JP2010283154A - 可視光透過性電磁波吸収フィルム及びそれを用いた可視光透過性電磁波吸収体 - Google Patents
可視光透過性電磁波吸収フィルム及びそれを用いた可視光透過性電磁波吸収体 Download PDFInfo
- Publication number
- JP2010283154A JP2010283154A JP2009135336A JP2009135336A JP2010283154A JP 2010283154 A JP2010283154 A JP 2010283154A JP 2009135336 A JP2009135336 A JP 2009135336A JP 2009135336 A JP2009135336 A JP 2009135336A JP 2010283154 A JP2010283154 A JP 2010283154A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- visible light
- film
- wave absorbing
- metal thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
【解決手段】プラスチックフィルム10aと、その少なくとも一面に互いに絶縁した状態で多数配置した実質的に矩形状又は正方形状の可視光透過性金属薄膜11aとを有し、金属薄膜11aに多数の実質的に平行で断続的な線状痕12が少なくとも一方向に不規則に形成されており、かつ金属薄膜11aの少なくとも一方の辺方向における電気抵抗が377±250Ωである可視光透過性電磁波吸収フィルム。
【選択図】図1(a)
Description
(1) 第一の可視光透過性電磁波吸収フィルム
図1(a)〜図1(e)は、第一の可視光透過性電磁波吸収フィルムの一例を示す。この電磁波吸収フィルムでは、プラスチックフィルム10b上に可視光透過性金属薄膜11aが設けられた実質的に正方形状の導電複合フィルム片1aが、互いに絶縁された状態で、プラスチックフィルム10aの一面に多数配置されており、各導電複合フィルム片1aの金属薄膜11aの全面に多数の実質的に平行で断続的な線状痕12が直交するように形成されている。なお説明のために、図1(a)では、線状痕12の長さ、幅及び間隔を実際より誇張している。プラスチックフィルム10aと、導電複合フィルム片1aのプラスチックフィルム10bとの間に透明接着層14が設けられている。プラスチックフィルム10a及び10bは融着されていてもよい。導電複合フィルム片1aの金属薄膜11a側がプラスチックフィルム10aに接着されていてもよい。導電複合フィルム片1aの配列及び各導電複合フィルム片1aの向きは図示の例に限定されず、例えばランダムであってもよい。
プラスチックフィルム10a及び10bを形成する樹脂は、絶縁性とともに十分な強度、可撓性及び加工性を有する限り特に制限されず、例えばポリエステル(ポリエチレンテレフタレート等)、ポリアリーレンサルファイド(ポリフェニレンサルファイド等)、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、アクリル樹脂、ポリスチレン、ポリオレフィン(ポリエチレン、ポリプロピレン等)等が挙げられる。プラスチックフィルム10a及び10bの厚さは各々10〜100μm程度で良い。
可視光透過性金属薄膜11aを形成する金属は導電性を有する限り特に限定されないが、耐食性及びコストの観点からアルミニウム、銅、ニッケル、コバルト、銀及びこれらの合金が好ましく、特にアルミニウム、ニッケル及びこれらの合金が好ましい。金属薄膜11aの厚さは10〜100 nmが好ましい。この厚さが10 nm未満だと、膜の均一性が悪く、電磁波吸収能が低い。一方100 nm超だと、可視光透過性が悪い。ニッケル膜の場合、その厚さは20〜70 nmがより好ましい。アルミニウム膜の場合、その厚さは30〜100 nmがより好ましい。可視光透過性金属薄膜11aは蒸着膜であるのが好ましい。優れた電磁波吸収能を得るために、金属薄膜11aの合計面積率は70%以上が好ましく、80%以上がより好ましい。
顕微鏡写真を図式化した図1(c)及び図1(d)から明らかなように、金属薄膜11aに多数の実質的に平行な線状痕12が直交するように形成されている。なお説明のために、図1(d)では、一方向の線状痕12について、その配向方向に対して直角に切った切り口のみを示し、線状痕12の深さを実際より誇張している。線状痕12の長さ、幅及び間隔は不規則であり、非常に細い線状痕から非常に太い線状痕まで、種々の間隔で不規則に配列している。図1(d)及び図1(e)に示すように、線状痕12には、金属薄膜11aを貫通して非導通部121を形成しているものと、貫通していないが比較的深く設けられて高抵抗部122を形成しているものとがある。図1(e)に示すように、線状高抵抗部122の底部は、金属薄膜11の厚さT1の少なくとも約50%に相当する深さT2に達しているのが好ましく、約70%に相当する深さT3に達しているのがより好ましい。この例では線状非導通部121及び線状高抵抗部122の両方が形成されているが、これらのうちの一方のみが形成されていてもよい。すなわち、線状非導通部121及び/又は線状高抵抗部122により隔てられた不定形導体が不規則に接続していると見ることができる。図1(c)は不定形導体の接続部の一例(G)を示す。このような不定形導体の不規則な接続により、種々の周波数の電磁波ノイズを効率良く吸収することができる。
図4(a)及び図4(b)は第一の可視光透過性電磁波吸収フィルムのさらに別の例を示す。この例では、金属薄膜11aに線状痕12の他に、多数の微細穴13がランダムに設けられている。図示の例では微細穴13は金属薄膜11aを貫通しているが、微細穴13は必ずしも金属薄膜11aを貫通していなくてもよい。微細穴13は、線状痕12の場合と同様に表面に高硬度微粒子を有するパターンロールを金属薄膜に押圧することにより形成される。貫通穴を形成するためには、高硬度微粒子の平均直径は金属薄膜の厚さの約2倍以上ある必要があり、実用的には高硬度微粒子の平均直径は金属薄膜の厚さより十分に大きい。
図5に示すように、電磁波吸収フィルムの可視光透過性金属薄膜11aを有する面を覆うようにプラスチック保護層10cを形成しても良い。プラスチック保護層10cは、電磁波吸収フィルムの可視光透過性金属薄膜11aを有する面に、プラスチックフィルムを熱ラミネート法等で接着することにより形成できる。プラスチック保護層10cの厚さは10〜100μmが好ましい。
電磁波ノイズの吸収能をさらに向上するために、可視光透過性電磁波吸収フィルムに円錐状、球面状等の多数のエンボスを施しても良い。エンボスの直径及び深さはそれぞれ100μm以上が好ましく、150〜250μmがより好ましい。エンボスの面積率は20〜60%が好ましい。
図6(a)及び図6(b)は、本発明の第二の可視光透過性電磁波吸収フィルムの一例を示す。この電磁波吸収フィルムは、プラスチックフィルム10d上に可視光透過性金属薄膜11bが設けられ、かつ多数の透光用開口部15を有する格子状の導電複合フィルム1bが、導電複合フィルム片1aの代わりに、プラスチックフィルム10aの一面に設けられており、金属薄膜11bの全面に線状痕12が形成されている以外、図1(a)〜図1(e)に示す電磁波吸収フィルムと同じである。
図8(a)及び図8(b)は、本発明の第三の可視光透過性電磁波吸収フィルムの一例を示す。この電磁波吸収フィルムは、多数の導電複合フィルム片1aと、導電複合フィルム1bとを有し、各導電複合フィルム片1aが導電複合フィルム1bの各開口部15の中に位置し、かつ絶縁した状態で配置されている以外、図1(a)〜図1(e)に示す電磁波吸収フィルムと同じである。図示の例では、導電複合フィルム片1a及び導電複合フィルム1b(以下両者を纏めて「導電複合フィルム1a,1b」とよぶ)の両方に線状痕12が形成されているが、線状痕12は、導電複合フィルム1a,1bの一方のみに形成されていてもよい。
(1) 間接法
図1(a)〜図1(e)に示すような、導電複合フィルム片1aを有する第一の可視光透過性電磁波吸収フィルムは、可視光透過性金属薄膜11Aとプラスチックフィルム10Bとからなる導電複合フィルム1Aを形成し、導電複合フィルム1Aに線状痕を形成し、線状痕付き導電複合フィルム1A'をカットして正方形状又は矩形状の導電複合フィルム片1aを形成し、導電複合フィルム片1aをプラスチックフィルム10aの少なくとも一面に配置し、積層する間接法により製造することができる。
(i) 金属薄膜の形成
金属の蒸着は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、プラズマCVD法、熱CVD法、光CVD法等の化学気相蒸着法等により行うことができる。
(ii-1) 線状痕形成装置
図1(c)及び図3(a)〜図3(c)に示すような複数方向に配向する線状痕12は、プラスチックフィルム10B(10D)に形成した金属薄膜11A(11B)に、多数の高硬度の微粒子を表面に有し、軸線方向が異なる複数のパターンロールを摺接させる装置を用いて形成することができる。
線状痕の傾斜角及び交差角だけでなく、それらの深さ、幅、長さ及び間隔を決める運転条件としては、複合フィルムの走行速度、パターンロールの回転速度及び傾斜角θ2、複合フィルムの張力(押えロールの縦方向位置、パターンロールからの距離、及びパターンロールからの傾斜角θ3等により決まる。)等である。複合フィルムの走行速度は5〜200 m/分が好ましく、パターンロールの回転速度(周速)は10〜2,000 m/分が好ましい。傾斜角θ2は20°〜60°が好ましく、特に約45°が好ましい。複合フィルムの張力は0.05〜5kgf/cm幅が好ましい。
線状痕形成装置に使用するパターンロールは、特開2002-59487号に記載されているダイヤモンドロールが好ましい。線状痕の幅は微粒子の粒径により決まるので、ダイヤモンド微粒子の90%以上は1〜1,000μmの範囲内の粒径を有するのが好ましく、10〜200μmの範囲内の粒径がより好ましい。ダイヤモンド微粒子はロール面に50%以上の面積率で付着しているのが好ましい。
特許第2063411号等に記載の方法により金属薄膜11A(11B)に多数の微細穴13を形成することができる。例えば、鋭い角部を有するモース硬度5以上の多数の微粒子が表面に付着した第一ロール(上記線状痕形成用ロールと同じで良い)と、第一ロールに押圧された平滑な第二ロールとの間隙に、金属薄膜11A(11B)を第一ロールの側にして、複合フィルム1A(1B)を通過させる。微細穴13の平均開口径、平均面積率及び深さは、第一ロールの微粒子の粒径及び面積率並びに押圧力等により調整できる。
線状痕付き導電複合フィルム1A'(1B')を、打ち抜き等によりカットし、実質的に正方形状又は矩形状の導電複合フィルム片1a、及び/又は開口部15を有する導電複合フィルム1bを形成する。
透明接着層14を用いるか、融着することにより、導電複合フィルム片1a及び/又は導電複合フィルム1bを、プラスチックフィルム10aに積層する。
プラスチックフィルムを熱ラミネート法等で導電複合フィルム片1a及び/又は導電複合フィルム1bに接着することにより、プラスチック保護層10cを形成することができる。
上記積層工程を行い、必要に応じて保護層10cを設けた後、円錐状、球面状等の多数の突起を有するロール等を用いてエンボス加工する。
図2、7及び9に示すような、可視光透過性金属薄膜11a及び/又は11bがプラスチックフィルム10a上に直接設けられた可視光透過性電磁波吸収フィルムは、(a) プラスチックフィルム10aの少なくとも一面に、蒸着法により一様に金属薄膜11A(11B)を形成し、意図する金属薄膜11aの形状(正方形状もしくは矩形状)、及び/又は意図する金属薄膜11bの形状(例えば格子状)となるようにフォトレジストを塗布し、露光後エッチングした後、線状痕12を形成するか、(b) プラスチックフィルム10aにおいて金属薄膜11aを形成しない部分、及び/又は金属薄膜11bを形成しない部分(透光用開口部15を形成する部分)に、あらかじめフォトレジストを塗布し、露光後、蒸着法により金属薄膜11a及び/又は11bを形成し、フォトレジスト層を除去した後、線状痕12を形成する直接法により、形成できる。線状痕、微細穴、保護層の形成及びエンボス加工はいずれも上記と同じでよい。
本発明の可視光透過性を有する第一〜第三の電磁波吸収フィルムは、多数の断続的で不規則な線状痕により、種々の周波数を有する電磁波ノイズを吸収することができる。特に複数方向に(好ましくは直交するように)線状痕12が形成された電磁波吸収フィルムは、電磁波ノイズの吸収能に異方性が少なく、優れた電磁波ノイズの吸収能を有する。
(1) 構造
(a) 第一の可視光透過性電磁波吸収体
本発明の第一の可視光透過性電磁波吸収体は、複数枚の可視光透過性電磁波吸収フィルムを間に空間を設けて又は設けないで積層してなる。空間を設けないで積層する場合、必要に応じて接着してもよい。複数枚の可視光透過性電磁波吸収フィルムの組合せには、複数枚の第一の電磁波吸収フィルムからなる場合と、複数枚の第二の電磁波吸収フィルムからなる場合と、複数枚の第三の電磁波吸収フィルムからなる場合と、少なくとも1枚の第一の電磁波吸収フィルムと少なくとも1枚の第二の電磁波吸収フィルムの組合せからなる場合と、少なくとも1枚の第一の電磁波吸収フィルムと少なくとも1枚の第三の電磁波吸収フィルムの組合せからなる場合と、少なくとも1枚の第二の電磁波吸収フィルムと少なくとも1枚の第三の電磁波吸収フィルムの組合せからなる場合と、少なくとも1枚の第一の電磁波吸収フィルムと少なくとも1枚の第二の電磁波吸収フィルムと少なくとも1枚の第三の電磁波吸収フィルムの組合せからなる場合等がある。
本発明の第二の可視光透過性電磁波吸収体は、(i) 第一〜第三の電磁波吸収フィルムからなる群から選ばれた少なくとも一種と、(ii) 金属薄膜11aに線状痕を形成していない以外第一の電磁波吸収フィルムと同じである第一の線状痕非形成可視光透過性電磁波吸収フィルム、金属薄膜1bに線状痕を形成していない以外第二の電磁波吸収フィルムと同じである第二の線状痕非形成可視光透過性電磁波吸収フィルム、並びに金属薄膜11a及び11bに線状痕を形成していない以外第三の電磁波吸収フィルムと同じである第三の線状痕非形成可視光透過性電磁波吸収フィルムからなる群から選ばれた少なくとも一種とを、間に空間を設けて又は設けないで積層してなる。第一〜第三の線状痕非形成可視光透過性電磁波吸収フィルムの金属薄膜のシート抵抗は特に制限されない。
可視光透過性電磁波吸収フィルムは僅かながら電磁波ノイズを反射及び透過するが、反射及び透過した電磁波ノイズは別の可視光透過性電磁波吸収フィルム又は線状痕非形成可視光透過性電磁波吸収フィルムにより吸収されるので、本発明の第一及び第二の可視光透過性磁波吸収体は、極めて高い電磁波ノイズの吸収能を有する。
本発明の可視光透過性を有する第一〜第三の電磁波吸収フィルム並びに第一及び第二の電磁波吸収体は、携帯電話、パーソナルコンピュータ、テレビ等の電子機器や通信機器;RFIDシステム、無線LANシステム等の通信システムにおける電磁波ノイズの漏洩及び進入の防止や、情報の漏洩防止等に適しており、電子・通信機器の筺体、建築物の壁及び窓、透明パーティション等に配置することができる。特に建築物の窓、透明パーティション等に配置すると、可視光を遮断せずに電磁波吸収能を得ることができる。
(1) 複合フィルムの作製
厚さ12μmの二軸延伸PETフィルムの一面に、真空蒸着法により厚さ50 nmのアルミニウム層を形成し、複合フィルムを作製した。
図13に示す装置を用い、粒径の分布が50〜80μmのダイヤモンド微粒子を電着したパターンロール2a〜2dに、アルミニウム層をパターンロール2a〜2dの側にして複合フィルム1Bを摺接させ、運転条件(複合フィルムの走行速度、パターンロール2a〜2dの回転速度及び傾斜角θ2、フィルムの巻回角度θ1及び複合フィルムの張力)を適宜設定することにより、図3(b)に示す四方向に配向する線状痕を形成した。得られたフィルムの線状痕の幅は0.5〜5μmの範囲であり、線状痕の平均幅は2μmであり、線状痕の間隔は2〜10μmの範囲であり、線状痕の平均間隔は5μmであり、線状痕の平均長さは5mmであった。
表面抵抗を直流二端子法で測定した。図16に示すように、線状痕を形成した複合フィルムを15 cm×15 cmにカットした試験片の両端部に、4個ずつ銅電極(長さ3cm×幅1cm)6を配置し、対向する四対の電極6,6間の抵抗値を測定し、平均することにより、表面抵抗を求めた結果、377Ω/□であった。
線状痕を形成した複合フィルムを打ち抜き加工し、正方形状の開口部(一辺5cm)を多数有する導電複合フィルムを形成した。導電複合フィルムの両面に、二軸延伸PETフィルム(厚さ16μm)を融着させて、プラスチック保護層を有する以外図6(a)及び図6(b)に示すものと同じ第二の電磁波吸収フィルムを作製した。この電磁波吸収フィルムの金属薄膜の面積率は50%であった。
電磁波吸収フィルムの電磁波ノイズの吸収能を以下の方法により評価した。図17に示すように、発泡スチロール製サンプル台7と、送信アンテナ81と、受信アンテナ82と、アンテナ81,82を接続したネットワークアナライザ8とを有する装置を用い、ブランクとして、サンプル台7に載置したアルミニウム板(縦60 cm×横60 cm×厚さ5mm)に、3m離れたアンテナ81から、7度の入射角度θで1〜6GHzの電磁波を0.25 GHz間隔で照射し、アンテナ82で反射波を受信し、ネットワークアナライザ8により反射電力を測定した。サンプル台7に上記電磁波吸収フィルムの試験片S(縦60 cm×横60 cm)を載置し、ブランクと同様にして反射電力を測定した。ブランクの反射電力が入射電力と等しいと仮定し、反射係数RC(電磁波吸収フィルムについて測定した反射電力と入射電力との比)を求め、式:R(dB)=−20log(1/RC)に従い、反射減衰量R(dB)を求めた。結果を図18に示す。
厚さ16μmの二軸延伸PETフィルムの一面に、真空蒸着法により厚さ30 nmのニッケル層を形成し、複合フィルムを作製した。複合フィルムを打ち抜き加工し、正方形状の複合フィルム片(一辺12.5 cm。図1(a)〜図1(e)に示す複合フィルム片1a。)を多数形成した。複合フィルム片のシート抵抗は、両方の辺方向とも15Ω/□であった。各複合フィルム片が互いに絶縁した状態で配置されるように、各複合フィルム片を二枚の二軸延伸PETフィルム(厚さ16μm)で挟み、融着させて、線状痕を有さない以外図1(a)及び図5に示すものと同じである第一の線状痕非形成可視光透過性電磁波吸収フィルム(金属薄膜の合計面積率90%)を作製した。
厚さ16μmの二軸延伸PETフィルムの一面に、真空蒸着法により厚さ50 nmのニッケル層を形成し、複合フィルムを作製した。この複合フィルム(シート抵抗:10Ω/□)を用いた以外実施例2と同様にして第一の線状痕非形成可視光透過性電磁波吸収フィルム(金属薄膜の合計面積率90%)を作製した。
10a,10b,10c,10d・・・プラスチックフィルム
11a,11b・・・金属薄膜
12,12a,12a',12b,12b',12c,12’・・・線状痕
121・・・非導通部
122・・・高抵抗部
12A,12B・・・線状痕群
13・・・微細穴
14・・・透明接着層
15・・・透光用開口部
1A,1B・・・導電複合フィルム
1A',1B'・・・線状痕付きの導電複合フィルム
11A,11B・・・金属薄膜
10B,10D・・・プラスチックフィルム
2a,2b,2c,2d,32b,32c,33b,42・・・パターンロール
3a,3b,3c,3d,30b,43・・・押えロール
4a,4b,4c,4d,44a,44b・・・電気抵抗測定手段(ロール)
40・・・絶縁部
41・・・電極
5a,5b,35a・・・バックアップロール
21,24・・・リール
22,23・・・ガイドロール
Claims (13)
- プラスチックフィルムと、その少なくとも一面に互いに絶縁した状態で多数配置した実質的に矩形状又は正方形状の可視光透過性金属薄膜とを有する可視光透過性電磁波吸収フィルムであって、前記金属薄膜に多数の実質的に平行で断続的な線状痕が少なくとも一方向に不規則に形成されており、かつ前記金属薄膜の少なくとも一方の辺方向における電気抵抗が377±250Ωであることを特徴とする可視光透過性電磁波吸収フィルム。
- 請求項1に記載の可視光透過性電磁波吸収フィルムにおいて、前記金属薄膜がアルミニウム、ニッケル又はこれらの合金からなることを特徴とする可視光透過性電磁波吸収フィルム。
- プラスチックフィルムと、その少なくとも一面に設けた、多数の透光用開口部を有する可視光透過性金属薄膜とを有する可視光透過性電磁波吸収フィルムであって、前記金属薄膜に多数の実質的に平行で断続的な線状痕が少なくとも一方向に不規則に形成されていることを特徴とする可視光透過性電磁波吸収フィルム。
- 請求項3に記載の可視光透過性電磁波吸収フィルムにおいて、前記金属薄膜がアルミニウム、ニッケル又はこれらの合金からなることを特徴とする可視光透過性電磁波吸収フィルム。
- (1) プラスチックフィルムと、(2) 前記プラスチックフィルムの少なくとも一面に設けた、多数の開口部を有する可視光透過性金属薄膜と、(3) 前記プラスチックフィルムの少なくとも一面において、前記金属薄膜の各開口部の中に位置し、かつ絶縁された状態となるように配置した実質的に矩形状又は正方形状の可視光透過性金属薄膜とを有する可視光透過性電磁波吸収フィルムであって、前記開口部を有する金属薄膜及び前記矩形状又は正方形状の金属薄膜の少なくとも一方に多数の実質的に平行で断続的な線状痕が少なくとも一方向に不規則に形成されており、前記矩形状又は正方形状の金属薄膜の少なくとも一方の辺方向における電気抵抗が377±250Ωであることを特徴とする可視光透過性電磁波吸収フィルム。
- 請求項5に記載の可視光透過性電磁波吸収フィルムにおいて、前記開口部を有する金属薄膜及び前記矩形状又は正方形状の金属薄膜が、それぞれ独立にアルミニウム、ニッケル又はこれらの合金からなることを特徴とする可視光透過性電磁波吸収フィルム。
- 請求項1〜6のいずれかに記載の可視光透過性電磁波吸収フィルムにおいて、前記線状痕は1〜100μmの平均幅及び1〜100μmの平均間隔を有し、前記線状痕の90%以上が0.1〜1,000μmの範囲内の幅を有することを特徴とする可視光透過性電磁波吸収フィルム。
- 請求項1〜7のいずれかに記載の複数枚の可視光透過性電磁波吸収フィルムを間に空間を設けて又は設けないで積層してなることを特徴とする可視光透過性電磁波吸収体。
- 請求項8に記載の可視光透過性電磁波吸収体において、少なくとも一枚の請求項1に記載の可視光透過性電磁波吸収フィルム(a)と、少なくとも一枚の請求項3に記載の可視光透過性電磁波吸収フィルム(b)とからなり、前記電磁波吸収フィルム(a)の金属薄膜が磁性金属からなり、前記電磁波吸収フィルム(b)の金属薄膜が非磁性金属からなることを特徴とする可視光透過性電磁波吸収体。
- (1) 請求項1〜7のいずれかに記載の可視光透過性電磁波吸収フィルムからなる群から選ばれた少なくとも一種と、(2) (i) 前記金属薄膜に前記線状痕を形成していない以外請求項1又は2に記載の可視光透過性電磁波吸収フィルムと同じである第一の線状痕非形成可視光透過性電磁波吸収フィルム、(ii) 前記金属薄膜に線状痕を形成していない以外請求項3又は4に記載の可視光透過性電磁波吸収フィルムと同じである第二の線状痕非形成可視光透過性電磁波吸収フィルム、並びに(iii) 前記開口部を有する金属薄膜及び前記矩形状又は正方形状の金属薄膜に線状痕を形成していない以外請求項5又は6に記載の可視光透過性電磁波吸収フィルムと同じである第三の線状痕非形成可視光透過性電磁波吸収フィルムからなる群から選ばれた少なくとも一種とを、間に空間を設けて又は設けないで積層してなることを特徴とする可視光透過性電磁波吸収体。
- 請求項10に記載の可視光透過性電磁波吸収体において、少なくとも一枚の請求項3に記載の可視光透過性電磁波吸収フィルム(b)と、少なくとも一枚の前記第一の線状痕非形成可視光透過性電磁波吸収フィルム(c)とからなり、前記電磁波吸収フィルム(b)の金属薄膜が非磁性金属からなり、前記電磁波吸収フィルム(c)の金属薄膜が磁性金属からなることを特徴とする可視光透過性電磁波吸収体。
- 請求項9又は11に記載の可視光透過性電磁波吸収体において、前記磁性金属がニッケルであり、前記非磁性金属がアルミニウムであることを特徴とする可視光透過性電磁波吸収体。
- 請求項8〜12のいずれかに記載の可視光透過性電磁波吸収体において、前記線状痕は1〜100μmの平均幅及び1〜100μmの平均間隔を有し、前記線状痕の90%以上が0.1〜1,000μmの範囲内の幅を有することを特徴とする可視光透過性電磁波吸収体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135336A JP5214541B2 (ja) | 2009-06-04 | 2009-06-04 | 可視光透過性電磁波吸収フィルム及びそれを用いた可視光透過性電磁波吸収体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135336A JP5214541B2 (ja) | 2009-06-04 | 2009-06-04 | 可視光透過性電磁波吸収フィルム及びそれを用いた可視光透過性電磁波吸収体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010283154A true JP2010283154A (ja) | 2010-12-16 |
JP5214541B2 JP5214541B2 (ja) | 2013-06-19 |
Family
ID=43539646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009135336A Expired - Fee Related JP5214541B2 (ja) | 2009-06-04 | 2009-06-04 | 可視光透過性電磁波吸収フィルム及びそれを用いた可視光透過性電磁波吸収体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5214541B2 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013084864A (ja) * | 2011-10-12 | 2013-05-09 | Seiji Kagawa | 電磁波吸収フレキシブル回路基板及びそれに用いる電磁波吸収フレキシブル基板シート |
WO2013081043A1 (ja) * | 2011-11-30 | 2013-06-06 | Kagawa Seiji | 複合電磁波吸収シート |
JP2013175691A (ja) * | 2012-02-27 | 2013-09-05 | Seiji Kagawa | 電磁波吸収筐体 |
CN106413363A (zh) * | 2015-07-28 | 2017-02-15 | 哈尔滨工业大学 | 具有石墨烯夹层和双外吸收层的双层金属网栅强电磁屏蔽光窗 |
KR20180128351A (ko) * | 2017-05-23 | 2018-12-03 | 세이지 까가와 | 전자기파 흡수 필터 |
CN114142246A (zh) * | 2021-11-24 | 2022-03-04 | 中国人民解放军空军工程大学 | 一种基于渐变阻抗的宽频大角度超材料吸波体及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02198200A (ja) * | 1989-01-27 | 1990-08-06 | Taisei Corp | 電磁シールド材 |
JPH09148782A (ja) * | 1995-11-27 | 1997-06-06 | Nippon Paint Co Ltd | 透明電磁波吸収シールド材 |
JP2002033592A (ja) * | 2000-07-14 | 2002-01-31 | Murata Mfg Co Ltd | 電磁波遮断構造体 |
JP2003078276A (ja) * | 2001-08-30 | 2003-03-14 | Toppan Printing Co Ltd | 電波吸収体 |
JP2008004797A (ja) * | 2006-06-23 | 2008-01-10 | Konica Minolta Holdings Inc | 電磁波遮蔽材料の製造方法、電磁波遮蔽材料、プラズマディスプレイパネル及び周波数選択性電磁波シールド材料 |
JP2009302331A (ja) * | 2008-06-13 | 2009-12-24 | Asahi Glass Co Ltd | 電磁波吸収体 |
-
2009
- 2009-06-04 JP JP2009135336A patent/JP5214541B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02198200A (ja) * | 1989-01-27 | 1990-08-06 | Taisei Corp | 電磁シールド材 |
JPH09148782A (ja) * | 1995-11-27 | 1997-06-06 | Nippon Paint Co Ltd | 透明電磁波吸収シールド材 |
JP2002033592A (ja) * | 2000-07-14 | 2002-01-31 | Murata Mfg Co Ltd | 電磁波遮断構造体 |
JP2003078276A (ja) * | 2001-08-30 | 2003-03-14 | Toppan Printing Co Ltd | 電波吸収体 |
JP2008004797A (ja) * | 2006-06-23 | 2008-01-10 | Konica Minolta Holdings Inc | 電磁波遮蔽材料の製造方法、電磁波遮蔽材料、プラズマディスプレイパネル及び周波数選択性電磁波シールド材料 |
JP2009302331A (ja) * | 2008-06-13 | 2009-12-24 | Asahi Glass Co Ltd | 電磁波吸収体 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013084864A (ja) * | 2011-10-12 | 2013-05-09 | Seiji Kagawa | 電磁波吸収フレキシブル回路基板及びそれに用いる電磁波吸収フレキシブル基板シート |
WO2013081043A1 (ja) * | 2011-11-30 | 2013-06-06 | Kagawa Seiji | 複合電磁波吸収シート |
JPWO2013081043A1 (ja) * | 2011-11-30 | 2015-04-27 | 加川 清二 | 複合電磁波吸収シート |
US9894817B2 (en) | 2011-11-30 | 2018-02-13 | Seiji Kagawa | Composite electromagnetic-wave-absorbing sheet |
JP2013175691A (ja) * | 2012-02-27 | 2013-09-05 | Seiji Kagawa | 電磁波吸収筐体 |
CN106413363B (zh) * | 2015-07-28 | 2021-03-26 | 哈尔滨工业大学 | 具有石墨烯夹层和双外吸收层的双层网栅强电磁屏蔽光窗 |
CN106413363A (zh) * | 2015-07-28 | 2017-02-15 | 哈尔滨工业大学 | 具有石墨烯夹层和双外吸收层的双层金属网栅强电磁屏蔽光窗 |
KR20180128351A (ko) * | 2017-05-23 | 2018-12-03 | 세이지 까가와 | 전자기파 흡수 필터 |
KR102069556B1 (ko) * | 2017-05-23 | 2020-01-23 | 세이지 까가와 | 전자기파 흡수 필터 |
CN108932997B (zh) * | 2017-05-23 | 2020-07-17 | 加川清二 | 电磁波吸收滤波器 |
CN108932997A (zh) * | 2017-05-23 | 2018-12-04 | 加川清二 | 电磁波吸收滤波器 |
CN114142246A (zh) * | 2021-11-24 | 2022-03-04 | 中国人民解放军空军工程大学 | 一种基于渐变阻抗的宽频大角度超材料吸波体及制备方法 |
CN114142246B (zh) * | 2021-11-24 | 2023-06-23 | 中国人民解放军空军工程大学 | 一种基于渐变阻抗的宽频大角度超材料吸波体及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5214541B2 (ja) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4685977B2 (ja) | 線状痕付き金属薄膜−プラスチック複合フィルム及びその製造装置 | |
JP5542139B2 (ja) | 複合電磁波吸収フィルム | |
TWI439224B (zh) | 電磁波吸收膜及使用此電磁波吸收膜之電磁波吸收體 | |
JP5214541B2 (ja) | 可視光透過性電磁波吸収フィルム及びそれを用いた可視光透過性電磁波吸収体 | |
JP5302287B2 (ja) | 電磁波吸収体 | |
JP5203295B2 (ja) | 電磁波吸収フィルム | |
JP5107394B2 (ja) | 電磁波吸収体及びそれを用いた内装材 | |
TW202410554A (zh) | 近場電磁波吸收器 | |
JP5186535B2 (ja) | 透明電磁波吸収フィルム | |
JP7423172B1 (ja) | 電磁波吸収フィルム及びその製造装置、並びにかかる電磁波吸収フィルムを有する近傍界電磁波吸収体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5214541 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |