JP2010265812A - 熱交換装置 - Google Patents

熱交換装置 Download PDF

Info

Publication number
JP2010265812A
JP2010265812A JP2009117711A JP2009117711A JP2010265812A JP 2010265812 A JP2010265812 A JP 2010265812A JP 2009117711 A JP2009117711 A JP 2009117711A JP 2009117711 A JP2009117711 A JP 2009117711A JP 2010265812 A JP2010265812 A JP 2010265812A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage agent
flow path
hydraulic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117711A
Other languages
English (en)
Inventor
Tatsuji Azuma
龍次 東
Tomoaki Suzuki
友暁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2009117711A priority Critical patent/JP2010265812A/ja
Publication of JP2010265812A publication Critical patent/JP2010265812A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】エンジンから発生する発生熱を利用する化学蓄熱装置を備え、当該化学蓄熱装置との間で熱交換される流体が流通する熱交換部を備えた熱交換装置において、化学蓄熱装置から発生する熱の効率的な利用を図る。
【解決手段】蓄熱剤を収容する蓄熱剤容器を備えると共に、蓄熱剤容器内の蓄熱剤との間で熱伝導可能に構成された伝熱流路と、伝熱流路よりも熱伝導性が低く構成された断熱流路と、の二つの流路を、発生熱により熱せられた熱源流体の供給路に連通させて備え、熱源流体が流通する流路を、断熱流路と伝熱流路との間で切り替える切替機構を備えた熱交換装置。
【選択図】図8

Description

本発明は、蓄熱剤と作動液との反応により発熱すると共に、エンジンから発生する発生熱を利用し、当該発生熱を吸熱して蓄熱剤と作動液とに解離する可逆反応に伴って蓄熱及び発熱を行う化学蓄熱装置と、化学蓄熱装置との間で熱交換される流体が流通する熱交換部と、を備えた熱交換装置に関する。
車両が備えるエンジンや自動変速装置等の内部には、各機械要素間を潤滑して磨耗を抑制する等の目的で潤滑油(エンジンオイルやATF等)が封入されている。これらの潤滑油は、低温状態では比較的粘度が高いためフリクションが大きくなる。一方、エンジンの暖機後はエンジンから発生する熱を熱源として潤滑油が暖められ、粘度が低下してフリクションは小さくなる。フリクションが大きい状態では燃費が悪くなるので、車両の燃費向上の観点からは、これらの潤滑油を短時間で暖めて早期に低粘度化させることが好ましい。そこで、例えば潤滑油としてのエンジンオイルを短時間で暖めるための方法として、エンジンを冷却するためのエンジン冷却水を短時間で暖めることにより、間接的にエンジンの暖機を促進することが一例として挙げられる。なお、エンジン冷却水を短時間で暖めることにより、低温時に早期に車内の暖房を行なうことができるという利点もある。
エンジン冷却水を比較的短時間で暖めることを可能とする技術として、蓄熱剤としての吸着剤の水和により発熱すると共に、エンジンから発生する発生熱を利用し、当該発生熱を吸熱して脱水する可逆反応に伴って蓄熱及び発熱を行う化学蓄熱装置を備え、エンジン冷却水と化学蓄熱装置との間での熱交換によりエンジン冷却水を加熱する技術が特許文献1に記載されている。すなわち、エンジンが始動した直後の冷間時には、化学蓄熱装置において吸着剤に水を供給して発熱させ、生じた熱をエンジン冷却水に供給することにより、エンジン冷却水を加熱して比較的短時間で暖めることが可能とされている。また、エンジンが十分に暖機された後は、十分に昇温されたエンジン冷却水の熱及びエンジンから排出される排ガスの熱を熱源として蓄熱剤を脱水させて蓄熱し、次回のエンジン始動時におけるエンジン冷却水の加熱のために備えられる。よって、化学蓄熱装置の発熱によるエンジンの暖機促進と、当該暖機後のエンジンから発生する熱を利用した蓄熱とを繰り返すことにより、長期的に見て有効に車両の燃費向上を図ることができる。また、冬季等、外気が低温の場合に、比較的早期に車内の暖房を行なうことができる。
特開2004−092585号公報
この特許文献1に記載された熱交換装置では、化学蓄熱装置における熱源の一つとしてエンジンから排出される排ガスの熱を利用しており、当該排ガスが通過する1本の排気管が化学蓄熱装置の蓄熱剤容器を貫通する構成となっている。そして、エンジンの駆動中は、排ガスが当該1本の排気管内を通って常に排出されている。なお、特許文献1には明示的には記載されていないが、蓄熱時に排ガスの熱を水和した状態の吸着剤に適切に伝達可能とするため、当然、排気管は伝熱性の高い材料で構成される。
ところで、エンジンが始動した直後の冷間時には、排ガスの温度も比較的低温のままである。そのため、特許文献1に記載された熱交換装置では、エンジン冷却水を加熱するために化学蓄熱装置で発熱させたとしても、当該発生した熱の一部が排気管を介して低温状態の排ガスにも伝達されてしまう。よって、エンジン冷却水を早期に加温するという観点からは、化学蓄熱装置において発生した熱を有効利用できていない状況が生じていた。
本発明は、上記の課題に鑑みてなされたものであり、エンジンから発生する発生熱、特にエンジンから排出される排ガスの熱を熱源として利用する化学蓄熱装置を備えると共に、当該化学蓄熱装置との間で熱交換される流体が流通する熱交換部を備えた熱交換装置において、化学蓄熱装置から発生する熱の効率的な利用を図ることを目的とする。
この目的を達成するための、本発明に係る蓄熱剤と作動液との反応により発熱すると共に、エンジンから発生する発生熱を利用し、当該発生熱を吸熱して前記蓄熱剤と前記作動液とに解離する可逆反応に伴って蓄熱及び発熱を行う化学蓄熱装置と、前記化学蓄熱装置との間で熱交換される流体が流通する熱交換部と、を備えた熱交換装置の特徴構成は、前記蓄熱剤を収容する蓄熱剤容器を備えると共に、前記蓄熱剤容器内の前記蓄熱剤との間で熱伝導可能に構成された伝熱流路と、前記伝熱流路よりも熱伝導性が低く構成された断熱流路と、の二つの流路を、前記発生熱により熱せられた熱源流体の供給路に連通させて備え、前記熱源流体が流通する流路を、前記断熱流路と前記伝熱流路との間で切り替える切替機構を備えた点にある。
上記の特徴構成によれば、熱源流体を断熱流路を流通させることで、熱源流体と蓄熱剤容器内の蓄熱剤との間の熱伝導を抑制することができる。一方、熱源流体を伝熱流路を流通させることで、熱源流体が有する熱を適切に蓄熱剤容器内の蓄熱剤に伝達することができる。そして、切替機構により、熱源流体と蓄熱剤容器内の蓄熱剤との間の熱伝導及び熱遮断の必要性に応じて、熱源流体が流通する流路を断熱流路と伝熱流路との間で適宜切り替えることができる。すなわち、例えば化学蓄熱装置から発生する熱の一部が熱源流体に伝達され得るような状況では、熱源流体が流通する流路を断熱流路に切り替えることができる。従って、そのような状況において熱源流体への熱伝導を抑制することができるので、化学蓄熱装置から発生する熱の効率的な利用を図ることができる。
ここで、前記切替機構は、前記熱源流体の温度と前記蓄熱剤の温度とに基づいて、前記熱源流体が流通する流路を前記断熱流路と前記伝熱流路との間で切り替える構成とすると好適である。
熱源流体と蓄熱剤容器内の蓄熱剤との間の熱伝導の方向性は、熱源流体の温度と蓄熱剤の温度との大小関係に基づいて定まる。よって、この構成によれば、熱源流体と蓄熱剤容器内の蓄熱剤との間の熱伝導を抑制すべき状況を適切に判定することができる。従って、化学蓄熱装置から発生する熱の効率的な利用を適切に図ることができる。
また、前記熱源流体の温度が前記蓄熱剤の温度未満の場合には、前記切替機構は、前記熱源流体が流通する流路を前記断熱流路とし、前記熱源流体の温度が前記蓄熱剤の温度以上の場合には、前記切替機構は、前記熱源流体が流通する流路を前記伝熱流路とする構成とすると好適である。
この構成によれば、熱源流体の温度が蓄熱剤の温度未満である場合、すなわち通常であれば化学蓄熱装置において発熱した熱が熱源流体側に伝達され得る状況となる場合には、切替機構により断熱流路が選択されるので、化学蓄熱装置において発熱して生じた熱が熱源流体に伝達されるのを抑制することができる。よって、生じた熱のうちのより多くの熱を熱交換部を介して流体に伝達することができる。
一方、熱源流体の温度が蓄熱剤の温度以上である場合、すなわち熱源流体の熱が蓄熱剤側に伝達され得る状況となる場合には、切替機構により伝熱流路が選択されるので、化学蓄熱装置において発熱して生じた熱に加えて、熱源流体の熱をも熱交換部を介して流体に伝達することができる。また、蓄熱時には熱源流体の熱を適切に蓄熱剤に伝達して、蓄熱剤と作動液とに解離させる反応を適切に進行させることができる。
従って、熱源流体と蓄熱剤容器内の蓄熱剤との間の熱伝導を行わせるべき状況か、抑制すべき状況かに応じて、化学蓄熱装置から発生する熱及び熱源流体の熱を効率的に利用することができる。
また、前記蓄熱剤の温度が、前記化学蓄熱装置における蓄熱が略完了したことを表す蓄熱完了温度以上の場合には、前記切替機構は、前記熱源流体の温度と前記蓄熱剤の温度との大小関係によらずに前記熱源流体が流通する流路を前記断熱流路とする構成とすると好適である。
この構成によれば、蓄熱剤の温度が蓄熱完了温度以上の場合には、化学蓄熱装置における蓄熱が略完了しているとみなすことができるので、熱源流体が流通する流路を断熱流路とすることで、化学蓄熱装置内における熱源流体からの不要な熱伝導を抑制して、例えば作動液容器内の作動液の凝縮・液化を妨げる等の不都合が生じるのを抑制することができる。
また、前記伝熱流路は、前記蓄熱剤容器を貫通すると共に、熱伝導性を有する伝熱壁により前記蓄熱剤容器内の前記蓄熱剤に対して区画された流路であり、前記断熱流路は、前記蓄熱剤容器を貫通すると共に、前記伝熱壁よりも熱伝導性の低い断熱壁により前記蓄熱剤容器内の前記蓄熱剤に対して区画された流路であり、前記伝熱流路が、前記断熱流路の周囲に当該断熱流路から所定間隔を空けて配置されている構成とすると好適である。
この構成によれば、伝導性を有する伝熱壁により伝熱流路を適切に構成することができると共に、伝熱壁よりも熱伝導性の低い断熱壁により断熱流路を適切に構成することができる。また、伝熱流路と断熱流路との配置関係を、断熱流路の周囲に当該断熱流路から所定間隔を空けて伝熱流路を配置する構成とすることで、蓄熱剤容器内に伝熱流路を構成する伝熱壁と蓄熱剤との接触面積を大きく確保することができる。従って、熱源流体と蓄熱剤との間の熱伝導を効率良く行なわせることができる。
また、前記断熱流路、前記伝熱流路及び前記蓄熱剤容器は、いずれも略円筒状の部材からなると共に、前記伝熱流路及び前記蓄熱剤容器が前記断熱流路の中心軸に対して同心状に配置されている構成とすると好適である。
この構成によれば、同心状に配置される断熱流路、伝熱流路、及び蓄熱剤容器のうち中心部に配置されるものを断熱流路とすることで、断熱流路を構成する断熱壁と蓄熱剤との接触面積を比較的小さく抑えることができる。よって、熱源流体と蓄熱剤との間の熱伝導を効果的に抑制することができる。また、伝熱流路及び蓄熱剤容器を断熱流路の中心軸に対して同心状に配置することで、蓄熱剤容器内の蓄熱剤と伝熱流路を流通する熱源流体との間の熱伝導を、蓄熱剤容器内において略均等に行なわせることができる。よって、蓄熱時に蓄熱剤と作動液とに解離させる反応を効率良く行なわせることができる。
また、前記作動液を収容する作動液容器を、その内部空間と前記蓄熱剤容器の内部空間とが密封空間を形成する状態で備え、前記作動液容器と前記蓄熱剤容器とを連通し、前記作動液容器内の前記作動液を前記蓄熱剤容器へ供給するための供給口と、前記蓄熱剤容器と作動液容器とを連通し、前記発生熱により前記蓄熱剤から解離して気化した状態の前記作動液を前記作動液容器へ戻すための排出口と、を備える構成とすると好適である。
この構成によれば、蓄熱時に蓄熱剤から解離して気化した状態の作動液を、排出口を介して作動液容器内に適切に回収することができる。また、作動液容器の内部空間と蓄熱剤容器の内部空間とが密閉空間を形成すると共に、供給口及び連通口を介して互いに連通するので、化学蓄熱装置において蓄熱又は発熱することが要求される状況に応じて、作動液容器内の空間及び蓄熱剤容器内の空間に作動液を適切に循環させることができる。つまり、熱源流体の熱を利用した蓄熱と、化学蓄熱装置における発熱により発生した熱を利用した流体の加熱と、を順次繰り返すサイクルを適切に形成することができる。
従って、例えば熱交換部を流通する流体を、エンジンを冷却するためのエンジン冷却水とした場合には、化学蓄熱装置の発熱によるエンジン冷却水及びそれに伴うエンジンの暖機促進と、当該暖機後のエンジンから発生する熱を利用した蓄熱とを繰り返すことにより、長期的に見て有効に車両の燃費向上を図ることができる。
また、前記作動液を収容する作動液容器から前記蓄熱剤容器へ前記作動液を供給するための供給管の開閉状態を切り替える弁機構を備え、前記弁機構は、前記流体の温度と前記作動液容器内に収容された前記作動液の容量とに基づいて、前記供給管の開閉状態を切り替える構成とすると好適である。
作動液容器から蓄熱剤容器内へ作動液を供給して、蓄熱剤と作動液との反応による発熱反応を進行させる必要性の程度は、主に流体の温度に基づいて定まる。また、発熱反応の進行に伴う発熱量は、新たに蓄熱剤容器に供給される作動液の液量、すなわち作動液容器内に収容された作動液の容量に基づいて予測される。よって、この構成によれば、予測される発熱量と発熱反応を進行させる必要性の程度とを勘案して、弁機構により供給間の状態を開閉いずれの状態とするかを適切に判定することができる。
また、前記流体の温度が、加温が必要とされる所定の冷間温度未満であって、且つ、前記蓄熱剤から解離して前記作動液容器内に収容された前記作動液の容量が所定量以上である場合には、前記弁機構は前記作動液の前記蓄熱剤容器への供給を完了するまで前記供給管を開状態とし、それ以外の場合には、前記弁機構は前記供給管を閉状態とする構成とすると好適である。
流体の温度が冷間温度未満の場合には、蓄熱剤と作動液との反応による発熱反応を進行させる必要性が高い状況であると言える。また、作動液容器内に収容された作動液の容量が所定量以上である場合には、当該所定量を適切に設定することにより発熱反応の進行に伴う発熱量が十分に大きくなると予測することができる。よってそのような場合には供給管を開状態として作動液の全量を蓄熱剤容器へ供給することにより、発熱反応を進行させて流体を効率的に加熱することができる。
一方、流体の温度が冷間温度以上の場合には、蓄熱剤と作動液との反応による発熱反応を進行させる必要性がそれほど高くない状況であると言える。また、流体の温度が冷間温度未満であったとしても、作動液容器内に収容された作動液の容量が所定量未満である場合には、その時点における作動液容器内の作動液の全量を蓄熱剤容器へ供給したとしても十分な発熱量を得ることができないような状況も生じ得る。よってそのような場合には供給管を閉状態とすることにより、蓄熱のための準備を適切に行なうことができる。これにより、次回の蓄熱を早期に完了させることができる。
また、前記流体の温度が、前記冷間温度以上であって、且つ、前記作動液の容量が前記所定量以上である場合には、前記切替機構は、前記蓄熱剤の温度及び前記熱源流体の温度によらずに前記熱源流体が流通する流路を前記断熱流路とする構成とすると好適である。
この構成によれば、所定量の設定値を適切な値とすることにより、流体の温度が冷間温度以上であって、且つ、作動液の容量が所定量以上である場合には、流体が既に十分に暖まっており、しかも、化学蓄熱装置における蓄熱量も十分量であるとみなすことができるので、そのような場合には熱源流体が流通する流路を断熱流路として、化学蓄熱装置内における熱源流体からの不要な熱伝導を抑制することができる。
本発明の実施形態に係る熱交換装置の全体像を示す模式図である。 ケミカルヒートポンプの作動原理を示す模式図である。 化学蓄熱装置の全体構成を示す分解斜視図である。 化学蓄熱装置の構成を示す、排気管の長手方向に直交する面の断面図である。 流路切替機構の構成を示す、排気管の中心軸を通る鉛直面の断面図である。 冷却機構の構成を示す斜視図である。 供給弁の開閉制御処理の処理手順を示すフローチャートである。 流路切替機構の切替制御処理の処理手順を示すフローチャートである。
本発明に係る熱交換装置の実施形態について、図面を参照して説明する。本実施形態に係る熱交換装置1は、化学蓄熱装置4と、当該化学蓄熱装置4との間で熱交換される流体が流通する熱交換管31と、を備えている。本実施形態では、化学蓄熱装置4は蓄熱時にはエンジン2から排出される排ガスの熱を熱源として利用する構成とされると共に、発熱時には発熱により生じた熱を熱交換管31を流通するエンジン冷却水に伝達して加熱することが可能な構成となっている。本実施形態に係る熱交換装置1は、上記のような構成において、蓄熱剤を収容する蓄熱剤容器11を備えると共に、熱伝導性を有する伝熱流路と、伝熱流路よりも熱伝導性の低い断熱流路と、の二つの流路を、エンジン2からの排ガスが流通する排気管3に連通させて備え、当該排ガスが流通する流路を、断熱流路と伝熱流路との間で切り替える切替機構を備えた点に特徴を有する。これにより、化学蓄熱装置4から発生する熱の効率的な利用を図ることが可能とされている。以下では、本実施形態に係る熱交換装置1の各部の構成について詳細に説明する。
1.熱交換装置の全体構成
まず、熱交換装置1の全体構成について説明する。図1に示すように、本実施形態に係る熱交換装置1は、エンジン2と、エンジン2からの排ガスを排出するための排気管3と、エンジン2を冷却するためのエンジン冷却水が流通する冷却回路6と、を備えた車両に搭載されており、排気管3に沿って配置された化学蓄熱装置4を主要な構成として備えている。冷却回路6の一部を構成する熱交換管31は、化学蓄熱装置4の内部を貫通している。
エンジン2は、燃料の燃焼により駆動される内燃機関である。エンジン2は、車両の駆動力源として用いられる。このようなエンジン2としては、例えば、ガソリンエンジン、ディーゼルエンジン、ガスタービンエンジン等の公知の各種エンジンを用いることができる。燃焼後の排ガスは、エンジン2から排気管3を介して排出される。なお、エンジン2から排出された直後の排ガスは、エンジン1での燃料の燃焼により発生する発生熱(燃焼熱)により熱せられており、その温度は600〜700℃程度である。
排気管3には、三元触媒5が設けられている。三元触媒5は、アルミナ等の無機担体に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属成分を担持してなる触媒である。三元触媒5は、排ガス中に含まれる窒素酸化物(NOx)を還元除去すると共に、一酸化炭素(CO)、炭化水素(HC)、臭気成分等を酸化除去する。このような三元触媒5は、触媒活性を高く維持させるべく、排気管3を流通する排ガスの温度が例えば500〜550℃となる位置に配置されている。また、排気管3には、排ガス温度センサSe3が設けられている。排ガス温度センサSe3により検出される排ガスの温度は、制御部7へ出力される。
冷却回路6は、エンジン2を冷却するためのエンジン冷却水を循環させる回路である。冷却回路6には、冷却水ポンプ61と、ラジエータ62と、切替弁63と、熱交換管31と、が設けられている。冷却水ポンプ61は、エンジン冷却水の吸入と吐出とを繰り返すことで、冷却回路6にエンジン冷却水を循環させる。通常走行時、エンジン冷却水はエンジン2のジャケットを通過する際にエンジン2の排熱を奪って自身は高温となり、ラジエータ62で外気に対して放熱して冷却される。その後、エンジン冷却水は熱交換管31内を流通して再度冷却水ポンプ61に戻される。以上の動作を繰り返すことにより、エンジン冷却水はエンジン2が所定の定常温度を維持するようにエンジン2を冷却する。なお、エンジン冷却水の温度は、冷却水温度センサSe1により検出され、制御部7へ出力される。
なお、エンジン2の始動直後等、エンジン2の暖機が不十分な状態で、切替弁63はエンジン冷却水が第一バイパス路64を流通するように流路を切り替える。このように、エンジン冷却水をラジエータ62を迂回させて一時的にエンジン冷却水からの放熱を行わないようにすることで、エンジン冷却水の温度上昇を促進させる。これは、以下の理由による。すなわち、エンジン2の始動直後等、エンジン2の暖機が不十分でその内部に封入されたエンジンオイルの温度が低い状態では、当該エンジンオイルの粘度が比較的高いためフリクションも大きく車両の燃費はあまり良くない。そのため、エンジン冷却水を短時間で暖めることで間接的にエンジン2及びその内部のエンジンオイルをも短時間で暖め、エンジンオイルを早期に低粘度化させることにより、車両の燃費向上を図るのである。なお、化学蓄熱装置4における後述する蓄熱時には、切替弁63はエンジン冷却水が第二バイパス路65を流通するように流路を切り替える。これにより、排ガスからの熱がエンジン冷却水に不要に伝達されるのを防止することができる。
エンジン冷却水の温度上昇を促進するための機構として、更に本実施形態に係る熱交換装置1は化学蓄熱装置4を備えている。化学蓄熱装置4は、排気管3に沿って三元触媒5に対して下流側に隣接して配置されている。化学蓄熱装置4は、その内部に蓄熱剤と作動液とを分離及び混合可能に備えており、蓄熱剤と作動液とが混合された状態でこれらの化学反応によって発熱する。冷却回路6の一部を構成する熱交換管31は、化学蓄熱装置4の内部を貫通しているので、エンジン2の始動直後等、エンジン2の暖機が不十分な場合には化学蓄熱装置4において発熱反応を起こさせることで、発生した熱を熱交換管31を介して積極的にエンジン冷却水に伝達させてエンジン冷却水の温度上昇を促進する。本実施形態においては、エンジン冷却水が本発明における「流体」に相当する。以下では、化学蓄熱装置4の概要及び構成について詳細に説明する。
2.化学蓄熱装置の概要
まず、化学蓄熱装置4の概要について説明する。化学蓄熱装置4は、蓄熱剤と作動液との反応により発熱すると共に、エンジン2から発生する発生熱を利用し、当該発生熱を吸熱して蓄熱剤と作動液とに解離する可逆反応に伴って蓄熱及び発熱を行う装置である。つまり、この化学蓄熱装置4は、所謂ケミカルヒートポンプとして、蓄熱剤と作動液との間の可逆的な化学変化に伴い、エンジン2から発生する発生熱を汲み上げて化学エネルギーの形態で蓄熱すると共に、必要に応じて蓄熱された熱を放熱させて熱の有効利用を図ることができるように構成されている。
ここで、本実施形態においては、作動液は水(H2O)とされている。従って、蓄熱剤としては、水和する際に発熱し、水と解離(脱水)する際に吸熱する物質が用いられる。更に、本実施形態においては、蓄熱剤には、水和した状態で液体となり、水と解離(脱水)した状態で固体となる物質が採用されている。特に、水と解離(脱水)した状態で粉体となる物質を採用すると好適である。なお、「粉体」は、粉状の物質以外にも、粒状の物質や、当該粉状又は粒状の物質が集合してできる集合体をも含む概念として用いている。このような蓄熱剤としては、例えば、塩化カルシウム(CaCl2)、臭化カルシウム(BrCl2)、塩化リチウム(LiCl)、臭化リチウム(LiBr)等を好適に利用することができる。本例では、塩化カルシウム(CaCl2)を蓄熱剤として用いる場合を例として説明する。
図2は、ケミカルヒートポンプの作動原理を示す模式図である。(a)は発熱時の作動状態を示す模式図であり、(b)は蓄熱時の作動状態を示す模式図である。図2(a)に示すように、発熱時には、作動液容器21内に収容された作動液としての水(H2O)が、蓄熱剤容器11内に収容された蓄熱剤としての塩化カルシウム(CaCl2)に、供給管23を介して供給される。このとき、(式1)に示すように、塩化カルシウム(CaCl2)が水和して発熱する。
CaCl2 + 6H2O → CaCl2・6H2O + Q ・・・(式1)
このとき熱交換装置1では、化学蓄熱装置4で発熱する熱Qを、熱交換管31を介してエンジン冷却水に伝達させることにより、エンジン冷却水の温度上昇を促進させる。なお、塩化カルシウム(CaCl2)は、水和することにより固体の状態から液体の状態へと状態変化する。
図2(b)に示すように、蓄熱時には、エンジン2から排気管3を介して排出される排ガスの熱を熱源として塩化カルシウムの水和物(CaCl2・6H2O)が加熱される。このとき、(式2)に示すように、塩化カルシウムの水和物(CaCl2・6H2O)が排ガスの熱の一部Qを吸熱して脱水され、作動液としての水(H2O)と蓄熱剤としての塩化カルシウム(CaCl2)とに解離させられる。
CaCl2・6H2O + Q → CaCl2 + 6H2O ・・・(式2)
塩化カルシウム(CaCl2)から解離した水(H2O)は、水蒸気の状態で排出管13を介して蓄熱剤容器11から作動液容器21内に排出される。このように、エンジン2から排出される排ガスの熱を熱源として利用して(式2)の反応を進行させ、塩化カルシウムの水和物(CaCl2・6H2O)を脱水させることにより、排ガスの熱を化学エネルギーの形態で蓄熱することができる。なお、塩化カルシウム(CaCl2)は、脱水することにより液体の状態から固体の状態へと状態変化する。以下の説明では、この状態を「蓄熱状態」とする。また、本実施形態においては、エンジン2からの排ガスが本発明における「熱源流体」に相当し、排気管3が「熱源流体の供給路」に相当する。
本実施形態に係る熱交換装置1を搭載した車両においては、主に車両の一走行毎に、発熱反応(式1)と蓄熱反応(式2)とを繰り返し行う。これにより、化学蓄熱装置4の発熱によるエンジン2の暖機促進と、当該暖機後のエンジン2から発生する熱を利用した蓄熱とを繰り返し行い、長期的に見て有効に車両の燃費向上を図ることができるようになっている。なお、冬季等、外気が低温の場合にも、比較的早期に車内の暖房を行なうことができるという利点もある。
3.化学蓄熱装置の構成
次に、化学蓄熱装置4が備える各部の機械的構成について説明する。本実施形態に係る化学蓄熱装置4は、蓄熱剤容器11と、作動液容器21と、蓄熱剤容器11と作動液容器21とを互いに連通する供給口24及び排出口14と、排気管3に接続されエンジン2から排出される排ガスが流通する断熱管41及び伝熱管42と、を主要な構成として備えている。以下、各部の詳細について説明する。
蓄熱剤としての塩化カルシウム(CaCl2)を収容する蓄熱剤容器11は、図5に示すように、排気管3と略同径に形成され、排気管3から連続して延びる断熱管41の外周面に沿って配置されている。本実施形態においては、蓄熱剤容器11は略円筒状の形状を有して構成されており、直管状に形成された断熱管41と同心状に、当該断熱管41の外周を取り囲んで配置されている。また、蓄熱剤容器11内には、同じく断熱管41と同心状に、当該断熱管41の外周を取り囲んで、略円筒状の形状を有する伝熱管42が配置されている。従って、伝熱管42及び蓄熱剤容器11は、いずれも断熱管41の中心軸に対して同心状に配置されている。本実施形態においては、伝熱管42は、断熱管41の周囲に当該断熱管41から所定間隔を空けて配置されている。
断熱管41は、蓄熱剤容器11を貫通すると共に、熱伝導性の低い材料を用いて構成された断熱壁を有する管状部材である。この断熱管41により蓄熱剤容器11内の塩化カルシウム(CaCl2)に対して区画された中空部分に、本発明における「断熱流路」が形成される。この断熱管41を構成する断熱壁の熱伝導性は、次に説明する伝熱管42を構成する伝熱壁の熱伝導性よりも低い。本実施形態においては、断熱管41は、排気管3の外周面にシリカウール等の断熱材を巻装して構成されている。従って、断熱流路は、その内部を流通する排ガスと蓄熱剤容器11内の塩化カルシウム(CaCl2)との間での熱伝導が抑制された流路となる。
伝熱管42は、蓄熱剤容器11を貫通すると共に、熱伝導性の高い材料を用いて構成された伝熱壁を有する略円筒状の部材である。伝熱管42は、互いに内径の異なる二つの管状部材(内管42a及び外管42b)を組み合わせて二重管構造を有して構成されている。そして、内管42aと外管42bとの間の空間であって、蓄熱剤容器11内の塩化カルシウム(CaCl2)に対して区画された中空部分に、本発明における「伝熱流路」が形成される。この伝熱管42を構成する伝熱壁の熱伝導性は、断熱管41を構成する断熱壁の熱伝導性よりも高い。本実施形態においては、伝熱管42は、鉄やステンレス、アルミニウム等の熱伝導性を有する金属材料で構成されている。従って、伝熱流路は、その内部を流通する排ガスと蓄熱剤容器11内の塩化カルシウム(CaCl2)との間で熱伝導可能な流路となる。ここで、化学蓄熱装置4は上記のとおり排気管3に沿って三元触媒5に対して下流側に隣接して配置されている。そのため、この構成では500〜550℃程度の高温の排ガスを熱源として利用することができる。
断熱管41と伝熱管42とが排気管3に接続される接続部であって、断熱流路と伝熱流路とが分岐する分岐部に、エンジン2からの排ガスが流通する流路を、断熱流路と伝熱流路との間で切り替える流路切替弁43が設けられている。本例では、伝熱流路は断熱流路に対して流路抵抗が大きく設定されると共に、排気管3と断熱管41との接続部に設けられた流路切替弁43が断熱管41の入口側の開口の開閉状態を切り替えることにより、排ガスが流通する流路を断熱流路と伝熱流路との間で切り替えるように構成されている。すなわち、流路切替弁43が断熱管41の開口を閉状態とすることにより、排ガスが流通する流路を伝熱流路とし、開状態とすることにより、排ガスが流通する流路を流路抵抗の差に基づいて断熱流路とする。詳しくは後述するように、主にエンジン2の始動直後の冷間時や蓄熱完了後には断熱流路が選択され、主に蓄熱時には伝熱流路が選択される。これらの流路の切り替えに際しては、通電状態を切り替えることにより流路切替弁43の状態を電磁的に切り替える等の形態を採用することができる。流路切替弁43の状態は、制御部7(図1を参照)により制御される。流路切替制御の詳細については後述する。
なお、排気管3は、伝熱管42と同様に、鉄やステンレス、アルミニウム等の熱伝導性を有する金属材料で構成されている。また、蓄熱剤容器11自体は熱伝導性の低い材料で構成され、外気及び作動液容器21との間の熱伝導が抑制されている。
蓄熱剤容器11内には、断熱管41を取り囲んで熱交換管31が配置されている。熱交換管31の内部に形成される流路は冷却回路6の一部を構成しており、エンジン冷却水が熱交換管31内を流通する際に、熱交換管31を介して蓄熱剤容器11内に収容された塩化カルシウム(CaCl2)との間で熱伝導が可能な状態となっている。そのため、熱交換管31は、銅やアルミニウム等の熱伝導性の高い金属材料で構成されていると好適である。本実施形態では、熱交換管31は、断熱管41の長手方向に沿って延びる複数の直管部32と、異なる位置に配置される二つの直管部32を当該直管部32の両端部において接続する略U字状の複数の曲管部33と、を備えている。複数の直管部32は、断熱管41の長手方向から見て排気管3を取り囲むように所定間隔で略均等に配置されている。また、直管部32と曲管部33とが交互に接続されている。これにより、熱交換管31は1本の管状流路を形成し、断熱管41を取り囲んで蓄熱剤容器11内の空間を略均等に網羅するように配置されている。
熱交換管31により形成される管状流路の両端部は、それぞれ流体入口としての冷却水入口34及び流体出口としての冷却水出口35とされている。冷却水入口34及び冷却水出口35は冷却回路6に接続されており、化学蓄熱装置4の発熱時には、冷却水入口34を介して冷却回路6から熱交換管31に流入するエンジン冷却水は、熱交換により加熱された後、冷却水出口35を介して熱交換管31から冷却回路6に流出する。図3及び図4に示すように、冷却水入口34と冷却水出口35とは、同心状に配置された断熱管41及び蓄熱剤容器11の中心軸を中心とする周回方向に所定間隔を空けて並べて配置されている。冷却水入口34と冷却水出口35との間には、仕切壁16が設けられている。この仕切壁16は、冷却水入口34から流入するエンジン冷却水と冷却水出口35から流出するエンジン冷却水との間の熱伝導を抑制するべく、熱伝導率の低い材料で構成された断熱壁とされている。
そして、蓄熱剤容器11内の、断熱管41、伝熱管42、及び熱交換管31により形成される各流路に対して区画された収容空間12に、蓄熱剤としての塩化カルシウム(CaCl2)が収容されている。蓄熱剤容器11には蓄熱剤温度センサSe4が設けられている(図1を参照)。蓄熱剤温度センサSe4により検出される塩化カルシウム(CaCl2)の温度は、制御部7へ出力される。
作動液容器21は、作動液としての水(H2O)を収容する容器である。ここで、蓄熱が完了した状態において作動液容器21内に収容される水(H2O)の容量は、蓄熱剤容器11内に収容される塩化カルシウム(CaCl2)と過不足なく(式1)及び(式2)の反応を生じさせるような容量、又はそれよりも多い容量とされていると好適である。作動液容器21は、蓄熱剤容器11の外周面に沿って配置されている。作動液容器21には、その内部に収容する水(H2O)の水量を検出する水量センサSe2が設けられている(図1を参照)。水(H2O)の水量に関する情報は、制御部7へ出力される。本実施形態においては、図3及び図4に示すように、作動液容器21は蓄熱剤容器11の外周面に沿った略円弧状の断面形状を有して構成されており、蓄熱剤容器11の上方に配置されている。そして、蓄熱剤容器11と作動液容器21とは所定間隔を空けて配置され、これらの間に断熱層としての空気層が形成されている。これにより、蓄熱剤容器11における収容空間12と作動液容器21における収容空間22との間の熱伝導が効果的に抑制されている。
蓄熱剤容器11と作動液容器21とを接続するように、供給管23及び排出管13が設けられている。本実施形態においては、図3に示すように、蓄熱剤容器11及び作動液容器21の排気管3の長手方向に沿った両端部に、供給管23及び排出管13がそれぞれ二つずつ設けられている。よって、化学蓄熱装置4全体として、供給管23及び排出管13がそれぞれ四つずつ設けられている。ここで、排気管3及び断熱管41の長手方向から見て、供給管23は略円弧状の作動液容器21の両端部に接続されており、排出管13は蓄熱剤容器11の最上部に接続されている。供給管23及び排出管13はそれぞれ連通口を有する管状の部材であり、蓄熱剤容器11内の収容空間12と作動液容器21内の収容空間22とが、それぞれの連通口を介して互いに連通している。また、排出管13と蓄熱剤容器11及び作動液容器21との間、並びに、供給管23と蓄熱剤容器11及び作動液容器21との間は、それぞれ液密及び気密状態で封止されている。これにより、蓄熱剤容器11内の収容空間12と作動液容器21内の収容空間22とは、密閉空間を形成している。このようにして形成される密封空間は、真空度が高く維持され、その内圧が真空に近い圧力に維持されていると好適である。
供給管23に形成された連通口のうち、蓄熱剤容器11側に開口する供給口24は、蓄熱剤容器11内に設けられており、この供給口24を介して作動液容器21内の水(H2O)が蓄熱剤容器11へ供給される(図4(a)を参照)。なお、供給管23には、当該供給管23に形成された流路の開閉状態を切り替える供給弁25がそれぞれ設けられている。本例では、供給弁25は、通電状態を切り替えることにより開閉状態の切り替えが可能な電磁弁とされている。供給弁25に対する通電状態は、制御部7(図1を参照)により制御される。供給弁25の開閉制御の詳細については後述する。
供給口24は、作動液容器21における水(H2O)の収容空間22の最下面よりも下側に設けられている。また、本実施形態においては、供給管23に形成された連通口のうち、作動液容器21側に開口する連通口が作動液容器21における水(H2O)の収容空間22の最下部に開口している。これにより、供給弁25を開状態とすると、自由落下により蓄熱剤容器11内に水(H2O)が供給される。ここで、供給口24は、脱水されて固体の状態にある、蓄熱状態での塩化カルシウム(CaCl2)に埋設されている。本実施形態においては、供給口24は、蓄熱剤容器11内において蓄熱状態での塩化カルシウム(CaCl2)が占める領域のうち、上下方向の中央部に配置されている。また、供給口24は、径方向では断熱管41と伝熱管42を構成する内管42aとの間に配置されている。なお、図示の例では供給口24は供給管23の先端部に開口しているが、供給管23の側面に開口するものやそれらの組合せであっても良い。
ところで、化学蓄熱装置4における発熱時に、蓄熱剤容器11内に水(H2O)を供給した際に、塩化カルシウム(CaCl2)と水(H2O)とが即座に反応して発熱し、発生した熱の一部により水(H2O)が気化して水蒸気が発生する場合がある。しかし、本実施形態に係る化学蓄熱装置4では、供給口24を蓄熱状態での塩化カルシウム(CaCl2)に埋設させて配置しているので、蓄熱剤容器11内を上方に移動する水蒸気は、供給口24よりも上方に収容された塩化カルシウム(CaCl2)と順次反応することになる。そのため、蓄熱剤容器11内において塩化カルシウム(CaCl2)と水(H2O)及び水蒸気とが反応する機会をより多く確保することができるので、発熱量を増大させることができる。また、水蒸気が熱とともに上方に逃げてしまうのを抑制して、水蒸気が有する熱をも有効利用することができる。従って、熱交換管31を流通するエンジン冷却水が熱交換により回収し得る熱量を増大させることができる。
なお、蓄熱剤容器11内において供給口24が蓄熱状態での塩化カルシウム(CaCl2)に埋設されているので、蓄熱剤容器11内に収容される塩化カルシウム(CaCl2)と作動液容器21との間の間隔を狭くすることができる。更に、本実施形態においては、略円筒状の蓄熱剤容器11が排気管3から連続して延びる断熱管41の外周を取り囲んで配置されると共に、蓄熱剤容器11の外周面に沿った略円弧状の断面形状の作動液容器21が蓄熱剤容器11の上方に配置されている。これにより、化学蓄熱装置4、ひいては熱交換装置1の全体をコンパクトに構成することが可能となっている。従って、本実施形態に係る熱交換装置1では、コンパクトな構成で回収熱量の増大を図ることが可能となっている。
更に、本実施形態においては、作動液を水(H2O)とすると共に、蓄熱剤が、水和した状態で液体となり、水と解離(脱水)した状態で固体となる物質の一つである塩化カルシウム(CaCl2)とされている。この場合、化学蓄熱装置4における発熱時には、塩化カルシウム(CaCl2)の一部は水和して液化することによりその体積が小さくなる。そのため、蓄熱剤容器11内において供給口24よりも上方に収容された塩化カルシウム(CaCl2)は、発生した水蒸気により水和が進行することでくずれやすくなり、供給口24よりも下方に収容された塩化カルシウム(CaCl2)の液化により空いた空間に自重により落下して、蓄熱剤容器11の収容空間12の下部に溜まった水(H2O)と反応して水和することになる。よって、蓄熱状態での塩化カルシウム(CaCl2)に供給口24が埋設されていたとしても、最終的には塩化カルシウム(CaCl2)の水和反応を十分に行わせることができる。従って、発熱量を増大させて熱交換管31を流通するエンジン冷却水が熱交換により回収し得る熱量を増大させることができる。結果、エンジン2の始動直後等にエンジン冷却水を短時間で暖めることができる。
化学蓄熱装置4における蓄熱時に、蓄熱剤容器11内でエンジン2の排ガスの熱を吸熱することにより塩化カルシウムの水和物(CaCl2・6H2O)から解離する水(H2O)は、水蒸気の状態で排出管13に形成された連通口を介して作動液容器21内へ戻される(図4(b)を参照)。ここで、排出管13に形成された連通口のうち、作動液容器21側に開口する排出口14は、作動液容器21内の最上部に設けられている。このときの排出口14の鉛直方向の位置は、蓄熱反応が完全に完了して作動液容器21内の水位が最高水位となった際の水面高さよりも十分に高い位置とされている。また、排出管13は、蓄熱剤容器11内における蓄熱状態での塩化カルシウム(CaCl2)の最上面よりも上側に設けられている。本実施形態においては、排出管13に形成された連通口のうち、蓄熱剤容器11側に開口する連通口が、蓄熱剤容器11内の最上部に設けられることにより、排出管13の全体が蓄熱状態での塩化カルシウム(CaCl2)の最上面よりも上側に設けられている。これにより、蓄熱時に生じ蓄熱剤容器11内を上方に移動する水蒸気を、効率的に作動液容器21へと導くことができる。
本実施形態においては、排出管13の一部に、当該排出管13内の内径を他の部位に比べて小さく絞った絞り部15が設けられている。排出管13内を通って蓄熱剤容器11から作動液容器21へと移動する水蒸気は、一旦絞り部15を通過することにより作動液容器21内で効果的に膨張する。これにより、作動液容器21内で水蒸気を急激に冷却して、凝縮・液化することが可能とされている。
本実施形態に係る化学蓄熱装置4は、更に、蓄熱時に蓄熱剤容器11内でエンジン2の排ガスの熱を吸熱することにより塩化カルシウムの水和物(CaCl2・6H2O)から解離して蓄熱剤容器11から作動液容器21内に排出される水蒸気を冷却するための、各種の冷却機構を備えている。このような冷却機構として、本実施形態においては、図6に示すように、作動液容器21の外面に立設された複数の外部フィン26と、作動液容器21の外面により形成され、その内部空間を貫通する貫通孔28と、作動液容器21と一体的に形成され、冷却風を作動液容器21側へ集める集空部材51と、を備えている。集空部材51は、車両が走行するのに伴って相対的に生じる走行風(図6において破線矢印で表示)を、効率的に作動液容器21側へ供給するように作用する。本例では、集空部材51は板状の部材により構成され、車両及び化学蓄熱装置4の下部を流れる走行風を効率的に集風することができるようになっている。
集空部材51により集空された走行風は、互いに隣接する外部フィン26間の空間及び貫通孔28の内部の空間を流通する。このとき、複数の外部フィン26及び貫通孔28により、作動液容器21の外面の表面積が大きくなっているので、走行風と作動液容器21内の水蒸気との間の熱交換を効率的に行うことが可能となっている。また、本実施形態においては、図4に示すように、作動液容器21の内面に複数の内部フィン27が立設されている。よって、作動液容器21の内面の表面積も大きくなっているので、これによっても走行風と作動液容器21内の水蒸気との間の熱交換を効率的に行うことが可能となっている。なお、この内部フィン27や貫通孔28は、作動液容器21内の水蒸気の流れに対する障害となって水蒸気の運動エネルギーを低下させる機能も果たす。従って、作動液容器21内で水蒸気をより一層急激に冷却して、凝縮・液化することが可能となっている。
4.制御部の構成
次に、供給弁25及び流路切替弁43を制御するための制御部7の構成について説明する。本実施形態に係る熱交換装置1を搭載した車両は、車両の各部の動作制御を行なう中核部材としての車両用制御装置を備えており、この車両用制御装置に制御部7が一体的に組み込まれている。制御部7を含む車両用制御装置は、CPU等の演算処理装置を中核部材として備えると共に、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAM(ランダム・アクセス・メモリ)や、演算処理装置からデータを読み出し可能に構成されたROM(リード・オンリ・メモリ)等の記憶装置等を有して構成されている。また、図1に示すように、制御部7は、弁開閉制御部71と流路切替制御部72とを備えている。これらの各機能部は、互いに情報の受け渡しを行うことができる状態で、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により構成されている。
弁開閉制御部71は、エンジン冷却水の温度と作動液容器21内に収容された水(H2O)の容量とに基づいて、供給弁25による供給管23の開閉状態を切り替える機能部であり、弁開閉制御手段として機能する。なお、本実施形態においては、供給弁25と弁開閉制御部71とが協働して本発明における「弁機構」を構成している。そして、エンジン冷却水の温度が所定の冷間温度Tc未満であって、且つ、作動液容器11内の水量が所定量Vs以上である場合には、弁開閉制御部71は、供給弁25を開状態として供給管23を開状態とする。ここで、所定の冷間温度Tcは、エンジン2及びエンジン2に封入されたエンジンオイルを暖機するためにエンジン冷却水を加熱することが必要とされる温度であり、例えば50〜70℃に設定される。本例では「60℃」に設定されている。また、所定量Vsは、蓄熱反応が十分に進行したとみなすことができるような水量であり、例えば蓄熱反応が完全に完了した時点における水量(以下、最高水量)を基準として80〜100%に相当する水量が設定される。本例では「85%」に設定されている。
一旦開状態とされた供給弁25は、作動液容器21内の水(H2O)の蓄熱剤容器11への供給が完了するまでそのまま維持される。本実施形態では、内部タイマーによる計時が行われ、所定時間Tsが経過するまで供給弁25の開弁状態が維持される。ここで、所定時間Tsとしては、最高水量の水(H2O)を蓄熱剤容器11へ供給するのに要する時間に等しいか、それより長い時間が設定されていると好適である。そのような所定時間Tsを設定することにより、作動液容器21内の水(H2O)の全量を適切に蓄熱剤容器11へ供給することができる。このようにして、化学蓄熱装置4において発熱反応を進行させて、エンジン冷却水を早期に暖めることができる。
一方、それ以外の場合、すなわち冷却水温度センサSe1により検出されるエンジン冷却水の温度が所定の冷間温度Tc以上であるか、又は、水量センサSe2により検出される、作動液容器11内に収容された水(H2O)の容量が所定量Vs未満である場合には、弁開閉制御部71は、供給弁25を閉状態に維持して供給管23を閉状態に維持する。これは、エンジン冷却水の温度が所定の冷間温度Tc以上の場合には、エンジン冷却水が既に十分に暖まっているため、エンジン冷却水を加熱する必要性があまり高くないからである。また、水量が所定量Vs未満である場合には、その時点における作動液容器21内の水(H2O)の全量を蓄熱剤容器11へ供給したとしても、十分な発熱量を得ることができないような状況も生じ得るからである。よって、そのような場合には供給弁25を閉弁状態に維持して、蓄熱のための準備を行なう。これにより、次回の蓄熱を早期に完了させることができる。
流路切替制御部72は、排ガスの温度と塩化カルシウム(CaCl2)の温度とに基づいて、排ガスが流通する流路を断熱流路と伝熱流路との間で切り替える機能部であり、流路切替制御手段として機能する。なお、本実施形態においては、流路切替弁43と流路切替制御部72とが協働して本発明における「切替機構」を構成している。排ガスの温度は、排ガス温度センサSe3により検出されて制御部7へ出力される。また、塩化カルシウム(CaCl2)の温度は、蓄熱剤温度センサSe4により検出されて制御部7へ出力される。そして、排ガスの温度と塩化カルシウム(CaCl2)の温度とを比較した結果、排ガスの温度が塩化カルシウム(CaCl2)の温度未満の場合には、流路切替制御部72は、流路切替弁43の状態を、排ガスが流通する流路を断熱流路とするように切り替える。これにより、例えばエンジン2の始動直後等において、化学蓄熱装置4において発熱して生じた熱が塩化カルシウム(CaCl2)よりも低温の排ガスに伝達されるのを抑制することができる。よって、生じた熱のうちのより多くの熱を熱交換管31を介してエンジン冷却水に伝達することができる。
一方、排ガスの温度が塩化カルシウム(CaCl2)の温度以上の場合には、流路切替制御部72は、流路切替弁43の状態を、排ガスが流通する流路を伝熱流路とするように切り替える。これにより、化学蓄熱装置4において発熱して生じた熱に加えて、伝熱管42を介して伝達される排ガスの熱をも、熱交換管31を流通するエンジン冷却水に伝達することができる。よって、エンジン冷却水をより一層効率的に加熱することができる。また、蓄熱時には排ガスの熱を適切に塩化カルシウムの水和物(CaCl2・6H2O)に伝達して、塩化カルシウム(CaCl2)と水(H2O)とに解離させる反応を適切に進行させることができる。
排ガスが流通する流路が伝熱流路とされている場合において、塩化カルシウム(CaCl2)の温度が、所定の蓄熱完了温度Ts以上の場合には、流路切替制御部72は、流路切替弁43の状態を、排ガスの温度と塩化カルシウム(CaCl2)の温度との大小関係によらずに排ガスが流通する流路を断熱流路とするように切り替える。ここで、所定の蓄熱完了温度Tsは、化学蓄熱装置4における蓄熱が略完了したことを表す温度であり、例えば200〜300℃に設定される。本例では「250℃」に設定されている。塩化カルシウム(CaCl2)の温度が蓄熱完了温度Ts以上の場合には、化学蓄熱装置4における蓄熱が略完了しているとみなすことができるので、排ガスが流通する流路を断熱流路とすることで、排ガスから化学蓄熱装置4側への不要な熱伝導を抑制して、例えば作動液容器21内の水(H2O)の凝縮・液化を妨げる等の不都合が生じるのを抑制することができる。なお、本実施形態においては、断熱流路は管状部材で構成された断熱管41の中空部分に形成されているので、蓄熱完了後における排ガスの排出に際して、流路抵抗を小さくすることができるという利点もある。
更に、本実施形態においては、エンジン冷却水の温度が所定の冷間温度Tc以上であって、且つ、作動液容器11内の水量が所定量Vs以上である場合には、流路切替制御部72は、流路切替弁43の状態を、塩化カルシウム(CaCl2)の温度及び排ガスの温度によらずに、例外的に排ガスが流通する流路を断熱流路とするように切り替える。エンジン冷却水の温度が60℃以上であって、且つ、作動液容器11内の水量が最高水量の85%以上である場合には、エンジン冷却水が既に十分に暖まっており、しかも、化学蓄熱装置4における蓄熱量も十分量であるとみなすことができるので、排ガスが流通する流路を断熱流路として、排ガスから化学蓄熱装置4側への不要な熱伝導を抑制すると共に流路抵抗を小さくする。
5.制御部による制御処理の内容
次に、制御部7による制御処理の内容について説明する。図7は、弁開閉制御部71による供給弁25の開閉制御処理の処理手順を示すフローチャートである。また、図8は、流路切替制御部72による流路切替弁43の状態の切替制御処理の処理手順を示すフローチャートである。なお、制御部7の弁開閉制御部71及び流路切替制御部72がプログラムにより構成される場合には、制御部7が備える演算処理装置は、弁開閉制御部71及び流路切替制御部72を構成するプログラムを実行するコンピュータとして動作する。
5−1.供給弁の開閉制御処理の内容
まず、供給弁25の開閉制御処理の内容について説明する。図7に示すように、本実施形態に係る弁開閉制御処理では、エンジン2が始動すると(ステップ#01:Yes)、まず弁開閉制御部71は、冷却水温度センサSe1により検出されるエンジン冷却水の水温が、所定の冷間温度Tc未満であるか否かを判定する(ステップ#02)。上記のとおり本例では、所定の冷間温度Tcは「60℃」とされている。エンジン冷却水の水温が60℃未満であると判定された場合には(ステップ#02:Yes)、次に弁開閉制御部71は、水量センサSe2により検出される作動液容器21内の水量が、所定量Vs以上であるか否かを判定する(ステップ#03)。上記のとおり本例では、所定量Vsは蓄熱反応が完全に完了した時点における水量(以下、最高水量)を基準として「85%」に相当する水量とされている。
作動液容器21内の水量が最高水量の85%以上であると判定された場合には(ステップ#03:Yes)、弁開閉制御部71は供給弁25を開弁させて、作動液容器21から蓄熱剤容器11へ水(H2O)を供給させる(ステップ#04)。供給弁25の開弁状態は、所定時間Tsが経過するまで維持され、その後所定時間Tsが経過すると(ステップ#05:Yes)弁開閉制御部71は供給弁25を閉弁させる(ステップ#06)。これにより、作動液容器21に収容された水(H2O)の全量が蓄熱剤容器11へ供給される。その結果、化学蓄熱装置4において発熱反応を進行させて、エンジン冷却水を早期に暖めることができる。一方、エンジン冷却水の水温が60℃以上であると判定された場合には(ステップ#02:No)、弁開閉制御部71は供給弁25を閉弁状態のまま維持する(ステップ#07)。また、作動液容器21内の水量が、最高水量の85%未満であると判定された場合にも(ステップ#03:No)、弁開閉制御部71は供給弁25を閉弁状態のまま維持する(ステップ#07)。
5−2.流路切替機構の切替制御処理の内容
次に、流路切替弁43の切替制御処理の内容について説明する。図8に示すように、本実施形態に係る流路切替制御処理では、まず流路切替制御部72は、冷却水温度センサSe1により検出されるエンジン冷却水の水温が、所定の冷間温度Tc未満であるか否かを判定する(ステップ#21)。上記のとおり本例では、所定の冷間温度Tcは「60℃」とされている。エンジン冷却水の水温が60℃以上であると判定された場合には(ステップ#21:No)、次に流路切替制御部72は、水量センサSe2により検出される作動液容器21内の水量が、所定量Vs以上であるか否かを判定する(ステップ#22)。上記のとおり本例では、所定量Vsは最高水量の「85%」に相当する水量とされている。
作動液容器21内の水量が最高水量の85%以上であると判定された場合には(ステップ#22:Yes)、流路切替制御部72は、流路切替弁43の状態を調整し、排ガスが流通する流路を断熱流路として(ステップ#23)流路切替制御処理を終了する。一方、エンジン冷却水の水温が60℃未満であると判定された場合や(ステップ#21:Yes)、作動液容器21内の水量が最高水量の85%未満であると判定された場合には(ステップ#22:No)、流路切替制御部72は、排ガス温度センサSe3により検出される排ガスの温度が、蓄熱剤温度センサSe4により検出される塩化カルシウム(CaCl2)の温度以上であるか否かを判定する(ステップ#24)。排ガスの温度が塩化カルシウム(CaCl2)の温度未満であると判定された場合には(ステップ#24:No)、流路切替制御部72は、流路切替弁43の状態を調整し、排ガスが流通する流路を断熱流路とする(ステップ#25)。ステップ#24の処理は、排ガスの温度が塩化カルシウム(CaCl2)の温度以上であると判定されるまで繰り返し実行され、そのように判定された場合には(ステップ#24:Yes)、流路切替制御部72は、流路切替弁43の状態を調整し、排ガスが流通する流路を伝熱流路とする(ステップ#26)。
次に、流路切替制御部72は、塩化カルシウム(CaCl2)の温度が所定の蓄熱完了温度Ts以上であるか否かを判定する(ステップ#27)。上記のとおり本例では、所定の蓄熱完了温度Tsは「250℃」とされている。そして、塩化カルシウム(CaCl2)の温度が250℃以上であると判定されると(ステップ#27:Yes)、流路切替制御部72は、流路切替弁43の状態を調整し、排ガスが流通する流路を断熱流路として(ステップ#28)流路切替制御処理を終了する。
〔その他の実施形態〕
(1)上記の実施形態においては、流路切替制御部72が、排ガスの温度と塩化カルシウム(CaCl2)の温度とに基づいて、排ガスが流通する流路を断熱流路と伝熱流路との間で切り替える場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば排ガスの温度のみに基づいて、排ガスが流通する流路を断熱流路と伝熱流路との間で切り替える構成とすることも、本発明の好適な実施形態の一つである。すなわち、例えば排ガスの温度が所定温度未満の場合には、流路切替制御部72は流路切替弁43の状態を、排ガスが流通する流路を断熱流路とするように切り替え、排ガスの温度が所定温度以上の場合には、流路切替制御部72は流路切替弁43の状態を、排ガスが流通する流路を伝熱流路とするように切り替える構成とすることができる。
(2)上記の実施形態においては、断熱管41及び伝熱管42の双方が蓄熱剤容器11を貫通している場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。蓄熱時に排ガスの熱を塩化カルシウムの水和物(CaCl2・6H2O)に適切に伝導させるべく、少なくとも伝熱管42が蓄熱剤容器11を貫通する構成とされていれば良く、例えば断熱管41が蓄熱剤容器11の外部に設けられた構成とすることも、本発明の好適な実施形態の一つである。
(3)上記の実施形態においては、蓄熱剤容器11内において、伝熱管42が、断熱管41の周囲に当該断熱管41から所定間隔を空けて配置されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば断熱管41が、伝熱管42の周囲に当該から所定間隔を空けて配置されている構成とすることも、本発明の好適な実施形態の一つである。
(4)上記の実施形態においては、伝熱管42が、互いに内径の異なる二つの管状部材(内管42a及び外管42b)を組み合わせて二重管構造を有して構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば同径又は異径の複数の管状部材を断熱管41の外周に当該断熱管41を取り囲むように並べて配置し、これら複数の管状部材を組み合わせて伝熱管42を構成することも、本発明の好適な実施形態の一つである。
(5)上記の実施形態においては、弁開閉制御部71が、エンジン冷却水の温度と作動液容器21内に収容された水(H2O)の容量とに基づいて、供給弁25による供給管23の開閉状態を切り替える場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えばエンジン冷却水の温度のみに基づいて、供給弁25による供給管23の開閉状態を切り替える構成とすることも、本発明の好適な実施形態の一つである。すなわち、例えばエンジン冷却水の温度が所定の冷間温度Tc未満の場合には、弁開閉制御部71は、作動液容器11内の水量によらずに供給弁25を開状態として供給管23を開状態とし、エンジン冷却水の温度が所定の冷間温度Tc以上の場合には、弁開閉制御部71は、作動液容器11内の水量によらずに供給弁25を開状態として供給管23を開状態とする構成とすることができる。
(6)上記の実施形態においては、排気ガスが流通する流路が伝熱流路とされている場合において、塩化カルシウム(CaCl2)の温度が蓄熱完了温度Ts以上の場合に、化学蓄熱装置4における蓄熱が略完了したとみなして、流路切替制御部72は、流路切替部材43の状態を、排気ガスの温度と塩化カルシウム(CaCl2)の温度との大小関係によらずに排気ガスが流通する流路を断熱流路とするように切り替える場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、化学蓄熱装置4における蓄熱が略完了したとみなす条件はこれ以外にも設定することができる。例えば、水量センサSe2により検出される、作動液容器11内に収容された水(H2O)の容量が所定量以上である場合に、流路切替制御部72は、化学蓄熱装置4における蓄熱が略完了したとみなして、排気ガスが流通する流路を断熱流路とするように切り替える構成とすることも、本発明の好適な実施形態の一つである。このときの所定量としては、例えば最高水量を基準として85〜100%に相当する水量を設定することができる。
この場合、これに対応して図8のフローチャートのステップ#27においては、流路切替制御部72は、作動液容器21内の水量が所定量以上であるか否かの判断を行うことになる。
(7)上記の実施形態においては、所定の冷間温度Tc、所定の蓄熱完了温度Ts、及び所定量Vsが、それぞれ「60℃」、「250℃」、及び最高水量の「85%」に相当する水量、に設定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、これらの設定値はあくまで一例であり、適宜変更が可能である。
(8)上記の実施形態においては、化学蓄熱装置4における作動液を水(H2O)とすると共に、蓄熱剤を、水和した状態で液体となり水と解離(脱水)した状態で固体となる物質の一つである塩化カルシウム(CaCl2)とした場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、蓄熱剤として臭化カルシウム(BrCl2)、塩化リチウム(LiCl)、臭化リチウム(LiBr)等を用いる構成とすることも、本発明の好適な実施形態の一つである。また、蓄熱剤と作動液との反応により発熱すると共に、エンジン2から発生する発生熱を利用し、当該発生熱を吸熱して蓄熱剤と作動液とに解離する可逆反応を引き起こすものであれば、化学蓄熱装置4における作動液と蓄熱剤との組み合わせは任意に設定することができる。
(9)上記の実施形態においては、弁開閉制御処理では、エンジン2の始動をトリガーとして、弁開閉制御部71がエンジン冷却水の水温が所定の冷間温度Tc未満であるか否かを判定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、本実施形態のようにエンジン冷却水の温度を早期に加熱することによりエンジン2の暖機促進を図る場合には、例えば車両の主電源のオン動作や、車両ドアの開閉動作、運転座席に対する着席動作等をトリガーとして、制御部7がエンジン冷却水の水温が所定の冷間温度Tc未満であるか否かを判定する構成としても好適である。
(10)上記の実施形態においては、化学蓄熱装置4が、排気管3に沿って三元触媒5に対して下流側に隣接して配置されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、排気管3に沿って配置される化学蓄熱装置4の位置は適宜変更が可能であり、例えば三元触媒5よりも上流側に配置したり、三元触媒5の更に下流側に設けられる、エンジン2の燃焼室において混合気が燃焼する際の爆発音を低減するための消音装置(所謂、マフラー)に隣接させて配置したりすることも、本発明の好適な実施形態の一つである。
(11)上記の実施形態においては、化学蓄熱装置4の発熱により生じる熱を利用して、熱交換管31を流通するエンジン冷却水を加熱する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えばエンジンオイルや自動変速機専用オイル(ATF)等を熱交換管31を流通させ、化学蓄熱装置4の発熱により生じる熱を利用してこれらを加熱する構成とすることも、本発明の好適な実施形態の一つである。
(12)上記の実施形態においては、化学蓄熱装置4における蓄熱反応では、エンジン2から排出される排ガスの熱を熱源として利用する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、エンジンから発生する発生熱を利用するのであれば、例えばエンジン2の暖機後において、昇温後のエンジン冷却水の熱を利用する構成とすることも、本発明の好適な実施形態の一つである。
本発明は、蓄熱剤と作動液との反応により発熱すると共に、エンジンから発生する発生熱を利用し、当該発生熱を吸熱して蓄熱剤と作動液とに解離する可逆反応に伴って蓄熱及び発熱を行う化学蓄熱装置と、化学蓄熱装置との間で熱交換されるエンジン冷却水が流通する熱交換部とを備えた、例えばエンジン冷却水を加熱するための熱交換装置に好適に利用することができる。
1 熱交換装置
2 エンジン
3 排気管(供給路)
4 化学蓄熱装置
11 蓄熱剤容器
12 収容空間
14 排出口
21 作動液容器
22 収容空間
24 供給口
25 供給弁(弁機構)
31 熱交換管(熱交換部)
41 断熱管
42 伝熱管
43 流路切替弁(切替機構)
71 弁開閉制御部(弁機構)
72 流路切替制御部(切替機構)

Claims (10)

  1. 蓄熱剤と作動液との反応により発熱すると共に、エンジンから発生する発生熱を利用し、当該発生熱を吸熱して前記蓄熱剤と前記作動液とに解離する可逆反応に伴って蓄熱及び発熱を行う化学蓄熱装置と、
    前記化学蓄熱装置との間で熱交換される流体が流通する熱交換部と、を備えた熱交換装置であって、
    前記蓄熱剤を収容する蓄熱剤容器を備えると共に、
    前記蓄熱剤容器内の前記蓄熱剤との間で熱伝導可能に構成された伝熱流路と、前記伝熱流路よりも熱伝導性が低く構成された断熱流路と、の二つの流路を、前記発生熱により熱せられた熱源流体の供給路に連通させて備え、
    前記熱源流体が流通する流路を、前記断熱流路と前記伝熱流路との間で切り替える切替機構を備えた熱交換装置。
  2. 前記切替機構は、前記熱源流体の温度と前記蓄熱剤の温度とに基づいて、前記熱源流体が流通する流路を前記断熱流路と前記伝熱流路との間で切り替える請求項1に記載の熱交換装置。
  3. 前記熱源流体の温度が前記蓄熱剤の温度未満の場合には、前記切替機構は、前記熱源流体が流通する流路を前記断熱流路とし、
    前記熱源流体の温度が前記蓄熱剤の温度以上の場合には、前記切替機構は、前記熱源流体が流通する流路を前記伝熱流路とする請求項2に記載の熱交換装置。
  4. 前記蓄熱剤の温度が、前記化学蓄熱装置における蓄熱が略完了したことを表す蓄熱完了温度以上の場合には、前記切替機構は、前記熱源流体の温度と前記蓄熱剤の温度との大小関係によらずに前記熱源流体が流通する流路を前記断熱流路とする請求項3に記載の熱交換装置。
  5. 前記伝熱流路は、前記蓄熱剤容器を貫通すると共に、熱伝導性を有する伝熱壁により前記蓄熱剤容器内の前記蓄熱剤に対して区画された流路であり、
    前記断熱流路は、前記蓄熱剤容器を貫通すると共に、前記伝熱壁よりも熱伝導性の低い断熱壁により前記蓄熱剤容器内の前記蓄熱剤に対して区画された流路であり、
    前記伝熱流路が、前記断熱流路の周囲に当該断熱流路から所定間隔を空けて配置されている請求項1から4のいずれか一項に記載の熱交換装置。
  6. 前記断熱流路、前記伝熱流路及び前記蓄熱剤容器は、いずれも略円筒状の部材からなると共に、前記伝熱流路及び前記蓄熱剤容器が前記断熱流路の中心軸に対して同心状に配置されている請求項5に記載の熱交換装置。
  7. 前記作動液を収容する作動液容器を、その内部空間と前記蓄熱剤容器の内部空間とが密封空間を形成する状態で備え、
    前記作動液容器と前記蓄熱剤容器とを連通し、前記作動液容器内の前記作動液を前記蓄熱剤容器へ供給するための供給口と、
    前記蓄熱剤容器と作動液容器とを連通し、前記発生熱により前記蓄熱剤から解離して気化した状態の前記作動液を前記作動液容器へ戻すための排出口と、を備える請求項1から6のいずれか一項に記載の熱交換装置。
  8. 前記作動液を収容する作動液容器から前記蓄熱剤容器へ前記作動液を供給するための供給管の開閉状態を切り替える弁機構を備え、
    前記弁機構は、前記流体の温度と前記作動液容器内に収容された前記作動液の容量とに基づいて、前記供給管の開閉状態を切り替える請求項1から7のいずれか一項に記載の熱交換装置。
  9. 前記流体の温度が、加温が必要とされる所定の冷間温度未満であって、且つ、前記蓄熱剤から解離して前記作動液容器内に収容された前記作動液の容量が所定量以上である場合には、前記弁機構は前記作動液の前記蓄熱剤容器への供給を完了するまで前記供給管を開状態とし、
    それ以外の場合には、前記弁機構は前記供給管を閉状態とする請求項8に記載の熱交換装置。
  10. 前記流体の温度が、前記冷間温度以上であって、且つ、前記作動液の容量が前記所定量以上である場合には、前記切替機構は、前記蓄熱剤の温度及び前記熱源流体の温度によらずに前記熱源流体が流通する流路を前記断熱流路とする請求項9に記載の熱交換装置。
JP2009117711A 2009-05-14 2009-05-14 熱交換装置 Pending JP2010265812A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117711A JP2010265812A (ja) 2009-05-14 2009-05-14 熱交換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117711A JP2010265812A (ja) 2009-05-14 2009-05-14 熱交換装置

Publications (1)

Publication Number Publication Date
JP2010265812A true JP2010265812A (ja) 2010-11-25

Family

ID=43362994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117711A Pending JP2010265812A (ja) 2009-05-14 2009-05-14 熱交換装置

Country Status (1)

Country Link
JP (1) JP2010265812A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127195A (ja) * 2010-12-13 2012-07-05 Isuzu Motors Ltd エンジンの暖機装置
JP2014181879A (ja) * 2013-03-21 2014-09-29 Denso Corp 化学蓄熱システム
WO2014203754A1 (ja) * 2013-06-19 2014-12-24 株式会社豊田自動織機 化学蓄熱装置
WO2015174291A1 (ja) * 2014-05-15 2015-11-19 株式会社豊田自動織機 化学蓄熱装置
JP2017120075A (ja) * 2015-12-24 2017-07-06 株式会社豊田自動織機 化学蓄熱装置
WO2018198781A1 (ja) * 2017-04-27 2018-11-01 株式会社豊田自動織機 熱交換器及び化学蓄熱装置
WO2024202907A1 (ja) * 2023-03-31 2024-10-03 愛知製鋼株式会社 化学蓄熱装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127195A (ja) * 2010-12-13 2012-07-05 Isuzu Motors Ltd エンジンの暖機装置
JP2014181879A (ja) * 2013-03-21 2014-09-29 Denso Corp 化学蓄熱システム
WO2014203754A1 (ja) * 2013-06-19 2014-12-24 株式会社豊田自動織機 化学蓄熱装置
JP2015004457A (ja) * 2013-06-19 2015-01-08 株式会社豊田自動織機 化学蓄熱装置
WO2015174291A1 (ja) * 2014-05-15 2015-11-19 株式会社豊田自動織機 化学蓄熱装置
JP2017120075A (ja) * 2015-12-24 2017-07-06 株式会社豊田自動織機 化学蓄熱装置
US10948243B2 (en) 2015-12-24 2021-03-16 Kabushiki Kaisha Toyota Jidoshokki Chemical heat storage apparatus
WO2018198781A1 (ja) * 2017-04-27 2018-11-01 株式会社豊田自動織機 熱交換器及び化学蓄熱装置
WO2024202907A1 (ja) * 2023-03-31 2024-10-03 愛知製鋼株式会社 化学蓄熱装置

Similar Documents

Publication Publication Date Title
JP2010265812A (ja) 熱交換装置
CN102105661B (zh) 排气热回收系统
US20090236435A1 (en) Warming-up system for vehicle
JP2011169514A (ja) 排熱回収装置
JP2015017780A5 (ja)
JP6834929B2 (ja) Egrクーラ
JP2006316684A (ja) エンジンの排気浄化装置
JP5141479B2 (ja) 排気ガス浄化システム及び排気ガス浄化方法
JP4087350B2 (ja) エンジンの排気浄化装置
JP2018035764A (ja) エンジンの排熱回収装置
JP2008008581A (ja) 吸着式暖房・給湯装置
JP2010266122A (ja) 熱交換装置
JP2004270487A (ja) エンジンの排気熱利用装置
JP2010144574A (ja) 車両用暖機システム
JP6078388B2 (ja) 化学蓄熱システム
JP5789972B2 (ja) エンジンの暖機装置
JP6504651B2 (ja) 内燃機関の暖機促進装置
RU151012U1 (ru) Моторное транспортное средство
JP6171699B2 (ja) 排気熱回収器
JP5810988B2 (ja) 燃料供給システム
CN209165838U (zh) 内燃机废热阶梯利用制冷制热装置
KR20130034902A (ko) 내연기관의 급속승온장치 및 그 제어방법
KR102370443B1 (ko) 머플러 및 에너지 생성 장치
JP5381337B2 (ja) 排熱回収装置
JP2007238026A (ja) 排気系熱交換装置