エンジン回転速度の変化率が所定値以下であって、かつ、燃料噴射量の変化率が所定値以下である状態が所定時間以上継続しているとき、前記通電時間増減部によるパイロット噴射通電時間の増減を許可するエンジン状態判定部を備えたことを特徴とする請求項4記載の噴射制御装置。
  6. パイロット噴射通電時間とNOx濃度との特性線に基づいて設定され、測定されたNOx濃度と目標NOx濃度とからパイロット噴射通電時間の増減値が参照可能な通電時間増減値マップを備えたことを特徴とする請求項4又は5記載の噴射制御装置。
JP2009174128A 2009-07-27 2009-07-27 噴射制御方法及び噴射制御装置 Pending JP2011027035A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174128A JP2011027035A (ja) 2009-07-27 2009-07-27 噴射制御方法及び噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174128A JP2011027035A (ja) 2009-07-27 2009-07-27 噴射制御方法及び噴射制御装置

Publications (1)

Publication Number Publication Date
JP2011027035A true JP2011027035A (ja) 2011-02-10

Family

ID=43636046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174128A Pending JP2011027035A (ja) 2009-07-27 2009-07-27 噴射制御方法及び噴射制御装置

Country Status (1)

Country Link
JP (1) JP2011027035A (ja)

Similar Documents

Publication Publication Date Title
JP5303511B2 (ja) 筒内燃料噴射式内燃機関の制御装置
US7747379B2 (en) Control device of direct injection internal combustion engine
JP4533941B2 (ja) 内燃機関の制御装置
US20100116243A1 (en) Fuel injection control apparatus and fuel injection control method for internal combustion engine
JP2006258028A (ja) 内燃機関の制御装置
JP2006258037A (ja) 内燃機関の制御装置
JP5235739B2 (ja) 内燃機関の燃料噴射制御装置
JP2009185741A (ja) 内燃機関の燃料噴射制御装置
JP2007278223A (ja) 筒内噴射型火花点火式内燃機関の制御装置
JP2013029040A (ja) 排気再循環システムの制御装置
JP2007255237A (ja) 内燃機関の制御装置
JP2005320964A (ja) ディーゼル機関の噴射量制御装置
JP5487978B2 (ja) 内燃機関の制御装置
JP5187537B2 (ja) 内燃機関の燃料噴射制御装置
JP4912482B2 (ja) 内燃機関の制御装置
JP5692130B2 (ja) 内燃機関制御装置
JP2011027035A (ja) 噴射制御方法及び噴射制御装置
JP2006138249A (ja) 内燃機関の制御装置
JP2012117472A (ja) 内燃機関の制御装置
JP5488707B2 (ja) 内燃機関の燃料噴射制御装置
JP4232710B2 (ja) 水素添加内燃機関の制御装置
JP2011122465A (ja) 燃料噴射制御装置
JP2009191768A (ja) 内燃機関の燃料噴射制御装置
JPH07310572A (ja) エンジンの燃料噴射制御装置
JP2009121419A (ja) 吸入空気量検出装置