JP2010514937A - プラズマ蒸着微孔性炭素材料 - Google Patents

プラズマ蒸着微孔性炭素材料 Download PDF

Info

Publication number
JP2010514937A
JP2010514937A JP2009544163A JP2009544163A JP2010514937A JP 2010514937 A JP2010514937 A JP 2010514937A JP 2009544163 A JP2009544163 A JP 2009544163A JP 2009544163 A JP2009544163 A JP 2009544163A JP 2010514937 A JP2010514937 A JP 2010514937A
Authority
JP
Japan
Prior art keywords
layer
hydrocarbon
microporous carbon
plasma
microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009544163A
Other languages
English (en)
Other versions
JP2010514937A5 (ja
Inventor
エム. パオルッチ,ドラ
エム. デイビッド,モーゼス
エー. ラコウ,ニール
イー. トレンド,ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2010514937A publication Critical patent/JP2010514937A/ja
Publication of JP2010514937A5 publication Critical patent/JP2010514937A5/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0058Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/624Microfiber is carbon or carbonaceous

Abstract

微孔性炭素材料は、0.1〜10ナノメートルの平均孔径を有し、そして1マイクロメートル超の孔(110)を実質的に含まない、多孔性炭素骨格(115)を含んでなる。微孔性炭素材料の生成方法も開示される。

Description

本開示は、プラズマ蒸着微孔性炭素材料、微孔性炭素材料の生成方法、及びそれを含む物品に関する。
広範な検体のための強力な化学センサの開発は、環境モニタリング、製品の品質管理、及び化学的線量測定のような用途のための重要な課題として残されている。化学検知に利用できる多くの方法の中で、比色分析技術は、数多くの計測装置に比べて、人間の目が情報伝達に使われ得る点で、優位性を保持している。
比色分析センサは、現在広範な検体のために存在するが、多くは検出のために染料又は着色した化学指示薬を使用している。この種の化合物は通常選択的で、さまざまな種類の化合物の検出を可能にするには、特定の(意味のある)配置を必要とする。更に、これらのシステムの多くには、光漂白剤又は望ましくない副反応のために寿命が限定される問題がある。表面プラズモン共鳴及びスペクトル・インターフェロメトリーなどの他の視覚的な検知技術は、反応を提供するために相当な情報の伝達用ハードウェアを必要とするので、単純な可視指標に役立たない。
いわゆる活性炭の合成方法は周知である。これらの方法により多孔質の炭素網状組織が製造されるが、孔径分布が非常に広範で制御されていない。
本開示は、プラズマ蒸着微孔性炭素材料、炭素材料の生成方法、及びそれを含む物品に関する。
第1の実施形態では、微孔性炭素材料は、0.1〜10ナノメートルの平均孔径を有し、そして1マイクロメートル超の孔を実質的に含まない多孔質炭素骨格を含んでなる。
他の実施形態では、微孔性炭素材料の生成方法は、炭化水素ガスから炭化水素プラズマを生成させる工程、基材上に炭化水素プラズマを堆積させて、炭化水素層を生成させる工程、及び炭化水素層を加熱して水素の少なくとも一部を除去し、微孔性炭素材料を生成させる工程を含んでなる。いくつかの実施形態では、炭化水素層は、50原子%超の炭素と、50原子%未満の水素を有する。
本発明の様々な実施形態についての以下の詳細な記述を添付の図面と結びつけて検討することで、本発明を更に完全に理解することができる。
例示的な微孔性炭素材料の概略断面図。 微孔性炭素材料の例示的な生成方法のフローチャート。 微孔性炭素骨格層を含む例示的な物品の概略断面図。 微孔性炭素骨格層を含む別の例示的な物品の概略断面図。 実施例2で生成された微孔性炭素材料の孔分布のヒストグラム。 実施例3の微孔性炭素材料の屈折率の実数部分のグラフ。 実施例3の微孔性炭素材料の屈折率の虚数部分のグラフ。 実施例4の微孔性炭素材料の有機蒸気に対する反応のグラフ。 実施例4の微孔性炭素材料のトルエンに対するスペクトル反応のグラフ。 炭素に対する実施例4の微孔性炭素材料(試料)の湿度に対する反応のグラフ。 実施例5Aの微孔性炭素材料のトルエンに対する反応のグラフ。 実施例5Aの微孔性炭素材料のメチルエチルケトン(MEK)に対する反応のグラフ。 実施例5Aの微孔性炭素材料のイソプロピルアルコール(IPA)に対する反応のグラフ。 実施例5Aの微孔性炭素材料のエチルベンゼンに対する反応のグラフ。 実施例5Bの微孔性炭素材料の屈折率nのグラフ。 実施例5Bの微孔性炭素材料の屈折率kのグラフ。 実施例6の微孔性炭素材料のトルエンに対するスペクトル反応のグラフ。 実施例7の微孔性炭素材料のトルエンに対するスペクトル反応のグラフ。 実施例7の微孔性炭素材料のMEKに対するスペクトル反応のグラフ。 実施例8の微孔性炭素材料の有機蒸気に対する反応のグラフ。 ヤシ殻炭、及びケイ素/炭素/酸素をプラズマ蒸着したフィルム(SiCO)に対する、実施例8の微孔性炭素材料(a−炭素)の湿度に対する反応のグラフ。
これらの図面は、必ずしも一定の比率の縮尺ではない。図中で用いられる類似の数字は、類似の構成要素を示す。ただし、ある図において、ある構成要素を参照するために数字を使用することにより、同一の数字で表示された別の図中の構成要素に限定することを意図しないことは理解されるであろう。
以下の説明において、本明細書の一部を形成し、そして実例としていくつかの特定の実施形態が示される添付の図が参照される。本発明の範囲又は趣旨から逸脱することなく他の実施形態が意図され、行なわれてもよいことは理解されるであろう。したがって、以下の詳細な説明は狭義に解釈されない。
本明細書で使用されるすべての科学技術用語は、特に定めない限り、当該技術分野において一般に用いられる意味を有する。本明細書に記載される定義は、頻繁に使用される特定の用語の理解を容易にするためであり、本開示の範囲を制限するものではない。
特に明記しない限り、本明細書と請求項で用いられている特徴的なサイズ、量、及び物理的特性を表すすべての数は、すべての場合において「約」という用語によって変更されることを理解されたい。したがって、特に記載のない限り、前述の明細書及び添付の特許請求の範囲に記載されている数のパラメータは、本願明細書で開示する教示を利用する当業者が得ようと試みる所望の特性に応じて変えることのできる近似値である。
端点による数値範囲の列挙には、その範囲内に含まれるすべての数(例えば、1〜5には、1、1.5、2、2.75、3、3.80、4、及び5が包含される)及びその範囲内のあらゆる範囲が包含される。
本明細書及び添付の特許請求の範囲で使用するとき、単数形「a」、「an」、及び「the」は、その内容について別段の明確な指示がない限り、複数の指示対象を有する実施形態にも及ぶ。本明細書及び添付の特許請求の範囲で使用するとき、用語「又は」は、その内容について別段の明確な指示がない限り、一般に「及び/又は」を包含する意味で用いられる。
用語「ポリマー」は、ポリマー、コポリマー(例えば、2種以上の異なるモノマーを使用して生成されたポリマー)、オリゴマー、及びこれらの組み合わせ、並びに混和性ブレンド中に生成され得るポリマー、オリゴマー、又はコポリマーを包含するものと解される。
「多孔性」は、材料に関連して使用するとき、材料が、その容積全体に連結した網状組織の孔(例えば、開口部、間隙空間、又は他のチャネルであっても)を含有することを表す。
孔に関連して使用するとき、「寸法」は、円形断面を有する孔の直径を意味し、又は非円形断面を有する孔を横断して描くことができる、最長断面の弦の長さを意味する。
「ミクロ孔質」は、材料に関連して使用するとき、材料が、平均孔径約0.3〜100ナノメートルを有する多孔質であることを表す。
「非晶質」は、X線回折のピークがない、又はX線回折のピークがほとんどない、実質的に無秩序に配列した非結晶性物質を表す。
「プラズマ」は、電子、イオン、中性分子、フリーラジカル、並びにその他励起状態の原子及び分子などの反応種を含む、部分的にイオン化されたガス状又は液状物質を表す。可視光線及びその他放射線は、典型的には、種々励起状態より、より低いすなわち基底状態になったプラズマ緩和状態に含まれる種であるプラズマから放出される。
「炭化水素」は、炭素及び水素の元素からなる有機物質を表す。
本開示は、制御された孔径を有する微孔性炭素材料に関する。詳細には、本開示は、0.1〜10ナノメートルの平均孔径を有し、そして1マイクロメートル超の孔を実質的に含まない多孔性炭素骨格を有する微孔性炭素材料、及びこれらの材料から生成される物品を目的とする。これらの材料は、無秩序共有結合網状組織の炭化水素フィルムをプラズマガス相からプラズマ蒸着させて、続いて、炭化水素薄膜を加熱(すなわち、焼きなまし)して架橋網状組織、すなわち炭素骨格から水素を除去することにより調製される。無秩序共有結合網状組織の密度は蒸着中に正確に調節でき、これにより、生じる炭素骨格の孔径とその分布を正確に制御することができる。本発明はそれだけには限定されないが、下記で提供される実施例の考察を通じて、本発明の様々な態様の理解が得られるであろう。
図1は、例示的な微孔性炭素材料100の概略断面図である。微孔性炭素材料100は、多孔性炭素骨格115を含む。多くの実施形態において、多孔性炭素骨格115は、本質的に炭素からなる(例えば、90原子%超の炭素、又は95原子%超の炭素、又は99原子%超の炭素)。
多孔性炭素骨格115は、複数個の孔110を画定する。孔110は、0.1〜10ナノメートルの平均孔径を有し、そして多孔性炭素骨格115は、1マイクロメートル超の孔を実質的に含まない。多くの実施形態において、孔110は、0.1〜10ナノメートルの平均孔径を有し、そして多孔性炭素骨格115は、100ナノメートル超の孔を実質的に含まない。
多孔性炭素骨格115は、多孔性炭素骨格115の生成法(以下に記載)に応じて、10%以上、又は30%以上、又は50%以上の多孔率を有する。多くの実施形態において、多孔性炭素骨格115は可視光線スペクトルにわたり光学的に透明であり、又は電磁スペクトルの400〜800nmの領域において、1未満、若しくは0.5未満、若しくは0.1未満の実効消光率を有する。
この微孔性炭素材料100は、多くの望ましい特性を有する。この材料は、多孔率が高く(例えば、10%超の、又は30%超の、又は50%超の)、孔径が均一で小さく(例えば、100ナノメートル未満、又は10ナノメートル未満)、表面積が大きく(例えば、100m/g超の、又は500m/g超の)、不活性で(例えば、溶媒、酸、塩基耐性、及び抽出不可能)、屈折率が高く(例えば、1.8〜2.2超の)、厳密に調整可能なフィルム厚さをもたらし、高温安定性、生体適合性、導電性をもたらし、及び可視光線を通す。
図2は、微孔性炭素材料の例示的な生成方法のフローチャートである。ブロック201において、炭化水素プラズマが生成される(以下に記載)。多くの実施形態において、プラズマは実質的に炭化水素物質のみから生成される。炭化水素プラズマは炭化水素ガスから生成される。いくつかの実施形態では、炭化水素層は、50原子%超の炭素と、50原子%未満の水素を有する。更なる実施形態では、炭化水素層は、50原子%超の炭素と、残部の原子%の水素を有する。これら原子パーセントを、燃焼分析により決定できる。
炭化水素ガスは、任意の有用な炭化水素から任意に生成できる。炭化水素の例としては、例えば、10までの炭素原子を有する直鎖又は分鎖アルカン、アルケン、アルキン、及び環状炭化水素が挙げられるが、これらに限定されない。好適な炭化水素として、(C〜C10)アルカン、(C〜C10)アルケン、又は(C〜C10)アルキンの炭化水素ガスが挙げられる。いくつかの実施形態では、炭化水素ガスは、例えば、メタン、エタン、プロパン、ブタン、ベンゼン、シクロヘキサン、トルエン、エチレン、プロピレン、アセチレン、及びブタジエンである。特定の実施形態では、炭化水素ガスはブタン又はブタジエンである。
ブロック202において、非晶質炭化水素層が炭化水素プラズマにより生成される。次いで、ブロック203で非晶質炭化水素層が焼きなましされ、水素を除去して、微孔性炭素材料(上述)が生成される。多くの実施形態において、炭化水素層内の実質的にすべての水素が除去され、微孔性炭素材料が生成される。
炭素蒸着物の結晶化度及び結合の性質は、蒸着物の物理的及び化学的特性を決定する。X線回折で確認すると、ダイヤモンドが結晶性であるのに対し、本明細書に記載される非晶質炭化水素フィルムは非結晶性非晶質物質である。ダイヤモンドが本質的に純粋な炭素であるのに対し、これら非晶質炭化水素フィルムは、本質的に炭素と水素を含有する。ダイヤモンドは、周囲気圧で、いずれの物質の中でも最も高い充填密度又はグラム原子密度(GAD)を有する。そのGADは、0.28グラム原子/ccである。これら非晶質ダイヤモンド様フィルムのGADは、約0.20〜0.28グラム原子/ccである。対照的に、グラファイトのGADは、0.18グラム原子/ccである。ダイヤモンドの水素の原子分率はゼロであるが、これら非晶質炭化水素フィルムの水素の原子分率は0.2〜0.8の範囲内である。グラム原子密度は、物質の重量及び厚さの測定値から計算される。「グラム原子」は、グラムで表される物質の原子重量を表す。
非晶質炭化水素層から水素を除去することで、炭素骨格で画定される孔すなわち空隙ができる。これら非晶質炭化水素層のGADはダイヤモンドのGADに近似することが可能であるため、孔径を、非常に小さくかつ制御可能(例えば、平均0.1〜10ナノメートルで、すべての孔が実質的に1マイクロメートル未満又は100ナノメートル未満)に設計できる。
多くの実施形態において、プラズマ蒸着システムには、1つ又は両方が無線周波数(RF)で駆動する電極、及び接地反応チャンバが含まれる。基材は電極の近傍に定置され、イオンシースが駆動電極の周囲に生成されてイオンシース全体に大きな電界ができる。プラズマは電力供給装置(約0.001Hz〜約100MHzの範囲内の周波数で作動するRF発生装置)により発生され、持続される。効率的な電力結合(すなわち、反射電力が入射電力のごく一部である場合)を得るために、2種の可変コンデンサとインダクタを含む整合伝送網により、プラズマ負荷のインピーダンスを電力供給装置に整合させることができる。多くの実施形態において、基材は負のバイアス電圧又は負の自己バイアス電圧を有し、この電圧は直流(DC)から得られる。
簡潔にいえば、接地反応チャンバが部分的に真空排気され、高周波電力が2つの電極のうち1つに加えられる。炭化水素源は電極の間に導入され、電極の近傍に反応種を含む炭化水素プラズマを生成し、更に少なくとも1つの電極に近接するイオンシースも生成させる。電極の近傍にあるイオンシース内で、基材は反応種に暴露され、基材上に炭化水素層が生成される。
減圧(気圧に対して)及び制御環境下で蒸着が起こる。炭素含有ガスに電界を加えることにより、反応チャンバ内に炭化水素プラズマが作り出される。上面に炭化水素フィルムが堆積される基材は、通常は、反応装置内の槽又は容器に収容される。圧力、出力、ガス濃度、ガスの種類、電極の相対的寸法などの条件に応じて、約1ナノメートル/秒(nm/秒)〜約100nm/秒(約10オングストローム/秒〜約1000オングストローム(Angstoms)/秒)の範囲の速度で、炭化水素フィルムの堆積が起こり得る。一般に、堆積速度は出力、圧力、及びガス濃度の増大と共に増大するが、この速度は上限に近づく。
炭化水素プラズマ中の炭化水素種は、基材表面上で反応して共有結合を生成し、基材の表面上に非晶質炭化水素フィルムを生成させる。炭化水素フィルムへの蒸着を起こす条件に維持できる真空排気可能なチャンバ内の槽又は容器内に、基材を保持できる。すなわち、このチャンバは、なかでも、圧力、様々な不活性及び反応性炭化水素気体流、駆動電極に供給される電圧、イオンシース全体の電界強度、反応炭化水素種を含む炭化水素プラズマの生成、イオン衝撃の強度並びに炭化水素フィルムの炭化水素反応種からの堆積速度の制御を可能にする環境を提供する。
堆積プロセスの前に、所要の程度までチャンバを真空排気し、空気及び任意の不純物を除去する。不活性ガス(アルゴンなど)をチャンバ内に通気し、圧力を変えてよい。基材をチャンバ内に定置し、チャンバを真空排気すると、炭化水素及び任意に追加的な成分を堆積できる基材がチャンバ内に導入され、電界をかけると、非晶質炭化水素フィルムを蒸着する炭化水素プラズマを生成させる。炭化水素フィルム蒸着の圧力及び温度(典型的には約0.13パスカル(Pa)〜約133Pa(0.001〜1.0トル)(本明細書で示されるすべての圧力はゲージ圧である)、摂氏50度未満)において、炭化水素は蒸気状態である。
電極は、同じ寸法でも異なった寸法でもよい。電極が異なった寸法である場合、小さい方の電極はより大きいイオンシースを持つ(接地電極又は駆動電極を問わず)。この種の構成を「非対照的」平行プレート反応装置と呼ぶ。非対照的構成により、小さい方の電極周囲のイオンシース全体に、より高い電位が生じる。電極の表面積比を、2:1〜4:1、又は3:1〜4:1とすることができる。小さい方の電極上のイオンシースは比の増加にともなって拡大するが、4:1の比を超える付加的利益は、ほとんど達成されない。反応チャンバ自体は、電極として作用することができる。1つの構成では、駆動電極の2〜3倍の表面積を有する接地反応チャンバ内に、駆動電極を備える。
RF発生されたプラズマ内で、エネルギーは電子を通じてプラズマへと結合する。プラズマは、電極間の電荷キャリアとして作用する。プラズマは、反応チャンバ全体に充満でき、典型的に着色した雲として目に見える。イオンシースは、1つ又は両方の電極周囲の暗い領域として現れる。RFエネルギーを用いる平行プレート反応装置では、加えられる周波数は、好ましくは約0.001メガヘルツ(MHz)〜約100MHzの範囲であり、好ましくは約13.56MHz、又はこの任意の整数倍の値である。このRF電力は、チャンバ内で炭化水素ガスからプラズマを発生させる。RF電源は、電力供給装置と伝送回路及びプラズマ負荷とのインピーダンス(RF電力に効果的に結合するように、通常は約50オームである)を整合させるよう働く回路を介して、駆動電極に接続された13.56MHz発振器などのRF発生装置であることができる。したがって、これは整合伝送網と呼ばれる。
電極周囲のイオンシースは、プラズマに対して電極の負の自己バイアスをもたらす。非対照的構成では、負の自己バイアス電圧は大きい方の電極において無視できるものであり、小さい方の電極における負のバイアスは、典型的には100〜2000ボルトの範囲である。
平面の基材において、平行プレート反応装置中で、接地電極よりも小さく作られている駆動電極と直接接触するように基材を配置することにより、高密度のダイヤモンド様薄膜の蒸着を達成できる。この場合、駆動電極と基材との間の容量結合のため、基材は電極として作用することになる。
プラズマ蒸着非晶質炭化水素フィルムの加熱条件を選択することにより、生じる微孔性炭素骨格層115を用途に適応させることができる。例えば、選択された加熱条件に応じて、生じる微孔性炭素骨格層115は疎水性又は親水性であることができる。いくつかの実施形態では、疎水性の微孔性炭素骨格層115は、プラズマ蒸着非晶質炭化水素フィルムを不活性(又は還元)媒体及び/又は大気圧より低い圧力中で加熱することによって生成されることができる。他の実施態様では、親水性の微孔性炭素骨格層115は、プラズマ蒸着非晶質炭化水素フィルムを大気圧若しくはより大きな圧力の空気、酸素又は蒸気のような酸化性媒体中で加熱することによって生成されることができる。いくつかの実施形態では、微孔性炭素骨格層115は、プラズマ蒸着非晶質炭化水素フィルムを、所望によりアンモニア媒体中で加熱することによって生成されることができる。
図3は、基材125上に蒸着された微孔性炭素骨格層115を含む例示的な物品120の概略断面図である。上述のように、微孔性炭素骨格層115は、複数個の孔110を画定する。微孔性炭素骨格層115は、例えば0.1〜10マイクロメートルなどの任意の有用な厚さを有することができる。
物品120の使用目的に応じて、基材125を任意の有用な材料から生成させることができる。物品120が検体センサ又は膜性の分離若しくは濾過要素として使用される場合、基材125をガス透過性基材とすることができる。物品120が検体センサとして使用される場合、基材125を光反射及び/又は光透過基材とすることができる。
本明細書に記載される微孔性炭素骨格層115を利用する膜性分離又は濾過要素は、限外濾過(例えば、ウイルス、アルブミン、ペプシン、若しくはビタミンB12の分離など)、ナノ濾過(例えば、グルコース若しくは二価塩の分離など)、又は逆浸透(例えば、一価塩若しくは非解離型酸の分離など)に好適な、優れた特性をもたらす。本明細書に記載される微孔性炭素骨格層115を利用する、ガス分離用の膜性分離又は濾過要素は、膜系化学的分離、水素回収用ガス分離、窒素生成、及び天然ガス流からの酸性ガス除去に好適な、優れた特性をもたらす(制御された10オングストローム以下の孔径を有し、熱安定性である)。本明細書に記載される微孔性炭素骨格層115を、濾過層、ガス分離層、又はウイルス濾過層として利用することができる。
本明細書に記載される微孔性炭素骨格層115を利用する検体センサは、例えば、素早い反応時間、低濃度の検体における素早い反応上昇、高湿条件下における良好な反応、及び化学的濾過カートリッジ中の活性炭媒体と比較して同様の吸着特性などの優れた特性をもたらす。多くの実施形態において、微孔性炭素骨格層115を、検体若しくは検体混合物の存在、及び/又は濃度の検出に用いることができる。
例えば、検体は、ガス(例えば、蒸気)又は液体であってもよい。いくつかの実施形態では、検体は、分子である。検体は、気体媒質(例えば、空気)又は液状媒体(例えば、水)に存在してもよい。いくつかの実施形態では、検体は、有機分子又は有機物質である。
1つの実施形態において、検体は、検体への暴露により微孔性炭素骨格層115の光学的厚さが変化することにより検出される。検体は、微孔性炭素骨格層115の光学的厚さを変化させる。1つの実施形態において、検体は、微孔性炭素骨格層115の少なくとも一部に吸着される。検体の吸着により、物品120の色調変化が起こり、検体の存在を示すことができる。多くのセンサの実施形態において、光学的厚さの変化は、可視光の範囲内で観察可能で、補助的手段を使わずに人の目で検出されることができる。しかし、センサ120は、例えば、紫外線(UV)、赤外線(IR)、若しくは近赤外線(NIR)のような他の光源又は線源にさらされると、光学的厚さの変化を示すように設計されることができる。
様々な検出メカニズムもまた用いることができるが、必要ではない。適した検出メカニズムの例としては、分光光度計、光ファイバー分光光度計、及び例えば、電荷結合デバイス(ccd)、デジタルカメラなどの光検出デバイスが挙げられる。
基材125は、微孔性炭素骨格層115を支持することができる、又はその他の機能を提供することができる1つ以上の好適な材料で生成される。基材125は、可撓性又は非可撓性であることができる。基材125は、透明、不透明、又は反射性であってよい。基材125は、検体又はガス透過性であることができ、若しくは検体又はガスを基材125を通して拡散させることができる。基材材料は、用途に適応させることができる。多くの実施形態において、それは、プラズマ堆積プロセスでの使用に適している。いくつかの実施形態では、基材125は、基材125を通過する検体又はガスの移送を阻止したり又は可能にしたりすることができる。基材125を通過する検体又はガスの移送を可能にする基材125の例として、織布及び不織布材、並びに酸化アルミニウムディスクなどの透過性(すなわち穿孔処理された、又は多孔性の)固体などが挙げられる。
いくつかのセンサの実施形態では、センサ120、基材125は光反射性である。この反射層は、完全反射又は半反射層を生成させるすべての材料を含むことができる。多くの実施形態において、材料は、関連する光波長に対して、約20〜約200ナノメートルの厚さで完全に(例えば、90%、95%、又は99%超の)光反射性である。反射層を半反射にするために、より薄いか又は不連続な層を用いることができる。反射層は、ウェットエッチング、反応性イオンエッチング、レーザアブレーション、などによって不連続にすることができる。
反射層用の適した材料のリストの一部として、アルミニウム、クロミウム、金、ニッケル、パラジウム、プラチナ、チタン、ケイ素、及び銀のような金属又は半金属が挙げられる。金/パラジウム又はニッケル/クロミウムのような、金属又は金属合金の混合物も使われてよい。他の適した材料には、例えば、酸化アルミニウム、酸化クロム、並びに酸化チタンのような金属酸化物、及び窒化ケイ素、窒化アルミニウム、窒化チタン、クロミウム窒素化合物、炭化窒素化合物、などのような窒素化合物が挙げられる。
いくつかの実施形態では、反射層は、関連する光波長に対して、少なくとも90%反射、又は少なくとも99%反射する。他の実施形態において、反射層は、関連する光波長に対し、20〜90%を反射、又は30〜70%を反射する半反射層である。
いくつかの実施形態では、反射層は、反射層中に、反射層の第1領域の光の反射率が反射層の第2領域よりも大きい模様を有する。これらの実施形態では、反射層の第1及び第2領域は、反射層の上面又は反射層内に、模様又はしるしを生成させる。模様付き反射層は、微孔性炭素骨格層115が検体に暴露されるときに、カラー画像、単語、又はメッセージを作成する模様又はしるしを含むことができる。このような模様又はしるしによって、検体に暴露されるときに、ユーザに識別可能な警告を容易に提供することができる。
多くのセンサの実施形態では、微孔性炭素骨格層115の光学的厚さは、検体に暴露されると変化する。光学的厚さの変化は、微孔性炭素骨格層115の物理的厚さの変化、又は微孔性炭素骨格層115の屈折率の変化などによる、寸法変化が原因で起こり得る。微孔性炭素骨格層115は1つの色から別の色へ、ある色から無色(例えば、銀色)へ、又は無色(例えば、銀色)からある色へ、必要に応じて変化してもよい。いくつかの実施形態では、外観は反射性、メタリック又は銀色の間で相互に遷移することができる。
センサ120は、1つ以上の副層(図示せず)を備えてよい。これらの副層の1つ以上は、不連続又は模様化されてよい。いくつかの実施形態では、副層は、異なる材料を含むか又は異なる処理条件で生成され、異なる検体を吸着及び/又は1つ以上の検体に異なる度合の感度を有することができる。副層は、様々な構成をとることができる。例えば、必要に応じて、副層は積み重なって2層以上を生成させることができるか又は同じ層の中で横並びの構成に配置され得る。いくつかの実施形態では、少なくとも1つの副層は、例えば、透明及び金属酸化物、窒素化合物、及び酸化窒化物のような、光学干渉によって色付けされるような適した厚さを持つ無機材料を含んでもよい。適した無機材料の具体例として、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、酸化アルミニウム、酸化チタン、窒化チタン、酸窒化チタン、酸化錫、酸化ジルコニウム、及びそれらの組み合わせが挙げられる。ゼオライトのような他の無機材料も副層に使用するのに適している。任意選択の副層は、微孔性、多孔性、又は非多孔性でもよい。他の実施形態において、少なくとも1つの副層は、多孔性有機ポリマーを含んでもよい。固有ミクロ孔質を有するポリマー(PIMs)は、特に望ましい副層をもたらす。PIMsは、一般には、ミクロ孔質の固体を生成させる非網状組織ポリマーである。これらの典型的に高い剛性と歪んだ分子構造によって、PIMsは効率よく空間をふさぐことができず、これにより、開示される微孔性構造をもたらす。好適なPIMsとして、バッド(Budd)ら著、「固有ミクロ孔質を有するポリマー(PIMs):頑強かつ溶液処理可能な有機ミクロ孔質性材料(Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic microporous materials)」、化学通信(Chem. Commun.)、2004年、230〜231頁に開示されるポリマーが挙げられるが、これらに限定されない。更なるPIMsは、バッド(Budd)ら著、材料化学雑誌(J. Mater. Chem.)、2005年、第15号、1977〜1986頁、マッキューン(McKeown)ら著、化学:欧州雑誌(Chem. Eur. J.)、2005年、11、9号、2610〜2620頁、及びPCT出願国際公開第2005/012397 A2号に開示されている。
多くの実施形態において、センサ120は、検体に暴露されると、カラー画像、単語、又はメッセージを作成する模様又はしるしを、含む。いくつかの実施形態では、層又は副層は、特定の検体に反応する1つ以上の部分と同じ検体に反応しない1つ以上の部分を有するように模様付けされる。他の実施形態において、反応性材料の模様は、より大きい非反応性の副層の上に堆積されるか又は副層の中に生成されてもよい。非反応性の副層の上に生成される場合は、検体が吸着されるまで、光学的厚さの違いが明白ではないように、模様層を非常に薄くすることが、好ましい。模様付けによって、ユーザが検体に暴露されると容易にわかる警告を提供することができる。
いくつかの実施形態では、図4に示されるように、センサ130は、様々な検体の存在を検出可能な薄膜多層性の指標材である。センサ130は、基材125、連続反射層131、光学感受性検出層である微孔性炭素骨格層115、及び半反射層132又は半連続的な半反射層132を備える。
用語「連続的な」は、無孔かつ蒸気透過性でない材料の層を意味する。用語「半連続的な」は、多孔質かつ蒸気透過性及び/又は液体透過性である材料の層を意味する。用語「実質的に連続的な」は、無孔であるが割れ目、粒界、穴、又はその他の欠陥がある可能性があり、蒸気透過性である材料の層を意味する。用語「不連続な」は、材料の少なくとも2つの離れた別個の島を、特定の平面内に隙間無く有すること、又は少なくとも2つの離れた別個の隙間(湖)を特定の平面内に材料を挟んで有すること、及びこの層が蒸気透過性である材料の層を意味する。
連続反射層131を、スパッタリング、蒸着、電気メッキ若しくは他の電気化学堆積法、積層、又は好適な厚さのメタリック塗料の層を適用することを包含する、様々な堆積法を用いて生成できる。
半反射層132は、透過性の半反射層を生成でき、微孔性炭素骨格層115とは異なる屈折率を有する任意の材料を含むことができる。多くの実施形態において、5〜10ナノメートルの範囲の厚さでは、ほとんどの検体がこの層に浸透して微孔性炭素骨格層115に達することができるため、この厚さにおいて材料は半反射である。所望の厚さは、この層を生成させるのに用いられる材料、検出される検体、及び検体を保持する媒質によって決まるであろう。
好適な半反射層132の材料は、例えば、アルミニウム、クロミウム、金、ニッケル、パラジウム、プラチナ、チタン、ケイ素、並びに銀のような金属及び半金属を含む。金/パラジウム又はニッケル/クロミウムのような金属又は金属合金の混合物も使用できる。半反射層に含まれてもよい他の好適な材料には、酸化アルミニウム、酸化チタン、及び酸化クロムのような酸化物、及び窒化ケイ素、窒化アルミニウム、窒化チタン、窒化クロムなどのような窒素化合物が挙げられる。
半反射層132は、実質的に連続層又は不連続層又は半連続的層であってもよい。半反射層は、1つ以上の半反射層を含むことができる。いくつかの実施形態では、半反射層は単一の半反射層であって、実質的に連続、不連続、又は半連続である。1つの例示的実施形態において、半反射層は、実質的に連続層である。この実施形態において、半反射層の構造体及び組成物は、半反射層の上面全体及び半反射層全体に実質的に一貫性があってよい。あるいは、半反射層の構造体及び/又は組成物は、半反射層の上面全体及び半反射層全体に可変でもよい。例えば、半反射層は、半反射層が、半反射層上面の第1の位置においてある検体に対してより高い検体透過性を、上面の第2の位置において同一の検体に対してより低い検体透過性を有するように、異なる透過性を有することができる。半反射層の上面上の第1及び第2の位置は、互いに関してランダムに配置されるか、又は模様若しくはしるしを上面に生成してもよい。
実質的に連続的な半反射層132は、半反射層中に、半反射層の第1領域の光の反射率が半反射層の第2領域よりも大きい模様を有することもできる。半反射層132の第1及び第2領域は、半反射層132の上面又は半反射層内に、模様又はしるしを生成してもよい。上述の模様付き微孔性炭素骨格層115と同様に、模様付き半反射層は、基部にある微孔性炭素骨格層115が検体に暴露されるときに、カラー画像、単語、又はメッセージを作成する模様又はしるしを含んでもよい。半反射層は、検体に暴露されると、ユーザが容易に識別可能な警告を提供することができる。
更なる例示的実施形態において、半反射層132は、不連続層である。この実施形態において、半反射層の組成物は、半反射層全体に実質的に一貫性があってよいが、半反射層は領域によって2つ以上の不連続な区域に分けられる。不連続な半反射層は、暴露面の「海」の中の半反射島の任意の模様を含んでよい(すなわち、微孔性炭素骨格層115は暴露される)。微孔性炭素骨格層115上の半反射島の寸法及び密度は、所望により可変とすることができ、微孔性炭素骨格層115の上面に均一に分散又は不均一に分散されてもよい。半反射島は、微孔性炭素骨格層115の上面に均一に分散されることができ、少なくとも1つの次元(すなわち、長さ、幅、又は直径)が少なくとも5nm、又は10〜1000nm、又は1〜10マイクロメートルであるが、任意の半反射島の寸法、形状、及び密度を用いてもよい。いくつかの実施形態では、微孔性炭素骨格層115の暴露面は、1〜100マイクロメートルにわたる少なくとも1つの次元(すなわち、長さ、幅、又は直径)を有することができるが、暴露面は、任意の次元を有してよい。
半連続的な半反射層132は、球形砲弾や大理石の積層に近い形態に配置された、液体又は蒸気が浸透して微孔性炭素骨格層115に達することができる、金属ナノ粒子(1〜100nmの平均粒径を有する粒子)を含有でき、以下により詳細に記載される方法で生成される。いくつかの実施形態では、半連続的な半反射層132は、ナノ粒子の島間に間隙(図示せず)を有する縞若しくはドット状に、又はナノ粒子の穿孔層中に空間若しくは湖を有する層状に適用される。縞、ドット、又は穿孔層は独立して半連続的であり、液体又は蒸気を透過する。いくつかの実施形態では、半連続的な半反射層132は、全体的に不連続的であり、特定の層の厚さ及びナノ粒子直径では、間隙、隙間又は湖の存在のために、より大きな液体又は蒸気透過性を有する可能性がある。
半連続的な半反射層132の近傍(例えば、上部)にある、対象とする液体又は蒸気状の検体は、半連続的な半反射層132を通過し、微孔性炭素骨格層115(すなわち、検出層)に入ることができる。その結果生じる微孔性炭素骨格層115の光学的厚さの変化により、センサ130の視覚的に認知可能なほどの外観変化をもたらす。その変化は、半反射層132を通してセンサ130を見ることにより観察できる。半反射層132及び微孔性炭素骨格層115を通過する周囲光は、反射層131により反射され、微孔性炭素骨格層115及び半反射層132を通過して戻る。微孔性炭素骨格層115に対して適切な初期厚さ又は変化した厚さが選択されていて、層131及び層132が十分に平坦であれば、センサ130の内部で干渉呈色が発生又は消滅し、半反射層を通して観察したときにセンサ130の外観に視認可能な変化が見受けられるであろう。したがって、電力付き光源、光学検出器又はスペクトル分析などの外部機器は、センサ130の状態を評価するために必要ではないが、このような外部機器は、所望に応じて使用されてもよい。
様々な金属ナノ粒子を本開示に採用し、半連続的な半反射層132、すなわち化学的透過鏡を製造してもよい。代表的な金属としては、銀、ニッケル、金、プラチナ及びパラジウム、並びに前述の金属のうちのいずれかを含有する合金が挙げられる。ナノ粒子形態のときに酸化されやすい金属(例えば、アルミニウム)は、使用してもよいが、望ましくは避け、空気にあまり敏感ではない金属が好ましい。金属ナノ粒子は、完全にモノリシックであってよく、又は層状の構造(例えば、Ag/Pd構造などのコア−シェル構造)を有していてもよい。ナノ粒子の平均粒径は、例えば、約1〜約100nm、約3〜約50nm、又は約5〜約30nmであってよい。金属ナノ粒子層の全体厚さは、例えば、約200nm未満又は約100nm未満であってよく、最も薄い層の厚さは、例えば、少なくとも約5nm、少なくとも約10nm、又は少なくとも約20nmであってよい。大きな直径の微小粒子を適用して単層を生成させる場合もあるが、ナノ粒子層は、典型的には、ナノ粒子数個分の厚さ、例えば、少なくとも2個以上、3個以上、4個以上、又は5個以上であって、5個まで、10個まで、20個まで、又は50個までのナノ粒子の合計厚さであってよい。半連続的な半反射層132又は金属ナノ粒子反射層は、例えば、500nmの光波長において、少なくとも約20%、少なくとも約40%、少なくとも約60%、又は少なくとも約75%の反射率を有する。
半連続的な半反射層132又は化学的透過鏡を、金属ナノ粒子の希釈コーティング溶液又は懸濁液を微孔性炭素骨格層115又は光学感受性検出層に塗布して、その溶液又は懸濁液を乾燥させて、半連続的液体又は蒸気透過性光反射層を生成させることにより、生成しもよい。希釈濃度は、例えば、好適な液体透過性又は蒸気透過性の金属ナノ粒子層を提供するコーティング溶液又は懸濁液を供給する程度、例えば、固体濃度が30重量%未満、20重量%未満、10重量%未満、5重量%未満、又は4重量%未満であってよい。入手したままの市販の金属ナノ粒子製品を追加の溶媒で希釈し、その希釈溶液又は希釈懸濁液を適用して乾燥させることによって、かなり薄い液体透過性層又は蒸気透過性の層を得ることも可能である。様々なコーティング法を利用して、金属ナノ粒子溶液又は懸濁液を適用することも可能であり、拭取り、ディップコーティング、ロールコーティング、スピンコーティング、スプレーコーティング、ダイコーティング、インクジェットコーティング、スクリーン印刷(例えば、ロータリースクリーン印刷)、グラビア印刷、フレキソ印刷、及び当業者によく知られた他の方法が挙げられる。スピンコーティングは、他の方法を用いて得られるものよりも薄く、より透過性の高いコーティングを提供する場合がある。それ故に、低い固体濃度で入手可能ないくつかの銀ナノ粒子懸濁液(例えば、日本ペイント(Nippon Paint)製の5重量%SVW001銀、又はアドバンスド・ナノ・プロダクツ(Advanced Nano Products)製の10重量%シルバージェット(SILVERJET)DGH−50、DGP−50)は、適切に高い速度及び温度で好適な基材にスピンコーティングする場合は、入手したままの形態で、それ以上希釈せずに利用してもよい。金属ナノ粒子層は、適用された後、その焼結が適度な透過性を低下させないのであれば、(例えば、約125〜約250℃に約10分間〜約1時間加熱することによって)焼結してもよい。得られる反射層は、容易に確認できるナノ粒子をもはや含有していない場合もあるが、それが作製された方法で識別するために、ナノ粒子反射層と呼ばれてもよい。
この開示されたセンサ120又は130は、単独で用いられるか、又は1つ以上の検体の存在及び/又は濃度を検出する装置の一部であってよい。1つの実施形態において、センサ120又は130は、少なくとも部分的にハウジングによって囲まれる。ハウジングは、半反射層又は微孔性炭素骨格層115がハウジングの少なくとも1つの開口部から見えるように、半反射層又は微孔性炭素骨格層115の上部に位置する少なくとも1つの開口部を含むことができる。いくつかの実施形態では、ハウジングは、少なくとも1つの開口部を含み、視角によるセンサの可視色変動の可能性(及びセンサ読取値に関するユーザの混同)を最小化するために、開口部は、半反射層又は微孔性炭素骨格層115の上面に対する視野を制限する。いくつかの実施形態では、制限された視野によって、半反射層又は微孔性炭素骨格層115の上面の視野は直角視(すなわち、半反射層又は微孔性炭素骨格層115の外面に垂直な位置からの視野)から、±30度又は±15度の範囲内に制限される。
本明細書において記載されているセンサ120又は130は、センサ、光源、及び任意に、センサの変色をモニターする手段(装置)を含むシステムとして用いることができる。光源は、自然及び/又は人工の光源であり得る。モニタリングは、さまざまな方法で行うことができる。それは、光探知器、又は他の適した手段によって、視覚的に行うことができる。
微孔性炭素骨格層115により検出される検体は、蒸気中又は液体媒質中に存在してもよい。例えば、検体は、空気中又は液体溶媒中に存在してもよい。いずれにせよ、多くの実施形態で、少なくとも検体の一部は、微孔性炭素骨格層115と相互作用するために、センサの(あれば)半反射層132に浸透する。
2つ以上のセンサ120又は130を同時に用い、配列を形成してもよい。配列は、いずれか好適な構成であってよい。例えば、配列は2つ以上のセンサを横並びにして含むことができ、又はセンサは基材の相対する側に、付着されるか、又はその上に作成され得る。所与の配列中のセンサは、同一又は異なるタイプでもよい。センサの配列は、化学薬品の存在を検出するだけの場合に対して、配列全体からのユニークな反応識別特性に基づいた検体の識別に役立つだろう。
センサ120又は130は、例えば、広範囲にわたる有機蒸気を検出するような、多くの有用な用途を有することができる。センサは、溶液又はガス内で所与の検体の存在及び/又は濃度を検出するために用いることができる。センサ配列は、溶液又はガス内で1つ以上の検体の存在及び/又は濃度を検出するために用いることができる。
多くの実施形態において、使用の前に、本明細書に記載される多層フィルムセンサは、検出される検体を実質的に含まない。使用前の「暴露されていない」センサは、(あれば)半反射層を通して見ると最初のカラーを表示するか又は無色(銀色)である。検出対象の1つ以上の検体に暴露されると、「暴露されていない」センサは、検体を含有する比色分析センサに変わる。検体を含有する比色分析センサは、(i)最初のカラーと異なる第二のカラーを示すか、又は(ii)最初のカラーから銀色(又は無色)の状態へ色の変化を受ける。
本明細書に記載されるプラズマ蒸着層を、2種の異なるシステムで堆積させた。
1.)MARC1プラズマシステム:この構築したシステムを、ドライポンプステーション(エドワーズ(Edwards)ルーツポンプEH1200及びiQDP80ドライメカニカルポンプ)によって補強されたターボ分子ポンプ(バルザース(Balzers)モデルTPH2000)でポンプ処理した。気体流率は、MKSデジタル流量調節器によって制御された。RF電力は、整合伝送網を通じて3kWのRFPP電源(高度エネルギーモデル(Advanced Energy Model)RF30H)から、周波数13.56MHzで供給された。炭化水素層蒸着前のチャンバのベース圧力は、1.3mPa(1E−5トル)であった。基材試料は、カプトンテープで電極にテープ付けされた。
2.)プラズマサーム(Plasmatherm)バッチリアクター:66cm(26インチ)下方駆動電極及び中央のガスポンプと共に反応イオンエッチング(RIE)用に構成された、市販のバッチプラズマシステム(プラズマサーム・モデル(Plasmatherm Model)3032)。チャンバを、ドライメカニカルポンプ(エドワーズ(Edwards)モデルiQDP80)によって補強されたルーツブロアー(エドワーズ(Edwards)モデルEH1200)によりポンプ処理する。RF電力は、インピーダンス整合伝送網を通じて、5kW、13.56MHzの固体発生装置(RFPPモデルRF50S0)により供給された。システムは、666.6mPa(5ミリトル)の公称ベース圧力を有する。気体流率は、MKS流量調節器によって制御される。蒸着のための基材を、下方駆動電極上に定置する。
実施例1(ブタジエンガスからのナノ多孔性炭素フィルムの合成):本実施例では、MARC1プラズマシステムを用い、まずブタジエン前駆体ガスから無秩序共有結合網状組織炭化水素薄膜を堆積させた。このフィルムの焼きなましにより脱水素が起こり、ナノ多孔性炭素フィルムが生じる。ケイ素基材試料を駆動電極上にテープ付けし、チャンバをそのベース圧力までポンプ処理により減圧した。基材試料を、まずアルゴンプラズマ中でプライミングし、プラズマ蒸着炭化水素フィルムの基材への付着が良好になるようにした。アルゴンプラズマのプライミング条件は、以下のとおりである。
アルゴン流量:400sccm
圧力:666.6mPa(5ミリトル)
RF電力:1000ワット
DC自己バイアス電圧:−1052ボルト
処理時間:45秒
無秩序共有結合網状組織炭化水素フィルムの蒸着:アルゴンプラズマ中における基材のプライミング後、1,3−ブタジエンガスを真空チャンバに供給することにより、炭化水素フィルムをプラズマ蒸着した。プラズマ蒸着条件は、以下のとおりである。
1,3−ブタジエンの流量:160sccm
処理圧力:2.67Pa(20ミリトル)
RF電力:100ワット
DC自己バイアス電圧:−260〜−192ボルト
蒸着時間:16分
操作完了後、厚さ900nmのプラズマ蒸着炭化水素フィルムが、ケイ素ウエファー上に得られた。
炭化水素フィルムの焼きなまし:プラズマ蒸着炭化水素フィルムを有するケイ素基材試料を、摂氏450度の真空オーブンで1時間焼きなましした。焼きなましにより脱水素が起こり、微孔性(すなわち、ナノ多孔性)薄膜炭素材料が生じる。穿孔が大量に生成されるにもかかわらず、わずかな色調変化が典型的にみられるのみである。これは、多孔性によりもたらされる屈折率の減少が、残された炭素骨格の屈折率が大幅に増加することにより打ち消されるからである。
実施例2(ナノ多孔性炭素フィルムフレークのBET分析):アルゴンによるプライミング工程を経ず、前駆体プラズマポリマーフィルムをアルミニウム電極上で30分間に延長して直接合成した以外は、実施例1に記載した方法に従ってナノ多孔性炭素フィルムフレークを製造した。これにより、プラズマ蒸着炭化水素フィルムをフレーク状に離層させることができた。フレークを電極からこすり落とし、実施例1に記載した手順に従って真空オーブン中で焼きなましした。収集した炭化水素フィルムフレークの質量は52.2mgであり、焼きなましすると、炭化水素フィルムフレークの脱水素により質量が37.2mgに減少した。フレークの色調は、純粋炭素への変換を示す黄褐色から黒色に変化した。オートソルブ(Autosorb)−1(クアンタクロム・インスツルメンツ(Quantachrome Instruments))での窒素(N)吸着を用いて、相対圧力P/P 7×10−7〜1、浴温−195.8℃(77.35°K)で等温線を作成し、ナノ多孔性炭素フレークの孔径分布の特徴を確認した。実験時の周辺温度は24.42℃(297.57°K)であり、大気圧は97.8kPa(733.35mmHg)であった。31.9mgの試料すべての分析に1299.2分かかった。このように得たデータセットを、平衡状態で炭素の円筒形孔において、サイトウ−フォーリー(Saito-Foley)(SF)法及びN2用非局所的DFTハイブリッドカーネルを用いる密度汎関数理論(DFT)法を用いて、クアンタクロム(Quantachrome)から提供されるソフトウェア(オートソルブ(Autosorb)v1.51)で解析した。2つの方法により、よく一致する孔径分布が得られた。ドビニン−アスターホフ(Dubinin-Astakhov)(DA)法及びドビニン−ラジュシケヴィッチ(Dubinin-Raduskevich)(DR)法により、同等の結果が得られた。BET分析の結果を以下と図5に示す。これらの結果より、ナノ多孔性炭素の表面積は極めて大きく(637m/g)、最も表面積に寄与するのが5〜10オングストローム(Angstom)の寸法の孔であると言える。更に、表面積への寄与は、すべて100オングストローム未満の孔による。この結果は、均一で小さい孔径が有利で、かつそれが要求される様々な用途における、ナノ多孔性炭素フィルムの有効性を証明する。
表面積データ
マルチポイントBET……………………6.372E+02m/g
t法 外部表面積………………………………1.732E+02m/g
t法 微小孔表面積………………………………4.640E+02m/g
NLDFT法 累積表面積…………………………6.034E+02m/g
間隙体積データ
直径を有する孔の全間隙体積
P/P0=0.99623において5055.7Å未満……3.518E−01cc/g
t法 微小間隙体積………………………1.415E−01cc/g
SF法 累積間隙体積………………………2.557E−01cc/g
NLDFT法 累積間隙体積………………………3.056E−01cc/g
孔径データ
SF法 孔径(モード)………………………8.490E+00Å
NLDFT法 孔径(モード)………………………6.272E+00Å
実施例3(ナノ多孔性炭素フィルムの光学的特性):微孔性(すなわち、ナノ多孔性)炭素材料フィルムを可変角度分光偏光解析法(Variable Angle Spectroscopic Ellipsometery)(VASE)で特徴付け、電力を50ワットに維持し、様々な蒸着時間(試料82は32分、試料83は24分、試料84は16分)以外は実施例1に従って作製された3種の異なるフィルムの多孔率を推定した。屈折率の実数部及び虚数部をそれぞれ図6及び図7に示す。厚さ及び多孔性を以下の表にまとめる。
Figure 2010514937
ここでの多孔率の値の方が、別途得られたBETの結果より高かった。BETで測れない場合がある分離された隙間を、RSEで測定することができる。センサでは、接続性/多孔率が、単なる空隙%より重要である。ナノ多孔性炭素フィルムの骨格が2.4〜2.5程度の屈折率を有する場合に、上記多孔率及び付随する屈折率の値が達成できる。
実施例4(ナノ多孔性炭素薄膜の蒸気検知特性):プラズマ蒸着炭化水素フィルム試料(試料番号59−実施例1に従って生成)を、トルエン、メチルエチルケトン、イソプロパノールの負荷濃度範囲に対して検査した。シリンジポンプにより、一定の速度で有機液体が電気的に加熱した蒸発器へ供給される。蒸発器で液体が揮発し、蒸気は主要気流と混ざる。選択された主要気流速度において、所望の濃度を達成するのに必要な液体の流量で供給するように、ポンプが調節される。次いで、蒸気/空気混合物を試験チャンバ内に流れ込ませる。
以下の等式を用い、任意に設定した合計体積流量(L/分)における、所望のppm濃度に達成するのに必要な液体の体積流量(mL/分)を計算する。想定される試験条件は、98.7kPa(740mmHg)の圧力で、22.9℃(296K)の温度である。
Figure 2010514937
更に、加熱した水浴上に気流を通過させることで生じる様々な相対湿度において、試料を観察した。湿度をインライン計量器でモニターする。上述したシステムを用い、85%RHでエチルベンゼンを試料に負荷した。試料の光学スペクトルを、オーシャンオプティクス(Ocean Optics)の光源(タングステン、ハロゲン、R−LS−1)、反射プローブ、及び分光計(USB−2000)を用いてモニターする。透過率を、ケイ素を参照基準として算出する。試料番号59は、低濃度のトルエン、メチルエチルケトン、及びイソプロパノールに対して感受性があった(図8参照)。蒸気濃度が上昇すると、ピーク波長が赤方にシフトし、これは試料の光学的厚さの増加を示す(図9参照)。これらすべての蒸気について、波長シフトはTLV(許容限界濃度)において10nm超である。様々な湿度に対して試験するとき、この物質は活性炭と同様の挙動を示す。図10に示されるように、低湿度では反応はわずかであり、続いて50〜70%RHで少量の水の取り込みがあり、70%RH以上で顕著な水吸着がみられる。水蒸気の取り込みにもかかわらず、85%RHの気流でエチルベンゼンを負荷するとき、試料はエチルベンゼンに対して顕著に反応(50ppm濃度において20nmの赤方シフト)した。有機蒸気に反応し、フィルムは、全反応のほとんどの部分が低濃度において起こる「ホッケースティック」様挙動を示す。この挙動は、微孔性炭素の周知の吸着挙動に匹敵する。
実施例5A(ブタンガスからのナノ多孔性炭素フィルムの合成):本実施例では、プラズマサーム(Plasmatherm)反応装置を用い、まずブタン前駆体ガスからプラズマ蒸着炭化水素フィルムを作製した。ケイ素基材を下方駆動電極上に置き、プラズマ蒸着炭化水素ポリマーフィルムを堆積させた。基材試料を、まず酸素プラズマ中でプライミングし、プラズマ蒸着炭化水素フィルムの基材への付着が良好になるようにした。酸素プラズマプライミングの条件は、以下のとおりである。
酸素プラズマプライミング:
酸素流量:500sccm
圧力:3.33Pa(25ミリトル)
RF電力:2000ワット
処理時間:30秒
炭化水素フィルムの蒸着:アルゴンプラズマ中における基材のプライミング後、ブタンガスを真空チャンバに供給することにより、異なる厚さのプラズマ蒸着炭化水素フィルムを蒸着した。蒸着条件は、以下のとおりである。
ブタン流量:200sccm
処理圧力:13.33Pa(100ミリトル)
RF電力:2000ワット、90msで時間どおりにパルス駆動、デューティーサイクル90%
蒸着時間:2分50秒(試料66)
操作完了後、厚さ400〜500nm程度の炭化水素フィルムが得られた。これらを以下の条件で焼きなましした。
焼きなまし環境:500sccmの流入アルゴンガス
圧力:679.9Pa(5.1トル)
焼きなまし温度:520℃
焼きなまし時間:20分及び60分(「L」と付けた試料)
これら微孔性(すなわち、ナノ多孔性)炭素材料フィルムの検知反応を、トルエンについて図11に、MEKについて図12に、IPAについて図13に、85%RHのエチレンベンゼンについて図14に示す。エチルベンゼン試験については、気流85%RHに加湿し、エチルベンゼンを気流に導入する前に新たにスペクトルのベースラインを確立した。
実施例5B(ナノ多孔性薄膜の光学的特性):実施例5Aによるナノ多孔性炭素フィルムを可変角度分光偏光解析法(Variable Angle Spectroscopic Ellipsometery)(VASE)で特徴付けた。屈折率の実数部(n)及び虚数部(k)をそれぞれ図15及び図16に示す。
実施例6(多孔性セラミック基材上のナノ多孔性炭素フィルムセンサ):本実施例では、微孔性(すなわち、ナノ多孔性)炭素フィルムを、実施例1に従って0.45マイクロメートルの孔径を有する多孔性セラミック基材(クレアビス(Creavis)アルミナ基材Z450S)上に調製し、蒸気検知特性を評価した。プラズマ蒸着炭化水素フィルムの蒸着の間、電力を実施例1に記載する100ワットに代わり50ワットに維持し、蒸着時間を18分に代わり24分とした。プラズマ蒸着炭化水素フィルムを、1466.5Pa(11トル)の圧力でアルゴンガスを流入させながら、摂氏500度の真空オーブンで1時間焼きなましした。トルエン蒸気の検知について、結果を図17にプロットする。50ppmのトルエン濃度において、波長シフト17〜19nmの良好な検出能が観察された。
実施例7(ナノ多孔性炭素フィルムの電力厚さ反応):本実施例では、微孔性(すなわち、ナノ多孔性)炭素材料フィルムを、電力及び蒸着時間を変更した以外は実施例1に従って調製して、様々な厚さのフィルムを得、トルエン及びMEK蒸気に対するフィルムの検知反応を測定した。蒸着及び焼きなましの条件を以下の表1に記載し、センサ反応を、トルエンについて図18に、MEKについて図19に示す。以下の表では、試料番号82〜90と、各試料に付随する焼きなまし条件を示す。結果より、トルエン蒸気について30nmの、及びMEK蒸気について15nmの、顕著な波長シフトがみられることができる。
Figure 2010514937
実施例8(アンモニア焼きなましによるブタンガスからのナノ多孔性炭素フィルムの合成、試料158B):本実施例では、プラズマサーム(Plasmatherm)反応装置を用い、まずブタン前駆体ガスからプラズマ蒸着炭化水素フィルムを作製した。ケイ素基材を下方駆動電極上に置き、まずプラズマ蒸着炭化水素フィルムを堆積させた。基材試料を、まず酸素プラズマ中でプライミングし、プラズマ蒸着炭化水素フィルムの基材への付着が良好になるようにした。酸素プラズマプライミングの条件は、以下のとおりである。
酸素プラズマプライミング:
酸素流量: 500sccm
圧力: 3.33Pa(25ミリトル)
RF電力: 3000ワット
処理時間: 30秒
プラズマ蒸着炭化水素フィルムの蒸着:酸素プラズマ中における基材のプライミング後、ブタンガスを真空チャンバに供給することにより、異なる厚さのプラズマ蒸着炭化水素フィルムを蒸着した。蒸着条件は、以下のとおりである。
ブタン流量: 200sccm
処理圧力: 6.67Pa(50ミリトル)
RF電力: 3000ワット、90msで時間どおりにパルス駆動、デューティーサイクル90%
蒸着時間: 190秒
操作完了後、厚さ435nmのフィルムが得られた。この炭化水素フィルムを以下の条件で焼きなましした。
焼きなまし環境: 500sccmの流入アンモニアガス
圧力: 693.2Pa(5.2トル)
焼きなまし温度: 500℃
焼きなまし時間: 20分
これらナノ多孔性炭素フィルムの検知反応を、上記実施例4に記載の方法で測定した。試料158Bは、低濃度のトルエン、メチルエチルケトン、イソプロパノール、及びアセトンに対して感受性があった(図20)。蒸気濃度が上昇すると、ピーク波長が赤方にシフトし、これは試料の光学的厚さの増加を示す。これらすべての蒸気について、波長シフトはTLV(許容限界濃度)において10nm以上である。
アンモニア中で焼きなましされた試料158Bの湿度感受性を、SiCOフィルム(ケイ素/炭素/酸素を含むプラズマ蒸着フィルムの微孔性フィルム)、真空焼きなまし非晶質炭素フィルム(PMS−58)、及びヤシ殻を原料とする活性炭による水の取り込み重量と比較して示す(図21)。このデータは、焼きなまし環境が非晶質炭素の水への反応に影響し、したがって、焼きなまし環境を、特定の用途にフィルムの検知特性を適応させるのに使用することができることを示す。
実施例9(ナノ多孔性炭素フィルム強化フィルター):本実施例では、濾過用途における微孔性(すなわち、ナノ多孔性)炭素フィルムの適用可能性を実証する。熱安定性可撓性セラミック膜(孔径が100nm及び25nmのクレアビス(Creavis)アルミナセラミック膜Z100S及びZ25S)を用いて、最初に、ダイヤモンド様炭素フィルムを、実施例5に従って、膜上に堆積させた。蒸着時間は10分とした。次いで、このフィルムを、アルゴン雰囲気下、維持圧力666.6Pa(5トル)、焼きなまし温度560℃で、15分間焼きなましした。ナノ多孔性炭素フィルムとして黒変した試料が、セラミック膜上に生成された。
このように、プラズマ蒸着微孔性炭素材料の実施形態が開示される。当業者は、これらの開示以外の実施形態が構想されることを理解するであろう。開示された実施形態は、例証の目的で提示されているのであって、制限するものではなく、本発明は、次に続く請求項によってのみ限定される。

Claims (13)

  1. 0.1〜10ナノメートルの平均孔径を有し、そして1マイクロメートル超の孔を実質的に含まない多孔性炭素骨格を含んでなる、微孔性炭素材料。
  2. 前記多孔性炭素骨格が、1〜10ナノメートルの平均孔径を有し、そして100ナノメートル超の孔を実質的に含まない、請求項1に記載の微孔性炭素材料。
  3. 前記多孔性炭素骨格が、本質的に炭素からなり、10%以上の多孔率を有し、そして1未満の実効消光率を有する、請求項1に記載の微孔性炭素材料。
  4. 基材層と、
    前記基材層上に配置された微孔性炭素骨格層とを含む物品であって、前記微孔性炭素骨格が0.1〜10ナノメートルの平均孔径を有し、そして1マイクロメートル超の孔を実質的に含まない物品。
  5. 前記基材層が、ガス透過性層である、請求項4に記載の物品。
  6. 前記微孔性炭素骨格が、1〜10ナノメートルの平均孔径を有し、そして100ナノメートル超の孔を実質的に含まない、請求項4に記載の物品。
  7. 前記微孔性炭素材料が、濾過層、ガス分離層、又はウイルス分離層を生成させる、請求項4に記載の物品。
  8. 炭化水素ガスから炭化水素プラズマを生成させる工程と、
    基材上に前記炭化水素プラズマを堆積させて、炭化水素層を生成させる工程と、
    前記炭化水素層を加熱し、そして前記水素の少なくとも一部を除去して、微孔性炭素材料を生成させる工程と、
    を含んでなる、微孔性炭素材料の生成方法。
  9. 前記炭化水素プラズマを生成させる工程が、(C〜C10)アルカン、(C〜C10)アルケン、又は(C〜C10)アルキン炭化水素ガスから炭化水素プラズマを生成させる工程を含む、請求項8に記載の方法。
  10. 前記炭化水素プラズマを生成させる工程が、ブタン又はブタジエン炭化水素ガスから炭化水素プラズマを生成させる工程を含む、請求項8に記載の方法。
  11. 前記加熱する工程が、前記炭化水素層を加熱し、前記水素の少なくとも一部を除去して、微孔性炭素材料を生成させる工程を含み、前記微孔性炭素材料が本質的に炭素からなる、請求項8に記載の方法。
  12. 前記堆積させる工程が、負のバイアス電圧又は負の自己バイアス電圧を有する基材上に前記炭化水素プラズマを堆積させて、炭化水素層を生成させる工程を含む、請求項8に記載の方法。
  13. 前記加熱する工程が、アンモニア雰囲気下で前記炭化水素層を加熱し、そして前記水素の少なくとも一部を除去して、1〜10ナノメートルの平均孔径を有し、そして100ナノメートル超の孔を実質的に含まない微孔性炭素材料を生成させる工程を含む、請求項8に記載の方法。
JP2009544163A 2006-12-29 2007-12-13 プラズマ蒸着微孔性炭素材料 Ceased JP2010514937A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/618,010 US7901776B2 (en) 2006-12-29 2006-12-29 Plasma deposited microporous carbon material
PCT/US2007/087347 WO2008082897A1 (en) 2006-12-29 2007-12-13 Plasma deposited microporous carbon material

Publications (2)

Publication Number Publication Date
JP2010514937A true JP2010514937A (ja) 2010-05-06
JP2010514937A5 JP2010514937A5 (ja) 2011-01-20

Family

ID=39226855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009544163A Ceased JP2010514937A (ja) 2006-12-29 2007-12-13 プラズマ蒸着微孔性炭素材料

Country Status (7)

Country Link
US (1) US7901776B2 (ja)
EP (1) EP2111481A1 (ja)
JP (1) JP2010514937A (ja)
KR (1) KR20090101289A (ja)
CN (1) CN101573470B (ja)
BR (1) BRPI0720568A2 (ja)
WO (1) WO2008082897A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476487B1 (ko) 2007-10-05 2014-12-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 플라즈마-증착된 미공성 층을 포함하는 유기 화학적 센서와, 제조 및 사용 방법
US8110476B2 (en) 2008-04-11 2012-02-07 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
BRPI0910150B1 (pt) * 2008-06-30 2019-01-22 3M Innovative Properties Co dispositivos indicadores de exposição
US20100032639A1 (en) * 2008-08-07 2010-02-11 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
TWI402137B (zh) * 2008-12-10 2013-07-21 Lam Res Corp 雙重功能電極平板與利用拋光轉盤及雙重功能電極平板拋光矽電極之方法
US9018060B2 (en) 2010-06-15 2015-04-28 3M Innovative Properties Company Variable capacitance sensors and methods of making the same
JP5810652B2 (ja) * 2011-06-13 2015-11-11 ソニー株式会社 液体塗布用繊維複合体
GB2493698B (en) * 2011-08-08 2018-02-28 Univ Nottingham Trent Surface plasmon resonance in thin films
DE102012213178A1 (de) * 2012-04-30 2013-10-31 At & S Austria Technologie & Systemtechnik Aktiengesellschaft LED-Modul mit Leiterplatte
TWI565532B (zh) * 2012-08-07 2017-01-11 國立交通大學 奈米球溶液塗佈方法與其應用
CN102899966B (zh) * 2012-10-22 2017-08-29 杭州春胜纸业有限公司 微米碳粉电磁屏蔽纸的制造方法
KR101408136B1 (ko) * 2012-10-26 2014-06-17 한국과학기술연구원 나노 다공성 물질의 제조방법 및 나노 다공성 물질
JP5937033B2 (ja) 2013-03-22 2016-06-22 株式会社東芝 半導体装置、半導体装置の製造方法、および半導体装置の製造装置
WO2015080259A1 (ja) * 2013-11-29 2015-06-04 独立行政法人物質・材料研究機構 硬質カーボン膜製nf又はro膜、濾過フィルター、2層接合型濾過フィルター及びそれらの製造方法
US9735366B2 (en) * 2014-09-30 2017-08-15 Cnm Technologies Gmbh Heterostructure comprising a carbon nanomembrane
EP3234214A1 (en) * 2014-12-19 2017-10-25 Tata Steel Nederland Technology B.V. Filter device to remove particles from a vapour stream
CN106404860A (zh) * 2016-08-30 2017-02-15 济南大学 一种氮化碳修饰三维石墨电极的制备方法及电致化学发光传感应用
CN108344714B (zh) * 2018-01-16 2020-07-31 东南大学 基于有序多孔纳米结构薄膜干涉效应的生物检测仪及其进行生物分子检测的方法
CN111229164B (zh) * 2020-02-21 2022-03-08 大连理工大学 一种分离烯烃烷烃的微孔炭吸附剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798278A (ja) * 1993-08-06 1995-04-11 Tdk Corp 化学物質センサ
WO2006124965A1 (en) * 2005-05-17 2006-11-23 Applied Materials, Inc A semiconductor junction formation process including low temperature plasma deposition of an optical absorption layer and high speed optical annealing

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685940A (en) 1984-03-12 1987-08-11 Abraham Soffer Separation device
IL105142A (en) 1993-03-23 1997-01-10 Aga Ab Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition
JP3116793B2 (ja) 1995-11-24 2000-12-11 三菱自動車工業株式会社 ウインドガラスの仮止め用クリップ
BR9710709A (pt) * 1996-05-15 1999-08-17 Hyperion Catalysis Int Estruturas de carbono porosas e rigidas processos de fabrica-Æo processos de uso e produtos que as cont-m
US5972079A (en) 1996-06-28 1999-10-26 University Of Delaware Supported carbogenic molecular sieve membrane and method of producing the same
RU2151737C1 (ru) 1997-05-30 2000-06-27 Акционерное общество закрытого типа "Карбид" Способ получения пористого углеродного изделия и пористое углеродное изделие, полученное этим способом
US6039792A (en) 1997-06-24 2000-03-21 Regents Of The University Of California And Bp Amoco Corporation Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation
US6331209B1 (en) * 1999-04-21 2001-12-18 Jin Jang Method of forming carbon nanotubes
US6297293B1 (en) * 1999-09-15 2001-10-02 Tda Research, Inc. Mesoporous carbons and polymers
AU2002307151A1 (en) 2001-04-06 2002-10-21 Carnegie Mellon University A process for the preparation of nanostructured materials
US6730364B2 (en) 2002-03-28 2004-05-04 National Science Council Preparation of carbon molecular sieve membranes on porous substrate
DK1523512T3 (da) * 2002-07-22 2020-03-30 Aspen Aerogels Inc Polyimide-aerogeler, carbon-aerogeler, og metalcar-bidaerogeler og fremgangsmåder til fremstilling af samme
US7030167B2 (en) 2003-06-25 2006-04-18 Agilent Technologies, Inc. Nanoporous structures produced from self-assembling molecules
GB0317557D0 (en) 2003-07-26 2003-08-27 Univ Manchester Microporous polymer material
JP2006335596A (ja) 2005-06-01 2006-12-14 Tohoku Univ 規則性のある大表面積ミクロポーラス炭素の簡便な合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798278A (ja) * 1993-08-06 1995-04-11 Tdk Corp 化学物質センサ
WO2006124965A1 (en) * 2005-05-17 2006-11-23 Applied Materials, Inc A semiconductor junction formation process including low temperature plasma deposition of an optical absorption layer and high speed optical annealing

Also Published As

Publication number Publication date
BRPI0720568A2 (pt) 2014-02-04
KR20090101289A (ko) 2009-09-24
WO2008082897A1 (en) 2008-07-10
CN101573470B (zh) 2011-08-03
CN101573470A (zh) 2009-11-04
US7901776B2 (en) 2011-03-08
EP2111481A1 (en) 2009-10-28
US20080160858A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP2010514937A (ja) プラズマ蒸着微孔性炭素材料
KR101331710B1 (ko) 플라즈마 증착된 미공성 분석물 검출 층
US7906223B2 (en) Permeable nanoparticle reflector
US7450227B2 (en) Surface enhanced Raman spectroscopy (SERS) substrates exhibiting uniform high enhancement and stability
JP4861431B2 (ja) 光化学センサ及びその製造方法
US8647884B2 (en) Organic chemical sensor with microporous organosilicate material
EP2208058A2 (en) Organic chemical sensor comprising plasma-deposited microporous layer, and method of making and using
US20220228993A1 (en) Adsorbable polymeric surface-enhanced raman spectroscopy substrates and the fabrication process
Brigo et al. Silver nanoprism arrays coupled to functional hybrid films for localized surface plasmon resonance-based detection of aromatic hydrocarbons
Tamulevičius et al. Structuring of DLC: Ag nanocomposite thin films employing plasma chemical etching and ion sputtering
JP2008286542A (ja) 水素ガス検知膜
De Stefano et al. Protein‐modified porous silicon nanostructures
US20130063717A1 (en) Laminated structure for measuring reflected light intensity, device containing laminated structure for measuring reflected light intensity, and method for measuring film thickness and/or mass and/or viscosity of thin film
JP2009133787A (ja) 局在プラズモン共鳴センサーユニット、およびその製造方法
Ovchinnikov Effect of adhesion layer on morphology and optical properties of self-organized metal nanostructures
AU2012201892B2 (en) Permeable nanoparticle reflector
Bearzotti Influence of metal electrodes on the response of humidity sensors coated with mesoporous silica
Modaresialam et al. Sol-gel TiO 2 nanoimprinted metasurface combined to hybrid-silica sensitive layers for selective VOC detection with high refractive index sensitivity
Gao Vapor sensors using porous silicon-based optical interferometers
Yan et al. Iridium Metal as Potential Substrates for Experiments in Space

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130403

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20140225