JP2011176060A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2011176060A
JP2011176060A JP2010037987A JP2010037987A JP2011176060A JP 2011176060 A JP2011176060 A JP 2011176060A JP 2010037987 A JP2010037987 A JP 2010037987A JP 2010037987 A JP2010037987 A JP 2010037987A JP 2011176060 A JP2011176060 A JP 2011176060A
Authority
JP
Japan
Prior art keywords
conductive material
conductive
light emitting
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010037987A
Other languages
Japanese (ja)
Inventor
Koji Tsukagoshi
功二 塚越
Hitoshi Kamamori
均 釜森
Sadao Oku
定夫 奥
Hiroyuki Fujita
宏之 藤田
Keiichiro Hayashi
恵一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2010037987A priority Critical patent/JP2011176060A/en
Publication of JP2011176060A publication Critical patent/JP2011176060A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting device radiating heat produced by a light-emitting element 2 and having a high reliability. <P>SOLUTION: A first conductive material 4 and a second conductive material 5 are laminated and filled in a through-hole 3 of a substrate 1, and a light-emitting element is disposed over them. This forms a through electrode having a high airtightness and a high thermal conductivity to radiate the heat produced by the light-emitting element 2 outside, and prevents an external filtration of water and gas. It is preferable that the first conductive material is manufactured with a sintered conductive paste with binders added to a conductive filler, and the second conductive material is manufactured with resin hardening conductive paste with conductive filler added to a thermosetting resin. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光素子をパッケージ実装した構成の発光装置に関する。   The present invention relates to a light emitting device having a configuration in which a light emitting element is packaged.

近年、半導体発光素子は高発光効率化、高輝度化が進み、液晶ディスプレイ用バックライトや照明用途への実用化が加速している。しかし特性の改善と共に、発光素子の発熱量が増え、パッケージの低熱抵抗化、高信頼性化がより求められるようになってきた。   In recent years, semiconductor light emitting devices have been improved in light emission efficiency and brightness, and their practical application to backlights for liquid crystal displays and illumination applications is accelerating. However, along with the improvement of characteristics, the amount of heat generated by the light emitting element has increased, and there has been a demand for lower thermal resistance and higher reliability of the package.

図4に、導電性材料又は高熱伝導性材料を充填した貫通孔が形成された基板を使用した発光装置の断面構造を表す。セラミックス、ガラス、または樹脂等の基板1に貫通孔3、3a、3bが形成され、導電性材料16が埋設されている。基板1には斜面で構成された開口部を持つガラエポ基板21が接合されている。この開口部には、発光素子を覆うように封止材9が充填されている。導電性材料16の上面には金属パターン12が設けられている。図中、両側の金属パターン12には発光素子の1対の電極に電気的に接続するワイヤー14が設けられている。したがって、発光素子2には基板1の下面に形成された1対の端子電極8a、8bから電圧が印加できる。また、図の中央の貫通孔3の上方には発光素子2が配置され、発光素子2によって発生した熱は金属パターン12から貫通孔3内に充填された熱伝導性の高い導電性材料16を伝わり、基板の下面からの放熱をより効率的に行うことができる。このとき、基板の下面には放熱を促進する放熱用金属パターン18が設けられている。これにより、低熱抵抗化を図ることができ、高信頼性かつ高性能の発光装置を得ることが可能となる(例えば、特許文献1を参照)。   FIG. 4 illustrates a cross-sectional structure of a light emitting device using a substrate in which a through hole filled with a conductive material or a high thermal conductivity material is formed. Through holes 3, 3a, 3b are formed in a substrate 1, such as ceramics, glass, or resin, and a conductive material 16 is embedded therein. A glass epoxy substrate 21 having an opening made of a slope is bonded to the substrate 1. The opening is filled with a sealing material 9 so as to cover the light emitting element. A metal pattern 12 is provided on the upper surface of the conductive material 16. In the figure, the metal patterns 12 on both sides are provided with wires 14 that are electrically connected to a pair of electrodes of the light emitting element. Therefore, a voltage can be applied to the light emitting element 2 from a pair of terminal electrodes 8 a and 8 b formed on the lower surface of the substrate 1. Further, the light emitting element 2 is disposed above the through hole 3 in the center of the figure, and the heat generated by the light emitting element 2 passes through the conductive material 16 having high thermal conductivity filled in the through hole 3 from the metal pattern 12. It is possible to dissipate heat from the lower surface of the substrate more efficiently. At this time, a heat radiating metal pattern 18 that promotes heat radiation is provided on the lower surface of the substrate. Thereby, low thermal resistance can be achieved, and a highly reliable and high-performance light emitting device can be obtained (see, for example, Patent Document 1).

また、貫通孔3の内部に導電性材料又は放熱性材料を埋設する方法としては、基板に貫通孔を形成し、印刷により金属ペーストを充填する方法、貫通孔の側壁にメッキ処理を施してCuやNi等の金属膜を堆積する方法、或いは、基板に形成した貫通孔に、金属を埋め込んで貫通電極とする方法などが知られている。   Moreover, as a method of embedding a conductive material or a heat-dissipating material in the through hole 3, a method of forming a through hole in a substrate and filling it with a metal paste by printing, or plating the side wall of the through hole with Cu is performed. A method of depositing a metal film such as Ni or Ni, or a method of embedding metal in a through hole formed in a substrate to form a through electrode is known.

特開2005−209763号公報JP 2005-209663 A

しかしながら、特許文献1に記載される発光装置の場合、貫通孔内は1種類の導電性材料又は高熱伝導性材料が埋設されており、埋設される材料によって、得られる貫通電極の熱伝導性、信頼性等の特性が決定する。例えば、一般的に、セラミックス、ガラス、又は樹脂等からなる基板に形成された貫通孔に樹脂硬化型の金属ペーストを充填して形成された貫通電極の場合、金属ペーストは樹脂によって基板との良好な接着性が得られるが、樹脂の添加量によって熱伝導性は急激に低下する。例えば、一般的な樹脂硬化型銀ペーストでは20〜30%の樹脂が配合されているが、熱伝導率は1〜10W/mKであり、最近の高輝度の発光素子用としては熱伝導率が不足している。樹脂の添加量を低減すれば熱伝導率は向上できるが、基板との接着性が不足して水分やガスなどが容易に浸入しやすい状態になり、信頼性を低下させる原因となる。   However, in the case of the light emitting device described in Patent Document 1, one type of conductive material or high thermal conductivity material is embedded in the through hole, and the thermal conductivity of the through electrode obtained by the embedded material, Characteristics such as reliability are determined. For example, in general, in the case of a through electrode formed by filling a through hole formed in a substrate made of ceramic, glass, resin, or the like with a resin-curing metal paste, the metal paste is good with the substrate by the resin. Adhesiveness can be obtained, but the thermal conductivity decreases rapidly depending on the amount of resin added. For example, 20-30% resin is blended in a general resin curable silver paste, but the thermal conductivity is 1-10 W / mK, and the thermal conductivity for a recent high-brightness light emitting device is low. being insufficient. If the amount of resin added is reduced, the thermal conductivity can be improved, but the adhesiveness with the substrate is insufficient and moisture, gas, etc. are easily infiltrated, leading to a decrease in reliability.

また、高熱伝導性を有する材料として、焼結型の金属ペーストが知られており、この材料を貫通孔に充填することにより高熱伝導の貫通電極が得られるが、400℃以上の高温で焼成することが必要になるため、ペースト自体の収縮が大きく、またペーストと基板との熱膨張率差の影響も大きくなる。そのため、貫通孔側壁と金属ペーストとの間に隙間が発生して、水分やガスなどが容易に浸入しやすい状態になり、信頼性を低下させる。   Further, as a material having high thermal conductivity, a sintered metal paste is known, and a through electrode having high thermal conductivity can be obtained by filling the through hole with this material, but it is fired at a high temperature of 400 ° C. or higher. Therefore, the shrinkage of the paste itself is large, and the influence of the difference in thermal expansion coefficient between the paste and the substrate is also large. For this reason, a gap is generated between the side wall of the through hole and the metal paste, so that moisture, gas, and the like can easily enter, thereby reducing reliability.

また、セラミックス、又はガラスからなる基板に形成された貫通孔に、金属を埋設して貫通電極を形成する方法があるが、基板と金属の熱膨張率差により基板にクラック等が発生し易くなるため、基板の強度を低下させるとともに、発生する隙間から水分やガスなどが容易に浸入しやすい状態になり、信頼性を低下させる原因となる。このため、良好な特性をもつ貫通電極を形成することは容易ではない。   In addition, there is a method of forming a through electrode by embedding a metal in a through hole formed in a substrate made of ceramics or glass, but a crack or the like is likely to occur in the substrate due to a difference in thermal expansion coefficient between the substrate and the metal. For this reason, the strength of the substrate is reduced, and moisture or gas easily enters from the generated gap, which causes a decrease in reliability. For this reason, it is not easy to form a through electrode having good characteristics.

本発明は上記問題点を解決するためになされたもので、貫通孔側壁と充填する導電ペーストとの間に生じる隙間、基板へのクラック発生がなく、且つ高熱伝導性の貫通電極を有することにより、高信頼性且つ低熱抵抗の発光装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and has a gap between the through hole side wall and the conductive paste to be filled, no cracks in the substrate, and a through electrode having high thermal conductivity. An object of the present invention is to provide a light-emitting device with high reliability and low thermal resistance.

そこで、本発明は、貫通孔が形成された基板と、貫通孔に充填された導電材料と、基板の表面に実装された発光素子と、発光素子を被覆封止する封止材を備えた発光装置において、発光素子を導電材料の上に配置し、導電材料を第一導電材料と第二導電材料を積層して構成することとした。   Accordingly, the present invention provides a light emitting device including a substrate having a through hole formed therein, a conductive material filled in the through hole, a light emitting element mounted on the surface of the substrate, and a sealing material for covering and sealing the light emitting element. In the apparatus, the light emitting element is disposed on the conductive material, and the conductive material is configured by stacking the first conductive material and the second conductive material.

さらに、第一導電材料を導電フィラーにバインダーを添加した焼結型導電ペーストから作製し、第二導電材料を熱硬化型樹脂に導電フィラーを添加した樹脂硬化型導電ペーストから作製することとした。このとき、第二導電材料の厚みを基板の厚みの10〜20%とした。   Further, the first conductive material was prepared from a sintered conductive paste obtained by adding a binder to a conductive filler, and the second conductive material was prepared from a resin curable conductive paste obtained by adding a conductive filler to a thermosetting resin. At this time, the thickness of the second conductive material was 10 to 20% of the thickness of the substrate.

また、焼結型導電ペーストとして、導電性フィラーを90%以上含有する焼結型導電ペーストを用いることとした。さらに、この導電性フィラーを、平均粒径100nm以下の第一導電性フィラーと平均粒径1〜5μmの第二導電性フィラーで構成し、第一導電性フィラーの配合比率を30〜50%とした。   In addition, a sintered conductive paste containing 90% or more of a conductive filler was used as the sintered conductive paste. Furthermore, this conductive filler is composed of a first conductive filler having an average particle size of 100 nm or less and a second conductive filler having an average particle size of 1 to 5 μm, and the blending ratio of the first conductive filler is 30 to 50%. did.

本発明の発光装置は、発光素子から発生した熱が2種類の導電材料を介して効率よく放熱されるとともに、貫通孔から浸入する水分やガスを減少させることが両立されるため、気密性が高く且つ高熱伝導性の発光デバイスが実現できる。   In the light emitting device of the present invention, heat generated from the light emitting element is efficiently dissipated through two kinds of conductive materials, and it is possible to reduce moisture and gas entering from the through hole. A light emitting device having high and high thermal conductivity can be realized.

本発明の実施例に係る発光装置の断面模式図である。It is a cross-sectional schematic diagram of the light-emitting device which concerns on the Example of this invention. 本発明の実施例に係る発光装置の断面模式図である。It is a cross-sectional schematic diagram of the light-emitting device which concerns on the Example of this invention. 本発明の実施例に係る発光装置の断面模式図である。It is a cross-sectional schematic diagram of the light-emitting device which concerns on the Example of this invention. 従来公知の発光装置の断面模式図である。It is a cross-sectional schematic diagram of a conventionally well-known light-emitting device.

以下、本発明の発光装置について、図面を用いて詳細に説明する。図1は、本発明の発光装置の断面構造を示す模式図である。基板1には複数の貫通孔3が形成されており、それぞれの貫通孔には2種類の導電材料が充填されている。すなわち、導電材料は第一導電材料4と第二導電材料5が積層して構成されている。そして、複数の貫通孔3の上部にダイアタッチ材13を介して発光素子2が実装されている。図1では貫通孔3は複数存在しているが、一つでもかまわない。また、図示しない封止材により発光素子2は被覆され、外気と遮断される。第一導電材料4は導電フィラーにバインダーを添加した焼結型導電ペーストから形成され、第二導電材料5は熱硬化型樹脂に導電フィラーを添加した樹脂硬化型導電ペーストから形成されている。このとき、第二導電材料5の厚み(t5)は貫通孔3の厚さすなわち基板1の厚さの10〜20%、第一導電材料4の厚み(t4)は基板1の厚さの80〜90%とする必要がある。このように、貫通孔3に充填された導電材料は第一導電材料4と第二導電材料5が積層した構成であり、この貫通孔3が発光素子2の直下に設けられているため、発光素子2で発生した熱が効率よく放熱されるとともに、貫通孔から浸入する水分やガスを防止することが可能になる。このように、気密性が高く且つ高熱伝導性の発光デバイスが実現できる。また、図1では、第二導電材料5が発光素子2に近い側に設けられているが、積層順を逆にして、第一導電材料4を発光素子2に近い側に設けることもできる。なお、基板1の裏面(発光素子が実装されていないほうの表面)に放熱を促進するための金属層を形成してもよい。   Hereinafter, the light-emitting device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing a cross-sectional structure of a light emitting device of the present invention. A plurality of through holes 3 are formed in the substrate 1 and each of the through holes is filled with two kinds of conductive materials. That is, the conductive material is formed by laminating the first conductive material 4 and the second conductive material 5. And the light emitting element 2 is mounted on the upper part of the several through-hole 3 via the die attach material 13. As shown in FIG. Although there are a plurality of through holes 3 in FIG. 1, only one may be used. Moreover, the light emitting element 2 is covered with a sealing material (not shown), and is blocked from the outside air. The first conductive material 4 is formed from a sintered conductive paste in which a binder is added to a conductive filler, and the second conductive material 5 is formed from a resin curable conductive paste in which a conductive filler is added to a thermosetting resin. At this time, the thickness (t5) of the second conductive material 5 is 10 to 20% of the thickness of the through hole 3, that is, the thickness of the substrate 1, and the thickness (t4) of the first conductive material 4 is 80 of the thickness of the substrate 1. Need to be -90%. As described above, the conductive material filled in the through hole 3 has a configuration in which the first conductive material 4 and the second conductive material 5 are laminated, and the through hole 3 is provided immediately below the light emitting element 2. The heat generated in the element 2 can be efficiently dissipated and moisture and gas entering from the through hole can be prevented. As described above, a light-emitting device having high airtightness and high thermal conductivity can be realized. In FIG. 1, the second conductive material 5 is provided on the side close to the light emitting element 2, but the first conductive material 4 may be provided on the side close to the light emitting element 2 by reversing the stacking order. A metal layer for promoting heat dissipation may be formed on the back surface of the substrate 1 (the surface on which the light emitting element is not mounted).

さらに、焼結型導電ペーストに含まれる導電性フィラーを、平均粒径100nm以下の第一導電性フィラーと平均粒径1〜5μmの第二導電性フィラーを混合して構成させてもよい。   Further, the conductive filler contained in the sintered conductive paste may be configured by mixing a first conductive filler having an average particle size of 100 nm or less and a second conductive filler having an average particle size of 1 to 5 μm.

ここで、第一導電材料3を構成する焼結型導電ペーストに含まれる導電性フィラーの含有率、また導電性フィラーの平均粒径と含有比率を変えたときの信頼性と熱伝導性を評価した結果を以下の表1に示す。   Here, the content of the conductive filler contained in the sintered conductive paste constituting the first conductive material 3, and the reliability and thermal conductivity when the average particle size and content ratio of the conductive filler are changed are evaluated. The results are shown in Table 1 below.

Figure 2011176060
表1では、焼結型導電ペーストに含まれる導電性フィラーの含有率(重量比)を85〜95%とし、平均粒径100nm以下の第一導電性フィラーと平均粒径1〜5μmの第二導電性フィラーの含有比率(重量比)を変えたときの特性を調べた。ここで、間隙/クラックは、導電ペーストの焼結時の収縮によって生じるクラックまたは貫通孔壁との隙間を言い、発生がないものを○、微小なクラック/隙間が生じたものを△、大きなクラックが発生するものを×としている。×評価のものは、第二導電材料5となる樹脂硬化型導電ペーストを充填しても気密性を確保できないことを確認している。また、熱伝導性は、熱伝導率を評価しており、100W/m・k以上のものを○、50〜100W/m・kの範囲のものを△、50W/m・k以下のものを×としている。
Figure 2011176060
In Table 1, the content (weight ratio) of the conductive filler contained in the sintered conductive paste is 85 to 95%, the first conductive filler having an average particle size of 100 nm or less and the second conductive particle having an average particle size of 1 to 5 μm. The characteristics when the content ratio (weight ratio) of the conductive filler was changed were examined. Here, the gap / crack refers to a crack caused by shrinkage during sintering of the conductive paste or a gap with the through-hole wall. The thing which generate | occur | produces is set as x. X The thing of evaluation has confirmed that airtightness cannot be ensured even if it fills with the resin hardening type electrically conductive paste used as the 2nd electrically-conductive material 5. FIG. Moreover, thermal conductivity is evaluating thermal conductivity, the thing of 100 W / m * k or more is (circle), the thing of the range of 50-100 W / m * k is (triangle | delta), and the thing of 50 W / m * k or less. X.

表1の評価結果より、100nm以下の粒径の第一導電性フィラーが多い場合は焼結時の収縮がおおきく、間隙/クラックが発生する。一方、平均粒径の大きい第二導電性フィラーが多い場合は熱伝導性が低下する。両特性を満足するためには、平均粒径100nm以下の第一導電性フィラーと、平均粒径1〜5μmの第二導電性フィラーを混合し第一導電性フィラーの配合比率を30〜50%とすればよい。また、導電性フィラーの含有率が少ない焼結型導電ペーストでは熱伝導性が低下するとともに、バインダー量が増えることにより焼結時の収縮が大きく、間隙/クラックも増大するために、90%以上の含有率であることが必要である。   From the evaluation results in Table 1, when there are many first conductive fillers having a particle size of 100 nm or less, shrinkage during sintering is large and gaps / cracks are generated. On the other hand, when there are many 2nd conductive fillers with a large average particle diameter, thermal conductivity falls. In order to satisfy both characteristics, the first conductive filler having an average particle diameter of 100 nm or less and the second conductive filler having an average particle diameter of 1 to 5 μm are mixed, and the mixing ratio of the first conductive filler is 30 to 50%. And it is sufficient. In addition, with a sintered conductive paste with a low conductive filler content, the thermal conductivity decreases, and the amount of binder increases, resulting in a large shrinkage during sintering and an increase in gaps / cracks. It is necessary that the content of

そこで、焼結型導電ペーストとして、導電性フィラーの含有率が90%であり、平均粒径50nmの第一導電性フィラーを40%、平均粒径2.5μmの第二導電性フィラーを60%添加した材料を用い、印刷法で貫通孔3に充填し、その上にディスペンサー法で樹脂硬化型導電ペーストを充填した。その際の焼結型導電ペーストと樹脂硬化型導電ペーストの充填比率を変えたときの評価結果を表2に示す。   Therefore, as a sintered conductive paste, the content of the conductive filler is 90%, the first conductive filler having an average particle size of 50 nm is 40%, and the second conductive filler having an average particle size of 2.5 μm is 60%. Using the added material, the through hole 3 was filled by a printing method, and a resin curable conductive paste was filled thereon by a dispenser method. Table 2 shows the evaluation results when the filling ratio of the sintered conductive paste and the resin curable conductive paste was changed.

Figure 2011176060
表2では気密性と熱伝導性を評価しており、前者は浸透液による試験を、後者は発光素子22のジャンクションからケースまでの熱抵抗が10℃/W以下を○、20℃/W以下を△、それ以上を×としている。
Figure 2011176060
In Table 2, airtightness and thermal conductivity are evaluated. The former is a test using a penetrating liquid, and the latter is a case where the thermal resistance from the junction to the case of the light emitting element 22 is 10 ° C./W or less, and 20 ° C./W or less. △, and more than that.

表2の結果から、気密性を確保するための樹脂硬化型導電ペーストは、10%以上充填すると効果を発揮し始めるが、30%以上充填すると熱伝導性が急激に低下する。樹脂硬化型導電ペーストを10〜20%、すなわち焼結型導電ペーストを90〜80%充填することにより気密性と熱伝導性を両立した貫通電極を得ることができる。ここで、充填比率とは焼結型導電ペーストで形成される第一導電材料4と樹脂硬化型導電ペーストで形成される第二導電材料5の厚さでも表現できる。すなわち、第二導電材料5の厚さを基板厚みの10〜20%とし、第一導電材料4の厚さを基板厚みの80〜90%とする。最近の高輝度型発光素子のように放熱性の重要度が高い場合は、焼結型導電ペーストの充填比率を90%とすること、すなわち、第一導電材料4の厚さを基板厚みの90%とすることが望ましい。   From the results shown in Table 2, the resin-cured conductive paste for ensuring airtightness starts to exert its effect when it is filled at 10% or more, but when it is filled at 30% or more, the thermal conductivity sharply decreases. By filling the resin-curing conductive paste with 10 to 20%, that is, 90 to 80% of the sintered conductive paste, a through electrode having both airtightness and thermal conductivity can be obtained. Here, the filling ratio can also be expressed by the thickness of the first conductive material 4 formed of a sintered conductive paste and the second conductive material 5 formed of a resin curable conductive paste. That is, the thickness of the second conductive material 5 is 10 to 20% of the substrate thickness, and the thickness of the first conductive material 4 is 80 to 90% of the substrate thickness. When the importance of heat dissipation is high as in a recent high-luminance light emitting device, the filling ratio of the sintered conductive paste is set to 90%, that is, the thickness of the first conductive material 4 is set to 90% of the substrate thickness. % Is desirable.

さらに、焼結型導電ペースト及び樹脂硬化型導電ペーストに、セラミックスやガラスに対して密着性のよい低融点ガラス粉を含有させてもよい。これにより、導電材料はより気密性が高まるとともに、貫通孔との密着性が向上する。
以下、本発明に係る発光装置を具体的に説明する。
Further, the sintered conductive paste and the resin curable conductive paste may contain low melting point glass powder having good adhesion to ceramics and glass. Thereby, the airtightness of the conductive material is further increased and the adhesion with the through hole is improved.
Hereinafter, the light emitting device according to the present invention will be described in detail.

(実施例1)
本実施例の発光装置の断面構成を図2(a)、(b)に模式的に示す。本実施例では、第一導電材料4と第二導電材料5が積層する導電材料が充填された貫通孔を貫通電極として用いた場合を説明する。ここでは、中央部に窪み6が形成されたガラス基板11を基体として用いている。窪み6の底面には貫通孔3a、3bが形成されている。貫通孔には第一導電材料4と第二導電材料5が積層して充填されている。この貫通孔3a、3bに充填された導電材料により貫通電極7a、7bが形成されている。図2(a)に示した発光装置は、1個の発光素子の直下に1個の貫通電極を形成した構成である。図2(b)に示した発光装置は、1個の発光素子の直下に、窪み6の底面からガラス基板11の裏面にかけて45°の角度で放射状に広がった貫通電極を形成した構成である。発光素子2はボンディング材15を介して貫通電極7aの上に配置されている。ボンディング材15は、バンプや導電性接着剤を含んでおり、発光素子2を窪み6の底部に接着固定している。発光素子2の下面には図示しない電極が形成されており、貫通電極7aとボンディング材15を介して電気的に接続される。また、発光素子2の上面にも図示しない電極が形成されており、ワイヤー14により貫通電極7bに接続されている。ガラス基板11の裏面には、端子電極8a、8bが互いに分離して形成されており、貫通電極7a、7bとそれぞれ接続している。そのため、発光素子2は、端子電極8aと8bから電力の供給を受けることができる。本実施例では、端子電極8a、8bをガラス基板11の裏面に導電性ペーストを印刷し硬化させることにより形成した。
Example 1
2A and 2B schematically show a cross-sectional configuration of the light-emitting device of this example. In the present embodiment, a case where a through hole filled with a conductive material in which the first conductive material 4 and the second conductive material 5 are stacked is used as a through electrode will be described. Here, a glass substrate 11 having a recess 6 formed in the center is used as a base. Through holes 3 a and 3 b are formed on the bottom surface of the recess 6. The first conductive material 4 and the second conductive material 5 are stacked and filled in the through hole. Through electrodes 7a and 7b are formed of a conductive material filled in the through holes 3a and 3b. The light emitting device shown in FIG. 2A has a configuration in which one through electrode is formed immediately below one light emitting element. The light-emitting device shown in FIG. 2B has a configuration in which a through electrode extending radially at an angle of 45 ° from the bottom surface of the recess 6 to the back surface of the glass substrate 11 is formed immediately below one light-emitting element. The light emitting element 2 is disposed on the through electrode 7a via the bonding material 15. The bonding material 15 includes a bump and a conductive adhesive, and bonds and fixes the light emitting element 2 to the bottom of the recess 6. An electrode (not shown) is formed on the lower surface of the light emitting element 2 and is electrically connected to the through electrode 7 a through the bonding material 15. Further, an electrode (not shown) is also formed on the upper surface of the light emitting element 2, and is connected to the through electrode 7 b by a wire 14. Terminal electrodes 8a and 8b are formed separately from each other on the back surface of the glass substrate 11, and are connected to the through electrodes 7a and 7b, respectively. Therefore, the light emitting element 2 can receive power supply from the terminal electrodes 8a and 8b. In this embodiment, the terminal electrodes 8a and 8b were formed by printing and curing a conductive paste on the back surface of the glass substrate 11.

このような構成により、発光素子2で発生した熱はボンディング材15、第一導電材料4と第二導電材料5が積層された貫通電極7a、及び端子電極8aを経由して効果的に放熱されとともに、貫通孔から浸入する水分やガスを防ぐことが可能になる。   With such a configuration, heat generated in the light emitting element 2 is effectively dissipated through the bonding material 15, the through electrode 7a in which the first conductive material 4 and the second conductive material 5 are laminated, and the terminal electrode 8a. At the same time, it becomes possible to prevent moisture and gas entering from the through hole.

なお、図示しないが、窪み6の内壁面と底面には反射膜が形成され、発光素子2からの発光を反射する反射面として機能している。さらに、窪み6には外部から不純物や水分等の混入を防止する封止材が充填され、発光素子2とワイヤー14を覆っている。   Although not shown, a reflection film is formed on the inner wall surface and the bottom surface of the recess 6 and functions as a reflection surface that reflects light emitted from the light emitting element 2. Further, the recess 6 is filled with a sealing material for preventing impurities, moisture and the like from entering from the outside, and covers the light emitting element 2 and the wire 14.

本実施例では、ガラス基体11は、シリコン酸化物を主体とする通常のガラス材料の成形により一体的に作成した。このとき、窪み6や貫通穴3a、3bを同時に形成できる。そのため、基板や枠部を個別に加工し、接着する必要がない。   In this embodiment, the glass substrate 11 is integrally formed by molding a normal glass material mainly composed of silicon oxide. At this time, the recess 6 and the through holes 3a and 3b can be formed simultaneously. Therefore, it is not necessary to process and bond the substrate and the frame part individually.

(実施例2)
本実施例の発光装置の断面構成を図3(a)〜(c)に模式的に示す。本実施例では、発光素子の直下に位置する貫通孔3を貫通電極として用いない構成を説明する。その他は実施例1と同様なので、重複する説明は適宜省略する。ガラス基板11の窪み6の底面には貫通孔3、3a、3bが形成されている。それぞれの貫通孔には第一導電材料4と第二導電材料5が積層して充填されている。発光素子2は、第一導電材料4と第二導電材料5が積層して充填された貫通孔3の上部にダイアタッチ材13により固定されている。
(Example 2)
3A to 3C schematically show a cross-sectional configuration of the light emitting device of this example. In the present embodiment, a configuration in which the through hole 3 positioned immediately below the light emitting element is not used as a through electrode will be described. Others are the same as those in the first embodiment, and therefore, redundant description is omitted as appropriate. Through holes 3, 3 a, 3 b are formed in the bottom surface of the recess 6 of the glass substrate 11. The first conductive material 4 and the second conductive material 5 are stacked and filled in each through hole. The light emitting element 2 is fixed to the upper portion of the through hole 3 filled with the first conductive material 4 and the second conductive material 5 by a die attach material 13.

図3(a)に示した発光装置では、ガラス基板11の裏面から突出した第一導電材料4が、端子電極8a、8bと同じ厚みとなる高さまで、貫通孔3に導電材料が充填されている。図3(b)に示した発光装置では、ガラス基板11の裏面から突出した第一導電材料4が、貫通孔の面積より広い範囲に広がっている。ここでも、端子電極8a、8bと同じ厚みとなる高さまで貫通孔3に導電材料が充填されている。図3(c)に示した発光装置では、貫通孔3が窪み6の底面からガラス基板11の裏面にかけて45°の角度で放射状に広がって形成されており、ガラス基板11の裏面から突出した第一導電材料4が端子電極8a、8bと同じ厚みとなる高さまで、導電材料が貫通孔3に充填されている。ここでは、第一導電材料4が突出した部位の大きさはガラス基板11の裏面における貫通孔の大きさと同じになっている。このように、導電材料を突出させると、発光装置を搭載する部材に導電材料を密着させやすくなるため、外部への放熱効果がより向上することが期待できる。   In the light emitting device shown in FIG. 3A, the through hole 3 is filled with the conductive material until the first conductive material 4 protruding from the back surface of the glass substrate 11 has the same thickness as the terminal electrodes 8a and 8b. Yes. In the light emitting device shown in FIG. 3B, the first conductive material 4 protruding from the back surface of the glass substrate 11 spreads over a range wider than the area of the through hole. Also here, the through hole 3 is filled with the conductive material to the same height as the terminal electrodes 8a and 8b. In the light emitting device shown in FIG. 3C, the through-hole 3 is formed to radially spread at an angle of 45 ° from the bottom surface of the recess 6 to the back surface of the glass substrate 11, and is protruded from the back surface of the glass substrate 11. The through hole 3 is filled with the conductive material up to a height at which the one conductive material 4 has the same thickness as the terminal electrodes 8a and 8b. Here, the size of the portion from which the first conductive material 4 protrudes is the same as the size of the through hole in the back surface of the glass substrate 11. As described above, when the conductive material is protruded, the conductive material is easily brought into close contact with a member on which the light-emitting device is mounted.

また、発光素子2が配置されていない領域の貫通孔3a、3bにより貫通電極7a、7bが形成されている。貫通孔3a、3bにも第一導電材料4と第二導電材料5が積層して充填されている。発光素子2の上面には図示しない一対の電極が形成されており、貫通電極7a、7bと一対のワイヤー14により接続されている。ガラス基板11の裏面には端子電極8a、8bが互いに分離して形成されており、貫通電極7a、7bとそれぞれ接続している。そのため、発光素子2は、端子電極8aと8bから電力の供給を受けることができる。   Further, the through electrodes 7a and 7b are formed by the through holes 3a and 3b in the region where the light emitting element 2 is not disposed. The first conductive material 4 and the second conductive material 5 are stacked and filled in the through holes 3a and 3b. A pair of electrodes (not shown) are formed on the upper surface of the light emitting element 2 and are connected to the through electrodes 7 a and 7 b by a pair of wires 14. Terminal electrodes 8a and 8b are formed on the back surface of the glass substrate 11 separately from each other, and are connected to the through electrodes 7a and 7b, respectively. Therefore, the light emitting element 2 can receive power supply from the terminal electrodes 8a and 8b.

上述した各実施例では、1箇所の窪み6に対して1つの発光素子2を配置し、1つの発光素子2に対して1個の貫通孔3を形成した構成であったが、これに限定されるものではなく、例えば、1箇所の窪み6に対して複数の発光素子を配置してもよい。また、1つの発光素子に対して複数個の貫通孔3が設けられた構成でもよい。   In each of the above-described embodiments, one light emitting element 2 is arranged in one recess 6 and one through hole 3 is formed in one light emitting element 2, but this is not limitative. For example, a plurality of light emitting elements may be arranged in one recess 6. Moreover, the structure by which the several through-hole 3 was provided with respect to one light emitting element may be sufficient.

1 基板
2 発光素子
3 貫通孔
4 第一導電材料
5 第二導電材料
6 窪み
7a、7b 貫通電極
8a、8b 端子電極
11 ガラス基板
13 ダイアタッチ材
14 ワイヤー
15 ボンディング材
DESCRIPTION OF SYMBOLS 1 Substrate 2 Light emitting element 3 Through-hole 4 First conductive material 5 Second conductive material 6 Depression 7a, 7b Through electrode 8a, 8b Terminal electrode 11 Glass substrate 13 Die attach material 14 Wire 15 Bonding material

Claims (9)

貫通孔が形成された基板と、前記貫通孔に充填された導電材料と、前記基板の表面に実装された発光素子と、前記発光素子を被覆封止する封止材と、を備え、
前記発光素子は前記導電材料の上に配置され、前記導電材料は第一導電材料と第二導電材料が積層して構成されることを特徴とする発光装置。
A substrate having a through hole formed thereon, a conductive material filled in the through hole, a light emitting element mounted on the surface of the substrate, and a sealing material for covering and sealing the light emitting element,
The light emitting element is disposed on the conductive material, and the conductive material is formed by stacking a first conductive material and a second conductive material.
前記第一導電材料は導電フィラーにバインダーを添加した焼結型導電ペーストから作製され、前記第二導電材料は熱硬化型樹脂に導電フィラーを添加した樹脂硬化型導電ペーストから作製されたことを特徴とする請求項1に記載の発光装置。   The first conductive material is made from a sintered conductive paste in which a binder is added to a conductive filler, and the second conductive material is made from a resin curable conductive paste in which a conductive filler is added to a thermosetting resin. The light-emitting device according to claim 1. 前記第二導電材料の厚みは前記基板の厚みの10〜20%であることを特徴とする請求項2に記載の発光装置。   The light emitting device according to claim 2, wherein the thickness of the second conductive material is 10 to 20% of the thickness of the substrate. 前記焼結型導電ペーストが、導電性フィラーを90%以上含有することを特徴とする請求項2または3に記載の発光装置。   The light emitting device according to claim 2 or 3, wherein the sintered conductive paste contains 90% or more of a conductive filler. 前記導電性フィラーが、平均粒径100nm以下の第一導電性フィラーと平均粒径1〜5μmの第二導電性フィラーからなり、前記第一導電性フィラーの配合比率が30〜50%であることを特徴とする請求項4に記載の発光装置。   The conductive filler is composed of a first conductive filler having an average particle size of 100 nm or less and a second conductive filler having an average particle size of 1 to 5 μm, and the blending ratio of the first conductive filler is 30 to 50%. The light-emitting device according to claim 4. 前記第二導電材料は、前記第一導電材料より前記発光素子に近い側に設けられたことを特徴とする請求項1〜5のいずれか一項に記載の発光装置。   The light emitting device according to claim 1, wherein the second conductive material is provided closer to the light emitting element than the first conductive material. 前記導電材は、前記基板の裏面から突出して設けられたことを特徴とする請求項1〜6のいずれか一項に記載の発光装置。   The light emitting device according to claim 1, wherein the conductive material is provided so as to protrude from a back surface of the substrate. 前記導電材の突出した部分の面積は前記貫通孔の面積より大きいことを特徴とする請求項7に記載の発光装置。   The light emitting device according to claim 7, wherein an area of the protruding portion of the conductive material is larger than an area of the through hole. 前記基板は窪みを持つ形状のガラス基板であり、前記貫通孔は前記窪みに形成され、前記発光素子は前記窪みの底面に形成され、前記封止材が前記窪みに供給されたことを特徴とする請求項1〜8のいずれか一項に記載の発光装置。   The substrate is a glass substrate having a recess, the through hole is formed in the recess, the light emitting element is formed on a bottom surface of the recess, and the sealing material is supplied to the recess. The light-emitting device according to claim 1.
JP2010037987A 2010-02-23 2010-02-23 Light-emitting device Pending JP2011176060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037987A JP2011176060A (en) 2010-02-23 2010-02-23 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037987A JP2011176060A (en) 2010-02-23 2010-02-23 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2011176060A true JP2011176060A (en) 2011-09-08

Family

ID=44688685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037987A Pending JP2011176060A (en) 2010-02-23 2010-02-23 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2011176060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136758A1 (en) * 2012-03-15 2013-09-19 パナソニック株式会社 Substrate for led, led module, and led bulb
KR101315912B1 (en) 2012-07-16 2013-10-08 이영일 Base for semiconductor package and lighting device using the same
JP2013230580A (en) * 2012-04-27 2013-11-14 Brother Industries Ltd Droplet jetting device and piezoelectric actuator
JP2015176971A (en) * 2014-03-14 2015-10-05 三菱電機株式会社 Semiconductor package and manufacturing method of the same
CN109788631A (en) * 2019-02-25 2019-05-21 皆利士多层线路版(中山)有限公司 Circuit board and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136758A1 (en) * 2012-03-15 2013-09-19 パナソニック株式会社 Substrate for led, led module, and led bulb
JP5376102B1 (en) * 2012-03-15 2013-12-25 パナソニック株式会社 LED substrate, LED module, and LED bulb
CN104170106A (en) * 2012-03-15 2014-11-26 松下电器产业株式会社 Substrate for LED, LED module, and LED bulb
US9166133B2 (en) 2012-03-15 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Substrate for LED, LED module, and LED bulb
JP2013230580A (en) * 2012-04-27 2013-11-14 Brother Industries Ltd Droplet jetting device and piezoelectric actuator
KR101315912B1 (en) 2012-07-16 2013-10-08 이영일 Base for semiconductor package and lighting device using the same
JP2015176971A (en) * 2014-03-14 2015-10-05 三菱電機株式会社 Semiconductor package and manufacturing method of the same
CN109788631A (en) * 2019-02-25 2019-05-21 皆利士多层线路版(中山)有限公司 Circuit board and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6928283B2 (en) Light emitting device
US20160064628A1 (en) Circuit board, optical semiconductor device, and producing method thereof
CN104716247A (en) Light emitting device
WO2008038574A1 (en) Wiring board for surface mounting type light emitting element and light emitting device
JP6519135B2 (en) Light emitting device and substrate for light emitting device
JP2006339559A (en) Led and its manufacturing method
TW200933927A (en) Light emitting diode package
JP6368924B2 (en) Semiconductor device
JP2007273602A (en) Wiring board for light emitting element, and light emitting device
JP5568476B2 (en) Optoelectronic parts
JP2007066939A (en) Semiconductor light emitting device
JP5583051B2 (en) Light emitting element mounting substrate and light emitting device
JP2007273603A (en) Wiring board for light emitting element, and light emitting device
JP2011176060A (en) Light-emitting device
US11171274B2 (en) Light emitting element and light emitting device
JP6010333B2 (en) Wiring board and electronic device
JP2018088485A (en) Light-emitting device
JP2006156447A (en) Wiring board for light emitting element, light emitting device and its manufacturing method
JP2007123481A (en) Light emitting device and wiring board for light emitting element
JP5899734B2 (en) Light emitting device
JP6773104B2 (en) Light emitting element and light emitting device
US11094864B2 (en) Light emitting device
US9564565B2 (en) Light emitting device, light emitting module, and method for manufacturing light emitting device
JP2011029433A (en) Led package
JP2019096783A (en) Semiconductor device manufacturing method