JP2011096740A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2011096740A
JP2011096740A JP2009247070A JP2009247070A JP2011096740A JP 2011096740 A JP2011096740 A JP 2011096740A JP 2009247070 A JP2009247070 A JP 2009247070A JP 2009247070 A JP2009247070 A JP 2009247070A JP 2011096740 A JP2011096740 A JP 2011096740A
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
conversion layer
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009247070A
Other languages
Japanese (ja)
Inventor
Naoko Takei
尚子 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009247070A priority Critical patent/JP2011096740A/en
Publication of JP2011096740A publication Critical patent/JP2011096740A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting device which further suppresses secondary absorption at a wavelength conversion layer and exhibits higher luminous efficiency. <P>SOLUTION: The light-emitting device includes: a first LED chip (a first light-emitting element ) 11 mounted on one surface 4a of a mounting substrate 4; a first wavelength conversion layer 12 arranged on the first LED chip 11, absorbing a part of blue light from the first LED chip 11, and emitting green fluorescent light; a second LED chip (a second light-emitting element) 21 mounted on a recessed part 4b of the mounting substrate 4; a second wavelength conversion layer 22 arranged on the second LED chip 21 in the recessed part 4b, absorbing a part of the blue light from the second LED chip 21, and emitting red fluorescent light having a longer wavelength than green fluorescent light of the first wavelength conversion layer 12. At least a part of a line connecting an optional point on an end surface 12a for radiating light from the first wavelength conversion layer 12 to an external and an optional point on a surface for radiating light from the second wavelength conversion layer 22 to an external intersect with the one surface 4a of the mounting substrate 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光素子および該発光素子からの光を波長変換する波長変換層を用いた発光装置に関するものである。   The present invention relates to a light emitting device and a light emitting device using a wavelength conversion layer that converts the wavelength of light from the light emitting device.

近年、実装基板に実装されるLEDチップなどの半導体からなる発光素子と、該発光素子を被覆し、該発光素子からの光の少なくとも一部を吸収し波長変換して補色となる光を発する蛍光体が含有された透光性部材からなる波長変換層とを備え、たとえば、発光素子からの青色光と波長変換層からの黄色光とを混色した白色光を放射する発光装置が開発されている。この種の発光装置は、発光素子の光出力の高効率化にともない照明器具にまで利用されている。   In recent years, a light emitting element made of a semiconductor such as an LED chip mounted on a mounting substrate, and a fluorescent material that covers the light emitting element, absorbs at least a part of the light from the light emitting element, and converts the wavelength to emit a complementary color light. For example, a light emitting device has been developed that emits white light in which blue light from a light emitting element and yellow light from a wavelength conversion layer are mixed. . This type of light-emitting device has been used for lighting fixtures as the light output of the light-emitting element becomes more efficient.

ところで、発光装置は、放射する白色光を、より自然光に近づけさせるため、青色光を放射する発光素子と、緑色光を発する緑色蛍光体および赤色光を発する赤色蛍光体などを組み合わせた波長変換層とを用いて白色光の演色性を高めた構造とする場合がある。   By the way, in order to make the white light emitted closer to natural light, the light emitting device combines a light emitting element that emits blue light, a green phosphor that emits green light, a red phosphor that emits red light, and the like. May be used to enhance the color rendering of white light.

このような複数種の蛍光体を含有した波長変換層を備える発光装置は、発光ピーク波長が短波長側の蛍光体(たとえば、緑色蛍光体)で変換された光の一部を、発光ピーク波長がより長波長の蛍光体(たとえば、赤色蛍光体)が吸収(以下、二次吸収という)し波長変換する。そのため、発光装置は、蛍光体での波長変換に伴う損失が重複することにより、発光効率を十分に高めることができない。   A light-emitting device provided with such a wavelength conversion layer containing a plurality of types of phosphors emits a part of light converted by a phosphor having a light emission peak wavelength shorter (for example, a green phosphor). The longer wavelength phosphor (for example, red phosphor) absorbs (hereinafter referred to as secondary absorption) and converts the wavelength. Therefore, the light emitting device cannot sufficiently increase the light emission efficiency due to the overlap of the loss accompanying the wavelength conversion in the phosphor.

そこで、複数種の蛍光体間での二次吸収を抑制するため、緑色蛍光体を含有する波長変換層と、赤色蛍光体を含有する波長変換層とに分離した構造を有する発光装置が考えられている。たとえば、図10に示すように、実装基板4の一表面に実装される第一の発光素子たる第一のLEDチップ11と、第一のLEDチップ11の全体を被覆して該第一のLEDチップ11からの光の少なくとも一部を吸収し蛍光を発する第一の波長変換層12’と、実装基板4の前記一表面から窪んだ凹部4bの内底面に実装される第二の発光素子たる第二のLEDチップ21と、凹部4b内であって第二のLEDチップ21の全体を被覆して該第二のLEDチップ21からの光の少なくとも一部を吸収し、第一の波長変換層12’よりも長波長の蛍光を発する第二の波長変換層22’とを有する発光装置10’が提案されている(たとえば、特許文献1参照)。なお、LEDチップ11,21は、導電性ワイヤー15を介して実装基板4に設けられたリード電極13と電気的に接続され、給電可能に構成されている。   Therefore, in order to suppress secondary absorption between multiple types of phosphors, a light-emitting device having a structure in which a wavelength conversion layer containing a green phosphor and a wavelength conversion layer containing a red phosphor are separated is considered. ing. For example, as shown in FIG. 10, the first LED chip 11 that is a first light emitting element mounted on one surface of the mounting substrate 4 and the entire first LED chip 11 are covered to form the first LED. A first wavelength conversion layer 12 ′ that absorbs at least a part of light from the chip 11 and emits fluorescence, and a second light emitting element mounted on the inner bottom surface of the recess 4 b that is recessed from the one surface of the mounting substrate 4. The second LED chip 21 and the entirety of the second LED chip 21 in the recess 4b are covered to absorb at least a part of the light from the second LED chip 21, and the first wavelength conversion layer A light emitting device 10 ′ having a second wavelength conversion layer 22 ′ that emits fluorescence having a wavelength longer than 12 ′ has been proposed (see, for example, Patent Document 1). The LED chips 11 and 21 are configured to be electrically connected to the lead electrodes 13 provided on the mounting substrate 4 via the conductive wires 15 so that power can be supplied.

図10に示す発光装置10’では、実装基板4の凹部4b内に第二のLEDチップ21および第二の波長変換層22’を収納することにより、第一の波長変換層12’から放射された光が第二の波長変換層22’によって二次吸収されず、効率のよい発光が可能になるとされている。   In the light emitting device 10 ′ shown in FIG. 10, the second LED chip 21 and the second wavelength conversion layer 22 ′ are accommodated in the recess 4 b of the mounting substrate 4, so that the light is emitted from the first wavelength conversion layer 12 ′. The light is not secondarily absorbed by the second wavelength conversion layer 22 ′, and efficient light emission is possible.

特開2004−71726号公報JP 2004-71726 A

しかしながら、図10に示した構成の発光装置10’の第一のLEDチップ11から放射される光は、第一の波長変換層12’の第一のLEDチップ11の直上部だけでなく、凹部4b上の第一の波長変換層12’にも照射される。また、発光装置10’の第一の波長変換層12’の蛍光体から放射される光は、全方向に等方的に放射される。そのため、発光装置10’では、第一の波長変換層12’が第一のLEDチップ11からの光を受けて等方的に蛍光を発するので、凹部4b内の第二の波長変換層22’にも光が照射されて二次吸収が生じ、発光装置10’の発光効率を十分に向上させることが難しい場合がある。   However, the light emitted from the first LED chip 11 of the light emitting device 10 ′ having the configuration shown in FIG. 10 is not only directly above the first LED chip 11 of the first wavelength conversion layer 12 ′ but also recessed. The first wavelength conversion layer 12 ′ on 4b is also irradiated. The light emitted from the phosphor of the first wavelength conversion layer 12 'of the light emitting device 10' is emitted isotropically in all directions. Therefore, in the light emitting device 10 ′, the first wavelength conversion layer 12 ′ receives the light from the first LED chip 11 and emits isotropic fluorescence, so the second wavelength conversion layer 22 ′ in the recess 4b. In some cases, secondary absorption occurs due to light irradiation, and it is difficult to sufficiently improve the light emission efficiency of the light emitting device 10 ′.

特に、照明用途にまで利用される発光装置10’では、より高い光出力が求められており、発光装置10’の光出力が大きくなる程、第二の波長変換層22’での二次吸収が大きくなる傾向にあり、上述の発光装置10’の構成だけでは十分ではなく更なる改良が求められている。   In particular, in the light emitting device 10 ′ used for lighting applications, higher light output is required, and the secondary absorption in the second wavelength conversion layer 22 ′ increases as the light output of the light emitting device 10 ′ increases. Therefore, the structure of the light emitting device 10 ′ described above is not sufficient and further improvement is required.

本発明は上記事由に鑑みて為されたものであり、その目的は、波長変換層での二次吸収をより抑制し、発光効率のより高い発光装置を提供することにある。   This invention is made | formed in view of the said reason, The objective is to suppress the secondary absorption in a wavelength conversion layer more, and to provide a light-emitting device with higher luminous efficiency.

請求項1の発明は、実装基板の一表面に実装される第一の発光素子と、該第一の発光素子上に備えられ前記第一の発光素子からの光の少なくとも一部を吸収し蛍光を発する第一の波長変換層と、前記実装基板の前記一表面から窪んだ凹部の内底面に実装される第二の発光素子と、前記凹部内であって前記第二の発光素子上に備えられ前記第二の発光素子からの光の少なくとも一部を吸収し前記第一の波長変換層の前記蛍光よりも長波長の蛍光を発する第二の波長変換層とを有し、前記第一の波長変換層から光を外部に放射する前記第二の波長変換層側の端面の任意の一点と、前記第二の波長変換層から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が前記実装基板の前記一表面と交差することを特徴とする。   According to a first aspect of the present invention, there is provided a first light emitting element mounted on one surface of a mounting substrate, and a fluorescent light that is provided on the first light emitting element and absorbs at least part of light from the first light emitting element. A first wavelength conversion layer that emits light, a second light emitting element mounted on an inner bottom surface of a recess recessed from the one surface of the mounting substrate, and provided in the recess and on the second light emitting element And a second wavelength conversion layer that absorbs at least part of light from the second light emitting element and emits fluorescence having a longer wavelength than the fluorescence of the first wavelength conversion layer, A line segment connecting any one point on the end face on the second wavelength conversion layer side that emits light from the wavelength conversion layer to the outside and any one point on the surface that emits light from the second wavelength conversion layer to the outside At least a portion of which intersects with the one surface of the mounting substrate.

この発明によれば、第一の波長変換層から光を外部に放出する第二の波長変換層側の端面の任意の一点と、第二の波長変換層から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が実装基板の一表面と交差することにより、たとえば、前記第一の発光素子から放射された青色光を吸収して発した前記第一の波長変換層の緑色光が、前記第二の波長変換層に入射し二次吸収されることを抑制し、発光効率のより高い発光装置とすることが可能となる。   According to the present invention, any one point on the end surface on the second wavelength conversion layer side that emits light from the first wavelength conversion layer to the outside, and any surface on the surface that emits light from the second wavelength conversion layer to the outside For example, the first wavelength conversion layer generated by absorbing blue light emitted from the first light emitting element by at least a part of a line connecting one point intersecting one surface of the mounting substrate. It is possible to prevent the green light from being incident on the second wavelength conversion layer and secondarily absorbed, thereby obtaining a light emitting device with higher luminous efficiency.

請求項2の発明は、請求項1に記載の発明において、前記凹部は、前記内底面から前記凹部の外部に向かって広がるテーパー部を有することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the concave portion has a tapered portion that extends from the inner bottom surface toward the outside of the concave portion.

この発明によれば、前記凹部が外部に向かって広がるテーパー部を有することにより、前記第二の発光素子や前記第二の波長変換層が放射した光を前記凹部の外部に放射させやすくして光の反射損を少なくし、発光装置の発光効率の低下を抑制することが可能となる。また、前記凹部から放射される前記第二の発光素子および前記第二の波長変換層の光の配光が広角となり、前記第二の発光素子および前記第二の波長変換層から放射される光と、前記第一の発光素子および前記第一の波長変換層から放射される光との混色がより促進され、発光装置の色むらを低減することも可能となる。   According to this invention, the concave portion has a tapered portion that widens toward the outside, so that the light emitted from the second light emitting element and the second wavelength conversion layer can be easily emitted outside the concave portion. It is possible to reduce the reflection loss of light and suppress the decrease in the light emission efficiency of the light emitting device. In addition, the light distribution of the light from the second light emitting element and the second wavelength conversion layer emitted from the concave portion becomes a wide angle, and the light emitted from the second light emitting element and the second wavelength conversion layer Further, the color mixture of the light emitted from the first light emitting element and the first wavelength conversion layer is further promoted, and the color unevenness of the light emitting device can be reduced.

請求項3の発明は、請求項1または請求項2に記載の発明において、前記凹部は、少なくとも前記凹部の外部に向かう内側面に、光を反射する反射層が設けられてなることを特徴とする。   According to a third aspect of the present invention, in the invention according to the first or second aspect, the concave portion is provided with a reflective layer that reflects light on at least an inner surface facing the outside of the concave portion. To do.

この発明によれば、前記凹部内の前記第二の発光素子および前記第二の波長変換層から放射された光を、前記凹部の内側面に設けた反射層により反射させることで、反射の際に生ずる光の反射損を小さくさせ発光装置の発光効率の低下を抑制することが可能となる。   According to this invention, the light emitted from the second light emitting element and the second wavelength conversion layer in the concave portion is reflected by the reflective layer provided on the inner surface of the concave portion. It is possible to reduce the light reflection loss that occurs in the light-emitting device, and to suppress the reduction in the light-emitting efficiency of the light-emitting device.

請求項4の発明は、請求項1ないし請求項3のいずれか1項に記載の発明において、前記第一の発光素子および前記第一の波長変換層は、第一の透光性部材で被覆され、前記第二の発光素子および前記第二の波長変換層は、第二の透光性部材で被覆されてなるとともに、前記第一の透光性部材は、前記第二の透光性部材よりも屈折率が大きく、且つ前記第二の透光性部材に接していることを特徴とする。   The invention of claim 4 is the invention according to any one of claims 1 to 3, wherein the first light emitting element and the first wavelength conversion layer are covered with a first translucent member. The second light emitting element and the second wavelength conversion layer are covered with a second light transmissive member, and the first light transmissive member is the second light transmissive member. The refractive index is larger than that of the second translucent member.

この発明によれば、前記第一の波長変換層や前記第一の発光素子から放射され第一の透光性部材中を透過する光は、前記第二の波長変換層および前記第二の発光素子側に向かったとしても、前記第一の透光性部材よりも相対的に屈折率の小さい第二の透光性部材との界面で反射されるため、前記第二の透光性部材で被覆された前記第二の波長変換層で二次吸収されることが抑制され、発光装置の発光効率の低下をより抑制することが可能となる。   According to this invention, the light emitted from the first wavelength conversion layer and the first light emitting element and transmitted through the first light transmissive member is the second wavelength conversion layer and the second light emission. Even if it goes to the element side, since it is reflected at the interface with the second light transmissive member having a refractive index relatively smaller than that of the first light transmissive member, the second light transmissive member Secondary absorption by the coated second wavelength conversion layer is suppressed, and a decrease in light emission efficiency of the light emitting device can be further suppressed.

請求項5の発明は、請求項4に記載の発明において、前記第一の透光性部材と前記第二の透光性部材とが接する界面には、前記第二の透光性部材よりも屈折率が大きく、前記第一の透光性部材よりも屈折率の小さい第三の透光性部材が設けられてなることを特徴とする。   According to a fifth aspect of the present invention, in the invention of the fourth aspect, the interface between the first light transmissive member and the second light transmissive member is more than the second light transmissive member. A third translucent member having a large refractive index and a smaller refractive index than the first translucent member is provided.

この発明によれば、前記第一の透光性部材と前記第二の透光性部材とが接する界面に第三の透光性樹脂が設けられていることにより、前記第一の透光性部材と前記第三の透光性部材との界面では反射しなかった前記第一の波長変換層が放射した光を、前記第三の透光性部材と前記第二の透光性部材との界面で反射させることが可能となる。そのため、発光装置は、全体として前記第一の透光性部材から前記第二の透光性部材に向かう前記第一の波長変換層からの光を更に抑制し、発光効率の低下を更に抑制することが可能となる。   According to this invention, the first translucent resin is provided at the interface where the first translucent member and the second translucent member are in contact with each other, whereby the first translucent resin is provided. The light emitted from the first wavelength conversion layer that was not reflected at the interface between the member and the third light transmissive member is transmitted between the third light transmissive member and the second light transmissive member. It can be reflected at the interface. Therefore, the light emitting device as a whole further suppresses light from the first wavelength conversion layer from the first light transmitting member toward the second light transmitting member, and further suppresses a decrease in light emission efficiency. It becomes possible.

請求項6の発明は、請求項4または請求項5に記載の発明において、前記第二の透光性部材は、拡散材が分散されていることを特徴とする。   The invention according to claim 6 is the invention according to claim 4 or 5, wherein the second translucent member has a diffusing material dispersed therein.

この発明によれば、前記第二の透光性部材に拡散材が分散されていることにより、前記第二の発光素子および前記第二の波長変換層からの光は、前記凹部から外に広がって光が放射されるように配光されるため、前記第一の発光素子および前記第一の波長変換層から放射された光との混色が促進される。そのため、発光装置は、色むらのより少ない混色光を放射することが可能となる。   According to this invention, since the diffusing material is dispersed in the second light-transmissive member, the light from the second light emitting element and the second wavelength conversion layer spreads out from the concave portion. Thus, the light is distributed so that light is emitted, so that color mixing with the light emitted from the first light emitting element and the first wavelength conversion layer is promoted. Therefore, the light emitting device can emit mixed color light with less color unevenness.

請求項1の発明では、実装基板の一表面に実装された第一の発光素子上の第一の波長変換層から光を外部に放射する第二の波長変換層側の端面の任意の一点と、前記実装基板の前記一表面から窪んだ凹部内の第二の発光素子上の前記第二の波長変換層から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が前記実装基板の前記一表面と交差することにより、前記第二の波長変換層での二次吸収をより抑制し、発光効率のより高い発光装置を提供できるという顕著な効果がある。   In the invention of claim 1, any one point on the end face on the second wavelength conversion layer side that emits light from the first wavelength conversion layer on the first light emitting element mounted on one surface of the mounting substrate to the outside; , At least a part of a line segment connecting with an arbitrary point on the surface that emits light from the second wavelength conversion layer on the second light emitting element in the recess recessed from the one surface of the mounting substrate. By intersecting with the one surface of the mounting substrate, there is a remarkable effect that secondary absorption in the second wavelength conversion layer can be further suppressed and a light emitting device with higher luminous efficiency can be provided.

実施形態1の発光装置を示す概略断面図である。1 is a schematic cross-sectional view showing a light emitting device of Embodiment 1. FIG. 発光装置の波長変換層における二次吸収を示し、(a)は比較のための発光装置の説明図、(b)は実施形態1の発光装置の説明図である。The secondary absorption in the wavelength conversion layer of a light-emitting device is shown, (a) is explanatory drawing of the light-emitting device for a comparison, (b) is explanatory drawing of the light-emitting device of Embodiment 1. FIG. 実施形態1の他の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing another light emitting device of Embodiment 1. FIG. 発光装置の凹部内における光の反射損の説明を示し、(a)は比較のための発光装置の説明図、(b)は実施形態1の発光装置の説明図である。The explanation of the reflection loss of light in the recess of the light emitting device is shown, (a) is an explanatory view of the light emitting device for comparison, (b) is an explanatory view of the light emitting device of the first embodiment. 実施形態1の別の発光装置を示す概略断面図である。3 is a schematic cross-sectional view showing another light emitting device of Embodiment 1. FIG. 実施形態2の発光装置を示す要部概略断面図である。FIG. 6 is a schematic cross-sectional view showing a main part of a light emitting device according to Embodiment 2. 同上の発光装置内における光の全反射を説明する説明図である。It is explanatory drawing explaining the total reflection of the light in a light-emitting device same as the above. 実施形態2の他の発光装置を示す要部概略断面図である。FIG. 6 is a schematic cross-sectional view of a main part showing another light emitting device of Embodiment 2. 同上のさらに別の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows another light-emitting device same as the above. 従来の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the conventional light-emitting device.

(実施形態1)
以下、本実施形態の発光装置を図1から図5に基づいて説明する。なお、図1から図5において同じ部材に対しては、同じ番号を付して重複する説明を省略している。
(Embodiment 1)
Hereinafter, the light-emitting device of this embodiment will be described with reference to FIGS. In FIG. 1 to FIG. 5, the same members are denoted by the same reference numerals and redundant description is omitted.

本実施形態の図1に示す発光装置10は、実装基板4の一表面(基準面)4aに実装される青色光を発光する第一の発光素子たる第一のLEDチップ11と、第一のLEDチップ11上に備えられ第一のLEDチップ11からの青色光の一部を吸収し緑色の蛍光を発する緑色蛍光体が含有された透光性樹脂層からなる第一の波長変換層12とを有している。また、発光装置10は、実装基板4の上記一表面4aから窪んだ凹部4bの内底面4bbに実装される青色光を発光する第二の発光素子たる第二のLEDチップ21と、上記凹部4b内であって第二のLEDチップ21上に備えられ第二のLEDチップ21からの青色光の一部を吸収し第一の波長変換層12の緑色の蛍光よりも長波長の赤色の蛍光を発する赤色蛍光体が含有された透光性樹脂層からなる第二の波長変換層22とを有している。   The light emitting device 10 shown in FIG. 1 of the present embodiment includes a first LED chip 11 that is a first light emitting element that emits blue light mounted on one surface (reference surface) 4a of the mounting substrate 4, and a first LED. A first wavelength conversion layer 12 comprising a translucent resin layer provided on the LED chip 11 and containing a green phosphor that absorbs part of the blue light from the first LED chip 11 and emits green fluorescence; have. The light emitting device 10 includes a second LED chip 21 as a second light emitting element that emits blue light mounted on the inner bottom surface 4bb of the recess 4b that is recessed from the one surface 4a of the mounting substrate 4, and the recess 4b. The red light having a longer wavelength than the green fluorescence of the first wavelength conversion layer 12 by absorbing a part of the blue light from the second LED chip 21, which is provided on the second LED chip 21. And a second wavelength conversion layer 22 made of a translucent resin layer containing a red phosphor that emits light.

この発光装置10では、第一のLEDチップ11および第一のLEDチップ11上の緑色の蛍光を発する第一の波長変換層12を短波長発光部1とし、第二のLEDチップ21および第二のLEDチップ21上の赤色の蛍光を発する第二の波長変換層22を長波長発光部2としている。発光装置10は、特に、短波長発光部1と長波長発光部2とを、第一の波長変換層12からの光を外部に放射する第二の波長変換層22側の端面12aの任意の一点と、第二の波長変換層22から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が実装基板4の上記一表面4aと交差するように配置している。   In the light emitting device 10, the first wavelength conversion layer 12 that emits green fluorescence on the first LED chip 11 and the first LED chip 11 is used as the short wavelength light emitting unit 1, and the second LED chip 21 and the second LED chip 21. The second wavelength conversion layer 22 that emits red fluorescence on the LED chip 21 is the long wavelength light emitting section 2. In particular, the light-emitting device 10 has an arbitrary end surface 12a on the second wavelength conversion layer 22 side that emits light from the first wavelength conversion layer 12 to the short wavelength light emission unit 1 and the long wavelength light emission unit 2 to the outside. At least a part of a line segment connecting one point and any one point on the surface that emits light from the second wavelength conversion layer 22 to the outside intersects with the one surface 4 a of the mounting substrate 4.

より具体的には、発光装置10は、矩形平板状のアルミナセラミック基板上にAuでメッキされた一対の導体パターン(図示していない)が形成された実装基板4を用いている。実装基板4には、実装基板4の上記一表面4aから窪んだ凹部4bが形成されている。実装基板4の一対の導体パターンには、第一および第二のLEDチップ11,21ごとに、それぞれAuバンプ3を複数個設けている。実装基板4の上記一表面4aに実装された第一のLEDチップ11および実装基板4の上記一表面4aから窪んだ凹部4b内に収納された第二のLEDチップ21は、それぞれサファイア基板上にn型の窒化ガリウム系化合物半導体層、Inが含有された窒化ガリウム系化合物半導体からなる発光層、p型の窒化ガリウム系化合物半導体層が順に積層されている。第一および第二のLEDチップ11,21は、前記発光層および前記p型の窒化ガリウム系化合物半導体層の一部が除去されて前記n型の窒化ガリウム系化合物半導体層が部分的に露出しており、同一平面側にp型およびn型の各窒化ガリウム系化合物半導体層と電気的に接続されるアノード電極およびカソード電極がそれぞれ設けられている。第一および第二のLEDチップ11,21は、第一および第二のLEDチップ11,21の同一平面側に設けられた前記アノード電極および前記カソード電極を、実装基板4の一対の導体パターン上のAuバンプ3にフリップチップ実装により給電可能に実装している。   More specifically, the light emitting device 10 uses a mounting substrate 4 in which a pair of conductor patterns (not shown) plated with Au are formed on a rectangular flat alumina ceramic substrate. The mounting substrate 4 is formed with a recess 4 b that is recessed from the one surface 4 a of the mounting substrate 4. A plurality of Au bumps 3 are provided on each of the first and second LED chips 11 and 21 in the pair of conductor patterns of the mounting substrate 4. The first LED chip 11 mounted on the one surface 4a of the mounting substrate 4 and the second LED chip 21 housed in the recess 4b recessed from the one surface 4a of the mounting substrate 4 are respectively formed on the sapphire substrate. An n-type gallium nitride compound semiconductor layer, a light emitting layer made of a gallium nitride compound semiconductor containing In, and a p-type gallium nitride compound semiconductor layer are sequentially stacked. In the first and second LED chips 11 and 21, a part of the light emitting layer and the p-type gallium nitride compound semiconductor layer are removed, and the n-type gallium nitride compound semiconductor layer is partially exposed. An anode electrode and a cathode electrode that are electrically connected to the p-type and n-type gallium nitride compound semiconductor layers are respectively provided on the same plane side. The first and second LED chips 11, 21 are arranged such that the anode electrode and the cathode electrode provided on the same plane side of the first and second LED chips 11, 21 are placed on a pair of conductor patterns on the mounting substrate 4. The Au bump 3 is mounted so as to be able to supply power by flip chip mounting.

実装基板4の上記一表面4a上および実装基板4の凹部4b内に実装された第一のおよび第二のLEDチップ11,21は、通電によりピーク波長が、たとえば、450nm〜470nmの範囲内にある青色光をそれぞれ放射する。このような第一および第二のLEDチップ11,21の外形は、たとえば、大きさが約1mm角で、厚みが約100μmとすることができる。   The first and second LED chips 11 and 21 mounted on the one surface 4a of the mounting substrate 4 and in the recess 4b of the mounting substrate 4 have a peak wavelength within a range of, for example, 450 nm to 470 nm by energization. Each emits blue light. The outer shapes of the first and second LED chips 11 and 21 can be, for example, about 1 mm square and about 100 μm thick.

また、第一の波長変換層12は、第一のLEDチップ11からの青色光を吸収して緑色光が発光可能な緑色蛍光体(たとえば、Euで付活された(SrBa)SiOなど)をバインダーとなるシリコーン樹脂中に均一に分散させ、外形が第一のLEDチップ11と略同じ約1mm角であり、厚さ約100μmのフィルム状に形成している。第一のLEDチップ11上に第一の波長変換層12を透光性を有する接着剤により接着して形成することで、短波長発光部1を形成することができる。 The first wavelength conversion layer 12 is a green phosphor capable of absorbing green light from the first LED chip 11 and emitting green light (for example, (SrBa) 2 SiO 4 activated with Eu) ) Is uniformly dispersed in a silicone resin serving as a binder, and the outer shape is approximately the same as that of the first LED chip 11 and is formed in a film shape having a thickness of approximately 100 μm. The short wavelength light emission part 1 can be formed by adhere | attaching and forming the 1st wavelength conversion layer 12 on the 1st LED chip 11 with the adhesive agent which has translucency.

同様に、実装基板4の上記一表面4aから窪んだ凹部4bの内底面4bb上に実装された第二のLEDチップ21も第一のLEDチップ11と同様のものを用いて、通電によりピーク波長が、たとえば、450nm〜470nmの範囲内にある青色光を放射する。   Similarly, the second LED chip 21 mounted on the inner bottom surface 4bb of the recess 4b that is recessed from the one surface 4a of the mounting substrate 4 is also the same as the first LED chip 11, and the peak wavelength is increased by energization. Emits blue light in the range of 450 nm to 470 nm, for example.

第二の波長変換層22は、第二のLEDチップ21からの青色光を吸収して赤色光が発光可能な赤色蛍光体(たとえば、Euで付活されたCaAlSiNなど)をバインダーとなるシリコーン樹脂中に均一に分散させ、外形が第二のLEDチップ21と略同じ約1mm角であり、厚さ約100μmのフィルム状に形成している。第二のLEDチップ21上に第二の波長変換層22を透光性を有する接着剤により接着して形成することで、長波長発光部2を形成することができる。 The second wavelength conversion layer 22 is a silicone that serves as a binder with a red phosphor (for example, CaAlSiN 3 activated by Eu) that can absorb blue light from the second LED chip 21 and emit red light. The resin is uniformly dispersed in the resin, and the outer shape is approximately the same as that of the second LED chip 21, and is formed in a film shape having a thickness of approximately 100 μm. By forming the second wavelength conversion layer 22 on the second LED chip 21 by adhering with a translucent adhesive, the long wavelength light emitting section 2 can be formed.

ところで、発光装置10は、通常、第一および第二のLEDチップ11,21や第一および第二の波長変換層12,22からの光を発光装置10の外部に効率よく放射させるため、実装基板4の上記一表面4aを、第一および第二のLEDチップ11,21や第一の波長変換層12からの光に対して反射率の高い材質とすることが考えられる。そのため、たとえば、図2(a)に示す発光装置10”の場合、短波長発光部1の緑色蛍光体を含有する第一の波長変換層12の端面12aから長波長発光部2側に放射される緑色光(図中矢印で示す網掛け部分)は、直接、赤色蛍光体を含有する第二の波長変換層22に向かう光と、実装基板4の上記一表面4aで反射されて第二のLEDチップ21を透過などして第二の波長変換層22に向かう光とがある。   By the way, the light emitting device 10 is usually mounted in order to efficiently radiate light from the first and second LED chips 11 and 21 and the first and second wavelength conversion layers 12 and 22 to the outside of the light emitting device 10. It is conceivable that the one surface 4a of the substrate 4 is made of a material having a high reflectance with respect to light from the first and second LED chips 11 and 21 and the first wavelength conversion layer 12. Therefore, for example, in the case of the light emitting device 10 ″ shown in FIG. 2A, the light is emitted from the end face 12a of the first wavelength conversion layer 12 containing the green phosphor of the short wavelength light emitting unit 1 to the long wavelength light emitting unit 2 side. Green light (shaded portion indicated by an arrow in the figure) is reflected directly by the light toward the second wavelength conversion layer 22 containing a red phosphor and the one surface 4a of the mounting substrate 4 to be second Some light passes through the LED chip 21 and travels toward the second wavelength conversion layer 22.

図2(a)に示す発光装置10”に対して、図2(b)に示す本実施形態の発光装置10は、短波長発光部1と、長波長発光部2とを、第一の波長変換層12からの光を外部に放射する第二の波長変換層22側の上記端面12aの任意の一点と、第二の波長変換層22から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が実装基板4の上記一表面4aと交差するように配置されている。そのため、図2(b)の発光装置10の場合、短波長発光部1の第一の波長変換層12の上記端面12aから長波長発光部2側に放射された緑色光(図中矢印で示す網掛け部分)は、一部が実装基板4の上記一表面4aで遮光される。したがって、図2(b)の発光装置10は、図2(a)の発光装置10”と比較して第二の波長変換層22に向かう光を少なくさせ、第二の波長変換層22での二次吸収に伴う発光効率の低下を抑制することが可能となる。   Compared to the light emitting device 10 ″ shown in FIG. 2A, the light emitting device 10 of the present embodiment shown in FIG. 2B includes a short wavelength light emitting unit 1 and a long wavelength light emitting unit 2 having a first wavelength. An arbitrary point on the end face 12a on the second wavelength conversion layer 22 side that emits light from the conversion layer 12 to the outside, and an arbitrary point on the surface that emits light from the second wavelength conversion layer 22 to the outside At least a part of the connecting line segment is arranged so as to intersect with the one surface 4a of the mounting substrate 4. Therefore, in the case of the light emitting device 10 of FIG. Part of the green light (shaded portion indicated by an arrow in the figure) emitted from the end face 12a of the conversion layer 12 to the long wavelength light emitting unit 2 side is shielded by the one surface 4a of the mounting substrate 4. The light-emitting device 10 in FIG. 2B is the second wavelength conversion compared with the light-emitting device 10 ″ in FIG. The light directed to the 22 is small, it is possible to suppress a decrease in luminous efficiency due to the secondary absorption in the second wavelength conversion layer 22.

以下、本実施形態の発光装置10に用いられる各構成について詳述する。   Hereinafter, each component used for the light-emitting device 10 of this embodiment is explained in full detail.

本実施形態1の発光装置10に用いられる第一および第二の発光素子は、通電により光を発光可能なものである。第一および第二の発光素子の放射する光は、たとえば、可視光のうちピーク波長が450nmから470nmの青色光とすることができるが、青色光のみに限定するものではなく、他の波長の光や第一の波長変換層12や第二の波長変換層22を効率よく励起させるために紫外線を用いてもよい。発光素子たるLEDチップ11,21としては、たとえば、サファイア基板、スピネル基板、窒化ガリウム基板、酸化亜鉛基板や炭化シリコン基板などの結晶成長基板上にn型窒化ガリウム系化合物半導体層、多重量子井戸構造や単一量子井戸構造の発光層となるインジウムが含有された窒化ガリウム系化合物体層、p型窒化ガリウム系化合物半導体層を順に積層させたものが挙げられる。   The first and second light-emitting elements used in the light-emitting device 10 of Embodiment 1 can emit light when energized. The light emitted from the first and second light emitting elements can be, for example, blue light having a peak wavelength of 450 nm to 470 nm in visible light, but is not limited to blue light, and has other wavelengths. Ultraviolet light may be used to efficiently excite the light, the first wavelength conversion layer 12 and the second wavelength conversion layer 22. As the LED chips 11 and 21 as light emitting elements, for example, an n-type gallium nitride compound semiconductor layer, a multiple quantum well structure on a crystal growth substrate such as a sapphire substrate, a spinel substrate, a gallium nitride substrate, a zinc oxide substrate or a silicon carbide substrate. And a gallium nitride compound body layer containing indium and a p-type gallium nitride compound semiconductor layer, which are light emitting layers having a single quantum well structure, are sequentially stacked.

なお、絶縁性基板を用いたLEDチップ11,21は、前記p型の窒化ガリウム系半導体層側から前記n型の窒化ガリウム系化合物半導体層の一部を露出させることにより、同一平面側でアノード電極およびカソード電極をそれぞれ形成することができる。また、導電性基板を用いたLEDチップ11,21は、LEDチップ11,21の厚み方向の両面側にアノード電極やカソード電極を形成すればよい。   Note that the LED chips 11 and 21 using the insulating substrate have anodes on the same plane side by exposing a part of the n-type gallium nitride compound semiconductor layer from the p-type gallium nitride semiconductor layer side. An electrode and a cathode electrode can be formed respectively. Moreover, what is necessary is just to form the anode electrode and the cathode electrode in the LED chip 11 and 21 using the electroconductive board | substrate on the both surfaces side of the thickness direction of the LED chip 11 and 21. FIG.

LEDチップ11,21に設けられる前記アノード電極や前記カソード電極は、Ni膜とAu膜との積層膜、Al膜、ITO膜など窒化ガリウム系化合物半導体層などと良好なオーミック特性が得られる材料であれば、限定されるものではない。   The anode electrode and the cathode electrode provided on the LED chips 11 and 21 are materials that can obtain good ohmic characteristics with a laminated film of a Ni film and an Au film, a gallium nitride compound semiconductor layer such as an Al film and an ITO film, and the like. If there is, it is not limited.

同一平面側に前記アノード電極および前記カソード電極が設けられたLEDチップ11,21は、実装基板4上の一対の導電パターンにAuバンプ3などの金属バンプを用いてフリップチップ実装させることができる。また、LEDチップ11,21として、厚み方向の両面側に前記アノード電極や前記カソード電極が形成されたLEDチップ11,21を用いる場合は、LEDチップ11,21が実装される実装基板4上に形成された一対の導体パターンのうちの一方の導体パターンと、LEDチップ11,21の前記アノード電極あるいは前記カソード電極とを導電性部材(たとえば、AuSnやAgペーストなど)を介してダイボンディングなどして電気的に接続させる。また、LEDチップ11,21の光取り出し面側の他方の前記カソード電極あるいは前記アノード電極は、ワイヤ(たとえば、金線やアルミニウム線など)を介して他方の導体パターンと電気的に接続させればよい。   The LED chips 11 and 21 provided with the anode electrode and the cathode electrode on the same plane side can be flip-chip mounted on a pair of conductive patterns on the mounting substrate 4 using metal bumps such as Au bumps 3. When the LED chips 11 and 21 having the anode electrode and the cathode electrode formed on both sides in the thickness direction are used as the LED chips 11 and 21, on the mounting substrate 4 on which the LED chips 11 and 21 are mounted. One conductor pattern of the formed pair of conductor patterns and the anode electrode or the cathode electrode of the LED chips 11 and 21 are die-bonded via a conductive member (for example, AuSn or Ag paste). Connect them electrically. Further, the other cathode electrode or anode electrode on the light extraction surface side of the LED chips 11 and 21 may be electrically connected to the other conductor pattern via a wire (for example, a gold wire or an aluminum wire). Good.

なお、本実施形態の発光装置10では、実装基板4上の上記一表面4aに一個の第一のLEDチップ11、実装基板4の凹部4b内に一個の第二のLEDチップ21を実装しているが、各LEDチップ11,21の数は、一個だけに限らずそれぞれ複数個用いることができる。この場合、各LEDチップ11,21は、適宜に直列、並列や直並列に電気的に接続させればよい。また、第一および第二のLEDチップ11,21は、同種のものを用いてもよいし、異なる発光波長を発光する複数個のLEDチップ11,21を用いてもよい。   In the light emitting device 10 of the present embodiment, one first LED chip 11 is mounted on the one surface 4 a on the mounting substrate 4, and one second LED chip 21 is mounted in the recess 4 b of the mounting substrate 4. However, the number of LED chips 11 and 21 is not limited to one, and a plurality of LED chips can be used. In this case, the LED chips 11 and 21 may be electrically connected in series, parallel, or series-parallel as appropriate. The first and second LED chips 11 and 21 may be of the same type, or may be a plurality of LED chips 11 and 21 that emit different emission wavelengths.

次に、本実施形態の発光装置10に用いられる実装基板4は、発光素子たる第一および第二のLEDチップ11,21がそれぞれ実装可能なものである。実装基板4は、第一のLEDチップ11が実装される上記一表面4aから窪み第二のLEDチップ21を実装させる凹部4bを有している。また、実装基板4は、実装基板4上の前記一対の導体パターン(たとえば、最表面がAuでメッキされた導体パターン)を利用して、LEDチップ11,21の通電経路を構成してもよい。このような実装基板4は、アルミナや窒化アルミニウムなどを用いたセラミック基板、Fe、CuやAlなどの金属材料を用いた金属ベース基板やガラスエポキシ樹脂基板などを用いることができる。実装基板4としてアルミナセラミック基板を用いた場合は、導体パターンを形成しやすく、ガラスエポキシ樹脂基板などと比較して熱伝導率も高く、LEDチップ11,21の点灯で生じた熱を外部に効率よく放熱させ発光装置10の放熱性を高めることができる。実装基板4として前記金属基板を用いる場合は、各LEDチップ11,21が電気的に短絡しないように金属基板上に絶縁層を適宜に形成すればよい。   Next, the mounting substrate 4 used in the light emitting device 10 of the present embodiment can mount the first and second LED chips 11 and 21 as light emitting elements. The mounting substrate 4 has a recess 4b that is recessed from the one surface 4a on which the first LED chip 11 is mounted and on which the second LED chip 21 is mounted. Further, the mounting substrate 4 may constitute a current-carrying path for the LED chips 11 and 21 by using the pair of conductor patterns (for example, a conductor pattern plated with Au on the outermost surface) on the mounting substrate 4. . As the mounting substrate 4, a ceramic substrate using alumina, aluminum nitride, or the like, a metal base substrate using a metal material such as Fe, Cu, or Al, a glass epoxy resin substrate, or the like can be used. When an alumina ceramic substrate is used as the mounting substrate 4, it is easy to form a conductor pattern, has higher thermal conductivity than a glass epoxy resin substrate, etc., and efficiently generates heat generated by lighting the LED chips 11 and 21. The heat radiation of the light emitting device 10 can be enhanced by sufficiently dissipating heat. When the metal substrate is used as the mounting substrate 4, an insulating layer may be appropriately formed on the metal substrate so that the LED chips 11 and 21 are not electrically short-circuited.

なお、本実施形態の発光装置10は、矩形平板状の実装基板4を用いているが、実装基板4の上記一表面4aの周部に第一のLEDチップ11や第一の波長変換層12からの光を反射させるリフレクターを備えた実装基板4を用いてもよく、カップを備えたリードフレームを用いて形成させてもよい。実装基板4として、カップを備えたリードフレームを用いた場合、発光装置10は、前記カップの底面に第一のLEDチップ11を実装させるとともに、前記カップの底面から窪んだ凹部4bの内底面4bbに第二のLEDチップ21を実装させればよい。また、発光装置10は、第一および第二のLEDチップ11,21、第一および第二の波長変換層12,22を保護する透光性部材(たとえば、透光性のシリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリカーボネート樹脂やガラスなど)を第一および第二の波長変換層12,22上に別途設けても良い。   In addition, although the light-emitting device 10 of this embodiment uses the rectangular flat plate-shaped mounting substrate 4, the first LED chip 11 and the first wavelength conversion layer 12 are disposed on the periphery of the one surface 4 a of the mounting substrate 4. The mounting substrate 4 provided with a reflector that reflects the light from the light may be used, or may be formed using a lead frame provided with a cup. When a lead frame having a cup is used as the mounting substrate 4, the light emitting device 10 mounts the first LED chip 11 on the bottom surface of the cup and the inner bottom surface 4bb of the recess 4b recessed from the bottom surface of the cup. The second LED chip 21 may be mounted on the board. In addition, the light emitting device 10 includes a translucent member (for example, translucent silicone resin, epoxy resin) that protects the first and second LED chips 11, 21 and the first and second wavelength conversion layers 12, 22. Acrylic resin, polycarbonate resin, glass, or the like) may be separately provided on the first and second wavelength conversion layers 12 and 22.

本実施形態の実装基板4は、実装基板4の上記一表面4a上の短波長発光部1と、凹部4bの内底面4bb上の長波長発光部2とを、第一の波長変換層12から光を外部に放射する第二の波長変換層側の上記端面12aの任意の一点と、第二の波長変換層22から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が実装基板4の上記一表面4aと交差するように構成している。短波長発光部1と長波長発光部2との間隔は、第二の波長変換層22における第一の波長変換層12からの光の二次吸収の程度、第一の波長変換層12からの光量、発光装置10から放射される混色光の色調差などに応じて適宜に設定すればよい。   The mounting substrate 4 of the present embodiment includes a short wavelength light emitting portion 1 on the one surface 4 a of the mounting substrate 4 and a long wavelength light emitting portion 2 on the inner bottom surface 4 bb of the recess 4 b from the first wavelength conversion layer 12. At least one line segment connecting any one point on the end face 12a on the second wavelength conversion layer side that emits light to the outside and any one point on the surface that emits light from the second wavelength conversion layer 22 to the outside. The part is configured to intersect with the one surface 4 a of the mounting substrate 4. The distance between the short wavelength light emitting unit 1 and the long wavelength light emitting unit 2 is determined by the degree of secondary absorption of light from the first wavelength conversion layer 12 in the second wavelength conversion layer 22 and from the first wavelength conversion layer 12. What is necessary is just to set suitably according to the light quantity, the color tone difference of the mixed color light radiated | emitted from the light-emitting device 10, etc. FIG.

なお、ここでの端面12aとは、第二の波長変換層22から赤色の蛍光が放射され第二の波長変換層22の表面から第二の波長変換層22以外に何も遮るものがない状態で第一の波長変換層12に投影される第一の波長変換層12の緑色の蛍光が外部に放射される表面を意味し、平面であっても曲面であってもよい。また、第二の波長変換層22から光を外部に放射する表面とは、第二の波長変換層22が放射する蛍光が最終的に発光装置10の外部に取り出すことができる第二の波長変換層22の表面であればよく、第二のLEDチップ21が第二の波長変換層22から放射される光に対して透光性を有すれば、第二のLEDチップ21と接する表面を含んでもよい。   Here, the end face 12a is a state in which red fluorescence is emitted from the second wavelength conversion layer 22 and nothing is obstructed from the surface of the second wavelength conversion layer 22 other than the second wavelength conversion layer 22. The surface of the first wavelength conversion layer 12 projected on the first wavelength conversion layer 12 from which the green fluorescence is emitted to the outside may be a flat surface or a curved surface. Moreover, the surface which radiates | emits light from the 2nd wavelength conversion layer 22 outside is the 2nd wavelength conversion from which the fluorescence which the 2nd wavelength conversion layer 22 radiates | emits can finally be taken out of the light-emitting device 10. It may be the surface of the layer 22, and if the second LED chip 21 has translucency with respect to the light emitted from the second wavelength conversion layer 22, it includes the surface in contact with the second LED chip 21. But you can.

また、実装基板4の上記一表面4aから窪んだ凹部4bの形状は、円柱状、角柱状、逆円錐台状や逆角錘台状など所望に応じて適宜に設定することができる。特に、凹部4bは、凹部4bの形状を逆円錐台状や逆角錘台状などとして、図3の発光装置10に示す如く、長波長発光部2が配置される凹部4bの内底面4bbから凹部4bの外部に向かって広がるテーパー部を有することにより、発光装置10の発光効率の低下を抑制することができる。すなわち、長波長発光部2の第二のLEDチップ21や第二の波長変換層22から放射された光は、凹部4bの上記内側面4baで反射する。ここで、図4(a)の説明図に示す凹部4bの内側面4baが凹部4bの内底面4bbに対して垂直な場合、凹部4bの上記内側面4baで反射した光(図中の矢印を参照)が凹部4bの外に取り出されずに第二の波長変換層22側に戻り、そこで再び反射・吸収などされる。   Moreover, the shape of the recessed part 4b recessed from the said one surface 4a of the mounting board | substrate 4 can be suitably set as desired, such as columnar shape, prismatic shape, inverted truncated cone shape, inverted truncated pyramid shape. In particular, the concave portion 4b is formed from the inner bottom surface 4bb of the concave portion 4b in which the long wavelength light emitting portion 2 is disposed as shown in the light emitting device 10 of FIG. By having the taper part which spreads toward the exterior of the recessed part 4b, the fall of the light emission efficiency of the light-emitting device 10 can be suppressed. That is, the light emitted from the second LED chip 21 and the second wavelength conversion layer 22 of the long wavelength light emitting unit 2 is reflected by the inner side surface 4ba of the recess 4b. Here, when the inner side surface 4ba of the concave portion 4b shown in the explanatory diagram of FIG. 4A is perpendicular to the inner bottom surface 4bb of the concave portion 4b, the light reflected by the inner side surface 4ba of the concave portion 4b (the arrow in FIG. Is not taken out of the recess 4b, but returns to the second wavelength conversion layer 22 side, where it is reflected and absorbed again.

たとえば、実装基板4の凹部4b内での光の反射損は、実装基板4の凹部4bにチタン酸バリウムなどの白色顔料が含有された樹脂を塗布した白色レジスト膜が形成された場合であっても、1回の反射で約30%も光の反射損が生ずる。そのため、図4(a)の発光装置10は、凹部4b内での反射・吸収の繰り返しによる光の損失が積算されて発光効率が大きく低下することになる。これに対して、図4(b)の説明図に示す凹部4bでは、凹部4bにテーパー部を有することで、凹部4bの外部に光(図中の矢印を参照)を取り出し易くなるため、光の反射損に伴う発光効率の低下を抑制することが可能となる。   For example, the reflection loss of light in the recess 4b of the mounting substrate 4 is a case where a white resist film in which a resin containing a white pigment such as barium titanate is applied to the recess 4b of the mounting substrate 4 is formed. However, a reflection loss of about 30% occurs in one reflection. Therefore, in the light emitting device 10 of FIG. 4A, the light loss due to the repeated reflection and absorption in the recess 4b is integrated, and the light emission efficiency is greatly reduced. On the other hand, in the concave portion 4b shown in the explanatory diagram of FIG. 4B, since the concave portion 4b has a tapered portion, light (see the arrow in the drawing) can be easily taken out of the concave portion 4b. It is possible to suppress a decrease in luminous efficiency due to the reflection loss.

また、本実施形態の発光装置10は、図5に示すように実装基板4の上記一表面4aから窪んだ凹部4bは、少なくとも凹部4bの外部に向かう内側面4baに、光を反射する反射層5を設けてもよい。これにより、図5に示す発光装置10は、凹部4bでの第二のLEDチップ21や第二の波長変換層22が放射した光の吸収を抑制し、発光効率の低下をより抑制することが可能となる。なお、反射層5が導電性を有する場合、発光装置10は、第二のLEDチップ21の前記アノード電極と前記カソード電極とが短絡しないように、反射層5と前記一対の導体パターンとの間に絶縁層(図示していない。)を適宜に形成させればよい。また、凹部4bの前記テーパー部に反射層5を設けても良いことはいうまでもない。   Further, in the light emitting device 10 of the present embodiment, as shown in FIG. 5, the recess 4 b that is recessed from the one surface 4 a of the mounting substrate 4 is a reflective layer that reflects light at least on the inner surface 4 ba that faces the outside of the recess 4 b. 5 may be provided. Thereby, the light-emitting device 10 shown in FIG. 5 suppresses the absorption of light emitted by the second LED chip 21 and the second wavelength conversion layer 22 in the recess 4b, and further suppresses the decrease in the light emission efficiency. It becomes possible. When the reflective layer 5 is conductive, the light emitting device 10 is arranged between the reflective layer 5 and the pair of conductor patterns so that the anode electrode and the cathode electrode of the second LED chip 21 are not short-circuited. An insulating layer (not shown) may be formed as appropriate. Needless to say, the reflective layer 5 may be provided on the tapered portion of the recess 4b.

たとえば、凹部4bの上記内側面4baに反射層5として銀メッキを用いた場合、銀メッキは、第二のLEDチップ21から放射する青色光および第二の波長変換層22が放射する赤色光に対して、1回の反射で約2%の反射損を生ずるだけとなる。   For example, when silver plating is used as the reflection layer 5 on the inner side surface 4ba of the recess 4b, the silver plating is applied to blue light emitted from the second LED chip 21 and red light emitted from the second wavelength conversion layer 22. On the other hand, only a reflection loss of about 2% is caused by one reflection.

さらに、発光装置10は、実装基板4の上記一表面4aに、反射膜(図示せず)を設けても良く、このような反射膜は、第一のLEDチップ11から放射される光と、第一の波長変換層12の蛍光体から放射される光を効率よく反射可能なものであって、具体的には、Al、Al合金、Ag、Ag合金などの金属材料やBaSOなどの白色顔料となる無機材料が含有されたガラスを用いて構成すればよい。本実施形態の発光装置10は、前記反射膜を設けることにより第一の波長変換層12および第一のLEDチップ11から放射される光の発光効率が高まると共に、上述の図2(b)で説明したように前記反射膜で反射された光による第二の波長変換層22での二次吸収が抑制可能となる。 Furthermore, the light emitting device 10 may be provided with a reflective film (not shown) on the one surface 4a of the mounting substrate 4, and such a reflective film includes light emitted from the first LED chip 11, The light emitted from the phosphor of the first wavelength conversion layer 12 can be efficiently reflected, and specifically, a metal material such as Al, Al alloy, Ag, or Ag alloy, or white such as BaSO 4 What is necessary is just to comprise using the glass containing the inorganic material used as a pigment. In the light emitting device 10 of the present embodiment, by providing the reflective film, the light emission efficiency of the light emitted from the first wavelength conversion layer 12 and the first LED chip 11 is increased, and in FIG. 2B described above. As explained, secondary absorption in the second wavelength conversion layer 22 by the light reflected by the reflective film can be suppressed.

なお、実装基板4には、実装基板4の上記一表面4aから側面および裏面にも導体パターンを延設させて発光装置10の外部電極として構成してもよい。このような発光装置10の外部電極は、リフロー工程などによって配線基板(図示せず)と電気的に接続させることができる。   The mounting substrate 4 may be configured as an external electrode of the light emitting device 10 by extending a conductor pattern from the one surface 4 a of the mounting substrate 4 to the side surface and the back surface. Such external electrodes of the light emitting device 10 can be electrically connected to a wiring board (not shown) by a reflow process or the like.

本実施形態に用いられる第一および第二の波長変換層12,22は、発光素子たる第一および第二のLEDチップ11,21がそれぞれ放射する光の少なくとも一部を吸収して波長変換し、第一および第二のLEDチップ11,21からの光よりも長波長側にピークをもつ蛍光を発するものである。   The first and second wavelength conversion layers 12 and 22 used in the present embodiment absorb at least a part of light emitted from the first and second LED chips 11 and 21 that are light emitting elements, respectively, and perform wavelength conversion. The fluorescent light having a peak on the longer wavelength side than the light from the first and second LED chips 11 and 21 is emitted.

第一の波長変換層12は、たとえば、第一のLEDチップ11から放射された光の一部を吸収して、より長波長側に発光ピークをもつ蛍光を放射する蛍光体をアクリル樹脂、エポキシ樹脂、シリコーン樹脂やガラスなどの透光性材料中に含有して形成すればよい。第二の波長変換層22は、第二のLEDチップ21から放射された光の一部を吸収してより長波長側に発光ピークをもつ蛍光を放射する蛍光体を含有するものであり、第一の波長変換層12の蛍光よりも長波長の光を放射する。第二の波長変換層22も、第一の波長変換層12と同様に、たとえば、蛍光体をアクリル樹脂、エポキシ樹脂、シリコーン樹脂やガラスなどの透光性材料中に含有することができる。発光装置10が放射する光を、演色性の高い白色光とするには、青色光を放射する第一および第二のLEDチップ11,21と第一および第二の波長変換層12,22との組み合わせにおいて、第一の波長変換層12用の蛍光体として緑色蛍光体、第二の波長変換層22用の蛍光体として赤色蛍光体を用いることができる。   The first wavelength conversion layer 12 absorbs a part of the light emitted from the first LED chip 11 and emits a fluorescent material having a light emission peak at a longer wavelength side, such as an acrylic resin or an epoxy. What is necessary is just to include and form in translucent materials, such as resin, a silicone resin, and glass. The second wavelength conversion layer 22 contains a phosphor that absorbs part of the light emitted from the second LED chip 21 and emits fluorescence having an emission peak on the longer wavelength side. It emits light having a longer wavelength than the fluorescence of one wavelength conversion layer 12. Similarly to the first wavelength conversion layer 12, the second wavelength conversion layer 22 can also contain, for example, a phosphor in a translucent material such as an acrylic resin, an epoxy resin, a silicone resin, or glass. In order to change the light emitted from the light emitting device 10 into white light having high color rendering properties, the first and second LED chips 11 and 21 that emit blue light and the first and second wavelength conversion layers 12 and 22 In this combination, a green phosphor can be used as the phosphor for the first wavelength conversion layer 12, and a red phosphor can be used as the phosphor for the second wavelength conversion layer 22.

また、第一および第二の波長変換層12,22の厚みは、それぞれ発光装置10から放射する光の目標とする色温度や第一および第二のLEDチップ11,21から放射される青色光の強さ、蛍光体の含有量などによって異なるが、たとえば、約100μmの厚みに形成することができる。   The thicknesses of the first and second wavelength conversion layers 12 and 22 are the target color temperature of the light emitted from the light emitting device 10 and the blue light emitted from the first and second LED chips 11 and 21, respectively. For example, it can be formed to a thickness of about 100 μm, depending on the strength of the phosphor and the phosphor content.

第一および第二の波長変換層12,22に用いられる蛍光体としては、たとえば、Ceで付活されたYAl12やCeで付活されたTbAl12などのアルミネート系の蛍光体のほか、Euで付活されたBaSiOやEuで付活された(SrBa)SiOなどの珪酸塩系の蛍光体、Euで付活されたCaAlSiN、Euで付活されたSrSi、Euで付活されたCaSi、Euで付活されたSrSi10やEuで付活されたCaSi10などの窒化物系の蛍光体を採用することもできる。また、第一および第二の波長変換層12,22に用いられる前記蛍光体は、第一の波長変換層12用の緑色蛍光体と第二の波長変換層22用の赤色蛍光体に限らず、第一の波長変換層12用の黄色蛍光体と第二の波長変換層22用の赤色蛍光体などとして用いても、白色光を得ることができる。 Examples of the phosphor used for the first and second wavelength conversion layers 12 and 22 include aluminum such as Y 3 Al 5 O 12 activated by Ce and Tb 3 Al 5 O 12 activated by Ce. In addition to nate-based phosphors, silicate-based phosphors such as Eu-activated Ba 2 SiO 4 and Eu-activated (SrBa) 2 SiO 4 , Eu-activated CaAlSiN 3 , Eu nitrides such as CaSi 7 N 10 which is activated by in activated with Sr 2 Si 5 N 8, Ca were activated by Eu 2 Si 5 N 8, Eu in-activated the SrSi 7 N 10 and Eu It is also possible to employ a phosphor of the system. The phosphors used in the first and second wavelength conversion layers 12 and 22 are not limited to the green phosphor for the first wavelength conversion layer 12 and the red phosphor for the second wavelength conversion layer 22. Even when used as a yellow phosphor for the first wavelength conversion layer 12 and a red phosphor for the second wavelength conversion layer 22, white light can be obtained.

なお、本実施形態の発光装置10では、第一のLEDチップ11や第一の波長変換層12に何も設けていないが、第一のLEDチップ11や第一の波長変換層12を保護する目的で透光性部材からなる封止部材を設けてもよい。   In addition, in the light-emitting device 10 of this embodiment, although nothing is provided in the 1st LED chip 11 and the 1st wavelength conversion layer 12, the 1st LED chip 11 and the 1st wavelength conversion layer 12 are protected. For the purpose, a sealing member made of a translucent member may be provided.

次に、本実施形態の発光装置10の製造工程について説明する。   Next, the manufacturing process of the light emitting device 10 of this embodiment will be described.

実装基板4の上記一表面4aに第一のLEDチップ11を複数個のAuバンプ3を用いてフリップチップ実装する。同様に、実装基板4の上記一表面4aから窪んだ凹部4bの内底面4bbに第二のLEDチップ21を複数個のAuバンプ3を用いてフリップチップ実装する。第一および第二のLEDチップ11,21は、フリップチップ実装に先立って、それぞれ、第一のLEDチップ11上に第一の波長変換層12を形成し、第二のLEDチップ21上に第二の波長変換層22を形成している。このような第一および第二の波長変換層12,22の形成方法としては透光性部材たるシリコーン樹脂をバインダーとして蛍光体が充填されたフィルム状のシート(大きさ:約1mm角、厚み約100μm)を、LEDチップ1のサファイア基板上に透光性の接着剤により接着させればよい。   The first LED chip 11 is flip-chip mounted on the one surface 4 a of the mounting substrate 4 using a plurality of Au bumps 3. Similarly, the second LED chip 21 is flip-chip mounted using a plurality of Au bumps 3 on the inner bottom surface 4bb of the recess 4b recessed from the one surface 4a of the mounting substrate 4. Prior to flip chip mounting, the first and second LED chips 11, 21 are each formed with a first wavelength conversion layer 12 on the first LED chip 11, and on the second LED chip 21. A second wavelength conversion layer 22 is formed. As a method for forming the first and second wavelength conversion layers 12 and 22, a film-like sheet (size: about 1 mm square, thickness of about 1 mm square) filled with a phosphor using a silicone resin as a translucent member as a binder. 100 μm) may be adhered to the sapphire substrate of the LED chip 1 with a translucent adhesive.

これにより、実装基板4の上記一表面4aに実装した第一のLEDチップ11は、緑色蛍光体が含有された第一の波長変換層12を、第一のLEDチップ11上に積載される。同様に、凹部4bの内底面4bbに実装した第二のLEDチップ21は、赤色蛍光体が含有された第二の波長変換層22を、第二のLEDチップ21上に積載される。   Thereby, the first LED chip 11 mounted on the one surface 4 a of the mounting substrate 4 is loaded with the first wavelength conversion layer 12 containing the green phosphor on the first LED chip 11. Similarly, in the second LED chip 21 mounted on the inner bottom surface 4bb of the recess 4b, the second wavelength conversion layer 22 containing a red phosphor is stacked on the second LED chip 21.

また、実装基板4の上記一表面4aから窪んだ凹部4bの深さは、長波長発光部2の厚みよりも大きくしている。発光装置10は、凹部4b内に第二の波長変換層22および第二のLEDチップ21を収納することで、短波長発光部1と、長波長発光部2とは、第一の波長変換層12から光を外部に放射する第二の波長変換層22側の上記端面12aの任意の一点と、第二の波長変換層22から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が実装基板4の上記一表面4aと交差するように配置される。   In addition, the depth of the recess 4 b that is recessed from the one surface 4 a of the mounting substrate 4 is greater than the thickness of the long wavelength light emitting unit 2. The light emitting device 10 houses the second wavelength conversion layer 22 and the second LED chip 21 in the recess 4b, so that the short wavelength light emitting unit 1 and the long wavelength light emitting unit 2 are the first wavelength conversion layer. A line segment connecting any one point of the end face 12a on the second wavelength conversion layer 22 side that emits light from the outside to the outside and an arbitrary point on the surface that emits light from the second wavelength conversion layer 22 to the outside. Are disposed so as to intersect with the one surface 4 a of the mounting substrate 4.

このような、実装基板4の凹部4bは、実装基板4の形成と同時に作成してもよいし、平板状の実装基板4を形成後に、掘削などにより形成させてもよい。   Such a recess 4b of the mounting substrate 4 may be formed simultaneously with the formation of the mounting substrate 4, or may be formed by excavation or the like after the flat mounting substrate 4 is formed.

なお、実装基板4上に第一および第二のLEDチップ11,21を実装した後、スクリーン印刷法を利用し、第一および第二のLEDチップ11,21上に蛍光体を含有する透光性部材を塗布させて第一および第二の波長変換層12,22をそれぞれ形成させることもできる。また、実装基板4上に第一および第二のLEDチップ11,21を実装した後、インクジェット印刷法を利用し、第一および第二のLEDチップ11,21上に蛍光体を含有する透光性部材を吐出させて第一および第二の波長変換層12,22をそれぞれ形成させることもできる。   In addition, after mounting the 1st and 2nd LED chip 11 and 21 on the mounting substrate 4, the light transmission which contains a fluorescent substance on the 1st and 2nd LED chip 11 and 21 using a screen printing method The first and second wavelength conversion layers 12 and 22 can also be formed by applying a functional member, respectively. Further, after the first and second LED chips 11 and 21 are mounted on the mounting substrate 4, a light-transmitting light containing a phosphor on the first and second LED chips 11 and 21 using the ink jet printing method. It is also possible to form the first and second wavelength conversion layers 12 and 22 by discharging the property member.

(実施形態2)
本実施形態は、図1で示した実施形態1の発光装置10における短波長発光部1と、長波長発光部2とを実装する実装基板4に透光性部材で封止させている。特に、本実施形態の発光装置10は、図6の発光装置10で示すように凹部4b内に収納された長波長発光部2を被覆する第二の透光性部材7と、短波長発光部1を含む実装基板4の一表面4aの全体を被覆する第一の透光性部材6とに分け、第二の透光性部材7の屈折率を第一の透光性部材6の屈折率よりも低い材料を用いている。なお、実施形態1と同様の構成要素には、同一の符号を付して説明を適宜省略する。
(Embodiment 2)
In this embodiment, the mounting substrate 4 on which the short wavelength light emitting unit 1 and the long wavelength light emitting unit 2 in the light emitting device 10 of the first embodiment shown in FIG. In particular, the light-emitting device 10 of the present embodiment includes a second light-transmissive member 7 that covers the long-wavelength light-emitting portion 2 housed in the recess 4b as shown by the light-emitting device 10 in FIG. 1 is divided into the first translucent member 6 that covers the entire one surface 4 a of the mounting substrate 4 including 1, and the refractive index of the second translucent member 7 is changed to the refractive index of the first translucent member 6. Lower material is used. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

以下、本実施形態の発光装置10を図6から図9に示す概略断面図で説明する。   Hereinafter, the light-emitting device 10 of this embodiment will be described with reference to schematic cross-sectional views shown in FIGS.

本実施形態の図6に示す発光装置10は、青色光を発光する第一のLEDチップ11が実装基板4の上記一表面4aの導体パターン(図示せず)に複数個のAuバンプ3を用いてフリップチップ実装され、青色光を発光する第二のLEDチップ21が実装基板4の凹部4bの内底面4bbの導体パターン(図示せず)に複数個のAuバンプ3を用いてフリップチップ実装されている。第一のLEDチップ11上には、第一のLEDチップ11からの青色光の一部を吸収し緑色の蛍光を発する緑色蛍光体が含有された透光性樹脂層からなる第一の波長変換層12を形成させている。同様に、実装基板4の凹部4b内の第二のLEDチップ11上には、第二のLEDチップ21からの青色光の一部を吸収し赤色の蛍光を発する赤色蛍光体が含有された透光性樹脂層からなる第二の波長変換層22を形成させている。これにより、この発光装置10では、第一のLEDチップ11および第一のLEDチップ11上の緑色の蛍光を発する第一の波長変換層12を短波長発光部1とし、第二のLEDチップ21および第二のLEDチップ21上の赤色の蛍光を発する第二の波長変換層22を長波長発光部2として構成させている。   In the light emitting device 10 shown in FIG. 6 of the present embodiment, the first LED chip 11 that emits blue light uses a plurality of Au bumps 3 on the conductor pattern (not shown) of the one surface 4a of the mounting substrate 4. The second LED chip 21 that emits blue light is flip-chip mounted on the conductor pattern (not shown) of the inner bottom surface 4bb of the recess 4b of the mounting substrate 4 by using a plurality of Au bumps 3. ing. On the first LED chip 11, a first wavelength conversion comprising a translucent resin layer containing a green phosphor that absorbs part of the blue light from the first LED chip 11 and emits green fluorescence. Layer 12 is formed. Similarly, the second LED chip 11 in the recess 4b of the mounting substrate 4 contains a red phosphor that absorbs a part of the blue light from the second LED chip 21 and emits red fluorescence. A second wavelength conversion layer 22 made of a light resin layer is formed. Thereby, in this light-emitting device 10, the 1st LED chip 11 and the 1st wavelength conversion layer 12 which emits the green fluorescence on the 1st LED chip 11 are used as the short wavelength light emission part 1, and the 2nd LED chip 21 And the 2nd wavelength conversion layer 22 which emits the red fluorescence on the 2nd LED chip 21 is comprised as the long wavelength light emission part 2. FIG.

また、発光装置10は、短波長発光部1と、長波長発光部2とを、第一の波長変換層12から光を外部に放射する第二の波長変換層22側の端面12aの任意の一点と、第二の波長変換層22から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が実装基板4の上記一表面4aと交差するように配置させている。   In addition, the light emitting device 10 allows the short wavelength light emitting unit 1 and the long wavelength light emitting unit 2 to emit any light from the first wavelength conversion layer 12 to the outside on the end surface 12a on the second wavelength conversion layer 22 side. At least a part of a line segment connecting one point and any one point on the surface that emits light from the second wavelength conversion layer 22 to the outside is arranged so as to intersect with the one surface 4 a of the mounting substrate 4.

本実施形態の発光装置10では、特に、第一のLEDチップ11および第一の波長変換層12が第一の透光性部材6で被覆され、第二のLEDチップ21および第二の波長変換層22が第二の透光性部材7で被覆されている。また、発光装置10は、第一の透光性部材6の屈折率が、第二の透光性部材7の屈折率よりも大きく、且つ第二の透光性部材7に接している。   In the light emitting device 10 of the present embodiment, in particular, the first LED chip 11 and the first wavelength conversion layer 12 are covered with the first translucent member 6, and the second LED chip 21 and the second wavelength conversion are covered. The layer 22 is covered with the second translucent member 7. In the light emitting device 10, the refractive index of the first light transmissive member 6 is larger than the refractive index of the second light transmissive member 7 and is in contact with the second light transmissive member 7.

これにより、発光装置10は、図7で示すごとく実装基板4の一表面4aに実装された第一のLEDチップ11上の第一の波長変換層12から放射された蛍光(図中の矢印を参照)が凹部4b内の第二の透光性部材7に入射されることを抑制することができ、第二の波長変換層22での二次吸収に伴う発光効率の低下を抑制させることができる。   As a result, the light emitting device 10 fluoresces from the first wavelength conversion layer 12 on the first LED chip 11 mounted on the one surface 4a of the mounting substrate 4 as shown in FIG. Can be suppressed from being incident on the second light-transmissive member 7 in the recess 4b, and a decrease in luminous efficiency associated with secondary absorption in the second wavelength conversion layer 22 can be suppressed. it can.

たとえば、発光装置10は、第一のLEDチップ11上に形成された第一の波長変換層12から放射された緑色光のうち、緑色光の一部が実装基板4の凹部4b側へ向かう。しかしながら、発光装置10は、第二の波長変換層22を第一の透光性部材6よりも相対的に屈折率の小さい第二の透光性部材7で被覆していることにより、第一の透光性部材6と第二の透光性部材7との界面で屈折率差に伴う光の反射する割合が増加する。これにより、発光装置10は、緑色光が第二の波長変換層22へ入射することを抑制され、第二の波長変換層22による二次吸収を抑制し、発光効率の低下をより抑制することが可能となる。   For example, in the light emitting device 10, among the green light emitted from the first wavelength conversion layer 12 formed on the first LED chip 11, a part of the green light is directed to the concave portion 4 b side of the mounting substrate 4. However, the light emitting device 10 covers the second wavelength conversion layer 22 with the second light transmissive member 7 having a relatively lower refractive index than the first light transmissive member 6. The ratio of light reflection due to the difference in refractive index at the interface between the translucent member 6 and the second translucent member 7 increases. Thereby, the light-emitting device 10 is suppressed from entering green light into the second wavelength conversion layer 22, suppresses secondary absorption by the second wavelength conversion layer 22, and further suppresses a decrease in light emission efficiency. Is possible.

このような第一および第二の透光性部材6,7は、第一および第二のLEDチップ11,21および第一および第二の波長変換層12,22をそれぞれ被覆し、外部からの力に対して保護などするために好適に用いられるものであって、可視域において透光性の高い透光性材料を好適に用いることができる。このような第一および第二の透光性部材6,7の具体的材料としては、シリコーン樹脂、アクリル樹脂、エポキシ樹脂やガラスなどが挙げられ、使用する部位に応じて適した屈折率を有する材料を適宜に採用すればよい。エポキシ樹脂は、たとえば、屈折率が1.55から1.61とすることができ、シリコーン樹脂は、屈折率が1.35から1.53とすることができる。   The first and second translucent members 6 and 7 cover the first and second LED chips 11 and 21 and the first and second wavelength conversion layers 12 and 22, respectively. A light-transmitting material that is suitably used for protecting against force and having high light-transmitting property in the visible range can be preferably used. Examples of specific materials for the first and second translucent members 6 and 7 include silicone resin, acrylic resin, epoxy resin, and glass, and have a refractive index suitable for the portion to be used. What is necessary is just to employ | adopt material suitably. For example, the epoxy resin can have a refractive index of 1.55 to 1.61, and the silicone resin can have a refractive index of 1.35 to 1.53.

第一および第二の透光性部材6,7としてシリコーン樹脂を用いた場合は、第一の透光性部材6としてフェニル系シリコーン樹脂を用い、第二の透光性部材7としてフッ素系のシリコーン樹脂を用いることで、第一の透光性部材6の屈折率を第二の透光性部材7の屈折率よりも高くすることができる。   When a silicone resin is used as the first and second translucent members 6, 7, a phenyl silicone resin is used as the first translucent member 6, and a fluorine-based resin is used as the second translucent member 7. By using the silicone resin, the refractive index of the first translucent member 6 can be made higher than the refractive index of the second translucent member 7.

第一および第二の透光性部材6,7は、たとえば、実装基板4上に短波長発光部1および長波長発光部2をそれぞれ形成後、最初に第二の透光性部材7となるフッ素系のシリコーン樹脂材料を凹部4bの内底面4bbに実装された長波長発光部2を包囲するように充填して加熱硬化する。次に、第一の透光性部材6となるフェニル系シリコーン樹脂材料を、第二の透光性部材7が形成された実装基板4上に短波長発光部1および第二の透光性部材7を被覆するように塗布して加熱硬化させればよい。   The first and second translucent members 6 and 7 are, for example, first formed into the second translucent member 7 after the short wavelength light emitting unit 1 and the long wavelength light emitting unit 2 are formed on the mounting substrate 4 respectively. A fluorine-based silicone resin material is filled so as to surround the long-wavelength light emitting portion 2 mounted on the inner bottom surface 4bb of the recess 4b, and is cured by heating. Next, the short-wavelength light emitting unit 1 and the second translucent member are formed on the mounting substrate 4 on which the second translucent member 7 is formed by using a phenyl silicone resin material that becomes the first translucent member 6. 7 may be applied and heat-cured.

また、図8に示す発光装置10のごとく、第一の透光性部材6と第二の透光性部材7とが接する界面には、第二の透光性部材7よりも屈折率が大きく、第一の透光性部材6よりも屈折率の小さい第三の透光性部材8を設けてもよい。   Further, as in the light-emitting device 10 shown in FIG. 8, the refractive index is larger than that of the second light-transmissive member 7 at the interface between the first light-transmissive member 6 and the second light-transmissive member 7. A third light transmissive member 8 having a refractive index smaller than that of the first light transmissive member 6 may be provided.

このような第三の透光性部材8を設けることにより、第一の透光性部材6と第三の透光性部材8との界面では反射しなかった第一の波長変換層12からの光を、第三の透光性部材8と第二の透光性部材7との界面で反射させることが可能となる。そのため、発光装置10は、全体として第一の透光性部材6から第二の透光性部材7に向かう第一の波長変換層12からの光を更に抑制し、発光効率の低下を抑制することが可能となる。   By providing such a third translucent member 8, the first translucent member 6 and the third translucent member 8 are not reflected at the interface between the first wavelength conversion layer 12 and the first translucent member 8. Light can be reflected at the interface between the third translucent member 8 and the second translucent member 7. Therefore, the light emitting device 10 further suppresses light from the first wavelength conversion layer 12 that travels from the first light transmissive member 6 to the second light transmissive member 7 as a whole, and suppresses a decrease in light emission efficiency. It becomes possible.

さらに、各透光性部材6,7,8中には、第一および第二のLEDチップ11,21からの光や第一および第二の波長変換層12,22からの光を散乱させ混色性を向上させるなどの目的により、拡散材を含有させてもよい。特に、図9に示す発光装置10のごとく、第二の透光性部材7中に拡散材9を含有させることにより、実装基板4の凹部4bから長波長発光部2の光を拡散させて外部に放射させることで、拡散材9を含有させない発光装置10と比較して、凹部4bから放射される光の配光をより広げ、発光装置10から放射される光の混色性をより促進させることが可能となる。   Further, in each of the translucent members 6, 7, and 8, light from the first and second LED chips 11 and 21 and light from the first and second wavelength conversion layers 12 and 22 are scattered and mixed. For the purpose of improving the property, a diffusing material may be contained. In particular, as in the light emitting device 10 shown in FIG. 9, the light of the long wavelength light emitting unit 2 is diffused from the concave portion 4 b of the mounting substrate 4 by including the diffusing material 9 in the second light transmissive member 7. Compared with the light emitting device 10 that does not contain the diffusing material 9, the light distribution of the light emitted from the recess 4 b is further expanded and the color mixing property of the light emitted from the light emitting device 10 is further promoted. Is possible.

このような拡散材9の材料としては、酸化アルミニウム、シリカ、酸化チタンなどの無機材料やフッ素系樹脂などの有機材料、有機成分と無機成分とを分子レベルや粒子レベルで複合化した有機無機ハイブリッド材料などが挙げられ、平均粒径もたとえば、数μmから数十μmまでで適宜に選択すればよい。   Examples of the material of the diffusing material 9 include inorganic materials such as aluminum oxide, silica, and titanium oxide, organic materials such as fluorine-based resins, and organic-inorganic hybrids in which organic components and inorganic components are combined at the molecular level and particle level. The average particle size may be appropriately selected from several μm to several tens of μm, for example.

なお、拡散材9を含有する第二の透光性部材7を形成させるためには、硬化前の第二の透光性部材7の透光性材料中に予め拡散材9を分散含有させておき、拡散材9が分散した透光性材料を長波長発光部2が配置された実装基板4の凹部4b内に充填して加熱硬化させればよい。   In addition, in order to form the 2nd translucent member 7 containing the diffusing material 9, the diffusing material 9 is dispersed and contained in advance in the translucent material of the second translucent member 7 before curing. The light-transmitting material in which the diffusing material 9 is dispersed may be filled in the concave portion 4b of the mounting substrate 4 on which the long wavelength light emitting portion 2 is disposed and heat cured.

1 短波長発光部
2 長波長発光部
3 Auバンプ
4 実装基板
4a 一表面
4b 凹部
4ba 内側面
4bb 内底面
5 反射層
6 第一の透光性部材
7 第二の透光性部材
8 第三の透光性部材
9 拡散材
10 発光装置
11 第一のLEDチップ(第一の発光素子)
12 第一の波長変換層
12a 端面
21 第二のLEDチップ(第二の発光素子)
22 第二の波長変換層
DESCRIPTION OF SYMBOLS 1 Short wavelength light emission part 2 Long wavelength light emission part 3 Au bump 4 Mounting board | substrate 4a One surface 4b Recessed part 4ba Inner side surface 4bb Inner bottom surface 5 Reflective layer 6 First translucent member 7 Second translucent member 8 Third Translucent member 9 Diffusing material 10 Light emitting device 11 First LED chip (first light emitting element)
12 1st wavelength conversion layer 12a End surface 21 2nd LED chip (2nd light emitting element)
22 Second wavelength conversion layer

Claims (6)

実装基板の一表面に実装される第一の発光素子と、該第一の発光素子上に備えられ前記第一の発光素子からの光の少なくとも一部を吸収し蛍光を発する第一の波長変換層と、前記実装基板の前記一表面から窪んだ凹部の内底面に実装される第二の発光素子と、前記凹部内であって前記第二の発光素子上に備えられ前記第二の発光素子からの光の少なくとも一部を吸収し前記第一の波長変換層の前記蛍光よりも長波長の蛍光を発する第二の波長変換層とを有し、前記第一の波長変換層から光を外部に放射する前記第二の波長変換層側の端面の任意の一点と、前記第二の波長変換層から光を外部に放射する表面の任意の一点とを結ぶ線分の少なくとも一部が前記実装基板の前記一表面と交差することを特徴とする発光装置。   A first light-emitting element mounted on one surface of the mounting substrate, and a first wavelength converter that is provided on the first light-emitting element and absorbs at least part of light from the first light-emitting element to emit fluorescence. A second light-emitting element mounted on an inner bottom surface of a recess recessed from the one surface of the mounting substrate, and the second light-emitting element provided in the recess and on the second light-emitting element A second wavelength conversion layer that absorbs at least part of the light from the first wavelength conversion layer and emits fluorescence having a longer wavelength than the fluorescence of the first wavelength conversion layer, and transmits light from the first wavelength conversion layer to the outside At least a part of a line segment connecting an arbitrary point on the end surface on the second wavelength conversion layer side that radiates to the surface and an arbitrary point on the surface that radiates light from the second wavelength conversion layer to the outside. A light-emitting device that intersects with the one surface of the substrate. 前記凹部は、前記内底面から前記凹部の外部に向かって広がるテーパー部を有することを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the concave portion has a tapered portion that extends from the inner bottom surface toward the outside of the concave portion. 前記凹部は、少なくとも前記凹部の外部に向かう内側面に、光を反射する反射層が設けられてなることを特徴とする請求項1または請求項2に記載の発光装置。   The light-emitting device according to claim 1, wherein the concave portion is provided with a reflective layer that reflects light at least on an inner surface facing the outside of the concave portion. 前記第一の発光素子および前記第一の波長変換層は、第一の透光性部材で被覆され、前記第二の発光素子および前記第二の波長変換層は、第二の透光性部材で被覆されてなるとともに、前記第一の透光性部材は、前記第二の透光性部材よりも屈折率が大きく、且つ前記第二の透光性部材に接していることを特徴とする請求項1ないし請求項3のいずれか1項に記載の発光装置。   The first light emitting element and the first wavelength conversion layer are covered with a first light transmissive member, and the second light emitting element and the second wavelength conversion layer are a second light transmissive member. And the first translucent member has a higher refractive index than the second translucent member and is in contact with the second translucent member. The light-emitting device according to claim 1. 前記第一の透光性部材と前記第二の透光性部材とが接する界面には、前記第二の透光性部材よりも屈折率が大きく、前記第一の透光性部材よりも屈折率の小さい第三の透光性部材が設けられてなることを特徴とする請求項4に記載の発光装置。   The interface between the first translucent member and the second translucent member has a refractive index larger than that of the second translucent member, and is refracted more than the first translucent member. The light-emitting device according to claim 4, wherein a third translucent member having a low rate is provided. 前記第二の透光性部材は、拡散材が分散されていることを特徴とする請求項4または請求項5に記載の発光装置。   The light emitting device according to claim 4, wherein a diffusion material is dispersed in the second light transmissive member.
JP2009247070A 2009-10-27 2009-10-27 Light-emitting device Withdrawn JP2011096740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247070A JP2011096740A (en) 2009-10-27 2009-10-27 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247070A JP2011096740A (en) 2009-10-27 2009-10-27 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2011096740A true JP2011096740A (en) 2011-05-12

Family

ID=44113369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247070A Withdrawn JP2011096740A (en) 2009-10-27 2009-10-27 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2011096740A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125816A (en) * 2011-12-14 2013-06-24 Toshiba Corp Semiconductor light-emitting element
JP2015084397A (en) * 2013-09-17 2015-04-30 豊田合成株式会社 Light-emitting device and method for manufacturing the same
JP2016039167A (en) * 2014-08-05 2016-03-22 豊田合成株式会社 Light-emitting device
JP2016510177A (en) * 2013-03-12 2016-04-04 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic parts
JP2016092263A (en) * 2014-11-06 2016-05-23 豊田合成株式会社 Light-emitting device and method of manufacturing the same
KR20170061921A (en) * 2015-11-27 2017-06-07 엘지이노텍 주식회사 Light emitting device and light unit having thereof
KR20170061916A (en) * 2015-11-27 2017-06-07 엘지이노텍 주식회사 Light emitting device and light emitting device package having thereof
JP2017135130A (en) * 2016-01-25 2017-08-03 コーデンシ株式会社 Light emitting apparatus
DE102016111790A1 (en) * 2016-06-28 2017-12-28 Osram Opto Semiconductors Gmbh Process for the production of optoelectronic semiconductor components
JP2018518059A (en) * 2015-06-17 2018-07-05 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Light emitting diode device and method for manufacturing the light emitting diode device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076924B2 (en) 2011-12-14 2015-07-07 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2013125816A (en) * 2011-12-14 2013-06-24 Toshiba Corp Semiconductor light-emitting element
JP2016510177A (en) * 2013-03-12 2016-04-04 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic parts
JP2015084397A (en) * 2013-09-17 2015-04-30 豊田合成株式会社 Light-emitting device and method for manufacturing the same
JP2016039167A (en) * 2014-08-05 2016-03-22 豊田合成株式会社 Light-emitting device
JP2016092263A (en) * 2014-11-06 2016-05-23 豊田合成株式会社 Light-emitting device and method of manufacturing the same
JP2018518059A (en) * 2015-06-17 2018-07-05 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Light emitting diode device and method for manufacturing the light emitting diode device
KR20170061921A (en) * 2015-11-27 2017-06-07 엘지이노텍 주식회사 Light emitting device and light unit having thereof
KR20170061916A (en) * 2015-11-27 2017-06-07 엘지이노텍 주식회사 Light emitting device and light emitting device package having thereof
KR102451107B1 (en) * 2015-11-27 2022-10-05 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and light emitting device package having thereof
KR102506737B1 (en) 2015-11-27 2023-03-13 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and light unit having thereof
JP2017135130A (en) * 2016-01-25 2017-08-03 コーデンシ株式会社 Light emitting apparatus
DE102016111790A1 (en) * 2016-06-28 2017-12-28 Osram Opto Semiconductors Gmbh Process for the production of optoelectronic semiconductor components

Similar Documents

Publication Publication Date Title
JP5113820B2 (en) Light emitting device
JP6688007B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP5515992B2 (en) Light emitting device
JP2011096740A (en) Light-emitting device
US8237350B2 (en) Light-emitting device
TWI433344B (en) Light emitting apparatus and illuminating apparatus
JP5810301B2 (en) Lighting device
JP2011129661A (en) Light emitting device
JP2009543335A (en) Efficient emitting LED package and method for efficiently emitting light
TW200537716A (en) Light-emitting apparatus and illuminating apparatus
JP2017117858A (en) Light-emitting device
TW201218428A (en) Light emitting diode package structure
JP2011114093A (en) Lighting system
JP2007134656A (en) Fluorescent board and light emitting device having it
JP2012142429A (en) Light-emitting device and method of manufacturing light-emitting device
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JP2015099940A (en) Light-emitting device
JP4707433B2 (en) Light emitting device and lighting device
JP2007294890A (en) Light emitting device
JP2008251664A (en) Illumination apparatus
JP5330944B2 (en) Light emitting device
JP5786278B2 (en) Light emitting device
JP2009071090A (en) Light-emitting device
JP2012009696A (en) Light emitting device and led illuminating equipment
JP5931006B2 (en) Light emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108