JP2010251441A - Led module for illumination - Google Patents

Led module for illumination Download PDF

Info

Publication number
JP2010251441A
JP2010251441A JP2009097739A JP2009097739A JP2010251441A JP 2010251441 A JP2010251441 A JP 2010251441A JP 2009097739 A JP2009097739 A JP 2009097739A JP 2009097739 A JP2009097739 A JP 2009097739A JP 2010251441 A JP2010251441 A JP 2010251441A
Authority
JP
Japan
Prior art keywords
substrate
emitting diode
insulating layer
light emitting
led module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009097739A
Other languages
Japanese (ja)
Other versions
JP5330889B2 (en
Inventor
Kenji Miyagawa
健志 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009097739A priority Critical patent/JP5330889B2/en
Publication of JP2010251441A publication Critical patent/JP2010251441A/en
Application granted granted Critical
Publication of JP5330889B2 publication Critical patent/JP5330889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a module substrate having an excellent heat radiation property, and an LED module for illumination, suppressing temperature deterioration by the structure thereof even when arranging a plurality of light-emitting diode elements in high density. <P>SOLUTION: The LED module for illumination is formed of a module substrate 4, a light-emitting diode element 5, and a phosphor. The module substrate 4 has: a substrate 1; an insulating layer 2 laminated on the substrate 1 and which has heat conductivity of 1 W/mK or greater; and a conductive layer 3 laminated on the insulating layer 2 and which has a conductive pattern. The light-emitting diode element 5 is attached to the conductive layer 3 of the module substrate 4. The phosphor is arranged on the light irradiation side of the light-emitting diode element 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、モジュール基板と、該モジュール基板の所定の位置に設けた複数の発光ダイオード素子からなる照明用LED(Light Emitting Diode)モジュールに関する。   The present invention relates to an illumination LED (Light Emitting Diode) module including a module substrate and a plurality of light emitting diode elements provided at predetermined positions of the module substrate.

照明器具の新しい照明用光源として、発光ダイオードがある。発光ダイオードチップは、1個の発光ダイオードチップ素子では光束が小さいため、白熱電球、蛍光ランプと同程度の光束を得るため、複数の発光ダイオード素子を配置して照明用光源を構成している(特許文献1、2)。 There is a light emitting diode as a new illumination light source of a lighting fixture. Since a light-emitting diode chip has a small luminous flux with a single light-emitting diode chip element, in order to obtain a luminous flux equivalent to that of an incandescent bulb or a fluorescent lamp, a plurality of light-emitting diode elements are arranged to constitute an illumination light source ( Patent Documents 1 and 2).

複数の発光ダイオード素子を配置すると、エネルギー変換効率が悪く発熱量が多い発光ダイオード素子が発熱し、特に複数の発光ダイオード素子を高密度に配置すると、モジュール全体の温度が上昇し、光束の低下や素子の寿命の低下が生じる。 When a plurality of light emitting diode elements are arranged, the light emitting diode elements having a low energy conversion efficiency and a large amount of heat generation generate heat. The lifetime of the element is reduced.

特許第3989794号公報Japanese Patent No. 3998794 特許第4124638号公報Japanese Patent No. 4124638

本発明の目的は、複数の発光ダイオード素子を高密度に配置しても温度上昇を抑制できる照明用LEDモジュールを提供することにある。 An object of the present invention is to provide an illumination LED module capable of suppressing a temperature rise even when a plurality of light emitting diode elements are arranged at a high density.

本発明は、基板と、基板上に積層された1W/mK以上の熱伝導性を有する絶縁層と、絶縁層上に導電パターンを有しつつ積層された導電層を有するモジュール基板と、モジュール基板の導電層上に取り付けられた複数の発光ダイオード素子と、発光ダイオード素子の光照射側に配置された蛍光体を有する照明用LEDモジュールである。 The present invention relates to a substrate, an insulating layer having a thermal conductivity of 1 W / mK or more laminated on the substrate, a module substrate having a conductive layer laminated with a conductive pattern on the insulating layer, and a module substrate The LED module for illumination which has the some light emitting diode element attached on the conductive layer of this, and the fluorescent substance arrange | positioned at the light irradiation side of the light emitting diode element.

他の発明は、基板と、基板上に間欠的に積層された1W/mK以上の熱伝導性を有する絶縁層と、絶縁層上に導電パターンを有しつつ積層された導電層を有するモジュール基板と、モジュール基板のうちの絶縁層が積層されていない基板上に取り付けられた複数の発光ダイオード素子と、発光ダイオード素子の光照射側に配置された蛍光体を有する照明用LEDモジュールである。 Another invention is a module substrate having a substrate, an insulating layer having a thermal conductivity of 1 W / mK or more intermittently stacked on the substrate, and a conductive layer stacked with a conductive pattern on the insulating layer And an LED module for illumination having a plurality of light emitting diode elements mounted on a substrate of the module substrate on which an insulating layer is not laminated, and a phosphor disposed on the light irradiation side of the light emitting diode elements.

また、他の発明は、基板と、基板上に間欠的に積層された1W/mK以上の熱伝導性を有する絶縁層と、絶縁層上に導電パターンを有しつつ積層された導電層と、絶縁層の間欠箇所に設けられた導電性の支柱を有するモジュール基板と、支柱上に取り付けられた発光ダイオード素子と、発光ダイオード素子の光照射側に配置された蛍光体を有する照明用LEDモジュールである。 Another invention is a substrate, an insulating layer having a thermal conductivity of 1 W / mK or more intermittently stacked on the substrate, a conductive layer stacked with a conductive pattern on the insulating layer, An LED module for illumination having a module substrate having conductive columns provided in intermittent portions of the insulating layer, a light emitting diode element mounted on the column, and a phosphor disposed on the light irradiation side of the light emitting diode element. is there.

基板は、銅、アルミニウム又はこれらを主成分とする合金からなる群から選ばれたものであるのが好ましく、さらに好ましくは、アルミニウム合金−黒鉛複合体、アルミニウム合金-黒鉛-炭化珪素質複合体からなる群から選ばれることが好ましい。 The substrate is preferably selected from the group consisting of copper, aluminum, or an alloy containing these as a main component, and more preferably an aluminum alloy-graphite composite or an aluminum alloy-graphite-silicon carbide composite. Is preferably selected from the group consisting of

絶縁層には、酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、スメクタイトから選ばれる少なくとも1種以上の白色顔料が添加されていることが好ましい。また、モジュール基板の表面にはソルダーレジスト膜を形成するのが好ましい。 It is preferable that at least one white pigment selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and smectite is added to the insulating layer. Moreover, it is preferable to form a solder resist film on the surface of the module substrate.

蛍光体は、一般式:(M)(Eu)(Si,Al)12(O,N)16(ただし、MはLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素)で示されるα型サイアロンであり、酸素含有量が1.2mass%以下であり、α型サイアロンを構成する一次粒子が柱状化しているα型サイアロン蛍光体であるのが好ましい。他に好ましい蛍光体は、一般式:Si6−zAl8−zで示され、Euを含有するβ型サイアロンを主成分とする蛍光体であって、電子スピン共鳴スペクトルによる計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度が2.0×1017個/g以下の蛍光体である。 The phosphor is represented by the general formula: (M) x (Eu) y (Si, Al) 12 (O, N) 16 (where M is Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce)) Α-sialon selected from the group consisting of one or more elements containing at least Ca), the oxygen content is 1.2 mass% or less, and the primary particles constituting the α-sialon are columnar α It is preferable that it is a type sialon phosphor. Another preferred phosphor is a phosphor represented by the general formula: Si 6-z Al z O z N 8-z , which is mainly composed of β-sialon containing Eu, and is measured by electron spin resonance spectrum. The phosphor has a spin density of 2.0 × 10 17 pieces / g or less corresponding to the absorption of g = 2.00 ± 0.02 at 25 ° C. in FIG.

本発明は、上述の構成により、複数の発光ダイオード素子を高密度に配置しても温度上昇を抑制できた。   According to the present invention, the above configuration can suppress the temperature rise even when a plurality of light emitting diode elements are arranged at high density.

実施例1に係る照明用LEDモジュールの断面を示す模式図。FIG. 3 is a schematic diagram illustrating a cross section of the illumination LED module according to the first embodiment. 実施例1に係る照明用LEDモジュールの平面を示す模式図。FIG. 3 is a schematic diagram illustrating a plan view of the LED module for illumination according to the first embodiment. 実施例2に係る照明用LEDモジュールの断面を示す模式図。FIG. 5 is a schematic diagram showing a cross section of an illumination LED module according to Example 2. 実施例3に係る照明用LEDモジュールの断面を示す模式図。FIG. 6 is a schematic diagram showing a cross section of an illumination LED module according to Example 3. 本発明に用いられるOne-Wire type発光ダイオード素子の模式図。The schematic diagram of the One-Wire type light emitting diode element used for this invention. 本発明に用いられるDouble-Wire type発光ダイオード素子の模式図。The schematic diagram of the Double-Wire type light emitting diode element used for this invention. 本発明に用いられるFace down type発光ダイオード素子の模式図。The schematic diagram of the Face down type light emitting diode element used for this invention.

1 基板
2 絶縁層
3 導電層
4 モジュール基板
5 発光ダイオード素子
6 ワイヤーボンディング
7 封止材
8 ダム材
9 支柱
10 発光体
12 素子基板
13 半田
14 熱伝導性接着剤
15 バンプ
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Insulation layer 3 Conductive layer 4 Module board | substrate 5 Light emitting diode element 6 Wire bonding 7 Sealing material 8 Dam material 9 Support | pillar 10 Light emitter 12 Element board 13 Solder 14 Thermal conductive adhesive 15 Bump

<モジュール基板の構造>
本発明に係る照明用LEDモジュールは、図1及び図2に示すように、基板1と、基板1上に積層された1W/mK以上の熱伝導性を有する絶縁層2と、絶縁層2上に導電パターンを有しつつ積層された導電層3を有するモジュール基板4と、
モジュール基板4の導電層3上に取り付けられた複数の発光ダイオード素子5と、
発光ダイオード素子5の光照射側に配置された蛍光体(図示省略、以下同じ。)を有する照明用LEDモジュールである。
<Structure of module board>
As shown in FIGS. 1 and 2, the lighting LED module according to the present invention includes a substrate 1, an insulating layer 2 having a thermal conductivity of 1 W / mK or more laminated on the substrate 1, and an insulating layer 2. A module substrate 4 having a conductive layer 3 laminated with a conductive pattern on the substrate;
A plurality of light emitting diode elements 5 mounted on the conductive layer 3 of the module substrate 4;
This is an illumination LED module having a phosphor (not shown, the same applies hereinafter) disposed on the light irradiation side of the light emitting diode element 5.

他の発明は、図3に示すように、基板1と、基板1上に間欠的に積層された1W/mK以上の熱伝導性を有する絶縁層2と、絶縁層2上に導電パターンを有しつつ積層された導電層3を有するモジュール基板4と、
モジュール基板4のうちの絶縁層2が積層されていない基板1上に取り付けられた複数の発光ダイオード素子5と、
発光ダイオード素子5の光照射側に配置された蛍光体を有する照明用LEDモジュールである。
As shown in FIG. 3, another invention has a substrate 1, an insulating layer 2 having a thermal conductivity of 1 W / mK or more laminated intermittently on the substrate 1, and a conductive pattern on the insulating layer 2. However, the module substrate 4 having the conductive layer 3 stacked while being laminated;
A plurality of light emitting diode elements 5 attached on the substrate 1 of the module substrate 4 on which the insulating layer 2 is not laminated;
This is an illumination LED module having a phosphor disposed on the light irradiation side of the light emitting diode element 5.

絶縁層2が間欠的に積層され、積層されていない基板1の表面に発光ダイオード素子5を配置することにより、より放熱性を高めることができた。絶縁層2が間欠的に積層する手段は、絶縁層2の積層時に間欠的に積層する手段、絶縁層2を形成した後に化学研磨や物理研磨、レーザー加工等より取り去る手段がある。 By disposing the light-emitting diode element 5 on the surface of the substrate 1 where the insulating layers 2 are intermittently laminated and are not laminated, heat dissipation can be further improved. Means for intermittently laminating the insulating layer 2 includes means for intermittently laminating the insulating layer 2 and means for removing the insulating layer 2 by chemical polishing, physical polishing, laser processing, or the like after the insulating layer 2 is formed.

他の発明は、図4に示すように、基板1と、基板1上に間欠的に積層された1W/mK以上の熱伝導性を有する絶縁層2と、絶縁層2上に導電パターンを有しつつ積層された導電層3と、絶縁層2の間欠箇所に設けられた導電性の支柱9を有するモジュール基板4と、
支柱9上に取り付けられた発光ダイオード素子5と、
発光ダイオード素子5の光照射側に配置された蛍光体を有する照明用LEDモジュールである。
As shown in FIG. 4, another invention has a substrate 1, an insulating layer 2 having a thermal conductivity of 1 W / mK or more intermittently stacked on the substrate 1, and a conductive pattern on the insulating layer 2. However, the module substrate 4 having the conductive layers 3 stacked while the conductive pillars 9 are provided at intermittent points of the insulating layer 2;
A light-emitting diode element 5 mounted on the column 9;
This is an illumination LED module having a phosphor disposed on the light irradiation side of the light emitting diode element 5.

この構成により、支柱9が発光ダイオード素子5の発熱を基板1に伝えるため、高い放熱性を得ることができた。この支柱9を形成する手段としては、基板1の形成後に別体として形成する手段と、基板1の形成時に予め突起を設けて支柱にする手段がある。 With this configuration, the column 9 transmits heat generated by the light-emitting diode element 5 to the substrate 1, so that high heat dissipation can be obtained. As a means for forming the support column 9, there are a means for forming the support 9 as a separate body after the formation of the substrate 1 and a means for providing a protrusion in advance when forming the substrate 1 to form a support.

基板1は、銅、アルミニウム又はこれらを主成分とする合金からなる群から選ばれたものであるのが好ましく、さらに好ましくは、アルミニウム合金−黒鉛複合体、アルミニウム合金-黒鉛-炭化珪素質複合体からなる群から選ばれることが好ましい。 The substrate 1 is preferably selected from the group consisting of copper, aluminum, or an alloy containing these as a main component, and more preferably an aluminum alloy-graphite composite or an aluminum alloy-graphite-silicon carbide composite. It is preferably selected from the group consisting of

絶縁層には、酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、スメクタイトから選ばれる少なくとも1種以上の白色顔料が添加されていることが好ましい。 It is preferable that at least one white pigment selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and smectite is added to the insulating layer.

蛍光体は、一般式:(M)(Eu)(Si,Al)12(O,N)16(ただし、MはLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素)で示されるα型サイアロンであり、酸素含有量が1.2mass%以下であり、α型サイアロンを構成する一次粒子が柱状化しているα型サイアロン蛍光体であるのが好ましい。他に好ましい蛍光体は、一般式:Si6−zAl8−zで示され、Euを含有するβ型サイアロンを主成分とする蛍光体であって、電子スピン共鳴スペクトルによる計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度が2.0×1017個/g以下の蛍光体である。 The phosphor is represented by the general formula: (M) x (Eu) y (Si, Al) 12 (O, N) 16 (where M is Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce)) Α-sialon selected from the group consisting of one or more elements containing at least Ca), the oxygen content is 1.2 mass% or less, and the primary particles constituting the α-sialon are columnar α It is preferable that it is a type sialon phosphor. Another preferred phosphor is a phosphor represented by the general formula: Si 6-z Al z O z N 8-z , which is mainly composed of β-sialon containing Eu, and is measured by electron spin resonance spectrum. The phosphor has a spin density of 2.0 × 10 17 pieces / g or less corresponding to the absorption of g = 2.00 ± 0.02 at 25 ° C. in FIG.

<絶縁層>
本発明の絶縁層は、発光ダイオード素子から発生する熱を効率よくモジュール基板裏面側に放熱するため、熱伝導率1W/mK以上である必要があり、好ましい熱伝導率は1.5W/mK以上、さらに好ましくは2W/mK以上である。発光ダイオード素子で発生する熱を基板1の裏面側に放熱し、さらに外部へ放熱することによりLEDモジュールの蓄熱を低減し、発光ダイオード素子の温度上昇を抑え、発光ダイオード素子の発光効率低下を抑制できた。また、導電層と基板との間の耐電圧は、0.5kV以上、望ましく1kV以上が好ましい。
<Insulating layer>
The insulating layer of the present invention needs to have a thermal conductivity of 1 W / mK or more in order to efficiently dissipate heat generated from the light emitting diode element to the back side of the module substrate, and a preferable thermal conductivity is 1.5 W / mK or more. More preferably, it is 2 W / mK or more. The heat generated in the light emitting diode element is dissipated to the back side of the substrate 1 and further dissipated to the outside, thereby reducing the heat storage of the LED module, suppressing the temperature rise of the light emitting diode element, and suppressing the decrease in the light emitting efficiency of the light emitting diode element did it. The withstand voltage between the conductive layer and the substrate is 0.5 kV or more, preferably 1 kV or more.

絶縁層を構成する材料は、この熱伝導率を有する素材であれば適宜選択でき、具体的にはフェノール樹脂、イミド樹脂、シリコーン樹脂、エポキシ樹脂等があり、より具体的には、エポキシ樹脂、エポキシ樹脂用硬化剤及び無機フィラーを含有したものが好ましい。 The material constituting the insulating layer can be appropriately selected as long as the material has this thermal conductivity, specifically, there are phenol resin, imide resin, silicone resin, epoxy resin, etc., more specifically, epoxy resin, What contains the hardening | curing agent for epoxy resins and the inorganic filler is preferable.

<絶縁層としてのエポキシ樹脂>
エポキシ樹脂としては、公知のエポキシ樹脂、例えばナフタレン型、フェニルメタン型、テトラキスフェノールメタン型、ビフェニル型及びビスフェノールAアルキレンオキサイド付加物型のエポキシ樹脂がある。このうち応力緩和性という理由で、主鎖がポリエーテル骨格を有し直鎖状であるエポキシ樹脂が好ましい。主鎖がポリエーテル骨格を有し主鎖状であるエポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型エポキシ樹脂、ビスフェノールA型の水素添加エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリテトラメチレングリコール型エポキシ樹脂に代表される脂肪族エポキシ樹脂及びポリサルファイド変性エポキシ樹脂があり、これらを複数組み合わせて用いることもできる。
<Epoxy resin as insulating layer>
Examples of the epoxy resin include known epoxy resins such as naphthalene type, phenylmethane type, tetrakisphenolmethane type, biphenyl type and bisphenol A alkylene oxide adduct type epoxy resins. Among these, an epoxy resin having a main chain having a polyether skeleton and a straight chain is preferable because of stress relaxation. The epoxy resin whose main chain has a polyether skeleton and has a main chain shape includes bisphenol A type, bisphenol F type epoxy resin, bisphenol A type hydrogenated epoxy resin, polypropylene glycol type epoxy resin, polytetramethylene glycol type epoxy. There are aliphatic epoxy resins typified by resins and polysulfide-modified epoxy resins, and a plurality of these may be used in combination.

より高い耐熱性が必要な場合、エポキシ樹脂として、ビスフェノールA型エポキシ樹脂を単独又は他のエポキシ樹脂と組み合わせて用いるのが好ましい。 When higher heat resistance is required, it is preferable to use a bisphenol A type epoxy resin alone or in combination with another epoxy resin as an epoxy resin.

<ビスフェノールA型エポキシ樹脂>
ビスフェノールA型エポキシ樹脂を採用する場合、エポキシ当量300以下であることが好ましい。エポキシ当量があまりに大きいと、高分子タイプになるときに見られる架橋密度の低下によるTgの低下、耐熱性の低下を生じさせる傾向にある。
<Bisphenol A type epoxy resin>
When a bisphenol A type epoxy resin is employed, the epoxy equivalent is preferably 300 or less. When the epoxy equivalent is too large, there is a tendency to cause a decrease in Tg and a decrease in heat resistance due to a decrease in crosslink density seen when a polymer type is obtained.

<エポキシ樹脂用硬化剤>
エポキシ樹脂には硬化剤を添加することが好ましい。硬化剤としては、芳香族アミン系樹脂、酸無水物系樹脂、フェノール系樹脂及びジシアンアミドからなる群から選ばれる1種類以上を用いることができる。硬化剤の添加量については、エポキシ樹脂100質量部に対して、5〜50質量部であることが好ましく、10〜35質量部であることが一層好ましい。
<Curing agent for epoxy resin>
It is preferable to add a curing agent to the epoxy resin. As the curing agent, one or more selected from the group consisting of aromatic amine resins, acid anhydride resins, phenol resins and dicyanamide can be used. About the addition amount of a hardening | curing agent, it is preferable that it is 5-50 mass parts with respect to 100 mass parts of epoxy resins, and it is still more preferable that it is 10-35 mass parts.

<エポキシ樹脂用硬化触媒>
エポキシ樹脂には、必要に応じて硬化触媒を使用することもできる。硬化触媒としては、イミダゾール化合物、有機リン酸化合物、第三級アミン、第四級アンモニウムがあり、いずれか1種類又はこれらの混合体がある。添加量は、硬化温度により変化するため特に制限はないが、あまりに少ないと硬化触媒の配合効果が現れず、あまりに多いと回路基板製造工程のおける硬化度合いの制御が難しくなるため、エポキシ樹脂100質量部に対して0.01質量部以上5質量部以下であることが好ましい。
<Curing catalyst for epoxy resin>
A curing catalyst can be used for the epoxy resin as necessary. As a curing catalyst, there are an imidazole compound, an organic phosphate compound, a tertiary amine, and a quaternary ammonium, and there is any one kind or a mixture thereof. The addition amount is not particularly limited because it varies depending on the curing temperature, but if it is too small, the compounding effect of the curing catalyst does not appear, and if it is too large, it becomes difficult to control the degree of curing in the circuit board manufacturing process. It is preferable that it is 0.01 mass part or more and 5 mass parts or less with respect to a part.

<エポキシ樹脂用フィラー>
エポキシ樹脂用無機フィラーとしては、電気絶縁性で熱伝導性に優れるものであればよく、例えば酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化硼素、酸化マグネシウム、窒化珪素の単独又は複数組み合わせがある。
<Filler for epoxy resin>
The inorganic filler for epoxy resin is not particularly limited as long as it is electrically insulating and excellent in thermal conductivity. Examples thereof include silicon oxide, aluminum oxide, aluminum nitride, boron nitride, magnesium oxide, and silicon nitride.

エポキシ樹脂用フィラーとしては、高熱伝導性を達成するには、窒化アルミウム及び窒化硼素が好ましい。本発明が高周波で用いる電気・電子部品として用いられて誘電率を低く抑える必要がある際には、結晶質二酸化ケイ素、窒化硼素が好ましい。 As the filler for epoxy resin, aluminum nitride and boron nitride are preferable in order to achieve high thermal conductivity. Crystalline silicon dioxide and boron nitride are preferred when the present invention is used as an electric / electronic component used at high frequencies and the dielectric constant needs to be kept low.

エポキシ樹脂用フィラーの粒子形状は、ハンドリング性及び流動性を向上させるため、アスペクト比が1に近いものが好ましい。粗粒子と微粒子を混ぜ合わせると破砕粒子や球状粒子を単独で用いた場合よりも高充填が可能となり、更に好ましい。 The particle shape of the filler for epoxy resin preferably has an aspect ratio close to 1 in order to improve handling properties and fluidity. When coarse particles and fine particles are mixed together, it is possible to achieve a higher packing than when crushed particles or spherical particles are used alone, which is more preferable.

無機フィラーとして粗粒子と微粒子を混ぜ合わせて用いる場合には、(a)最大粒子径が100μm以下で且つ粒子径1〜12μmのものを50体積%以上含有し平均粒子径が5〜50μmである粗粒子と、(b)粒子径2.0μm以下のものを70体積%以上含有し平均粒子径が0.2〜1.5μmである微粒子とからなる、(a)と(b)の混合粉を用いることが好ましい。粗粒子と微粒子の割合としては粗粒子が34〜70体積%、微粒子が3〜24体積%であることが好ましい。また、粗粒子と微粒子を混ぜ合わせて用いる場合には少なくともその一方が球状であることがより好ましい。 When mixing and using coarse particles and fine particles as the inorganic filler, (a) 50% by volume or more of those having a maximum particle size of 100 μm or less and a particle size of 1 to 12 μm and an average particle size of 5 to 50 μm Mixed powder of (a) and (b) comprising coarse particles and (b) fine particles having a particle size of 2.0 μm or less and 70% by volume or more and an average particle size of 0.2 to 1.5 μm Is preferably used. The ratio of coarse particles to fine particles is preferably 34 to 70% by volume of coarse particles and 3 to 24% by volume of fine particles. In the case where coarse particles and fine particles are used in combination, at least one of them is more preferably spherical.

無機フィラーの配合割合は、エポキシ樹脂と硬化剤の合計量100質量部に対して70〜95質量部が好ましく、80〜90質量部が一層好ましい。 70-95 mass parts is preferable with respect to 100 mass parts of total amounts of an epoxy resin and a hardening | curing agent, and, as for the mixture ratio of an inorganic filler, 80-90 mass parts is still more preferable.

<絶縁層中白色顔料>
本発明の絶縁層には酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、スメクタイトから選ばれる少なくとも1種以上の白色顔料を添加することが好ましい。絶縁層に白色顔料を含有させることにより絶縁層の反射率が向上し、発光ダイオード素子からの光を効率よく前面に照射させることができる。最も屈折率、基板の反射率を高める際には、白色顔料のうち二酸化チタンが好ましい。また、同フィラーにおいて、光を散乱させないためには、白色顔料の平均粒子径を0.30μm以下に限定するのが好ましい。
<White pigment in insulating layer>
It is preferable to add at least one white pigment selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and smectite to the insulating layer of the present invention. By including a white pigment in the insulating layer, the reflectance of the insulating layer is improved, and the light from the light emitting diode element can be efficiently irradiated on the front surface. Among the white pigments, titanium dioxide is preferable when the refractive index and the substrate reflectivity are to be increased. In the filler, it is preferable to limit the average particle diameter of the white pigment to 0.30 μm or less so as not to scatter light.

白色顔料のうち、高屈折率及び高放熱性の双方を持たせる際には、酸化亜鉛が好ましい。また、同フィラーにおいて光を散乱させないためには、平均粒子径が0.35μm以下であることが好ましい。 Of the white pigments, zinc oxide is preferred when it has both a high refractive index and high heat dissipation. Moreover, in order not to scatter light in the filler, it is preferable that an average particle diameter is 0.35 micrometer or less.

絶縁層に白色顔料を添加する場合、その添加量は絶縁層全体に対し5〜50体積%が好ましく、更に好ましくは5〜30体積%である。あまりに少ないと十分な反射率向上効果が得られず、あまりに多いと十分な分散ができず凝集塊等を形成してしまうためである。 When a white pigment is added to the insulating layer, the addition amount is preferably 5 to 50% by volume, more preferably 5 to 30% by volume with respect to the entire insulating layer. This is because if the amount is too small, a sufficient effect of improving the reflectance cannot be obtained, and if the amount is too large, sufficient dispersion cannot be achieved and aggregates or the like are formed.

絶縁層の反射率及び絶縁信頼性を高めるため、絶縁層を二層とするのが好ましい。二層とする場合には、内層となる一層目を絶縁性の高い絶縁層に、外層となる二層目を反射率の高い絶縁層に機能分離構造とすることが好ましい。 In order to increase the reflectance and insulation reliability of the insulating layer, it is preferable that the insulating layer has two layers. In the case of two layers, it is preferable to have a functional separation structure in which an inner layer is a highly insulating insulating layer and an outer layer is a highly reflective insulating layer.

<助剤>
絶縁層には必要に応じてカップリング剤等の分散助剤、溶剤等の粘度調整助剤など公知の各種助剤を添加することが可能である。
<Auxiliary>
It is possible to add known auxiliary agents such as a dispersion aid such as a coupling agent and a viscosity adjusting aid such as a solvent to the insulating layer as necessary.

<基板>
本発明の基板としては、アルミニウム、鉄、銅、又は前記金属の合金、アルミニウム−黒鉛複合体、アルミニウム合金-黒鉛-炭化珪素質複合体からなる群から選ばれればいずれでも構わないが、アルミニウム、銅、又はそれらの合金、アルミニウム合金−黒鉛複合体、アルミニウム合金-黒鉛-炭化珪素質複合体のいずれかが好ましい。また、必要に応じて、絶縁層との密着性を改良するために、絶縁層との接着面側に、サンドブラスト、エッチング、各種メッキ処理、カップリング剤処理等の表面処理も適宜選択可能である。
<Board>
The substrate of the present invention may be any one selected from the group consisting of aluminum, iron, copper, or an alloy of the above metals, an aluminum-graphite composite, an aluminum alloy-graphite-silicon carbide composite, aluminum, Copper, or an alloy thereof, an aluminum alloy-graphite composite, or an aluminum alloy-graphite-silicon carbide composite is preferable. Further, if necessary, surface treatment such as sandblasting, etching, various plating treatments, coupling agent treatment, etc. can be appropriately selected on the adhesion surface side with the insulation layer in order to improve adhesion with the insulation layer. .

<アルミニウム合金−黒鉛複合体>
アルミニウム合金−黒鉛複合体とは、コークス系黒鉛を原料とする等方性黒鉛材料に、溶湯鍛造法によりアルミニウム合金を加圧含浸したものである。コースクス系黒鉛としては、温度25℃での熱伝導率が100〜200W/mKであり、かつ、直交する3方向の熱伝導率の最大値/最小値が1〜1.3であって、温度25℃〜150℃の熱膨張係数が2〜5×10−6/Kであり且つ直交する3方向の熱膨張係数の最大値/最小値が1〜1.3であって、気孔率が10〜20体積%であることが好ましい。アルミニウム合金としては珪素3〜25質量%を含有するものが好ましい。
<Aluminum alloy-graphite composite>
The aluminum alloy-graphite composite is obtained by press-impregnating an isotropic graphite material using coke graphite as a raw material with an aluminum alloy by a melt forging method. The Caustic graphite has a thermal conductivity of 100 to 200 W / mK at a temperature of 25 ° C., and a maximum / minimum value of the thermal conductivity in three orthogonal directions is 1 to 1.3, The thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. is 2 to 5 × 10 −6 / K, and the maximum / minimum value of the thermal expansion coefficients in three orthogonal directions is 1 to 1.3, and the porosity is It is preferable that it is 10-20 volume%. The aluminum alloy preferably contains 3 to 25% by mass of silicon.

アルミニウム合金−黒鉛複合体の厚さ方向の熱伝導率は、好ましくは150〜300W/mKであり、かつ、直交する3方向の熱伝導率の最大値/最小値が1〜1.3であることが好ましい。熱伝導率が低過ぎると放熱特性が不足し、あまりに大き過ぎると、特性上の制約はないが、材料自体が高価になったり、特性の異方性が強くなったりするため好ましくない。また、直交する3方向の熱伝導率の最大値/最小値があまりに大きいと、放熱特性の異方性が大きくなりすぎて、発光ダイオード素子の温度が上昇する等の問題があり好ましくない。 The thermal conductivity in the thickness direction of the aluminum alloy-graphite composite is preferably 150 to 300 W / mK, and the maximum / minimum value of the thermal conductivity in three orthogonal directions is 1 to 1.3. It is preferable. If the thermal conductivity is too low, the heat dissipation characteristics are insufficient, and if it is too large, there are no restrictions on the characteristics, but the material itself becomes expensive and the anisotropy of the characteristics becomes strong, which is not preferable. In addition, if the maximum value / minimum value of the thermal conductivity in the three orthogonal directions is too large, the anisotropy of the heat dissipation characteristic becomes too large, and there is a problem that the temperature of the light emitting diode element rises, which is not preferable.

アルミニウム合金−黒鉛複合体は、温度25℃〜150℃での熱膨張係数が4〜7.5×10−6/Kであり、かつ、直交する3方向の熱膨張係数の最大値/最小値が1〜1.3であることが好ましい。温度25℃〜150℃での熱膨張係数が小さ過ぎても大き過ぎても、アルミニウム合金−黒鉛複合体と発光ダイオード素子の熱膨張係数の差が大きくなりすぎて、接続部の劣化による寿命低下等の問題が発生し好ましくない。更に、温度25℃〜150℃の直交する3方向の熱膨張係数の最大値/最小値があまりに大きくなり過ぎると、アルミニウム合金−黒鉛複合体の熱膨張係数の異方性が大きくなり過ぎ、発光ダイオード素子発光時に素子に不均一な応力が加わり、寿命低下等の問題が発生し好ましくない。 The aluminum alloy-graphite composite has a thermal expansion coefficient of 4 to 7.5 × 10 −6 / K at a temperature of 25 ° C. to 150 ° C., and the maximum value / minimum value of the thermal expansion coefficients in three orthogonal directions. Is preferably 1 to 1.3. Even if the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. is too small or too large, the difference in thermal expansion coefficient between the aluminum alloy-graphite composite and the light-emitting diode element becomes too large, and the life is shortened due to deterioration of the connection portion. Such a problem occurs, which is not preferable. Furthermore, if the maximum value / minimum value of the thermal expansion coefficient in the three directions orthogonal to each other at a temperature of 25 ° C. to 150 ° C. is too large, the anisotropy of the thermal expansion coefficient of the aluminum alloy-graphite composite becomes too large, resulting in light emission. This is not preferable because non-uniform stress is applied to the element during light emission of the diode element, causing problems such as a reduction in life.

<アルミニウム合金-黒鉛-炭化珪素質複合体>
アルミニウム合金-黒鉛-炭化珪素質複合体とは、黒鉛粉末60〜90体積%と炭化珪素粉末を10〜40体積%からなる気孔率が10〜30体積%の成形体に、高圧鍛造法でアルミニウム合金を加圧含浸したものである。アルミニウム合金としては珪素3〜25質量%を含有するものが好適に用いることができる
<Aluminum alloy-graphite-silicon carbide composite>
The aluminum alloy-graphite-silicon carbide composite is a high-pressure forging method that forms a molded body composed of 60 to 90% by volume of graphite powder and 10 to 40% by volume of silicon carbide powder with a porosity of 10 to 30% by volume. The alloy is pressure impregnated. An aluminum alloy containing 3 to 25% by mass of silicon can be suitably used.

アルミニウム合金−黒鉛-炭化珪素質複合体の厚さ方向の熱伝導率は、200W/(m・K)以上であることが好ましく、更に好ましくは250W/(m・K)以上である。熱伝導率が低過ぎると、放熱特性が不足し、あまりに高いと、特性上の制約はないが、材料自体が高価になるため好ましくない。 The thermal conductivity in the thickness direction of the aluminum alloy-graphite-silicon carbide composite is preferably 200 W / (m · K) or more, more preferably 250 W / (m · K) or more. If the thermal conductivity is too low, the heat dissipation characteristics are insufficient, and if it is too high, there are no restrictions on the characteristics, but the material itself is expensive, which is not preferable.

アルミニウム合金-黒鉛-炭化珪素質複合体は、温度25℃〜150℃の熱膨張係数が12×10−6/K以下であることが好ましい。熱膨張係数があまりに大きいと発光ダイオード素子の熱膨張係数の差が大きくなりすぎて、接続部の劣化による寿命低下等の問題が発生し好ましくない。 The aluminum alloy-graphite-silicon carbide composite preferably has a thermal expansion coefficient of 12 × 10 −6 / K or less at a temperature of 25 ° C. to 150 ° C. If the thermal expansion coefficient is too large, the difference between the thermal expansion coefficients of the light-emitting diode elements becomes too large, which causes problems such as a decrease in life due to deterioration of the connection portion, which is not preferable.

<基板の厚み>
基板の厚さは0.10mm〜4mmが好ましい、あまりに薄いとハンドリング性が低下し、あまりに厚いと、技術的な制限はないが、照明用LEDモジュールとしての用途が見いだせず、実用的でない。
<Thickness of substrate>
The thickness of the substrate is preferably from 0.10 mm to 4 mm. If the substrate is too thin, the handling property is lowered. If the substrate is too thick, there is no technical limitation, but an application as an LED module for lighting cannot be found and it is not practical.

<導電層>
導電層としては、アルミニウム、鉄、銅、又は、これら金属の合金を選択でき、電気特性から、銅又はその合金が好ましい。また、発光ダイオード素子の実装面には発光ダイオード素子の実装時の接合性改善や表面の酸化防止の為、また絶縁層との接着面側には絶縁層との接着性向上の為に、サンドブラスト、エッチング、各種メッキ処理、カップリング剤処理等の表面処理も適宜選択可能である。
<Conductive layer>
As the conductive layer, aluminum, iron, copper, or an alloy of these metals can be selected, and copper or an alloy thereof is preferable in terms of electrical characteristics. Sandblasting is also used on the mounting surface of the light-emitting diode element to improve the bonding property when the light-emitting diode element is mounted and to prevent oxidation of the surface, and to improve the adhesion to the insulating layer on the bonding surface side with the insulating layer. Surface treatments such as etching, various plating treatments, and coupling agent treatments can also be selected as appropriate.

<回路厚み>
導電層の厚さは0.005mm〜0.400mmが好ましく、更に好ましくは0.018mm〜0.210mmである。0.005mm未満ではLEDモジュール基板として十分な導通回路を確保できず、0.40mmを超えると回路形成の製造プロセス上の問題がある。
<Circuit thickness>
The thickness of the conductive layer is preferably 0.005 mm to 0.400 mm, more preferably 0.018 mm to 0.210 mm. If it is less than 0.005 mm, a sufficient conduction circuit as an LED module substrate cannot be secured, and if it exceeds 0.40 mm, there is a problem in the manufacturing process of circuit formation.

<絶縁層>
本発明において、絶縁層の厚さは、50μm以上200μm以下が好ましい。50μm以上であれば電気絶縁性が確保できるし、200μm以下で熱放散性が十分に達成できるし、小型化や薄型化に寄与できる。
<Insulating layer>
In the present invention, the thickness of the insulating layer is preferably 50 μm or more and 200 μm or less. If it is 50 μm or more, electrical insulation can be secured, and if it is 200 μm or less, heat dissipation can be sufficiently achieved, and it can contribute to miniaturization and thickness reduction.

<発光ダイオード素子>
本発明にあっては、モジュール基板の導電層上に複数の発光ダイオード素子が取り付けられる。発光ダイオード素子としては紫外〜青色の波長域の光を発するものが好ましく、その材質としてInGaN、AlGaAs、AlGaInPがある。その構造についてもOne-Wire type(図5参照)、Double-Wire type(図6参照)やFace down type(図7参照)等を用いることができる。
<Light emitting diode element>
In the present invention, a plurality of light emitting diode elements are attached on the conductive layer of the module substrate. A light emitting diode element that emits light in the ultraviolet to blue wavelength region is preferable, and the materials include InGaN, AlGaAs, and AlGaInP. As for the structure, one-wire type (see FIG. 5), double-wire type (see FIG. 6), face down type (see FIG. 7), or the like can be used.

発光ダイオード素子の構造については、図3又は図4に記載の構成の場合には、発光ダイオード素子のモジュール基板との接合面にサファイア等の絶縁性の層を有するDouble-Wire typeを用いる必要があり、図1に記載の構成の場合にはDouble-Wire type、One-Wire type、Face down typeを用いることができる。 As for the structure of the light emitting diode element, in the case of the configuration shown in FIG. 3 or FIG. 4, it is necessary to use a double-wire type having an insulating layer such as sapphire on the joint surface with the module substrate of the light emitting diode element. In the case of the configuration shown in FIG. 1, a double-wire type, a one-wire type, and a face down type can be used.

<発光ダイオード素子実装>
発光ダイオード素子のモジュール基板への実装には、クリーム半田、共晶半田、鉛フリー半田等による半田実装、Agワイヤー、Auワイヤーによるワイヤーボンディング等公知の方法を用いることができる。
<Light-emitting diode element mounting>
For mounting the light-emitting diode element on the module substrate, a known method such as solder mounting using cream solder, eutectic solder, lead-free solder or the like, wire bonding using Ag wire, or Au wire can be used.

<蛍光体>
本発明の蛍光体(図示省略)は、発光ダイオード素子の光照射側に配置されたものであり、この配置によって、発光ダイオード素子からの光を受け可視光を発するものである。蛍光体としては、α型サイアロン、β型サイアロン、YAG蛍光体、カズン蛍光体(CaAlSiN)などのうち少なくとも1種を含んでいればよく、併用も可能であり、そのうち、α型サイアロン、β型サイアロンが好ましい。
<Phosphor>
The phosphor of the present invention (not shown) is disposed on the light irradiation side of the light emitting diode element, and by this arrangement, receives light from the light emitting diode element and emits visible light. As the phosphor, it is sufficient to include at least one of α-type sialon, β-type sialon, YAG phosphor, cozun phosphor (CaAlSiN 3 ), and the like can be used together. Type sialon is preferred.

<α型サイアロン>
本発明にあっては、蛍光体として、α型サイアロン蛍光体を採用する際、一般式:(M)(Eu)(Si,Al)12(O,N)16(ただし、MはLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素)で示されるα型サイアロンであり、酸素含有量が1.2mass%以下であり、α型サイアロンを構成する一次粒子が柱状化しているα型サイアロン蛍光体であるのが好ましい。
<Α-type sialon>
In the present invention, when an α-type sialon phosphor is employed as the phosphor, a general formula: (M) x (Eu) y (Si, Al) 12 (O, N) 16 (where M is Li , Mg, Ca, Y and a lanthanide element (excluding La and Ce) and an α-type sialon represented by at least one element containing Ca selected from the group consisting of La and Ce, and an oxygen content of 1.2 mass% or less The α-sialon phosphor is preferably an α-sialon phosphor in which the primary particles constituting the α-sialon are columnar.

α型サイアロン蛍光体を採用する際、さらに好ましくは、その粒度分布を、レーザー回折散乱法によって測定したD50が5〜20μm、D10が2〜15μm、かつD90が6〜50μmの範囲とすると、高輝度化が図れる。 When the α-sialon phosphor is employed, it is more preferable that the particle size distribution is high when D50 is 5 to 20 μm, D10 is 2 to 15 μm, and D90 is 6 to 50 μm as measured by the laser diffraction scattering method. Brightness can be achieved.

<β型サイアロン>
本発明にあっては、蛍光体として、β型サイアロン蛍光体を採用する際、一般式:Si6−zAl8−zで示され、Euを含有するβ型サイアロンを主成分とする蛍光体であって、電子スピン共鳴スペクトルによる計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度が2.0×1017個/g以下であるものが好ましい。
<Β-sialon>
In the present invention, when a β-type sialon phosphor is employed as the phosphor, a β-sialon represented by the general formula: Si 6-z Al z O z N 8-z and containing Eu is the main component. And a spin density corresponding to absorption of g = 2.00 ± 0.02 at 25 ° C. measured by electron spin resonance spectrum is 2.0 × 10 17 pieces / g or less. preferable.

β型サイアロン蛍光体を採用する際、さらに好ましくは、その粒度分布を、レーザー回折散乱法によって測定したD50が6〜30μmであり、かつD10が4μm以上であり、かつ比表面積が0.5m/g以下の範囲とすると、高輝度化が図れる。 When adopting the β-type sialon phosphor, more preferably, the particle size distribution of D50 measured by a laser diffraction scattering method is 6 to 30 μm, D10 is 4 μm or more, and the specific surface area is 0.5 m 2. If the range is less than / g, high brightness can be achieved.

<蛍光体の封止材>
蛍光体は、発光ダイオード素子を保護する封止材中に1〜50質量%の範囲で分散させ、発光ダイオードチップの上部に配置するのが好ましい。封止材としてはシリコーン樹脂、エポキシ樹脂、エポキシ基を有するポリジメチルシロキサン誘導体、オキセタン樹脂、アクリル樹脂、シクロオレフィン樹脂等の熱硬化樹脂等があり、本発明においては高屈折率、高耐熱性が必要なため、シリコーン樹脂がより好ましい。
<Encapsulant for phosphor>
The phosphor is preferably dispersed in a sealing material for protecting the light emitting diode element in the range of 1 to 50% by mass and disposed on the light emitting diode chip. Examples of the sealing material include silicone resins, epoxy resins, polydimethylsiloxane derivatives having epoxy groups, oxetane resins, acrylic resins, and thermosetting resins such as cycloolefin resins. In the present invention, high refractive index and high heat resistance are provided. A silicone resin is more preferable because it is necessary.

<ソルダーレジスト膜>
本発明のモジュール基板の表面にはソルダーレジスト膜を設けることができ、ソルダーレジスト膜として可視光の波長域の反射率が高い膜を形成することで発光ダイオード素子からの光を効率よく前面に照射させることができる。ソルダーレジスト膜は、発光ダイオード素子の発光を阻害しないため、発光ダイオード素子の発光部、配線部等には積層しないのが好ましい。
<Solder resist film>
The surface of the module substrate of the present invention can be provided with a solder resist film. By forming a film having a high reflectance in the visible light wavelength region as the solder resist film, light from the light emitting diode element is efficiently irradiated to the front surface. Can be made. Since the solder resist film does not hinder the light emission of the light emitting diode element, it is preferable that the solder resist film is not laminated on the light emitting part, the wiring part or the like of the light emitting diode element.

ソルダーレジスト膜の反射率は、400〜800nmの波長の光に対して70%以上の反射率を有することが好ましく、更に好ましくは450〜470nm、520〜570nm及び620〜660nmのそれぞれの波長の範囲で反射率の最大値がいずれも80%以上、さらには85%以上であるのが好ましい。 The reflectance of the solder resist film preferably has a reflectance of 70% or more with respect to light having a wavelength of 400 to 800 nm, more preferably 450 to 470 nm, 520 to 570 nm, and 620 to 660 nm. The maximum reflectance is preferably 80% or more, and more preferably 85% or more.

ソルダーレジスト膜は、レジスト材として使用される紫外線硬化樹脂、熱硬化樹脂の何れか一方を少なくとも含有する樹脂組成物に白色顔料を含有するものである。これら硬化性樹脂としてはエポキシ樹脂、アクリル樹脂及びこれらの混合物が好適に用いられる。白色顔料としては、酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、スメクタイトから選ばれる少なくとも1種以上を含有することが好ましく、これらの中でも特に二酸化チタンが好ましい。二酸化チタンでは、ルチル型のものは安定性に優れるため光触媒作用が弱く、他の構造のものに比べ樹脂成分の劣化が抑制されるため好適に用いることができる。更に二酸化チタンを各種表面処理し光触媒作用を抑制したものが好ましく、表面処理方法としては、二酸化珪素又は水酸化アルミニウム等によるコーティングがある。 The solder resist film contains a white pigment in a resin composition containing at least one of an ultraviolet curable resin and a thermosetting resin used as a resist material. As these curable resins, epoxy resins, acrylic resins and mixtures thereof are preferably used. The white pigment preferably contains at least one selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and smectite. Among these, titanium dioxide is particularly preferable. Among titanium dioxides, rutile type is excellent in stability and thus has a weak photocatalytic action, and can be suitably used because deterioration of the resin component is suppressed as compared with other structures. Further, various surface treatments of titanium dioxide to suppress the photocatalytic action are preferable, and the surface treatment method includes coating with silicon dioxide or aluminum hydroxide.

白色膜中の白色顔料の含有量は、あまりに少な過ぎると十分な反射効果が得られず、あまりに多過ぎると膜形成時の流動性が低下し均一な膜を形成できなくなるため、30〜70体積%が好ましく、より好ましくは30〜60体積%である。 If the content of the white pigment in the white film is too small, a sufficient reflection effect cannot be obtained, and if it is too large, the fluidity at the time of film formation is lowered and a uniform film cannot be formed, so 30 to 70 volumes. % Is preferable, and more preferably 30 to 60% by volume.

<リフレクタ>
本発明のモジュール基板には、更に発光ダイオード素子からの光を効率よく前面に照射させるため、リフレクタを形成することが好ましい。リフレクタの形状、材質は、適宜選択して採用することができ、別体のリフレクタを用いるだけでなく、本発明の図3のような構成を取る場合、発光ダイオード素子搭載部のザグリ形状を円錐状又はドーム状とすることで絶縁層自体をリフレクタとすることもできる。
<Reflector>
A reflector is preferably formed on the module substrate of the present invention in order to efficiently irradiate the front surface with light from the light emitting diode element. The shape and material of the reflector can be appropriately selected and employed. In addition to using a separate reflector, the counterbore shape of the light emitting diode element mounting portion is conical when using the configuration shown in FIG. The insulating layer itself can also be made a reflector by forming a shape or a dome shape.

次に、実施例に基づいて、図を参照しつつ、本発明を更に詳細に説明する。   Next, based on an Example, this invention is demonstrated further in detail, referring a figure.

<実施例1>
実施例1の照明用LEDモジュールは、図1及び図2に示すように、モジュール基板4と、モジュール基板4の導電層3上に取り付けられた複数の発光ダイオード素子5と、発光ダイオード素子5の光照射側に配置された蛍光体(図示省略)を有するものである。モジュール基板4は、基板1と、基板1上に積層された1W/mK以上の熱伝導性を有する絶縁層2と、絶縁層2上に導電パターンを有しつつ積層された導電層3を有するものである。図1の符号6はワイヤーディング、7は封止材、符号8はダム材である。図2の符号16は配線部である。
<Example 1>
As shown in FIGS. 1 and 2, the lighting LED module of Example 1 includes a module substrate 4, a plurality of light emitting diode elements 5 attached on the conductive layer 3 of the module substrate 4, and a light emitting diode element 5. It has a phosphor (not shown) disposed on the light irradiation side. The module substrate 4 includes a substrate 1, an insulating layer 2 having a thermal conductivity of 1 W / mK or more stacked on the substrate 1, and a conductive layer 3 stacked on the insulating layer 2 while having a conductive pattern. Is. Reference numeral 6 in FIG. 1 is wiring, 7 is a sealing material, and 8 is a dam material. Reference numeral 16 in FIG. 2 denotes a wiring portion.

基板1として厚さ1.0mmのアルミニウム、導電層3として厚さ35μmの銅を採用した。
絶縁層2は、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、「EP−828」)に、硬化剤としてフェノールノボラック(大日本インキ化学工業社製、「TD−2131」)を加え、平均粒子径が1.2μmである破砕状粗粒子の酸化珪素(龍森社製、「A−1」)と平均粒子径10μmである破砕状粗粒子の酸化珪素(龍森社製、「5X」)を合わせて絶縁層中56体積%(球状粗粒子と球状微粒子は質量比が7:3)となるように配合したものである。該絶縁層の熱伝導率は2W/mKであった。
The substrate 1 was 1.0 mm thick aluminum, and the conductive layer 3 was 35 μm thick copper.
Insulating layer 2 is obtained by adding phenol novolak (manufactured by Dainippon Ink & Chemicals, "TD-2131") as a curing agent to bisphenol A type epoxy resin ("EP-828" manufactured by Japan Epoxy Resin Co., Ltd.) Crushed coarse silicon oxide having a diameter of 1.2 μm (manufactured by Tatsumori Co., Ltd., “A-1”) and crushed coarse silicon oxide having an average particle diameter of 10 μm (manufactured by Tatsumori Co., Ltd., “5X”) Are combined so that the volume of the insulating layer is 56% by volume (mass ratio of spherical coarse particles and spherical fine particles is 7: 3). The thermal conductivity of the insulating layer was 2 W / mK.

基板1の上に絶縁層2を厚み80μmになるように積層し、導電層3を積層し、さらに導電層3の上に化学エッチングにより回路(図示省略)を形成し、モジュール基板4を得た。 The insulating layer 2 was laminated on the substrate 1 so as to have a thickness of 80 μm, the conductive layer 3 was laminated, and a circuit (not shown) was formed on the conductive layer 3 by chemical etching to obtain a module substrate 4. .

モジュール基板4には、出力1.5WのOne−Wire typeの発光ダイオード素子36個(図示一部省略)をクリーム半田と金ワイヤーによるワイヤーボンディング6により実装した。 On the module substrate 4, 36 one-wire type light emitting diode elements (partially omitted in the drawing) with an output of 1.5 W were mounted by wire bonding 6 using cream solder and gold wire.

更に、図示は省略したが、α型サイアロン蛍光体をシリコーン系封止材(東レダウコーニング社JCR6125)に20質量%分散した封止材により封止した。その後、ダム材8を設け、ダム材8内に封止材7を充填し、本実施例に係る照明用LEDモジュールを完成させた。 Further, although not shown, the α-sialon phosphor was sealed with a sealing material in which 20% by mass was dispersed in a silicone-based sealing material (Toray Dow Corning JCR6125). Then, the dam material 8 was provided, the sealing material 7 was filled in the dam material 8, and the LED module for illumination which concerns on a present Example was completed.

評価として、実施例1の照明用LEDモジュール中央付近の封止材7を除去した照明用LEDモジュールを作成し、発光ダイオード素子に電圧を印可し、発光ダイオード素子の上面の温度をサーモグラフィーにより測定したところ、発光ダイオード素子の温度は95℃であった。 As an evaluation, an illumination LED module was prepared by removing the sealing material 7 near the center of the illumination LED module of Example 1, a voltage was applied to the light emitting diode element, and the temperature of the upper surface of the light emitting diode element was measured by thermography. However, the temperature of the light emitting diode element was 95 ° C.

<比較例1>
絶縁層としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、「EP−828」)に、硬化剤としてフェノールノボラック(大日本インキ化学工業社製、「TD−2131」)を配合したものを用いた以外は実施例1と同様にした。該絶縁層の熱伝導率は0.2W/mKであった。実施例1と同様にしてモジュール中央付近の封止材7を除去したモジュールを作成し所定の出力となるよう発光ダイオード素子に電圧を印可したところ、発光ダイオード素子の温度は145℃であった。
<Comparative Example 1>
As the insulating layer, a bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin, “EP-828”) and a phenol novolak (manufactured by Dainippon Ink & Chemicals, “TD-2131”) as a curing agent were used. Except for this, the procedure was the same as in Example 1. The thermal conductivity of the insulating layer was 0.2 W / mK. A module in which the sealing material 7 near the center of the module was removed in the same manner as in Example 1 and a voltage was applied to the light emitting diode element to obtain a predetermined output. The temperature of the light emitting diode element was 145 ° C.

<比較例2>
基板1として厚さ1.0mmのガラスを用いた以外は実施例1と同様にした。実施例1と同様にしてモジュール中央付近の封止材7を除去したモジュールを作成し所定の出力となるよう発光ダイオード素子に電圧を印可したところ、15分で発光ダイオード素子の温度は150℃以上となった。
<Comparative example 2>
Example 1 was performed except that glass having a thickness of 1.0 mm was used as the substrate 1. A module was prepared by removing the sealing material 7 near the center of the module in the same manner as in Example 1, and when a voltage was applied to the light-emitting diode element to obtain a predetermined output, the temperature of the light-emitting diode element was 150 ° C. or higher in 15 minutes. It became.

<実施例2>
基板1としてアルミニウム合金-黒鉛-炭化珪素質複合体を用いた以外は実施例1と同様にした。発光ダイオード素子5の温度は90℃であった。
<Example 2>
Example 1 was repeated except that an aluminum alloy-graphite-silicon carbide composite was used as the substrate 1. The temperature of the light-emitting diode element 5 was 90 ° C.

<実施例3>
照明用LEDモジュールの構造を図3とし、炭酸ガスレーザーにより絶縁層2に間欠部を形成し、発光ダイオード素子5を出力1.5WのTwo-Wire typeの用いた以外は実施例1と同様にした。発光ダイオード素子5の温度は67℃であった。
<Example 3>
The structure of the LED module for illumination is shown in FIG. 3, and an intermittent portion is formed in the insulating layer 2 by a carbon dioxide laser, and the light emitting diode element 5 is the same as in Example 1 except that a two-wire type with an output of 1.5 W is used. did. The temperature of the light-emitting diode element 5 was 67 ° C.

<実施例4>
基板1としてアルミニウム合金-黒鉛-炭化珪素質複合体を用いた以外は実施例3と同様にした。光ダイオード素子の温度は67℃であった。
<Example 4>
The same procedure as in Example 3 was performed except that an aluminum alloy-graphite-silicon carbide composite was used as the substrate 1. The temperature of the photodiode element was 67 ° C.

<比較例3>
基板1として厚さ1.0mmのガラスを用いた以外は実施例3と同様にした。実施例1と同様にしてモジュール中央付近の封止材7を除去したモジュールを作成し所定の出力となるよう発光ダイオード素子に電圧を印可したところ、15分で発光ダイオード素子の温度は150℃以上となった。
<Comparative Example 3>
Example 3 was performed except that glass having a thickness of 1.0 mm was used as the substrate 1. A module was prepared by removing the sealing material 7 near the center of the module in the same manner as in Example 1, and when a voltage was applied to the light-emitting diode element to obtain a predetermined output, the temperature of the light-emitting diode element was 150 ° C. or higher in 15 minutes. It became.

<実施例5>
照明用LEDモジュールの構造を図4とし、基板1として銅を用い、発光ダイオード素子5を出力1WのTwo-Wire typeとした以外は実施例1と同様にした。発光ダイオード素子5の温度は89℃であった。
<Example 5>
The structure of the LED module for illumination is shown in FIG. 4, the same as in Example 1 except that copper is used as the substrate 1 and the light-emitting diode element 5 is a two-wire type with an output of 1 W. The temperature of the light-emitting diode element 5 was 89 ° C.

<実施例6>
実施例1の絶縁層2に、酸化亜鉛で形成された白色顔料を形成したら、発光強度が強くなった。
<Example 6>
When a white pigment formed of zinc oxide was formed on the insulating layer 2 of Example 1, the emission intensity was increased.

<実施例7>
実施例1のモジュール基板4の表面にソルダーレジスト膜を形成したら、実施例1よりも発光強度が強くなった。
<Example 7>
When a solder resist film was formed on the surface of the module substrate 4 of Example 1, the emission intensity became stronger than that of Example 1.

<実施例8>
実施例1のα型サイアロンをβ型サイアロンに変更しても、照明用モジュールとして高輝度を得ることができた。
<Example 8>
Even when the α-sialon in Example 1 was changed to β-sialon, high luminance could be obtained as an illumination module.

<実施例8>
実施例1ではα型サイアロン蛍光体をシリコーン系封止材(東レダウコーニング社JCR6125)に20質量%分散した封止材により封止したが、本実施例では、封止材7にα型サイアロン蛍光体を充填した。本実施例8では、封止材7全体に蛍光体を配合したので実施例1より高輝度化が図れた。
<Example 8>
In Example 1, the α-type sialon phosphor was sealed with a sealing material in which 20% by mass was dispersed in a silicone-based sealing material (Toray Dow Corning JCR6125). Filled with phosphor. In Example 8, since the phosphor was blended in the entire sealing material 7, higher luminance than that in Example 1 was achieved.

Claims (9)

基板(1)と、基板(1)上に積層された1W/mK以上の熱伝導性を有する絶縁層(2)と、絶縁層(2)上に導電パターンを有しつつ積層された導電層(3)を有するモジュール基板(4)と、
モジュール基板(4)の導電層(3)上に取り付けられた複数の発光ダイオード素子(5)と、
発光ダイオード素子(5)の光照射側に配置された蛍光体を有する照明用LEDモジュール。
A substrate (1), an insulating layer (2) having a thermal conductivity of 1 W / mK or more laminated on the substrate (1), and a conductive layer laminated on the insulating layer (2) with a conductive pattern A module substrate (4) having (3);
A plurality of light emitting diode elements (5) mounted on the conductive layer (3) of the module substrate (4);
LED module for illumination which has the fluorescent substance arrange | positioned at the light irradiation side of a light emitting diode element (5).
基板(1)と、基板(1)上に間欠的に積層された1W/mK以上の熱伝導性を有する絶縁層(2)と、絶縁層(2)上に導電パターンを有しつつ積層された導電層(3)を有するモジュール基板(4)と、
モジュール基板(4)のうちの絶縁層(2)が積層されていない基板(1)上に取り付けられた複数の発光ダイオード素子(5)と、
発光ダイオード素子(5)の光照射側に配置された蛍光体を有する照明用LEDモジュール。
A substrate (1), an insulating layer (2) having a thermal conductivity of 1 W / mK or more intermittently stacked on the substrate (1), and a conductive pattern on the insulating layer (2). A module substrate (4) having a conductive layer (3),
A plurality of light emitting diode elements (5) mounted on a substrate (1) of the module substrate (4) where the insulating layer (2) is not laminated;
LED module for illumination which has the fluorescent substance arrange | positioned at the light irradiation side of a light emitting diode element (5).
基板(1)と、基板(1)上に間欠的に積層された1W/mK以上の熱伝導性を有する絶縁層(2)と、絶縁層(2)上に導電パターンを有しつつ積層された導電層(3)と、絶縁層(2)の間欠箇所に設けられた導電性の支柱(9)を有するモジュール基板(4)と、
支柱(9)上に取り付けられた発光ダイオード素子(5)と、
発光ダイオード素子(5)の光照射側に配置された蛍光体を有する照明用LEDモジュール。
A substrate (1), an insulating layer (2) having a thermal conductivity of 1 W / mK or more intermittently stacked on the substrate (1), and a conductive pattern on the insulating layer (2). A module substrate (4) having conductive struts (9) provided at intermittent locations of the conductive layer (3) and the insulating layer (2);
A light emitting diode element (5) mounted on the support post (9);
LED module for illumination which has the fluorescent substance arrange | positioned at the light irradiation side of a light emitting diode element (5).
基板(1)が、銅、アルミニウム又はこれらを主成分とする合金からなる群から選ばれたものである請求項1乃至3のいずれか一項記載の照明用LEDモジュール。 The LED module for illumination according to any one of claims 1 to 3, wherein the substrate (1) is selected from the group consisting of copper, aluminum, or an alloy containing these as a main component. 基板(1)が、アルミニウム合金−黒鉛複合体、アルミニウム合金-黒鉛-炭化珪素質複合体からなる群から選ばれることを特徴とする請求項1乃至3のいずれか一項記載の照明用LEDモジュール。 The lighting LED module according to any one of claims 1 to 3, wherein the substrate (1) is selected from the group consisting of an aluminum alloy-graphite composite and an aluminum alloy-graphite-silicon carbide composite. . 絶縁層に、酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、スメクタイトから選ばれる少なくとも1種以上の白色顔料が添加されている請求項1乃至5のいずれか一項記載の照明用LEDモジュール。 The lighting LED module according to any one of claims 1 to 5, wherein at least one white pigment selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and smectite is added to the insulating layer. モジュール基板の表面にソルダーレジスト膜を形成した請求項1乃至6のいずれか一項記載の照明用LEDモジュール。 The LED module for illumination according to any one of claims 1 to 6, wherein a solder resist film is formed on a surface of the module substrate. 蛍光体が、一般式:(M)(Eu)(Si,Al)12(O,N)16(ただし、MはLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素)で示されるα型サイアロンであり、酸素含有量が1.2mass%以下であり、α型サイアロンを構成する一次粒子が柱状化しているα型サイアロン蛍光体である請求項1乃至7のいずれか一項記載の照明用LEDモジュール。 The phosphor is represented by the general formula: (M) x (Eu) y (Si, Al) 12 (O, N) 16 (where M is Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce)) Α-sialon selected from the group consisting of one or more elements containing at least Ca), the oxygen content is 1.2 mass% or less, and the primary particles constituting the α-sialon are columnar α The illumination LED module according to any one of claims 1 to 7, which is a type sialon phosphor. 蛍光体が、一般式:Si6−zAl8−zで示され、Euを含有するβ型サイアロンを主成分とする蛍光体であって、電子スピン共鳴スペクトルによる計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度が2.0×1017個/g以下である請求項1乃至7のいずれか一項記載の照明用LEDモジュール。 The phosphor is represented by the general formula: Si 6-z Al z O z N 8-z , and is a phosphor mainly composed of β-sialon containing Eu, which is 25 ° C. in measurement by electron spin resonance spectrum. The LED module for illumination according to claim 1, wherein a spin density corresponding to absorption of g = 2.00 ± 0.02 is 2.0 × 10 17 pieces / g or less.
JP2009097739A 2009-04-14 2009-04-14 LED module for lighting Active JP5330889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097739A JP5330889B2 (en) 2009-04-14 2009-04-14 LED module for lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097739A JP5330889B2 (en) 2009-04-14 2009-04-14 LED module for lighting

Publications (2)

Publication Number Publication Date
JP2010251441A true JP2010251441A (en) 2010-11-04
JP5330889B2 JP5330889B2 (en) 2013-10-30

Family

ID=43313476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097739A Active JP5330889B2 (en) 2009-04-14 2009-04-14 LED module for lighting

Country Status (1)

Country Link
JP (1) JP5330889B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077368A1 (en) * 2010-12-10 2012-06-14 電気化学工業株式会社 β TYPE SIALON, LIGHT-EMITTING DEVICE AND APPLICATION THEREOF
JP2013026416A (en) * 2011-07-20 2013-02-04 Toyoda Gosei Co Ltd Element mounting substrate and light emitting device including the same
JP2014060462A (en) * 2011-08-01 2014-04-03 Shikoku Instrumentation Co Ltd Led light-emitting device and method of manufacturing the same
JP2014221915A (en) * 2014-07-31 2014-11-27 株式会社カネカ Heat-conductive curable resin composition and curable resin molded article
JP2016195177A (en) * 2015-03-31 2016-11-17 Hoya Candeo Optronics株式会社 Light irradiation module
WO2017150913A1 (en) * 2016-03-02 2017-09-08 주식회사 세미콘라이트 Semiconductor light emitting element and manufacturing method therefor
KR102047891B1 (en) * 2019-03-26 2019-11-22 동의대학교 산학협력단 Manufacturing Method of Powder Coating Materials and LED Lighting Application of Thereof
KR102047889B1 (en) * 2019-03-26 2019-11-22 동의대학교 산학협력단 Manufacturing Method of Powder Coating Materials containing Aluminum Silicate and the Thermal Radiation Application of thereof
WO2022025065A1 (en) * 2020-07-31 2022-02-03 京セラ株式会社 Light emitting device and illumination device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235778A (en) * 2001-08-09 2005-09-02 Matsushita Electric Ind Co Ltd Led lighting fixture and card type led lighting light source
WO2006093135A1 (en) * 2005-02-28 2006-09-08 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
JP2007043126A (en) * 2005-06-30 2007-02-15 Matsushita Electric Works Ltd Luminaire using led
WO2008062781A1 (en) * 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and production method thereof, and light emitting device
JP2008235824A (en) * 2007-03-23 2008-10-02 Sharp Corp Light-mitting device and method of manufacturing the same
JP2008240155A (en) * 2003-05-16 2008-10-09 Hitachi Metals Ltd Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
JP2008244285A (en) * 2007-03-28 2008-10-09 Denka Agsp Kk Light-emitting element mounting substrate and manufacturing method therefor
JP2008288440A (en) * 2007-05-18 2008-11-27 Toyoda Gosei Co Ltd Integrated display device
JP2009010360A (en) * 2007-05-31 2009-01-15 Toshiba Lighting & Technology Corp Lighting device
JP2009032650A (en) * 2007-07-04 2009-02-12 Toshiba Lighting & Technology Corp Lighting system, and luminaire
JP2009033199A (en) * 2008-10-17 2009-02-12 Denka Agsp Kk Light emitting element mounting substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235778A (en) * 2001-08-09 2005-09-02 Matsushita Electric Ind Co Ltd Led lighting fixture and card type led lighting light source
JP2008240155A (en) * 2003-05-16 2008-10-09 Hitachi Metals Ltd Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
WO2006093135A1 (en) * 2005-02-28 2006-09-08 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
JP2007043126A (en) * 2005-06-30 2007-02-15 Matsushita Electric Works Ltd Luminaire using led
WO2008062781A1 (en) * 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and production method thereof, and light emitting device
JP2008235824A (en) * 2007-03-23 2008-10-02 Sharp Corp Light-mitting device and method of manufacturing the same
JP2008244285A (en) * 2007-03-28 2008-10-09 Denka Agsp Kk Light-emitting element mounting substrate and manufacturing method therefor
JP2008288440A (en) * 2007-05-18 2008-11-27 Toyoda Gosei Co Ltd Integrated display device
JP2009010360A (en) * 2007-05-31 2009-01-15 Toshiba Lighting & Technology Corp Lighting device
JP2009032650A (en) * 2007-07-04 2009-02-12 Toshiba Lighting & Technology Corp Lighting system, and luminaire
JP2009033199A (en) * 2008-10-17 2009-02-12 Denka Agsp Kk Light emitting element mounting substrate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028719B2 (en) 2010-12-10 2015-05-12 Denki Kagaku Kogyo Kabushiki Kaisha β- sialon, and light emitting device and applications thereof
CN102656249A (en) * 2010-12-10 2012-09-05 电气化学工业株式会社 Beta type sialon, light-emitting device and application thereof
KR101334560B1 (en) 2010-12-10 2013-11-28 덴키 가가쿠 고교 가부시기가이샤 Beta type sialon, luminescent device, and use thereof
CN102656249B (en) * 2010-12-10 2014-07-16 电气化学工业株式会社 Beta type sialon, light-emitting device and application thereof
WO2012077368A1 (en) * 2010-12-10 2012-06-14 電気化学工業株式会社 β TYPE SIALON, LIGHT-EMITTING DEVICE AND APPLICATION THEREOF
JP2013026416A (en) * 2011-07-20 2013-02-04 Toyoda Gosei Co Ltd Element mounting substrate and light emitting device including the same
JP2014060462A (en) * 2011-08-01 2014-04-03 Shikoku Instrumentation Co Ltd Led light-emitting device and method of manufacturing the same
JP2014221915A (en) * 2014-07-31 2014-11-27 株式会社カネカ Heat-conductive curable resin composition and curable resin molded article
JP2016195177A (en) * 2015-03-31 2016-11-17 Hoya Candeo Optronics株式会社 Light irradiation module
WO2017150913A1 (en) * 2016-03-02 2017-09-08 주식회사 세미콘라이트 Semiconductor light emitting element and manufacturing method therefor
KR101778140B1 (en) * 2016-03-02 2017-09-14 주식회사 세미콘라이트 Semiconductor light emitting device and method of the same
KR102047891B1 (en) * 2019-03-26 2019-11-22 동의대학교 산학협력단 Manufacturing Method of Powder Coating Materials and LED Lighting Application of Thereof
KR102047889B1 (en) * 2019-03-26 2019-11-22 동의대학교 산학협력단 Manufacturing Method of Powder Coating Materials containing Aluminum Silicate and the Thermal Radiation Application of thereof
WO2022025065A1 (en) * 2020-07-31 2022-02-03 京セラ株式会社 Light emitting device and illumination device

Also Published As

Publication number Publication date
JP5330889B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5330889B2 (en) LED module for lighting
CN107275301B (en) Light emitting device
WO2014181757A1 (en) Circuit board, optical semiconductor device and manufacturing method for same
KR102393760B1 (en) Light emitting device and method for manufacturing the same
US20080054280A1 (en) Light emitting packages and methods of making same
KR20130099081A (en) Light emitting device and method for manufacturing same
JP2008010872A (en) Led device having top surface heat dissipator
JP2011096739A (en) Light-emitting device
JP2007066939A (en) Semiconductor light emitting device
JP2006270002A (en) Metal board for packaging light emitting diode and light emitting device
WO2013069232A1 (en) Wiring board and light emitting device using same, and manufacturing method for both
JP2011096740A (en) Light-emitting device
JP2007194525A (en) Semiconductor light emitting device
US20090321770A1 (en) Semiconductor Light-Emitting Device
JP2005223222A (en) Solid element package
JP2007294867A (en) Light emitting device
JP6158341B2 (en) Light emitting device and method for manufacturing light emitting device
US20220278257A1 (en) Phosphor substrate, light emitting substrate, and lighting device
JP2007235104A (en) Light emitting device and manufacturing method thereof
JP2012235096A (en) Heat dissipation substrate
JP2005072382A (en) Lead frame substrate for heat dissipation and manufacturing method therefor, and semiconductor device
JP2011176054A (en) Light emitting device
JP7137079B2 (en) Light emitting device and manufacturing method thereof
JP2007201354A (en) Light-emitting module
KR102200206B1 (en) Led package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R151 Written notification of patent or utility model registration

Ref document number: 5330889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250