JP2007294867A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2007294867A
JP2007294867A JP2007029503A JP2007029503A JP2007294867A JP 2007294867 A JP2007294867 A JP 2007294867A JP 2007029503 A JP2007029503 A JP 2007029503A JP 2007029503 A JP2007029503 A JP 2007029503A JP 2007294867 A JP2007294867 A JP 2007294867A
Authority
JP
Japan
Prior art keywords
light emitting
light
insulating layer
emitting device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007029503A
Other languages
Japanese (ja)
Inventor
Tomohiro Sanpei
友広 三瓶
Masahiro Izumi
昌裕 泉
Shinji Nogi
新治 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2007029503A priority Critical patent/JP2007294867A/en
Publication of JP2007294867A publication Critical patent/JP2007294867A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which is hard to reduce light extraction efficiency of an light emitting element, even if a resin substrate superior in thermal conductivity is used. <P>SOLUTION: The light emitting device includes a resin substrate 14 having thermal conductivity of 1.0-9.0 [W/m K], a white insulating layer 15 formed on the resin substrate, a circuit pattern layer 16 formed on the insulating layer, and a light emitting element 13 which is formed on the insulating layer and is electrically connected with the circuit pattern layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発光素子を用いた発光装置に関する。   The present invention relates to a light emitting device using a light emitting element.

従来、例えば、発光ダイオード装置の一例としては、発光ダイオードチップを配設したケース(カップ)内に、合成樹脂を充填して発光ダイオードチップをケース内に封止する面実装タイプのものが知られている(特許文献1参照)。   Conventionally, for example, as an example of a light emitting diode device, a surface mount type device in which a synthetic resin is filled in a case (cup) in which a light emitting diode chip is disposed and the light emitting diode chip is sealed in the case is known. (See Patent Document 1).

また、この種の発光ダイオード装置の中には、ケースをPPA(ポリフタルアミド)等の合成樹脂により形成するものも知られているが、この合成樹脂では、熱伝導率が例えば約0.3[W/m・K]程度であり、放熱性が低いので、発光ダイオードチップの発光効率が温度上昇に伴って低下するという課題がある。   Also, among this type of light emitting diode device, there is known a case in which the case is formed of a synthetic resin such as PPA (polyphthalamide), but this synthetic resin has a thermal conductivity of, for example, about 0.3. Since it is about [W / m · K] and the heat dissipation is low, there is a problem that the light emission efficiency of the light-emitting diode chip decreases as the temperature rises.

また、第2の従来技術の発光ダイオード装置では、その温度上昇を抑制するためにセラミック基板に放熱孔を穿設し、さらに、この放熱孔の内面側に補助セラミックシートを設け、この補助セラミックシート上に発光ダイオードチップを実装することにより、発光ダイオードチップの放熱性の向上を図ったものが知られている(例えば特許文献2参照)。
特開2002−43625号公報 特開2002−353515号公報
In the second prior art light emitting diode device, in order to suppress the temperature rise, a heat dissipation hole is formed in the ceramic substrate, and an auxiliary ceramic sheet is provided on the inner surface side of the heat dissipation hole. A device in which a light emitting diode chip is mounted thereon to improve heat dissipation of the light emitting diode chip is known (see, for example, Patent Document 2).
JP 2002-43625 A JP 2002-353515 A

放熱性に優れた樹脂を用いる場合、発光ダイオード素子の熱を効率よく逃し、発光ダイオード素子の発光効率の低下を防止できるが、この種の樹脂は白色ではないため光反射率は相対的に低下し、発光ダイオード素子から基板へ向かう光が吸収されやすいため、発光ダイオード素子の光を取り出す効率が低くなる問題がある。   When using a resin with excellent heat dissipation, the heat of the light-emitting diode element can be efficiently released and the light emission efficiency of the light-emitting diode element can be prevented from decreasing, but the light reflectance is relatively lowered because this type of resin is not white. However, since the light traveling from the light emitting diode element toward the substrate is easily absorbed, there is a problem that the efficiency of extracting light from the light emitting diode element is lowered.

本発明は、熱伝導率の優れた樹脂基板を使用しても発光素子の光の取り出し効率を低下しにくい発光装置を提供することを目的とする。   An object of the present invention is to provide a light-emitting device in which the light extraction efficiency of a light-emitting element is hardly lowered even when a resin substrate having excellent thermal conductivity is used.

請求項1の発明は、熱伝導率1.0〜9.0[W/m・K]を有する樹脂基板と;樹脂基板上に設けられた白色の絶縁層と;絶縁層上に設けられた回路パターン層と;絶縁層上に配設されるとともに回路パターン層に電気的に接続された発光素子と;を具備していることを特徴とする。   The invention according to claim 1 is a resin substrate having a thermal conductivity of 1.0 to 9.0 [W / m · K]; a white insulating layer provided on the resin substrate; and provided on the insulating layer And a light emitting element disposed on the insulating layer and electrically connected to the circuit pattern layer.

樹脂基板を構成する樹脂は、ポリアミドやPPA(ポリフタルアミド)等の合成樹脂基材に、無機フィラーを50〜90質量%含有することにより、熱伝導率を1.0〜9.0[W/m・K]にしたものである。この樹脂基板により発光素子を配設する凹部を形成してもよい。また、樹脂基板は、電気絶縁性を有するので回路パターン層との間に電気絶縁層を形成する必要はないが、本発明では反射率を向上させるために白色の電気絶縁層を設けている。また、この樹脂は、熱伝導率が1.0〜9.0[W/m・K]の高放熱性合成樹脂であるので、放熱性を向上させることができる。このために、発光素子が温度上昇のために発光効率が低下するのを抑制することができる。なお、樹脂基板の熱伝導率は9.0[W/m・K]以上でもよい。この場合、合成樹脂基材に含有される無機フィラーの含有量が増加するので、合成樹脂基材の流動性が低下し、加工容易性が低下するが、放熱性をさらに向上させることができる。また、白色の絶縁層には、白色の樹脂材料を用いることができる。   The resin constituting the resin substrate contains 50 to 90% by mass of an inorganic filler in a synthetic resin base material such as polyamide or PPA (polyphthalamide), so that the thermal conductivity is 1.0 to 9.0 [W / M · K]. You may form the recessed part which arrange | positions a light emitting element with this resin substrate. In addition, since the resin substrate has electrical insulation, it is not necessary to form an electrical insulation layer between the resin pattern and the circuit pattern layer. However, in the present invention, a white electrical insulation layer is provided to improve the reflectance. Moreover, since this resin is a highly heat-dissipating synthetic resin having a thermal conductivity of 1.0 to 9.0 [W / m · K], heat dissipation can be improved. For this reason, it can suppress that luminous efficiency falls because of a temperature rise of a light emitting element. The thermal conductivity of the resin substrate may be 9.0 [W / m · K] or more. In this case, since the content of the inorganic filler contained in the synthetic resin base material increases, the fluidity of the synthetic resin base material decreases and the processability decreases, but the heat dissipation can be further improved. A white resin material can be used for the white insulating layer.

請求項2の発明は、熱伝導率1.0〜9.0[W/m・K]を有する樹脂基板と;樹脂基板上に設けられた白色の絶縁層と;絶縁層上に設けられた回路パターン層と;基板の絶縁層および回路パターン層上に設けられるとともに発光素子配設位置に対応して基板の絶縁層および回路パターン層上に開口する収容部が設けられ、収容部内の周縁域に回路パターン層が位置するように構成されてなる反射体と;反射体の収容部内の中心域で絶縁層上に配設されるとともに収容部内の周縁域に位置する回路パターン層に電気的に接続された発光素子と;を具備していることを特徴とする。   The invention according to claim 2 is a resin substrate having a thermal conductivity of 1.0 to 9.0 [W / m · K]; a white insulating layer provided on the resin substrate; and provided on the insulating layer A circuit pattern layer; a receiving portion provided on the insulating layer and the circuit pattern layer of the substrate and having an opening formed on the insulating layer and the circuit pattern layer of the substrate corresponding to the light emitting element arrangement position; A reflector configured such that the circuit pattern layer is positioned on the insulating layer in a central region within the reflector housing portion and electrically connected to the circuit pattern layer located in the peripheral region within the housing portion And a connected light emitting element.

請求項3の発明は、請求項2記載の発光装置において、収容部内に臨む絶縁層の表面積の割合が回路パターン層の表面積の割合より大きい関係を有しているものである。   According to a third aspect of the present invention, in the light emitting device according to the second aspect, the ratio of the surface area of the insulating layer facing the housing portion is greater than the ratio of the surface area of the circuit pattern layer.

請求項4の発明は、請求項1ないし3いずれか一記載の発光装置において、波長400〜740nm域において絶縁層の表面の反射率は85%以上であるものである。波長400〜740nm域において絶縁層の表面の反射率が85%より小さいと、発光素子から基板側へ向かう光を絶縁層で反射させる効率が低く、発光素子の光の取り出し効率の十分な向上が得られない。なお、前記反射率は例えば全光線反射率である。   According to a fourth aspect of the present invention, in the light emitting device according to any one of the first to third aspects, the reflectance of the surface of the insulating layer is 85% or more in the wavelength range of 400 to 740 nm. When the reflectance of the surface of the insulating layer is less than 85% in the wavelength range of 400 to 740 nm, the efficiency of reflecting light from the light emitting element toward the substrate by the insulating layer is low, and the light extraction efficiency of the light emitting element is sufficiently improved. I can't get it. In addition, the said reflectance is a total light reflectance, for example.

請求項5の発明は、請求項1ないし4いずれか一記載の発光装置において、樹脂基板は、合成樹脂製基材に、無機フィラーを50〜90質量%含有してなることを特徴とする。   According to a fifth aspect of the present invention, in the light emitting device according to any one of the first to fourth aspects, the resin substrate contains 50 to 90% by mass of an inorganic filler in a synthetic resin base material.

無機フィラーは、アルミナ、マグネシア、ベリリア、シリカ、窒化ホウ素、炭化アルミニウム、炭化ケイ素、炭化ホウ素、炭化チタン、窒化ケイ素、ダイヤモンド、鉄、アルミニウム、銅の少なくとも1種またはこれらの2種以上の組合せからなる。無機フィラーの含有量を調整することにより、樹脂基板の放熱性を適宜値に容易に調整することができる。   The inorganic filler is made of at least one of alumina, magnesia, beryllia, silica, boron nitride, aluminum carbide, silicon carbide, boron carbide, titanium carbide, silicon nitride, diamond, iron, aluminum, copper, or a combination of two or more thereof. Become. By adjusting the content of the inorganic filler, the heat dissipation of the resin substrate can be easily adjusted to a suitable value.

請求項6の発明は、請求項5記載の発光装置において、無機フィラーは、直径が100μm以下のほぼ球形であることを特徴とする。無機フィラーが直径100μmの球形であるので、この高放熱性合成樹脂の射出成形時の射出効率を向上させることができ、細密充填が可能になる。   According to a sixth aspect of the present invention, in the light emitting device according to the fifth aspect, the inorganic filler has a substantially spherical shape with a diameter of 100 μm or less. Since the inorganic filler has a spherical shape with a diameter of 100 μm, the injection efficiency at the time of injection molding of this highly heat-dissipating synthetic resin can be improved, and fine filling becomes possible.

請求項7の発明は、請求項1ないし6いずれか一記載の発光装置において、前記絶縁層の厚みは、30μmから90μmの範囲であるものである。絶縁層の厚みが30μmより薄いと、絶縁層を光が透過し、反射率を低下するとともに、絶縁性能が低下してしまう。また、絶縁層の厚みが90μmより厚いと、絶縁層の熱抵抗が高くなり、放熱性が低下し、発光素子の寿命が短くなってしまう。   According to a seventh aspect of the present invention, in the light emitting device according to any one of the first to sixth aspects, the thickness of the insulating layer is in the range of 30 μm to 90 μm. When the thickness of the insulating layer is less than 30 μm, light is transmitted through the insulating layer, the reflectance is lowered, and the insulating performance is lowered. On the other hand, when the thickness of the insulating layer is greater than 90 μm, the thermal resistance of the insulating layer is increased, heat dissipation is reduced, and the life of the light emitting element is shortened.

請求項1記載の発光装置によれば、放熱性に優れた樹脂基板上に白色の絶縁層を設けて回路パターン層を設け、絶縁層上に発光素子を配設したうえで回路パターン層に発光素子を電気的に接続するため、放熱性に優れるとともに、発光素子から基板側へ向かう光を白色の絶縁層によって効率よく反射でき、発光素子の光の取り出し効率を向上できる。   According to the light emitting device of claim 1, the circuit pattern layer is provided by providing the white insulating layer on the resin substrate excellent in heat dissipation, the light emitting element is provided on the insulating layer, and then the light is emitted to the circuit pattern layer. Since the elements are electrically connected, the heat dissipation is excellent, and the light from the light emitting element toward the substrate can be efficiently reflected by the white insulating layer, so that the light extraction efficiency of the light emitting element can be improved.

請求項2記載の発光装置によれば、放熱性に優れた樹脂基板上に白色の絶縁層を設けて回路パターン層を設け、これら絶縁層および回路パターン上に設けた反射体の収容部内の中心域で絶縁層上に発光素子を配設するとともに収容部内の周縁域に位置する回路パターン層にワイヤボンディングによって電気的に接続するため、放熱性に優れるとともに、発光素子から基板側へ向かう光を白色の絶縁層によって効率よく反射でき、発光素子の光の取り出し効率を向上できる。   According to the light emitting device of claim 2, a circuit pattern layer is provided by providing a white insulating layer on a resin substrate excellent in heat dissipation, and the center in the accommodating portion of the reflector provided on the insulating layer and the circuit pattern. Since the light emitting element is disposed on the insulating layer in the region and is electrically connected to the circuit pattern layer located in the peripheral region in the housing portion by wire bonding, it has excellent heat dissipation, and light directed from the light emitting element to the substrate side Light can be efficiently reflected by the white insulating layer, and the light extraction efficiency of the light emitting element can be improved.

請求項3記載の発光装置によれば、請求項2記載の発光装置の効果に加えて、収容部内に臨む絶縁層の表面積の割合が回路パターン層の表面積の割合より大きい関係を有しているため、発光素子から基板側へ向かう光を白色の絶縁層によって効率よく反射でき、発光素子の光の取り出し効率を向上できる。   According to the light emitting device according to claim 3, in addition to the effect of the light emitting device according to claim 2, the ratio of the surface area of the insulating layer facing the housing portion is larger than the ratio of the surface area of the circuit pattern layer. Therefore, the light traveling from the light emitting element toward the substrate can be efficiently reflected by the white insulating layer, and the light extraction efficiency of the light emitting element can be improved.

請求項4記載の発光装置によれば、請求項1ないし3いずれか一記載の発光装置の効果に加えて、波長400〜740nm域において絶縁層の表面の反射率は85%以上であるため、発光素子から基板側へ向かう光を白色の絶縁層によって効率よく反射でき、発光素子の光の取り出し効率を向上できる。   According to the light emitting device according to claim 4, in addition to the effect of the light emitting device according to any one of claims 1 to 3, the reflectance of the surface of the insulating layer is 85% or more in the wavelength range of 400 to 740 nm. Light from the light emitting element toward the substrate can be efficiently reflected by the white insulating layer, and the light extraction efficiency of the light emitting element can be improved.

請求項5記載の発光装置によれば、樹脂基板は、合成樹脂製基材に含有される無機フィラーの含有率が50質量%であり、加工性に優れた合成樹脂が50質量%であるので、加工容易性を維持しつつ、放熱性を向上させることができる。また、無機フィラーの含有量が90%以下であるので、放熱性をさらに向上させることができるうえに、加工性に優れた合成樹脂の含有率が10質量%あるので、加工容易性も保持することができる。   According to the light emitting device of claim 5, the resin substrate has a content of the inorganic filler contained in the synthetic resin base material of 50% by mass, and the synthetic resin excellent in workability is 50% by mass. And heat dissipation can be improved, maintaining processability. In addition, since the content of the inorganic filler is 90% or less, the heat dissipation can be further improved, and since the content of the synthetic resin excellent in processability is 10% by mass, the processability is also maintained. be able to.

請求項6記載の発光装置によれば、無機フィラーが直径100μm以下の球形であるので、射出成形時の高放熱性合成樹脂の射出性を向上させることができ、成形型への細密充填が可能となる。   According to the light emitting device of the sixth aspect, since the inorganic filler has a spherical shape with a diameter of 100 μm or less, the injection property of the high heat radiation synthetic resin at the time of injection molding can be improved, and the mold can be closely packed. It becomes.

請求項7記載の発光装置によれば、請求項1ないし6いずれか一記載の発光装置の効果に加えて、絶縁層の厚みを30μmから90μmの範囲とするため、反射率を確保しながら、放熱性を向上させることができる。   According to the light emitting device according to claim 7, in addition to the effect of the light emitting device according to any one of claims 1 to 6, in order to make the thickness of the insulating layer in the range of 30 μm to 90 μm, while ensuring the reflectance, The heat dissipation can be improved.

以下、本発明の一実施の形態を図面を参照して説明する。図1は発光装置の一部の拡大断面図、図2は発光装置の一部を省略した拡大正面図、図3は発光装置の正面図、図4は発光装置の断面図、図5は発光装置に使用される白色の樹脂材料の全光線反射率を示すグラフである。図において、発光装置11は、発光モジュール12を備え、この発光モジュール12が例えば照明器具の器具本体などの図示しない発光装置本体に対して着脱可能に取り付けられる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 is an enlarged cross-sectional view of a part of the light emitting device, FIG. 2 is an enlarged front view of the light emitting device omitted, FIG. 3 is a front view of the light emitting device, FIG. 4 is a cross sectional view of the light emitting device, and FIG. It is a graph which shows the total light reflectance of the white resin material used for an apparatus. In the figure, a light emitting device 11 includes a light emitting module 12, and the light emitting module 12 is detachably attached to a light emitting device main body (not shown) such as a fixture main body of a lighting fixture.

発光モジュール12には、複数の発光素子としてのチップ状の固体発光素子である発光ダイオード素子(発光ダイオードチップ)13がマトリクス状に配列されている。発光ダイオード素子13は、例えば、発光ピークが450〜460nmの青色の光を発光する例えば窒化ガリウム(GaN)系半導体などで構成されている。 In the light emitting module 12, light emitting diode elements (light emitting diode chips) 13 which are chip-like solid light emitting elements as a plurality of light emitting elements are arranged in a matrix. The light emitting diode element 13 is made of, for example, a gallium nitride (GaN) based semiconductor that emits blue light having an emission peak of 450 to 460 nm.

発光モジュール12は、例えば、ポリアミドやPPA(ポリフタルアミド)等の合成樹脂基材に、無機フィラーを50〜90質量%含有することにより、熱伝導率を1.0〜9.0[W/m・K]を有した樹脂基板14、この基板14の一面に形成された白色の絶縁層15、この絶縁層15上に形成された回路パターン層16、これら絶縁層15および回路パターン層16上に一体に形成された反射体17を有している。   The light emitting module 12 includes, for example, 50 to 90% by mass of an inorganic filler in a synthetic resin base material such as polyamide or PPA (polyphthalamide), so that the thermal conductivity is 1.0 to 9.0 [W / m · K], a white insulating layer 15 formed on one surface of the substrate 14, a circuit pattern layer 16 formed on the insulating layer 15, and on the insulating layer 15 and the circuit pattern layer 16 Has a reflector 17 formed integrally therewith.

絶縁層15は、絶縁性を有する白色の樹脂材料によって、基板14の一面の全体を覆って形成されている。波長400〜740nm域において絶縁層15の表面の反射率は85%以上であることが好ましく、85%より小さいと、発光ダイオード素子13から基板14側へ向かう光を絶縁層15で反射させる効率が低く、発光ダイオード素子13の光の取り出し効率の十分な向上が得られない。ここで、発光装置に使用される白色の樹脂材料の全光線反射率を示すグラフを図5に示す。グラフの横軸は波長(nm)、縦軸は全光線反射率(%)であり、実線は白色の樹脂材料の全光線反射率、点線は比較例としての銀の全光線反射率を示している。銀の場合には、波長400〜740nmの全域において85%以上の全光線反射率を有する。これに対し、白色樹脂材料の場合には、波長400nmで35%の全光線反射率であり、85%以上となるのは波長480〜740nmである。しかし、波長400〜740nmの全域において全光線反射率の平均は85%以上となるため、光の取り出し効率の向上を十分に図れるものである。   The insulating layer 15 is formed so as to cover the entire surface of the substrate 14 with an insulating white resin material. In the wavelength range of 400 to 740 nm, the reflectance of the surface of the insulating layer 15 is preferably 85% or more. If the reflectance is smaller than 85%, the efficiency of reflecting the light from the light emitting diode element 13 toward the substrate 14 on the insulating layer 15 is high. Therefore, the light extraction efficiency of the light emitting diode element 13 cannot be sufficiently improved. Here, the graph which shows the total light reflectance of the white resin material used for a light-emitting device is shown in FIG. The horizontal axis of the graph is the wavelength (nm), the vertical axis is the total light reflectance (%), the solid line is the total light reflectance of the white resin material, and the dotted line is the total light reflectance of silver as a comparative example. Yes. In the case of silver, it has a total light reflectance of 85% or more in the entire wavelength range of 400 to 740 nm. On the other hand, in the case of a white resin material, the total light reflectance is 35% at a wavelength of 400 nm, and the wavelength of 480 to 740 nm is 85% or more. However, since the average total light reflectance is 85% or more in the entire wavelength range of 400 to 740 nm, the light extraction efficiency can be sufficiently improved.

また、絶縁層15を基板14上のほぼ全体に設けるため、絶縁層15を基板14上の必要な位置つまり反射体17の収容部19の位置にのみ正確に設ける場合よりも、製造性を向上できる。また、絶縁層15の厚みは30μmから90μmの範囲が好ましく、反射率を確保しながら、放熱性を向上させることができる。ここで、絶縁層15の厚みについて、30μm、90μm、120μmの各厚みを例にとって説明する。図6には、絶縁層15が30μm、90μm、120μmの各厚みの場合において、波長460nmでの反射率と、波長550nmでの反射率と、熱抵抗(℃/W)とを示す。絶縁層15の厚みが薄い方が反射率が低下し、一方、絶縁層15の厚みが厚い方が熱抵抗が高くなる特性がある。発光ダイオード素子13は、ジャンクション温度を100℃で使用した場合の発光ダイオード素子13の寿命は40000時間であるので、発光ダイオード素子13の寿命を長くするにはジャンクション温度を100℃以下に抑えて使用するのが好ましい。   In addition, since the insulating layer 15 is provided on almost the entire surface of the substrate 14, productivity is improved as compared with the case where the insulating layer 15 is accurately provided only at the required position on the substrate 14, that is, the position of the accommodating portion 19 of the reflector 17. it can. The thickness of the insulating layer 15 is preferably in the range of 30 μm to 90 μm, and heat dissipation can be improved while ensuring the reflectance. Here, the thickness of the insulating layer 15 will be described taking the thicknesses of 30 μm, 90 μm, and 120 μm as examples. FIG. 6 shows the reflectance at a wavelength of 460 nm, the reflectance at a wavelength of 550 nm, and the thermal resistance (° C./W) when the insulating layer 15 has a thickness of 30 μm, 90 μm, and 120 μm. The thinner the insulating layer 15, the lower the reflectivity. On the other hand, the thicker the insulating layer 15, the higher the thermal resistance. The light emitting diode element 13 has a life of 40,000 hours when the junction temperature is used at 100 ° C. Therefore, to increase the life of the light emitting diode element 13, the junction temperature should be kept below 100 ° C. It is preferable to do this.

発光ダイオード素子13の1チップ当たりのW数が0.06Wである場合、0.06Wの電力の投入で点灯させた場合の温度上昇は、図7に示すように、絶縁層15の厚みが薄い方が熱抵抗が低いために温度上昇が低く、一方、絶縁層15の厚みが厚い方が熱抵抗が高くなるために温度上昇が高くなる。例えば5000lmの光束が得られる発光ダイオード素子を光源とする密閉型照明器具では、器具内の雰囲気温度が60℃〜70℃になる。この温度に、上述した温度上昇分を足した値がジャンクション温度となるので、絶縁層15の厚みが120μmではジャンクション温度が100℃を超えてしまうため、ジャンクション温度を100℃以下で使用するためには、絶縁層15の厚みは90μm以下とする必要がある。一方、絶縁層15の厚みを薄くした場合、絶縁層15を光が透過してしまうために反射率が低下してしまう。図8に絶縁層15の厚みと発光ダイオード素子13の1チップ当たりの全光束(lm)との関係を示すように、全光束の低下は最大値である絶縁層15の厚みが120μmの場合に対して10%程度に抑えたいことから、絶縁層15の厚みは30μm以上必要であると考えられる。したがって、絶縁層15の厚みは30μmから90μmの範囲が好ましく、反射率を確保しながら、放熱性を向上させることができる。   When the W number per chip of the light emitting diode element 13 is 0.06 W, the temperature rise when the power is turned on by the application of 0.06 W electric power is thin as shown in FIG. Since the thermal resistance is lower, the temperature rise is lower. On the other hand, the thicker the insulating layer 15, the higher the thermal resistance. For example, in a sealed luminaire using a light emitting diode element capable of obtaining a light flux of 5000 lm as a light source, the ambient temperature in the fixture is 60 ° C to 70 ° C. Since the value obtained by adding the above-mentioned temperature rise to this temperature is the junction temperature, the junction temperature exceeds 100 ° C. when the thickness of the insulating layer 15 is 120 μm. Therefore, in order to use the junction temperature below 100 ° C. The thickness of the insulating layer 15 needs to be 90 μm or less. On the other hand, when the thickness of the insulating layer 15 is reduced, the light is transmitted through the insulating layer 15, so that the reflectance is lowered. As shown in FIG. 8, the relationship between the thickness of the insulating layer 15 and the total luminous flux (lm) per chip of the light-emitting diode element 13, the reduction of the total luminous flux is the maximum value when the thickness of the insulating layer 15 is 120 μm. On the other hand, the thickness of the insulating layer 15 is considered to be 30 μm or more because it is desired to suppress it to about 10%. Therefore, the thickness of the insulating layer 15 is preferably in the range of 30 μm to 90 μm, and heat dissipation can be improved while ensuring the reflectance.

回路パターン層16には、発光素子配設位置である各発光ダイオード素子13の配設位置毎に、CuとNiの合金やAu、Agなどにより、陰極側と陽極側の回路パターン(配線パターン)16a,16bが形成されている。   The circuit pattern layer 16 has a cathode-side and anode-side circuit pattern (wiring pattern) made of an alloy of Cu and Ni, Au, Ag, or the like for each position where each light-emitting diode element 13 is located. 16a and 16b are formed.

反射体17は、例えばPBT(ポリブチレンテレフタレート)やPPA(ポリフタルアミド)、PC(ポリカーボネート)などの樹脂を基板14の一面に流し込んで一体に成形され、各発光ダイオード素子13の配設位置毎に、各発光ダイオード素子13を収容する複数の収容部19が形成されている。各収容部19は、基板14に対して反対側へ向けて漸次拡開する円錐台状に形成されている。収容部19の周囲には、図示しないレンズを固定するレンズホルダ部20が同心状に形成されている。   The reflector 17 is integrally formed by pouring a resin such as PBT (polybutylene terephthalate), PPA (polyphthalamide), or PC (polycarbonate) onto one surface of the substrate 14, and is arranged at each position where each light emitting diode element 13 is disposed. In addition, a plurality of accommodating portions 19 for accommodating the respective light emitting diode elements 13 are formed. Each accommodating portion 19 is formed in a truncated cone shape that gradually expands toward the opposite side with respect to the substrate 14. A lens holder portion 20 for fixing a lens (not shown) is formed around the housing portion 19 concentrically.

各収容部19内の底部には、その収容部19の底部の中心域を含む大部分に白色の絶縁層15が臨んで位置し、収容部19の底部の周縁域に回路パターン16a,16bのワイヤボンディングが可能な必要最低限の大きさの端部が位置している。すなわち、収容部19内に臨む絶縁層15の表面積の割合が回路パターン層16の表面積の割合より大きい関係を有している。   The white insulating layer 15 is located on the bottom of each housing part 19 so as to face most of the central area of the bottom of the housing part 19, and the circuit patterns 16 a and 16 b are arranged in the peripheral area of the bottom part of the housing part 19. The end of the minimum size that allows wire bonding is located. In other words, the ratio of the surface area of the insulating layer 15 facing the accommodating portion 19 is greater than the ratio of the surface area of the circuit pattern layer 16.

各発光ダイオード素子13は、収容部19の中心域で絶縁層15上に接着剤などを用いて配設され、発光ダイオード素子13の各電極と各回路パターン16a,16bとがワイヤボンディングによるボンディングワイヤ21によって電気的に接続されている。   Each light emitting diode element 13 is disposed on the insulating layer 15 using an adhesive or the like in the central region of the accommodating portion 19, and each electrode of the light emitting diode element 13 and each circuit pattern 16a, 16b are bonded by wire bonding. 21 is electrically connected.

各収容部19には、発光ダイオード素子13を被覆する被覆層22が形成されている。この被覆層22は、発光ダイオード素子13を被覆する拡散層23と、この拡散層23の上層で収容部19の開口側に配設される蛍光体層24との2層に形成されている。   Each accommodating portion 19 is formed with a covering layer 22 that covers the light emitting diode element 13. The covering layer 22 is formed in two layers: a diffusion layer 23 that covers the light-emitting diode element 13 and a phosphor layer 24 that is disposed on the opening side of the accommodating portion 19 above the diffusion layer 23.

拡散層23は、透光性を有するシリコーン樹脂やエポキシ樹脂などの熱硬化性透明樹脂にアルミナ(Al2O3)やTiO2、BaSO4、SiO2、Y2O3などの拡散剤を配合したもので、この拡散剤を配合した樹脂を、収容部19内の発光ダイオード素子13よりも高い位置まで充填し、熱硬化させることにより形成されている。拡散層23と蛍光体層24との接合面(境界面)25は、発光ダイオード素子13側(図1では下面側)へ凹む湾曲面に形成されている。なお、この拡散層23は必須のものではない。   The diffusion layer 23 is made by blending a diffusing agent such as alumina (Al2O3), TiO2, BaSO4, SiO2, or Y2O3 with a thermosetting transparent resin such as a translucent silicone resin or epoxy resin. The resin is filled up to a position higher than the light emitting diode element 13 in the accommodating portion 19 and is thermally cured. A bonding surface (boundary surface) 25 between the diffusion layer 23 and the phosphor layer 24 is formed as a curved surface that is recessed toward the light emitting diode element 13 side (the lower surface side in FIG. 1). The diffusion layer 23 is not essential.

蛍光体層24は、透光性を有するシリコーン樹脂やエポキシ樹脂などの熱硬化性透明樹脂に発光ダイオード素子13からの青色発光を受光して黄色に蛍光発光する黄色の蛍光体を主体として配合したもので、拡散層23の熱硬化形成後、蛍光体を配合した樹脂を収容部19内に充填し、熱硬化させることにより形成されている。蛍光体としては、黄色蛍光体が主体であるが、赤蛍光体なども配合されている。なお、発光装置11とレンズを組み合わせて照明装置を構成できる。   The phosphor layer 24 is composed mainly of a yellow phosphor that receives blue light from the light-emitting diode element 13 and emits yellow fluorescence to a thermosetting transparent resin such as a translucent silicone resin or epoxy resin. Thus, after the thermosetting of the diffusion layer 23, a resin mixed with a phosphor is filled in the accommodating portion 19 and is thermoset. As the phosphor, a yellow phosphor is mainly used, but a red phosphor or the like is also blended. Note that a lighting device can be configured by combining the light emitting device 11 and a lens.

次に、発光装置11の作用を説明する。各陰極側と陽極側の回路パターン16a,16b間に、外部から所定の直流電圧が印加されると、各発光ダイオード素子13が青色発光する。この青色発光は、拡散層23により多方向へ拡散してから蛍光体層24内に入射し、ここで黄色蛍光体を多方向から励起して黄色に発光させる。そして、発光ダイオード素子13からの青色光と黄色蛍光体からの黄色光とが混色し、白色光になって収容部19から外部へ放射される。   Next, the operation of the light emitting device 11 will be described. When a predetermined DC voltage is applied from the outside between the circuit patterns 16a and 16b on the cathode side and the anode side, each light emitting diode element 13 emits blue light. This blue light emission is diffused in multiple directions by the diffusion layer 23 and then enters the phosphor layer 24, where the yellow phosphor is excited from multiple directions to emit yellow light. Then, the blue light from the light emitting diode element 13 and the yellow light from the yellow phosphor are mixed and become white light, which is emitted from the housing portion 19 to the outside.

したがって、この発光装置11では、発光ダイオード素子13の微小な発光を拡散層23により多方向へ拡散し、多方向から蛍光体層24の黄色蛍光体を励起させて黄色に発光させ、かつこの黄色光と青色光とを混色させて白色光を発光させるので、白色光が黄色光と青色光にと色われするのを低減できる。また、この樹脂は、熱伝導率が1.0〜9.0[W/m・K]の高い放熱性を有しているので、発光ダイオード素子13の熱を樹脂基板14に伝導して放熱性を向上させることができる。このために、温度上昇のために、発光ダイオード素子13の発光効率が低下するのを抑制することができる。また、発光ダイオード素子13から基板14側へ向かう光を白色の絶縁層15によって効率よく反射させることができるため、発光ダイオード素子13の光の取り出し効率を向上できる。   Therefore, in the light emitting device 11, minute light emission of the light emitting diode element 13 is diffused in multiple directions by the diffusion layer 23, and the yellow phosphor of the phosphor layer 24 is excited from multiple directions to emit yellow light. Since white light is emitted by mixing light and blue light, it is possible to reduce the white light from being mixed into yellow light and blue light. Further, since this resin has a high heat dissipation property with a thermal conductivity of 1.0 to 9.0 [W / m · K], the heat of the light emitting diode element 13 is conducted to the resin substrate 14 to dissipate heat. Can be improved. For this reason, it is possible to suppress a decrease in the light emission efficiency of the light emitting diode element 13 due to a temperature rise. Further, since the light traveling from the light emitting diode element 13 toward the substrate 14 can be efficiently reflected by the white insulating layer 15, the light extraction efficiency of the light emitting diode element 13 can be improved.

特に、収容部19内に臨む絶縁層15の表面積の割合が回路パターン層16の表面積の割合より大きい関係を有していること、および波長400〜740nm域において絶縁層15の表面の反射率が85%以上であることにより、発光ダイオード素子13から基板14側へ向かう光を白色の絶縁層15によって効率よく反射でき、発光ダイオード素子13の光の取り出し効率をより向上できる。   In particular, the ratio of the surface area of the insulating layer 15 facing the accommodating portion 19 has a relationship greater than the ratio of the surface area of the circuit pattern layer 16, and the reflectance of the surface of the insulating layer 15 in the wavelength range of 400 to 740 nm. By being 85% or more, the light traveling from the light emitting diode element 13 toward the substrate 14 can be efficiently reflected by the white insulating layer 15, and the light extraction efficiency of the light emitting diode element 13 can be further improved.

次に本発明に係る第2の実施形態を示すLEDランプ(発光装置)について説明する。本実施の形態では、一つの凹部内に発光素子をマトリックス状に複数配置してなる。図9及び図10中符号1はLEDランプを示している。このLEDランプ1は、複数の発光素子としてのLEDチップ2と、回路パターン3と、基板4と、白色の絶縁層としての反射層5と、反射体としてのリフレクタ8と、蛍光体層としての蛍光体含有樹脂層9と、シート状蛍光体層10、透光性接着層21と、光拡散部材22と、を備えて発光装置を形成している。なお、基板4とリフレクタ8が協同して凹部7を構成している。   Next, an LED lamp (light emitting device) showing a second embodiment according to the present invention will be described. In the present embodiment, a plurality of light emitting elements are arranged in a matrix in one recess. Reference numeral 1 in FIGS. 9 and 10 denotes an LED lamp. The LED lamp 1 includes an LED chip 2 as a plurality of light emitting elements, a circuit pattern 3, a substrate 4, a reflective layer 5 as a white insulating layer, a reflector 8 as a reflector, and a phosphor layer. A phosphor-containing resin layer 9, a sheet-like phosphor layer 10, a translucent adhesive layer 21, and a light diffusion member 22 are provided to form a light emitting device. The substrate 4 and the reflector 8 cooperate to form the recess 7.

基板4は、絶縁材例えば合成樹脂製の平板からなるとともに、LEDランプ1に必要とされる発光面積を得るために所定形状例えば長方形状をなしている。反射層5は、所定数のLEDチップ2を配設し得る大きさであって、例えば基板4の表面全体に被着されている。反射層5は、400nm〜740nmの波長領域で85%以上の反射率を有した白色の絶縁材で形成されている。反射層5をなす白色絶縁材は、例えば酸化アルミニウム等の白色粉末が混入された熱硬化性樹脂をシート基材に含浸させてなる。反射層5はそれ自体の接着性により基板4の表面となる一面に接着される。   The substrate 4 is made of a flat plate made of an insulating material such as a synthetic resin, and has a predetermined shape such as a rectangular shape in order to obtain a light emitting area required for the LED lamp 1. The reflective layer 5 has such a size that a predetermined number of LED chips 2 can be disposed, and is attached to the entire surface of the substrate 4, for example. The reflective layer 5 is formed of a white insulating material having a reflectance of 85% or more in a wavelength region of 400 nm to 740 nm. The white insulating material forming the reflective layer 5 is formed by impregnating a sheet base material with a thermosetting resin mixed with white powder such as aluminum oxide. The reflective layer 5 is bonded to one surface as the surface of the substrate 4 by its own adhesiveness.

回路パターン3は、各LEDチップ2への通電要素として、反射層5の基板4が接着された面とは反対側の面に接着されている。この回路パターン3は、例えば各LEDチップ2を直列に接続するために、図9に示すように基板4及び反射層5の長手方向に所定間隔ごとに点在して2列形成されている。一方の回路パターン3列の一端側に位置された端側回路パターン3aには給電パターン部3cが一体に連続して形成され、同様に他方の回路パターン3列の一端側に位置された端側回路パターン3aには給電パターン部3dが一体に連続して形成されている。給電パターン部3c,3dは反射層5の長手方向一端部に並べて設けられ、互いに離間して反射層5により絶縁されている。これらの給電パターン部3c,3dの夫々に電源に至る図示しない電線が個別に半田付け等で接続されるようになっている。   The circuit pattern 3 is bonded to the surface of the reflective layer 5 opposite to the surface to which the substrate 4 is bonded as an energization element to each LED chip 2. For example, in order to connect the LED chips 2 in series, the circuit pattern 3 is formed in two rows in the longitudinal direction of the substrate 4 and the reflective layer 5 at predetermined intervals as shown in FIG. An end side circuit pattern 3a located on one end side of one circuit pattern 3 row is integrally formed with a power feeding pattern portion 3c. Similarly, an end side located on one end side of the other circuit pattern 3 row side. The circuit pattern 3a is integrally formed with a power feeding pattern portion 3d. The power feeding pattern portions 3 c and 3 d are provided side by side at one end in the longitudinal direction of the reflective layer 5 and are separated from each other and insulated by the reflective layer 5. Electric wires (not shown) reaching the power supply are individually connected to the power supply pattern portions 3c and 3d by soldering or the like.

各LEDチップ2は、例えば窒化物半導体を用いてなるダブルワイヤー型のLEDチップからなり、反射膜を有しておらず、厚み方向の双方に光を放射できる。各LEDチップ2は、基板4の長手方向に隣接した回路パターン3間に夫々配置されて、白色の反射層5の同一面上に透光性接着層21により接着されている。この接着により、回路パターン3及びLEDチップ2は反射層5の同一面上で直線状に並べられるので、この並び方向に位置したLEDチップ2の側面2a,2bと回路パターン3とは近接して対向するように設けられている。透光性接着層21の厚みは5μm以下である。この透光性接着層21には、例えば5μm以下の厚みで光透過率が70%以上の透光性を有した接着剤、例えばシリコーン樹脂系の接着剤を好適に使用できる。   Each LED chip 2 is made of a double-wire type LED chip using, for example, a nitride semiconductor, does not have a reflective film, and can emit light both in the thickness direction. Each LED chip 2 is disposed between the circuit patterns 3 adjacent to each other in the longitudinal direction of the substrate 4, and is bonded to the same surface of the white reflective layer 5 by a translucent adhesive layer 21. By this adhesion, the circuit pattern 3 and the LED chip 2 are arranged in a straight line on the same surface of the reflective layer 5, so that the side surfaces 2 a and 2 b of the LED chip 2 positioned in this arrangement direction are close to the circuit pattern 3. It is provided so as to face each other. The thickness of the translucent adhesive layer 21 is 5 μm or less. For the translucent adhesive layer 21, for example, a translucent adhesive having a thickness of 5 μm or less and a light transmittance of 70% or more, such as a silicone resin adhesive, can be suitably used.

各LEDチップ2の電極とLEDチップ2の両側に近接配置された回路パターン3とは、ワイヤボンディングにより設けられたボンディングワイヤ6で接続されている。更に、前記2列の回路パターン3列の他端側に位置された端側回路パターン同士も、ワイヤボンディングにより接続されている。したがって、本実施形態の場合、各LEDチップ2は直列に接続されている。   The electrode of each LED chip 2 and the circuit pattern 3 arranged close to both sides of the LED chip 2 are connected by a bonding wire 6 provided by wire bonding. Further, the end side circuit patterns located on the other end side of the two rows of circuit patterns 3 rows are also connected by wire bonding. Therefore, in this embodiment, each LED chip 2 is connected in series.

リフレクタ8は、一個一個又は数個のLEDチップ2ごとに個別に設けられるものではなく、反射層5上の全てのLEDチップ2を包囲する単一のものであり、枠、例えば図9に示すように長方形の枠で形成されている。リフレクタ8は反射層5に接着止めされていて、その内部に複数のLEDチップ2及び回路パターン3が収められているとともに、前記一対の給電パターン部3c,3dはリフレクタ8の外部に位置されている。   The reflector 8 is not provided individually for each one or several LED chips 2, but is a single one that surrounds all the LED chips 2 on the reflective layer 5, and has a frame, for example, shown in FIG. It is formed with a rectangular frame. The reflector 8 is bonded to the reflective layer 5, and a plurality of LED chips 2 and circuit patterns 3 are housed therein, and the pair of power supply pattern portions 3 c and 3 d are positioned outside the reflector 8. Yes.

リフレクタ8は、例えば合成樹脂で成形されていて、その内周面は反射面となっている。リフレクタ8の反射面は、AlやNi等の反射率が高い金属材料を蒸着又はメッキして形成できる他、可視光の反射率の高い白色塗料を塗布して形成することができる。或いは、リフレクタ8の成形材料中に白色粉末を混入させてリフレクタ8自体を可視光の反射率が高い白色とすることもできる。前記白色粉末としては、酸化アルミニウム、酸化チタン、酸化マグネシウム、硫酸バリウム等の白色フィラーを用いることができる。なお、リフレクタ8の反射面はLEDランプ1の照射方向に次第に開くように形成することが望ましい。   The reflector 8 is formed of, for example, a synthetic resin, and its inner peripheral surface is a reflecting surface. The reflecting surface of the reflector 8 can be formed by depositing or plating a metal material having a high reflectance such as Al or Ni, or by applying a white paint having a high visible light reflectance. Alternatively, white powder can be mixed into the molding material of the reflector 8 to make the reflector 8 itself white with high visible light reflectivity. As said white powder, white fillers, such as aluminum oxide, titanium oxide, magnesium oxide, barium sulfate, can be used. It is desirable that the reflecting surface of the reflector 8 is formed so as to gradually open in the irradiation direction of the LED lamp 1.

蛍光体含有樹脂層9は、透光性材料、例えば透明シリコーン樹脂や透明ガラス等からなる。蛍光体含有樹脂層9を形成するために用いる蛍光体粒子として上記したような平均粒径(D50)が15μm以上30μm以下のものを用いると共に、液状透明樹脂として粘度が1Pa・s以上3Pa・s以下のものを用いる。蛍光体を含む液状透明樹脂は、反射層5表面及び一直線上に配列された各LEDチップ2及びボンディングワイヤ6等を満遍なく埋めてリフレクタ8内に固化される。反射層5表面とボンディングワイヤ6との間に流れ込んだ液状透明樹脂は毛細管現象等により各LEDチップ2及びボンディングワイヤ6に行き渡っているものと考えられる。なお、蛍光体含有樹脂層9を形成するために用いられる液状透明樹脂が2種以上の液状透明樹脂からなるものである場合には、これら2種以上の液状透明樹脂を混合した際の混合物の粘度が1Pa・s以上、3Pa・s以下であればよい。例えば、各LEDチップ2を青色LEDチップとした本実施形態では、これらの素子から発光された一次光(青色)を波長変換して異なる波長の二次光として黄色の光を出す蛍光体(図示しない)が、好ましい例として略均一に分散した状態に混入されている。   The phosphor-containing resin layer 9 is made of a translucent material such as a transparent silicone resin or transparent glass. The phosphor particles used for forming the phosphor-containing resin layer 9 have an average particle diameter (D50) of 15 μm or more and 30 μm or less as described above, and the liquid transparent resin has a viscosity of 1 Pa · s or more and 3 Pa · s. The following are used. The liquid transparent resin containing the phosphor is solidified in the reflector 8 by evenly filling the surface of the reflective layer 5 and the LED chips 2 and bonding wires 6 arranged in a straight line. It is considered that the liquid transparent resin that has flowed between the surface of the reflective layer 5 and the bonding wire 6 has spread to each LED chip 2 and the bonding wire 6 due to a capillary phenomenon or the like. In addition, when the liquid transparent resin used for forming the phosphor-containing resin layer 9 is composed of two or more liquid transparent resins, the mixture of the two or more liquid transparent resins is mixed. The viscosity may be 1 Pa · s or more and 3 Pa · s or less. For example, in the present embodiment in which each LED chip 2 is a blue LED chip, a phosphor (illustrated) that converts the wavelength of primary light (blue) emitted from these elements to produce yellow light as secondary light having a different wavelength. However, as a preferred example, it is mixed in a substantially uniformly dispersed state.

本実施形態の発光装置では、蛍光体含有樹脂層9は、白色の反射層5上の同一面上に並べて配列されたLEDチップ2を満遍なく覆うことができるため、基板上の複数の凹部内に1個ずつ発光素子を配設したものと比較して発光装置1全体としての色温度の変化が抑制でき発光装置1を歩留まり良く製造することができる。また、各蛍光体の平均粒径(D50)は15μm以上30μm以下であり、前記透明樹脂の硬化前の粘度は1Pa・s以上3Pa・s以下としているので、白色の反射層5上へ注入してから硬化させるまでの間に蛍光体粒子が沈降、堆積することを抑制でき、発光効率を低下させ、さらに均一に発光することができる。   In the light emitting device of the present embodiment, the phosphor-containing resin layer 9 can evenly cover the LED chips 2 arranged side by side on the same surface on the white reflective layer 5, so that it is in a plurality of recesses on the substrate. Compared with the case where the light emitting elements are arranged one by one, the change in the color temperature of the entire light emitting device 1 can be suppressed, and the light emitting device 1 can be manufactured with a high yield. Moreover, since the average particle diameter (D50) of each phosphor is 15 μm or more and 30 μm or less, and the viscosity of the transparent resin before curing is 1 Pa · s or more and 3 Pa · s or less, it is injected onto the white reflective layer 5. It is possible to suppress the precipitation and deposition of the phosphor particles from the time of curing to the time of curing, thereby reducing the light emission efficiency and further emitting light uniformly.

シート状蛍光体層10は、第2の実施形態の蛍光体含有樹脂層9の表面積が比較的広く、また、柔らかい性質を呈するのでゴミなどが付着しやすい状態にある。これをシート状蛍光体層10で覆うことによりゴミなどの付着を防止するには、シート状蛍光体層10の硬度を高くして硬くするのが望ましい。具体的にはシリコーンレジンやシリコーンゴムなどが好適である。   The sheet-like phosphor layer 10 has a relatively large surface area of the phosphor-containing resin layer 9 of the second embodiment and is in a state in which dust or the like is likely to adhere because it has a soft property. In order to prevent adhesion of dust and the like by covering this with the sheet-like phosphor layer 10, it is desirable to increase the hardness of the sheet-like phosphor layer 10. Specifically, silicone resin and silicone rubber are suitable.

この組み合わせにより、LEDチップ2から放出された青色の光の一部が蛍光体に当たることなく蛍光体含有樹脂層9を透過する一方で、LEDチップ2から放出された青色の光が当たった各蛍光体が、青色の光を吸収し黄色光及び赤色光を発光して、この黄色光及び赤色光が蛍光体含有樹脂層9及びシート状蛍光体層10を透過するので、これら補色関係にある二色及び赤色光の混合によってLEDランプ1の平均演色評価数Raを向上させた白色光を実現できる。   With this combination, part of the blue light emitted from the LED chip 2 passes through the phosphor-containing resin layer 9 without hitting the phosphor, while each fluorescent light hit by the blue light emitted from the LED chip 2 The body absorbs blue light, emits yellow light and red light, and the yellow light and red light are transmitted through the phosphor-containing resin layer 9 and the sheet-like phosphor layer 10, so that these two complementary colors are present. White light in which the average color rendering index Ra of the LED lamp 1 is improved by mixing color and red light can be realized.

前記LEDランプ1と組み合わされる光拡散部材22は平板状であってリフレクタ8の前方に配置されている。なお、リフレクタ8にその前方に突出する延長部を設けてそこに光拡散部材22を支持してもよく、或いは、LEDランプ1を収めた図示しない照明器具本体に支持させてもよい。光拡散部材22には、400nm〜480nmの青色の光の透過率と、540nm〜650nmの黄色の光の透過率との差が10%以内であって、可視光の透過率が90%以上100%未満の光拡散性能を有するものを好適に使用できる。こうした光拡散部材22を用いることにより、前記青色の一次光と黄色の二次光とを光拡散部材22で混色させて、光拡散部材22を色むらが抑制された白色を得ることができる。   The light diffusion member 22 combined with the LED lamp 1 has a flat plate shape and is disposed in front of the reflector 8. Note that the reflector 8 may be provided with an extension projecting forward and the light diffusing member 22 may be supported there, or may be supported by a lighting fixture body (not shown) in which the LED lamp 1 is housed. The light diffusion member 22 has a difference between the transmittance of blue light of 400 nm to 480 nm and the transmittance of yellow light of 540 nm to 650 nm within 10%, and the transmittance of visible light is 90% or more 100 Those having a light diffusion performance of less than% can be suitably used. By using such a light diffusing member 22, the blue primary light and the yellow secondary light can be mixed by the light diffusing member 22, and the light diffusing member 22 can be white in which the color unevenness is suppressed.

本発明の一実施の形態を示す発光装置の一部の拡大断面図。1 is an enlarged cross-sectional view of a part of a light-emitting device showing an embodiment of the present invention. 同上発光装置の一部を省略した拡大正面図。The enlarged front view which abbreviate | omitted some light emitting devices same as the above. 同上発光装置の正面図。The front view of a light-emitting device same as the above. 同上発光装置の断面図。Sectional drawing of a light-emitting device same as the above. 同上発光装置に使用される白色の樹脂材料の全光線反射率を示すグラフ。The graph which shows the total light reflectance of the white resin material used for a light-emitting device same as the above. 同上発光装置の絶縁層の各厚み毎の反射率および熱抵抗を示す表。The table | surface which shows the reflectance and thermal resistance for every thickness of the insulating layer of a light emitting device same as the above. 同上発光装置の絶縁層の各厚み毎の温度上昇を示す表。The table | surface which shows the temperature rise for every thickness of the insulating layer of a light-emitting device same as the above. 同上発光装置の絶縁層の各厚み毎の全光束および比率を示す表。The table | surface which shows the total light beam and ratio for each thickness of the insulating layer of a light-emitting device same as the above. 本発明の発光装置をLEDランプに適用した第2の実施形態の構成を示す断面図。Sectional drawing which shows the structure of 2nd Embodiment which applied the light-emitting device of this invention to the LED lamp. 図9のF2−F2線断面図。F2-F2 sectional view taken on the line of FIG.

符号の説明Explanation of symbols

11…発光装置、13…発光素子としての発光ダイオード素子、14…樹脂基板、15…絶縁層、16…回路パターン層、17…反射体、19…収容部。   DESCRIPTION OF SYMBOLS 11 ... Light emitting device, 13 ... Light emitting diode element as a light emitting element, 14 ... Resin substrate, 15 ... Insulating layer, 16 ... Circuit pattern layer, 17 ... Reflector, 19 ... Housing part.

Claims (7)

熱伝導率1.0〜9.0[W/m・K]を有する樹脂基板と;
樹脂基板上に設けられた白色の絶縁層と;
絶縁層上に設けられた回路パターン層と;
絶縁層上に配設されるとともに回路パターン層に電気的に接続された発光素子と;
を具備していることを特徴とする発光装置。
A resin substrate having a thermal conductivity of 1.0 to 9.0 [W / m · K];
A white insulating layer provided on the resin substrate;
A circuit pattern layer provided on the insulating layer;
A light emitting device disposed on the insulating layer and electrically connected to the circuit pattern layer;
A light-emitting device comprising:
熱伝導率1.0〜9.0[W/m・K]を有する樹脂基板と;
樹脂基板上に設けられた白色の絶縁層と;
絶縁層上に設けられた回路パターン層と;
絶縁層および回路パターン層上に設けられるとともに発光素子配設位置に対応して絶縁層および回路パターン層上に開口する収容部が設けられ、収容部内の周縁域に回路パターン層が位置するように構成されてなる反射体と;
反射体の収容部内の中心域で絶縁層上に配設されるとともに収容部内の周縁域に位置する回路パターン層に電気的に接続された発光素子と;
を具備していることを特徴とする発光装置。
A resin substrate having a thermal conductivity of 1.0 to 9.0 [W / m · K];
A white insulating layer provided on the resin substrate;
A circuit pattern layer provided on the insulating layer;
A receiving portion is provided on the insulating layer and the circuit pattern layer, and an opening is provided on the insulating layer and the circuit pattern layer corresponding to the position where the light emitting element is provided, and the circuit pattern layer is positioned in the peripheral area in the receiving portion. A structured reflector;
A light emitting element disposed on the insulating layer in the central region in the housing portion of the reflector and electrically connected to the circuit pattern layer located in the peripheral region in the housing portion;
A light-emitting device comprising:
前記収容部内に臨む前記絶縁層の表面積の割合が前記回路パターン層の表面積の割合より大きい関係を有していることを特徴とする請求項2記載の発光装置。   The light emitting device according to claim 2, wherein a ratio of a surface area of the insulating layer facing the housing portion is larger than a ratio of a surface area of the circuit pattern layer. 波長400〜740nm域において前記絶縁層の表面の反射率は85%以上であることを特徴とする請求項1ないし3いずれか一記載の発光装置。   4. The light emitting device according to claim 1, wherein the reflectance of the surface of the insulating layer is 85% or more in a wavelength range of 400 to 740 nm. 前記樹脂基板は、合成樹脂製基材に、無機フィラーを50〜90質量%含有してなることを特徴とする請求項1ないし4いずれか一記載の発光装置。   The light emitting device according to any one of claims 1 to 4, wherein the resin substrate contains 50 to 90 mass% of an inorganic filler in a synthetic resin base material. 前記無機フィラーは、直径が100μm以下のほぼ球形であることを特徴とする請求項5記載の発光装置。   The light emitting device according to claim 5, wherein the inorganic filler has a substantially spherical shape with a diameter of 100 μm or less. 前記絶縁層の厚みは、30μmから90μmの範囲であることを特徴とする請求項1ないし6いずれか一記載の発光装置。   The light emitting device according to claim 1, wherein the insulating layer has a thickness in a range of 30 μm to 90 μm.
JP2007029503A 2006-03-28 2007-02-08 Light emitting device Pending JP2007294867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007029503A JP2007294867A (en) 2006-03-28 2007-02-08 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006089131 2006-03-28
JP2007029503A JP2007294867A (en) 2006-03-28 2007-02-08 Light emitting device

Publications (1)

Publication Number Publication Date
JP2007294867A true JP2007294867A (en) 2007-11-08

Family

ID=38765139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029503A Pending JP2007294867A (en) 2006-03-28 2007-02-08 Light emitting device

Country Status (1)

Country Link
JP (1) JP2007294867A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167358A (en) * 2008-01-18 2009-07-30 Techno Polymer Co Ltd Heat-dissipating resin composition
JP2009302196A (en) * 2008-06-11 2009-12-24 Denki Kagaku Kogyo Kk Insulated metal base circuit board and hybrid integrated circuit module using the same
WO2011052502A1 (en) 2009-10-29 2011-05-05 京セラ株式会社 Light emitting device
JP2011097047A (en) * 2009-10-29 2011-05-12 Foxsemicon Integrated Technology Inc Illumination device
JP2012009633A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Light-emitting device
JP2012039067A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet and light-emitting diode packaging substrate
US8759124B2 (en) 2010-10-29 2014-06-24 Nichia Corporation Light emitting apparatus and production method thereof
CN113777826A (en) * 2020-06-10 2021-12-10 海信视像科技股份有限公司 Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877071U (en) * 1981-11-17 1983-05-24 三洋電機株式会社 light emitting diode display
JP2003124528A (en) * 2001-08-09 2003-04-25 Matsushita Electric Ind Co Ltd Led illumination device and card led illumination light source
JP2003277479A (en) * 2002-03-22 2003-10-02 Sanyu Rec Co Ltd Method for producing substrate for carrying led bare chip and resin composition
WO2005091387A1 (en) * 2004-03-24 2005-09-29 Toshiba Lighting & Technology Corporation Light-emitting device and illuminating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877071U (en) * 1981-11-17 1983-05-24 三洋電機株式会社 light emitting diode display
JP2003124528A (en) * 2001-08-09 2003-04-25 Matsushita Electric Ind Co Ltd Led illumination device and card led illumination light source
JP2003277479A (en) * 2002-03-22 2003-10-02 Sanyu Rec Co Ltd Method for producing substrate for carrying led bare chip and resin composition
WO2005091387A1 (en) * 2004-03-24 2005-09-29 Toshiba Lighting & Technology Corporation Light-emitting device and illuminating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167358A (en) * 2008-01-18 2009-07-30 Techno Polymer Co Ltd Heat-dissipating resin composition
JP2009302196A (en) * 2008-06-11 2009-12-24 Denki Kagaku Kogyo Kk Insulated metal base circuit board and hybrid integrated circuit module using the same
WO2011052502A1 (en) 2009-10-29 2011-05-05 京セラ株式会社 Light emitting device
JP2011097047A (en) * 2009-10-29 2011-05-12 Foxsemicon Integrated Technology Inc Illumination device
JP2012039067A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet and light-emitting diode packaging substrate
JP2012009633A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Light-emitting device
US8759124B2 (en) 2010-10-29 2014-06-24 Nichia Corporation Light emitting apparatus and production method thereof
US9076948B2 (en) 2010-10-29 2015-07-07 Nichia Corporation Light emitting apparatus and production method thereof
US9276181B2 (en) 2010-10-29 2016-03-01 Nichia Corporation Light emitting apparatus and production method thereof
US10741729B2 (en) 2010-10-29 2020-08-11 Nichia Corporation Light emitting apparatus and production method thereof
US11626543B2 (en) 2010-10-29 2023-04-11 Nichia Corporation Light emitting apparatus and production method thereof
US11876153B2 (en) 2010-10-29 2024-01-16 Nichia Corporation Light emitting apparatus and production method thereof
CN113777826A (en) * 2020-06-10 2021-12-10 海信视像科技股份有限公司 Display device
CN113777826B (en) * 2020-06-10 2022-08-19 海信视像科技股份有限公司 Display device

Similar Documents

Publication Publication Date Title
JP5290670B2 (en) lamp
TWI433344B (en) Light emitting apparatus and illuminating apparatus
JP5147997B2 (en) Light emitting device, light bulb shaped lamp and lighting device
US7192164B2 (en) Light-emitting apparatus and illuminating apparatus
US8562161B2 (en) LED based pedestal-type lighting structure
JP5276226B2 (en) Mounting board, light emitting device and lamp
JP3898721B2 (en) Light emitting device and lighting device
US20050133808A1 (en) Package for housing light-emitting element, light-emitting apparatus and illumination apparatus
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
JP2006128700A (en) Light-emitting device having material adaptive to heat insulation and refractive index
JP2007165811A (en) Light emitting device
JP2010219562A (en) Illumination apparatus
JP2007294867A (en) Light emitting device
JP2014146661A (en) Light emitting module, illumination device and luminaire
JP5561330B2 (en) Light emitting device
JP2007066939A (en) Semiconductor light emitting device
JP2016171147A (en) Light emission device and luminaire
JP2007294890A (en) Light emitting device
JP2009010308A (en) Light emitting device
JP2006295230A (en) Light emitting device and lighting apparatus
JP2007043074A (en) Luminaire
JP2012243643A (en) Bulb type lamp and lighting device
JP2009071090A (en) Light-emitting device
JP2006324392A (en) Substrate for mounting light emitting element, package for storing light emitting element, light emitting device, and lighting system
JP2008084908A (en) Light emitting device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120802