JP2010244781A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2010244781A
JP2010244781A JP2009090865A JP2009090865A JP2010244781A JP 2010244781 A JP2010244781 A JP 2010244781A JP 2009090865 A JP2009090865 A JP 2009090865A JP 2009090865 A JP2009090865 A JP 2009090865A JP 2010244781 A JP2010244781 A JP 2010244781A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
gas
oxidant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009090865A
Other languages
English (en)
Other versions
JP5091903B2 (ja
Inventor
Kazuhiro Wake
千大 和氣
Koichiro Miyata
幸一郎 宮田
Junpei Ogawa
純平 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009090865A priority Critical patent/JP5091903B2/ja
Publication of JP2010244781A publication Critical patent/JP2010244781A/ja
Application granted granted Critical
Publication of JP5091903B2 publication Critical patent/JP5091903B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】システム構成を簡易にしつつ、背圧弁等の排出用デバイスの凍結を防止する燃料電池システムを提供する。
【解決手段】アノード流路12及びカソード流路13を有する燃料電池スタック10と、アノード流路12の出口に接続され、アノードオフガスが通流するアノードオフガス流路と、カソード流路13の出口に接続され、カソードオフガスが通流するカソードオフガス流路と、カソードオフガス流路に設けられた背圧弁32と、背圧弁32に滞留する水分を除去するコンプレッサ31と、コンプレッサ31を制御するECU70と、を備え、ECU70は、空気流量積算値、電流積算値、電力積算値の少なくとも1つに基づいて推定された背圧弁32の温度が、所定温度未満である場合、コンプレッサ31による背圧弁32の水分を除去する滞留水分除去処理を実行する。
【選択図】図1

Description

本発明は、燃料電池システムに関する。
近年、水素(燃料ガス)と、酸素を含む空気(酸化剤ガス)とが供給されることで発電する燃料電池の開発が進められ、例えば、燃料電池車(移動体)の電力源として期待されている。このような燃料電池は、水素が通流するアノード流路(燃料ガス流路)と、空気が通流するカソード流路(酸化剤ガス流路)とを有している。
そして、アノード流路の出口には、アノードオフガス(燃料オフガス)が通流するアノードオフガス流路(燃料オフガス流路)が接続されており、アノードオフガス流路には、気液分離器、パージ弁、掃気ガス排出弁、ドレン弁等(いずれも排出用デバイス)が設けられる(特許文献1、2参照)。
また、カソード流路の出口には、カソードオフガス(酸化剤オフガス)が通流するカソードオフガス流路(酸化剤オフガス流路)が接続されており、カソードオフガス流路には、加湿器、背圧弁、希釈器等(いずれも排出用デバイス)が設けられる(特許文献1、2参照)。
特開2005−267961号公報 特開2008−282794号公報
ここで、燃料電池が発電すると、そのカソードで水蒸気(生成水)が生成し、この生成水の一部は、MEA(Membrane Electrode Assembly)を透過し、アノード流路にクロスリークする。したがって、アノードオフガスやカソードオフガスは多湿となり、水分(水蒸気、結露水)を含んだ状態となる。
よって、前記した背圧弁等の排出用デバイスには、水分が付着し、滞留する。ゆえに、燃料電池の発電停止後、システムが低温環境下(例えば0℃以下)に曝されると、背圧弁等の排出用デバイスが凍結してしまう虞がある。
そこで、各排出用デバイスに温度センサを取り付け、各温度センサが検出する温度に基づいて、滞留する水分を除去し、凍結を防止する方法が考えられる。ところが、複数の温度センサを取り付けると、システム構成に要するコストが上昇すると共に、システム重量が増加してしまう。
そこで、本発明は、システム構成を簡易にしつつ、背圧弁等の排出用デバイスの凍結を防止する燃料電池システムを提供することを課題とする。
前記課題を解決するための手段として、本発明は、燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスがそれぞれ供給されることで発電する燃料電池と、前記燃料ガス流路の出口に接続され、前記燃料ガス流路から排出された燃料オフガスが通流する燃料オフガス流路と、前記酸化剤ガス流路の出口に接続され、前記酸化剤ガス流路から排出された酸化剤オフガスが通流する酸化剤オフガス流路と、前記燃料オフガス流路又は前記酸化剤オフガス流路に設けられた排出用デバイスと、前記排出用デバイスに滞留する水分を除去する滞留水分除去手段と、前記滞留水分除去手段を制御する制御手段と、を備え、前記制御手段は、前記燃料電池に供給された酸化剤ガスの流量の積算値、前記燃料電池の発電電流の積算値、前記燃料電池の発電電力の積算値の少なくとも1つに基づいて推定された前記排出用デバイスの温度が、判定閾値未満である場合、前記滞留水分除去手段による前記排出用デバイスの水分を除去する滞留水分除去処理を実行することを特徴とする燃料電池システムである。
このような燃料電池システムによれば、酸化剤ガスの流量の積算値、発電電流の積算値、発電電力の積算値の少なくとも1つに基づいて推定された排出用デバイスの温度が、判定閾値未満である場合、制御手段が、滞留水分除去手段による滞留水分除去処理を実行し、排出用デバイスの水分を除去する。これにより、その後、排出用デバイスが凍結することはない。
また、排出用デバイスの温度を検出する温度センサを備えないので、システム構成が簡易となる。
また、前記燃料電池システムにおいて、外気温度を検出する外気温度センサを備え、前記制御手段は、前記外気温度センサが検出する外気温度が低くなると、前記排出用デバイスの温度が低くなるように補正することを特徴とする。
このような燃料電池システムによれば、外気温度が低くなると、排出用デバイスの温度が低くなるように補正するので、排出用デバイスの温度は適切に推定される。
また、前記燃料電池システムにおいて、前記排出用デバイスは弁装置を含み、前記制御手段は、前記燃料電池に供給された酸化剤ガスの流量の積算値、前記燃料電池の発電電流の積算値、前記燃料電池の発電電力の積算値、の少なくとも1つに基づいて前記弁装置の温度を推定し、推定された前記弁装置の温度が、前記判定閾値である所定温度未満である場合、前記滞留水分除去手段による滞留水分除去処理を実行することを特徴とする。
このような燃料電池システムによれば、推定された弁装置の温度が、所定温度未満である場合、制御手段が、滞留水分除去手段による滞留水分除去処理を実行する。これにより、弁装置の凍結を防止できる。
また、本発明は、燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスがそれぞれ供給されることで発電する燃料電池と、前記燃料ガス流路の出口に接続され、前記燃料ガス流路から排出された燃料オフガスが通流する燃料オフガス流路と、前記酸化剤ガス流路の出口に接続され、前記酸化剤ガス流路から排出された酸化剤オフガスが通流する酸化剤オフガス流路と、前記燃料オフガス流路又は前記酸化剤オフガス流路に設けられた排出用デバイスと、前記排出用デバイスに滞留する水分を除去する滞留水分除去手段と、前記滞留水分除去手段を制御する制御手段と、を備え、前記制御手段は、前記燃料電池に供給された酸化剤ガスの流量の積算値、前記燃料電池の発電電流の積算値、前記燃料電池の発電電力の積算値、の少なくとも1つである滞留水分除去パラメータが、判定閾値未満である場合、前記滞留水分除去手段による前記排出用デバイスの水分を除去する滞留水分除去処理を実行することを特徴とする燃料電池システムである。
このような燃料電池システムによれば、滞留水分除去パラメータが、判定閾値未満である場合、制御手段が、滞留水分除去手段による滞留水分除去処理を実行し、排出用デバイスの水分を除去する。これにより、その後、排出用デバイスが凍結することはない。
また、排出用デバイスの温度を検出する温度センサを備えないので、システム構成が簡易となる。
また、前記燃料電池システムにおいて、外気温度を検出する外気温度センサを備え、前記制御手段は、前記外気温度センサが検出する外気温度が低くなると、前記判定閾値が大きくなるように補正することを特徴とする。
このような燃料電池システムによれば、外気温度が低くなると、判定閾値が大きくなるように補正するので、滞留水分除去手段による滞留水分除去処理を実行するか否かを適切に判定できる。
また、前記燃料電池システムにおいて、前記制御手段は、前記燃料電池の発電停止後に前記判定を実行することを特徴とする。
このような燃料電池システムによれば、燃料電池の発電停止後、酸化剤ガスの流量の積算値、燃料電池の発電電流の積算値、燃料電池の発電電力の積算値が変動しない状態(安定した状態)で、滞留水分除去処理を実行するか否かについての判定を実行するので、適切に判定できる。
また、前記燃料電池システムにおいて、前記制御手段は、前記燃料電池の発電停止後において所定時間経過毎に実行されるシステム状態の監視の際、前記判定を実行することを特徴とする。
このような燃料電池システムによれば、所定時間経過毎に実行されるシステム状態の監視の際、前記判定が実行、つまり、繰り返されるので、例えば、発電停止後に外気温度が変化したとしても、変化する外気温度に対応して、排出用デバイスの温度、又は、判定閾値を補正することにより、適切に判定できる。
また、前記燃料電池システムにおいて、前記滞留水分除去手段は、前記燃料電池の前記酸化剤ガス流路に酸化剤ガスを供給する酸化剤ガス供給手段であって、前記酸化剤ガス供給手段からの酸化剤ガスによって、前記排出用デバイスに滞留する水分を除去することを特徴とする。
このような燃料電池システムによれば、滞留水分除去手段が酸化剤ガス供給手段であるので、システム構成が簡易となる。
本発明によれば、システム構成を簡易にしつつ、背圧弁等の排出用デバイスの凍結を防止する燃料電池システムを提供することができる。
第1実施形態に係る燃料電池システムの構成を示す図である。 本発明の概要(燃料電池スタック及び背圧弁の温度変化)を説明するタイムチャートである。 空気流量積算値、電流積算値、電力積算値と、背圧弁の現在の温度との関係を示すマップである。 第1実施形態に係る燃料電池システムの動作を示すフローチャートである。 第2実施形態に係る燃料電池システムの動作を示すフローチャートである。
≪第1実施形態≫
以下、本発明の第1実施形態について、図1〜図4を参照して説明する。
なお、第1実施形態では、排出用デバイスである背圧弁32の現在の温度を推定し、燃料電池スタック10の発電停止後、背圧弁32が凍結する虞があると判断される場合、背圧弁32内に滞留する水分(結露水、水蒸気)を除去する構成を例示する。
≪燃料電池システムの構成≫
図1に示す第1実施形態に係る燃料電池システム1は、図示しない燃料電池車(移動体)に搭載されている。燃料電池システム1は、燃料電池スタック10と、燃料電池スタック10のアノードに対して水素(燃料ガス、反応ガス)を給排するアノード系と、燃料電池スタック10のカソードに対して酸素を含む空気(酸化剤ガス、反応ガス)を給排するカソード系と、燃料電池スタック10の掃気時に掃気ガスをカソード系からアノード系に導く掃気ガス導入系と、燃料電池スタック10の電力を消費する電力消費系と、これらを電子制御するECU70(Electronic Control Unit、電子制御装置)と、を備えている。
<燃料電池スタック>
燃料電池スタック10は、複数(例えば200〜400枚)の固体高分子型の単セル11が積層して構成されたスタックであり、複数の単セル11は直列で接続されている。単セル11は、MEA(Membrane Electrode Assembly:膜電極接合体)と、これを挟む2枚の導電性を有するセパレータと、を備えている。MEAは、1価の陽イオン交換膜等からなる電解質膜(固体高分子膜)と、これを挟むアノード及びカソード(電極)とを備えている。
アノード及びカソードは、カーボンペーパ等の導電性を有する多孔質体と、これに担持され、アノード及びカソードにおける電極反応を生じさせるための触媒(Pt、Ru等)と、を含んでいる。
各セパレータには、各MEAの全面に水素又は空気を供給するための溝や、全ての単セル11に水素又は空気を給排するための貫通孔が形成されており、これら溝及び貫通孔がアノード流路12(燃料ガス流路)、カソード流路13(酸化剤ガス流路)として機能している。
そして、アノード流路12を介して各アノードに水素が供給されると、式(1)の電極反応が起こり、カソード流路13を介して各カソードに空気が供給されると、式(2)の電極反応が起こり、各単セル11で電位差(OCV(Open Circuit Voltage)、開回路電圧)が発生するようになっている。次いで、燃料電池スタック10と後記するモータ51等の外部負荷とが電気的に接続され、電流が取り出されると、燃料電池スタック10が発電するようになっている。
2H→4H+4e …(1)
+4H+4e→2HO …(2)
このようにカソードで水分(水蒸気)を生成するため、カソードから排出されるカソードオフガスは、多湿となり、水分(水蒸気、結露水等)を含む。また、生成した水分の一部はMEAを透過し、アノード流路12にクロスリークするので、アノードから排出されるアノードオフガスも多湿となり、水分を含む。
<アノード系>
アノード系は、水素タンク21と、常閉型の遮断弁22と、エゼクタ23と、気液分離器24(排出用デバイス)と、常閉型のパージ弁25(排出用デバイス)と、常閉型の掃気ガス排出弁26(排出用デバイス)と、常閉型のドレン弁27(排出用デバイス)とを備えている。
水素タンク21は、配管21a、遮断弁22、配管22a、エゼクタ23、配管23aを介して、アノード流路12の入口に接続されている。そして、ECU70からの指令によって遮断弁22が開かれると、水素が、水素タンク21から遮断弁22等を通って、アノード流路12に供給されるようになっている。
アノード流路12の出口は、配管24a、気液分離器24、配管24bを介して、エゼクタ23の吸気口に接続されている。そして、アノード流路12から排出された未消費の水素を含むアノードオフガス(燃料オフガス)は、配管24a等を通って、エゼクタ23に戻された後、アノード流路12に再供給されるようになっている。
<気液分離器>
気液分離器24は、アノードオフガスに含まれる水分(結露水、水蒸気)を分離すると共に、分離した水分を一時的に、例えば底部(タンク部)に貯溜するものである。
気液分離器24における気液分離方式としては、例えば、(1)アノードオフガスの流路断面積を増大させることで、その流速を低下させると共に、水分をその自重によって留まらせることで分離する方式や、(2)低温冷媒が通流する冷媒管によってアノードオフオフガスの水蒸気を結露させて分離する方式や、(3)アノードオフガスを蛇行又は旋回させ、水分に遠心力を作用させて分離する方式、等を採用できる。
<パージ弁>
配管24bは、配管25a、パージ弁25、配管25bを介して、後記する希釈器33に接続されている。
パージ弁25は、例えば、燃料電池スタック10の発電時において、アノード流路12から排出され、配管24a及び配管24bを循環するアノードオフガスに含まれる不純物(水蒸気、窒素等)を排出(パージ)する場合、ECU70によって開かれる。
なお、ECU70は、例えば、燃料電池スタック10を構成する単セルの電圧(セル電圧)が所定セル電圧以下となった場合、不純物を排出する必要があると判定し、パージ弁25を開く設定となっている。セル電圧は、例えば、単セルの電圧を検出する電圧センサ(セル電圧モニタ)を介して検出される。
<掃気ガス排出弁>
また、配管25aの接続位置よりも上流の配管24bは、配管26a、掃気ガス排出弁26、配管26bを介して、後記する希釈器33に接続されている。
掃気ガス排出弁26は、アノード流路12の掃気時において、アノード流路12から排出された掃気ガス及び押し出された水分を、希釈器33(外部)に排出するため、パージ弁25及びドレン弁27と共に開かれる。
<ドレン弁>
気液分離器24の底部は、配管27a、ドレン弁27、配管27bを介して、後記する希釈器33に接続されている。
ドレン弁27は、気液分離器24の底部に貯溜された水分を、希釈器33に排出する場合、ECU70によって開かれる。なお、気液分離器24における貯溜水量は、水位センサや、燃料電池スタック10の積算電流値に基づいて検出(算出)される。
したがって、第1実施形態において、アノード流路12(燃料ガス流路)から排出されたアノードオフガス(燃料オフガス)が通流するアノードオフガス流路(燃料オフガス流路)は、配管24a、24b、25a、25b、26a、26b、27a、27bを備えて構成されている。
そして、このように構成されるアノードオフガス流路に、排出用デバイスとして、気液分離器24、パージ弁25(弁装置)、掃気ガス排出弁26(弁装置)、ドレン弁27(弁装置)が設けられている。
<カソード系>
カソード系は、コンプレッサ31(酸化剤ガス供給手段、掃気ガス供給手段、滞留水分除去手段)と、常開型の背圧弁32と、希釈器33と、質量流量センサ34を備えている。
コンプレッサ31は、配管31aを介して、カソード流路13の入口に接続されている。そして、コンプレッサ31は、ECU70の指令に従って作動すると、酸素を含む空気を取り込み、配管31aを介して、カソード流路13に供給するようになっている。
また、コンプレッサ31は、燃料電池スタック10の掃気時には、掃気ガスを供給する掃気ガス供給手段として機能する。
さらに、コンプレッサ31は、背圧弁32内に滞留する水分を除去する際には、水分を吹き飛ばして除去するための掃気ガスを供給する滞留水分除去手段として機能する。
なお、配管31aと配管32aとを跨ぐように加湿器(図示しない)が設けられている。この加湿器は、水分透過性を有する中空糸膜を複数本内蔵し、この中空糸膜を介して、カソード流路13に向かう空気と、カソード流路13から排出された多湿のカソードオフガスとの間で水分交換させ、カソード流路13に向かう空気を加湿するものである。
カソード流路13の出口は、配管32a、背圧弁32、配管32bを介して、希釈器33に接続されている。そして、カソード流路13(カソード)から排出されたカソードオフガスは、配管32a等を通って希釈器33に導かれるようになっている。
背圧弁32は、例えばバタフライ弁から構成され、アクセル開度に基づいて、その開度がECU70によって制御されることで、カソード流路13における空気の圧力を制御するものである。
希釈器33は、パージ弁25からのアノードオフガスと、配管32bからのカソードオフガス(希釈用ガス)とを混合し、アノードオフガス中の水素を、カソードオフガスで希釈する容器であり、その内部に希釈空間を備えている。そして、希釈後のガスは、配管33aを通って車外に排出されるようになっている。
したがって、第1実施形態において、カソード流路13(酸化剤ガス流路)から排出されたカソードオフガス(酸化剤オフガス)が通流するカソードオフガス流路(酸化剤オフガス流路)は、配管32a、32b、33aを備えて構成されている。
そして、このように構成されるカソードオフガス流路に、排出用デバイスとして、加湿器(図示しない)、背圧弁32(弁装置)、希釈器33が設けられている。
質量流量センサ34は、コンプレッサ31の吸気側に取り付けられており、コンプレッサ31に吸気される空気の質量流量(g/s)を検出し、ECU70に出力するようになっている。なお、燃料電池スタック10の発電中において、コンプレッサ31から吐出される空気は、カソード流路13に供給されるから、質量流量センサ34が検出する質量流量は、カソード流路13に供給される空気の質量流量と略等しい。
なお、質量流量センサ34に代えて、体積流量(L/s)を検出する体積流量センサでもよい。また、質量流量センサ34は、カソード流路13を通流する空気の流量を検出可能であればよく、例えば、配管31aに取り付けられた構成でもよい。
<掃気ガス導入系>
掃気ガス導入系は、常閉型の掃気ガス導入弁41を備えている。掃気ガス導入弁41の上流は配管41aを介して配管31aに接続されており、掃気ガス導入弁41の下流は配管41bを介して配管23aに接続されている。
そして、燃料電池スタック10(アノード流路12)の掃気時に、コンプレッサ31が作動した状態で、ECU70によって掃気ガス導入弁41が開かれると、コンプレッサ31からの掃気ガスが、アノード流路12に導入されるようになっている。
<電力消費系>
電力消費系は、走行用のモータ51と、電力制御器52と、出力検出器53とを備えている。モータ51は、電力制御器52、出力検出器53を介して、燃料電池スタック10の出力端子(図示しない)に接続されている。
モータ51は、電力によって燃料電池車の駆動力を発生する外部負荷である。
電力制御器52は、ECU70から入力される指令電流値に従って、燃料電池スタック10の発電電力(出力電流、出力電圧)を制御する機器であり、DC/DCチョッパ、DC/DCコンバータ等の電子回路を備えている。
出力検出器53は、燃料電池スタック10の現在の出力電流及び出力電圧を検出する機器であり、電流センサ及び電圧センサを備えている。そして、出力検出器53は、検出した出力電流及び出力電圧を、ECU70に出力するようになっている。
<その他機器>
IG61は、燃料電池システム1(燃料電池車)の起動スイッチであり、運転席周りに設けられている。また、IG61はECU70と接続されており、ECU70はIG61のON/OFF信号を検知するようになっている。
外気温度センサ62は、外気温度を検出するセンサであり、燃料電池車の適所に取り付けられている。そして、外気温度センサ62は、検出した外気温度をECU70に出力するようになっている。
<ECU>
ECU70(制御手段)は、燃料電池システム1を電子制御する制御装置であり、CPU、ROM、RAM、各種インタフェイス、電子回路などを含んで構成されており、その内部に記憶されたプログラムに従って、各種機能を発揮し、各種機器を制御するようになっている。
<本発明の概要>
ここで、本発明の概要について、図2を参照して説明する。
<燃料電池スタックの温度>
図2に示すように、発電停止中(システム停止中)における燃料電池スタック10の温度と、背圧弁32の温度とは、外気温度と略等しいと考えられる。
そして、発電が開始すると、発電に伴う自己発熱により、燃料電池スタック10の温度は上昇した後、外気温度に関わらず、定常温度(FC定常温度、例えば80〜90℃)で維持される。すなわち、燃料電池スタック10の現在の温度は、発電開始時の温度と、発電開始から現在までにおける燃料電池スタック10の発熱量とに基づいて推定される。
ここで、燃料電池スタック10の発熱量は、燃料電池スタック10に供給された空気の流量の積算値(空気流量積算値)、燃料電池スタック10の電流の積算値(電流積算値)、燃料電池スタック10の電力の積算値(電力積算値)の少なくとも1つに基づいて算出される。つまり、空気流量積算値、電流積算値、電力積算値が大きくなると、発電開始から現在までにおける燃料電池スタック10の発熱量が大きくなる。
したがって、燃料電池スタック10の現在の温度は、発電開始時の温度(外気温度)と、空気流量積算値、電流積算値、電力積算値の少なくとも1つに基づいて推定される。
<背圧弁の温度>
一方、背圧弁32は燃料電池スタック10から離れて配置されているため、発電開始後、背圧弁32の温度は、燃料電池スタック10の温度よりも緩やかに上昇した後、定常温度(背圧弁定常温度)で維持される。
また、背圧弁32の温度と燃料電池スタック10の温度との温度差ΔTは、背圧弁32と燃料電池スタック10の距離が長くなるほど大きくなり、外気温度が低くなるほど大きくなる。ここで、背圧弁32と燃料電池スタック10の距離は、システム構成に従う固定値であるから、温度差ΔTは外気温度に基づいて変化することになる。
したがって、背圧弁32の現在の温度は、燃料電池スタック10の現在の温度と、外気温度(温度差ΔT1)とに基づいて推定されることになる。
そうすると、前記したように、燃料電池スタック10の現在の温度は、発電開始時の温度(外気温度)と、空気流量積算値、電流積算値、電力積算値の少なくとも1つに基づいて推定されるから、背圧弁32の現在の温度は、発電開始時の温度(外気温度)と、空気流量積算値、電流積算値、電力積算値の少なくとも1つと、現在の外気温度と、に基づいて推定されることになる。
ここで、空気流量積算値、電流積算値及び電力積算値は、背圧弁32に滞留する水分を除去する滞留水分除去処理を実行するか否かに関するパラメータであるから、滞留水分除去パラメータと総称する。
なお、燃料電池車が長時間にて走行しない場合、つまり、燃料電池システム1の作動時間が長時間でない場合、発電開始時の外気温度と、現在の外気温度とは略等しいとできる。
<ECU−背圧弁温度推定機能>
そこで、ECU70(背圧弁温度推定手段)は、前記した燃料電池スタック10及び背圧弁32の温度変化特性を考慮して、背圧弁32の現在の温度を推定する機能を備えている。
すなわち、ECU70は、発電開始時の外気温度と現在の外気温度とは略等しいとしたうえで、発電開始時の外気温度と、空気流量積算値、電流積算値及び電力積算値の少なくとも1つと、図3のマップと、に基づいて、背圧弁32の現在の温度を推定する。つまり、外気温度が低くなると、背圧弁32の温度が低くなるように補正される。
なお、図3のマップは、事前試験等により求められ、ECU70に予め記憶されている。
<ECU−滞留水分除去判定機能>
ECU70(滞留水分除去判定手段)は、背圧弁32の現在の温度と、所定温度(判定閾値)とに基づいて、現在の温度が所定温度よりも低い場合、背圧弁32の凍結を防止するべく、背圧弁32内に滞留する水分を除去する必要があると判定する機能を備えている。
所定温度は、水分を除去する必要があると判断される温度であって、水分が凍結する温度(0℃)よりもやや高く、例えば、3〜5℃に設定される。
<ECU−滞留水分除去処理実行機能>
ECU70は、背圧弁32内に滞留する水分を除去する必要があると判定した場合、コンプレッサ31を作動させ、掃気ガスを背圧弁32に送り込み、背圧弁32内に滞留する水分を除去する滞留水分除去処理を実行する機能を備えている。
<ECU−掃気判定・実行機能>
ECU70は、燃料電池スタック10の発電停止後、燃料電池スタック10を掃気する必要があるか否か判定し、掃気する必要があると判定した場合、掃気処理を実行する機能を備えている。
具体的には、ECU70は、外気温度が、予め設定された掃気を開始するべき所定温度(例えば5℃)未満である場合、このままでは燃料電池スタック10が凍結する虞があるので、掃気する必要があると判定するように設定されている。
そして、このように判定した場合、ECU70は、コンプレッサ31を作動させた後、コンプレッサ31からの掃気ガスをアノード流路12、カソード流路13に供給し、アノード流路12、カソード流路13に滞留する水分を押し出し、燃料電池スタック10を掃気するように設定されている。
なお、アノード流路12、カソード流路13を同時に掃気してもよいし、例えば、カソード流路13、アノード流路12の順で掃気してもよい。
このようにカソード流路13を掃気すると、カソード流路13から押し出された水分が、背圧弁32で滞留する虞があるので、後記する動作説明では言及しないが、前記した滞留水分除去処理は、カソード流路13の掃気後に実行することが望ましい。
≪燃料電池システムの動作≫
次に、燃料電池システム1の動作について、図4を参照して説明する。
なお、IG62がONされると、図4の処理がスタートする。また、IG62のON時(発電開始時)における外気温度(背圧弁32の温度)は、IG62のONに連動して、ECU70に一時的に記憶される。
ステップS101において、ECU70は、燃料電池スタック10の発電を開始させる。
具体的には、ECU70は、運転者から起動要求があったと判断し、遮断弁22を開き、アノード流路12に水素を供給し、コンプレッサ31を作動させ、カソード流路13に空気を供給する。そして、ECU70は、電力制御器52による燃料電池スタック10からの電流の取り出しを開始し、燃料電池スタック10の発電を開始させる。
ステップS102において、ECU70は、背圧弁32の現在の温度を推定する。
具体的には、ECU70は、発電開始時の外気温度(背圧弁32の温度)と、発電開始から現在までにおける空気流量積算値、電流積算値及び電力積算値の少なくとも1つと、図3のマップとに基づいて、背圧弁32の現在の温度を推定する。
なお、空気流量積算値、電流積算値及び電力積算値の複数に基づいて、背圧弁32の現在の温度をそれぞれ推定した場合、例えば、推定された各温度を平均して採用してもよい。
ステップS103において、ECU70は、IG61がOFFされたか否か判定する。
IG61はOFFされたと判定した場合(S103・Yes)、ECU70の処理はステップS104に進む。一方、IG61はOFFされていないと判定した場合(S103・No)、ECU70の処理はステップS102に戻る。
ステップS104において、ECU70は、燃料電池スタック10の発電を停止させる。
具体的には、ECU70は、運転者から停止要求があったと判断し、電力制御器52による燃料電池スタック10からの電流の取り出しを停止し、燃料電池スタック10の発電を停止させる。そして、ECU70は、遮断弁22を閉じ、コンプレッサ31を停止させる。
ステップS105において、ECU70は、ステップS102で推定した背圧弁32の温度が所定温度(判定閾値)未満であるか否か判定する。
背圧弁32の温度が所定温度未満であると判定した場合(S105・Yes)、ECU70の処理はステップS106に進む。一方、背圧弁32の温度が所定温度未満でないと判定した場合(S105・No)、ECU70の処理はステップS107に進む。
なお、ステップS105の判定処理は、燃料電池スタック10の発電停止直後の他、発電停止後に所定時間(30分〜1時間)経過毎に実行されるシステム状態の監視の際に実行される構成でもよい。
このようなシステム状態監視の際にステップS105の判定処理を実行する場合、背圧弁32の温度は、発電停止時の温度から徐々に低下するので(図2参照)、発電停止時の温度と、発電停止からの経過時間と、外気温度とに基づいて、背圧弁32の温度を補正することが好ましい。
ステップS106において、ECU70は、背圧弁32内に滞留する水分を除去する滞留水分除去処理を実行する。
具体的には、ECU70は、コンプレッサ31を作動させて、コンプレッサ31からの掃気ガスを背圧弁32に供給する。そうすると、掃気ガスによって、背圧弁32に滞留する水分は下流に押し出され、背圧弁32から除去される。これにより、その後に低温環境下に曝されたとしても、背圧弁32が凍結することはない。
また、滞留水分除去処理を実行する場合、背圧弁32の水分が速やか且つ確実に除去されるように、カソード流路13を掃気する場合に対して、コンプレッサ31の回転速度を高め、コンプレッサ31から吐出される掃気ガスの流量を増加することが好ましい。
さらに、配管31aと配管32aとを接続するバイパス配管を設け、掃気ガスが、カソード流路13、配管31a及び配管32aを跨ぐように配置されている加湿器(図示しない)を、バイパスして、背圧弁32に供給される構成としてもよい。
さらにまた、滞留水分除去処理の実行中、背圧弁32(バタフライ弁等)に内蔵される弁体を作動(回動)させ、弁体に付着した水滴が速やかに吹き飛ばされるようにしてもよい。
そして、例えば、事前試験等によって求められた所定時間にて、滞留水分除去処理を実行した後、ECU70の処理はエンドに進む。
ステップS107において、ECU70は、ステップS105の判定処理後、所定時間(例えば30分〜1時間)経過したか否か判定する。
所定時間経過したと判定した場合(S107・Yes)、ECU70の処理はステップS105に進み、ステップS105の判定処理を実行する。
この場合において、背圧弁32の温度は徐々に低下しているから(図2参照)、発電停止時の温度と、発電停止からの経過時間と、外気温度とに基づいて、背圧弁32の温度を補正することが好ましい。
一方、所定時間経過していないと判定した場合(S107・No)、ECU70はステップS107の判定処理を繰り返す。
≪燃料電池システムの効果≫
このような燃料電池システム1によれば、次の効果を得る。
背圧弁32及びその直近に温度センサを備えずに、背圧弁32の温度を推定できるので、システム構成が簡易となる。なお、背圧弁32の温度は、外気温度に基づいて補正するので、適切に推定される。
そして、推定された背圧弁32の温度と所定温度とに基づいて、滞留水分除去処理を実行するので、背圧弁32の凍結を適切に防止できる。
以上、本発明の一実施形態について説明したが、本発明はこれに限定されず、本発明の趣旨を逸脱しない範囲で、例えば次のように変更できる。また、後記する第2実施形態の構成と適宜組み合わせてもよい。
前記した実施形態では、コンプレッサ31が、カソード流路13に空気を供給する酸化剤ガス供給手段であって、背圧弁32に滞留する水分を除去する掃気ガスを供給する滞留水分除去手段である構成を例示したが、その他に例えば、滞留水分除去手段として窒素タンクを備え、窒素タンクからの窒素によって、背圧弁32の水分を除去する構成でもよい。
前記した実施形態では、背圧弁32の水分を除去し、凍結を防止する場合を例示したが、水分除去対象はこれに限定されず、配管31a及び配管32aを跨ぐように設けられた加湿器(図示しない)、希釈器33、気液分離器24、パージ弁25、掃気ガス排出弁26、ドレン弁27でもよい。
前記した実施形態の構成に加えて、燃料電池スタック10の温度を検出する温度センサを備える構成であれば、この温度センサが検出する温度を外気温度としてもよいし、温度センサが検出する温度に基づいて背圧弁32の温度を推定してもよい。
前記した実施形態では、燃料電池システム1が燃料電池車に搭載された場合を例示したが、その他の移動体、例えば自動二輪車、列車、船舶に搭載された燃料電池システムでもよい。また、定置型の燃料電池システムに本発明を適用してもよい。
≪第2実施形態≫
次に、本発明の第2実施形態について、図5を参照して説明する。
なお、第2実施形態では、ECU70に設定されたプログラムの内容が一部異なり、背圧弁32の温度は推定せず、発電停止時における滞留水分除去パラメータ(空気流量積算値、電流積算値及び電力積算値の少なくとも1つ)と、所定値(判定閾値)とに基づいて、滞留水分除去処理を実行するか否か判断することを特徴とする(図2参照)。
また、判定基準となる前記所定値は、判定時における外気温度が低くなると、大きくなるように補正されることを特徴とする(図2参照)。
以下、第1実施形態と異なる部分を説明する。
第2実施形態において、ECU70の処理は、ステップS101の後、ステップS201に進む。
ステップS201において、ECU70は、滞留水分除去パラメータ(空気流量積算値、電流積算値、電力積算値の少なくとも1つ)を算出する。
その後、ECU70の処理は、ステップS103に進み、ステップS103の判定結果がNoの場合、ステップS201に戻る。
また、第2実施形態において、ECU70の処理は、ステップS104の後、ステップS202に進む。
ステップS202において、ECU70は、燃料電池スタック10の発電停止時における滞留水分除去パラメータが、所定値未満であるか否か判定する。
判定基準となる所定値は、滞留水分除去パラメータとして採用する空気流量積算値、電流積算値、電力積算値毎にそれぞれ設定され、滞留水分除去パラメータが所定値未満であると、背圧弁32の凍結を防止するべく、滞留する水分を除去すべきと判断される値に設定される。
また、ECU70は、外気温度が低くなると背圧弁32が凍結しやすくなるので、外気温度が低くなると所定値が大きくなるように補正する。
さらに、滞留水分除去パラメータとして、空気流量積算値、電流積算値、電力積算値から複数採用すれば、より誤判定しにくくなる。
なお、ステップS202の判定処理は、燃料電池スタック10の発電停止直後の他、発電停止後に所定時間(30分〜1時間)経過毎に実行されるシステム状態の監視の際に実行される構成でもよい。
滞留水分除去パラメータが所定値未満であると判定した場合(S202・Yes)、ECU70の処理はステップS106に進み、ステップS106において、ECU70は滞留水分除去処理を実行する。これにより、背圧弁32に滞留する水分は除去され、背圧弁32がその後に凍結することはない。
一方、滞留水分除去パラメータが所定値未満でないと判定した場合(S202・No)、ECU70の処理はエンドに進む。
このように第2実施形態によれば、背圧弁32の温度を推定せずに、滞留水分除去処理を実行するか否か判定するので、第1実施形態に対して、制御フローを簡易にできる。
1 燃料電池システム
10 燃料電池スタック(燃料電池)
11 単セル(燃料電池)
12 アノード流路(燃料ガス流路)
13 カソード流路(酸化剤ガス流路)
24 気液分離器(排出用デバイス)
25 パージ弁(排出用デバイス、弁装置)
26 掃気ガス排出弁(排出用デバイス、弁装置)
27 ドレン弁(排出用デバイス、弁装置)
24a、24b、25a、25b、26a、26b、27a、27b 配管(燃料オフガス流路)
31 コンプレッサ(酸化剤ガス供給手段、滞留水分除去手段)
32 背圧弁(排出用デバイス、弁装置)
33 希釈器(排出用デバイス)
32a、32b、33a 配管(酸化剤オフガス流路)
34 質量流量センサ
53 出力検出器
62 外気温度センサ
70 ECU(制御手段)

Claims (8)

  1. 燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスがそれぞれ供給されることで発電する燃料電池と、
    前記燃料ガス流路の出口に接続され、前記燃料ガス流路から排出された燃料オフガスが通流する燃料オフガス流路と、
    前記酸化剤ガス流路の出口に接続され、前記酸化剤ガス流路から排出された酸化剤オフガスが通流する酸化剤オフガス流路と、
    前記燃料オフガス流路又は前記酸化剤オフガス流路に設けられた排出用デバイスと、
    前記排出用デバイスに滞留する水分を除去する滞留水分除去手段と、
    前記滞留水分除去手段を制御する制御手段と、
    を備え、
    前記制御手段は、前記燃料電池に供給された酸化剤ガスの流量の積算値、前記燃料電池の発電電流の積算値、前記燃料電池の発電電力の積算値の少なくとも1つに基づいて推定された前記排出用デバイスの温度が、判定閾値未満である場合、前記滞留水分除去手段による前記排出用デバイスの水分を除去する滞留水分除去処理を実行する
    ことを特徴とする燃料電池システム。
  2. 外気温度を検出する外気温度センサを備え、
    前記制御手段は、前記外気温度センサが検出する外気温度が低くなると、前記排出用デバイスの温度が低くなるように補正する
    ことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記排出用デバイスは弁装置を含み、
    前記制御手段は、
    前記燃料電池に供給された酸化剤ガスの流量の積算値、前記燃料電池の発電電流の積算値、前記燃料電池の発電電力の積算値、の少なくとも1つに基づいて前記弁装置の温度を推定し、
    推定された前記弁装置の温度が、前記判定閾値である所定温度未満である場合、前記滞留水分除去手段による滞留水分除去処理を実行する
    ことを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスがそれぞれ供給されることで発電する燃料電池と、
    前記燃料ガス流路の出口に接続され、前記燃料ガス流路から排出された燃料オフガスが通流する燃料オフガス流路と、
    前記酸化剤ガス流路の出口に接続され、前記酸化剤ガス流路から排出された酸化剤オフガスが通流する酸化剤オフガス流路と、
    前記燃料オフガス流路又は前記酸化剤オフガス流路に設けられた排出用デバイスと、
    前記排出用デバイスに滞留する水分を除去する滞留水分除去手段と、
    前記滞留水分除去手段を制御する制御手段と、
    を備え、
    前記制御手段は、前記燃料電池に供給された酸化剤ガスの流量の積算値、前記燃料電池の発電電流の積算値、前記燃料電池の発電電力の積算値、の少なくとも1つである滞留水分除去パラメータが、判定閾値未満である場合、前記滞留水分除去手段による前記排出用デバイスの水分を除去する滞留水分除去処理を実行する
    ことを特徴とする燃料電池システム。
  5. 外気温度を検出する外気温度センサを備え、
    前記制御手段は、前記外気温度センサが検出する外気温度が低くなると、前記判定閾値が大きくなるように補正する
    ことを特徴とする請求項4に記載の燃料電池システム。
  6. 前記制御手段は、前記燃料電池の発電停止後に前記判定を実行する
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の燃料電池システム。
  7. 前記制御手段は、前記燃料電池の発電停止後において所定時間経過毎に実行されるシステム状態の監視の際、前記判定を実行する
    ことを特徴とする請求項1から請求項6のいずれか1項に記載の燃料電池システム。
  8. 前記滞留水分除去手段は、前記燃料電池の前記酸化剤ガス流路に酸化剤ガスを供給する酸化剤ガス供給手段であって、
    前記酸化剤ガス供給手段からの酸化剤ガスによって、前記排出用デバイスに滞留する水分を除去する
    ことを特徴とする請求項1から請求項7のいずれか1項に記載の燃料電池システム。


JP2009090865A 2009-04-03 2009-04-03 燃料電池システム Active JP5091903B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090865A JP5091903B2 (ja) 2009-04-03 2009-04-03 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090865A JP5091903B2 (ja) 2009-04-03 2009-04-03 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010244781A true JP2010244781A (ja) 2010-10-28
JP5091903B2 JP5091903B2 (ja) 2012-12-05

Family

ID=43097584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090865A Active JP5091903B2 (ja) 2009-04-03 2009-04-03 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5091903B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122024A1 (ja) * 2014-02-13 2015-08-20 ブラザー工業株式会社 燃料電池システム及び制御方法
JP2016091885A (ja) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 燃料電池システムにおける残水掃気処理方法および燃料電池システム
JP2019145432A (ja) * 2018-02-23 2019-08-29 トヨタ自動車株式会社 燃料電池システム
CN114142066A (zh) * 2021-10-15 2022-03-04 东风汽车集团股份有限公司 一种燃料电池冷启动系统、方法及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313395A (ja) * 2001-04-09 2002-10-25 Honda Motor Co Ltd 燃料電池システムの残留水排出装置
JP2003203665A (ja) * 2002-01-08 2003-07-18 Nissan Motor Co Ltd 燃料電池システム
JP2006066112A (ja) * 2004-08-25 2006-03-09 Toyota Motor Corp 燃料電池システム
JP2008077959A (ja) * 2006-09-21 2008-04-03 Toyota Motor Corp 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313395A (ja) * 2001-04-09 2002-10-25 Honda Motor Co Ltd 燃料電池システムの残留水排出装置
JP2003203665A (ja) * 2002-01-08 2003-07-18 Nissan Motor Co Ltd 燃料電池システム
JP2006066112A (ja) * 2004-08-25 2006-03-09 Toyota Motor Corp 燃料電池システム
JP2008077959A (ja) * 2006-09-21 2008-04-03 Toyota Motor Corp 燃料電池システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122024A1 (ja) * 2014-02-13 2015-08-20 ブラザー工業株式会社 燃料電池システム及び制御方法
JP2016091885A (ja) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 燃料電池システムにおける残水掃気処理方法および燃料電池システム
JP2019145432A (ja) * 2018-02-23 2019-08-29 トヨタ自動車株式会社 燃料電池システム
JP7151098B2 (ja) 2018-02-23 2022-10-12 トヨタ自動車株式会社 燃料電池システム
CN114142066A (zh) * 2021-10-15 2022-03-04 东风汽车集团股份有限公司 一种燃料电池冷启动系统、方法及车辆
CN114142066B (zh) * 2021-10-15 2023-09-26 东风汽车集团股份有限公司 一种燃料电池冷启动系统、方法及车辆

Also Published As

Publication number Publication date
JP5091903B2 (ja) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5231750B2 (ja) 燃料電池システム
JP5155734B2 (ja) 燃料電池システム及びその運転方法
JP5351651B2 (ja) 燃料電池システム
JP5080793B2 (ja) 燃料電池システム
JP4801703B2 (ja) 燃料電池システム
WO2007020768A1 (ja) 燃料電池システム及び発電制御装置
JP2007305420A (ja) 燃料電池システム
JP2015056387A (ja) 燃料電池システム及びその運転方法
JP5113634B2 (ja) 燃料電池システム
JP5091903B2 (ja) 燃料電池システム
JP2010244778A (ja) 燃料電池システム
JP5411443B2 (ja) 燃料電池システム
JP5225702B2 (ja) 燃料電池システム及びその制御方法
JP2009140677A (ja) 燃料電池システムの運転方法
JP4950866B2 (ja) 燃料電池システム
JP5314332B2 (ja) 燃料電池システム及びその運転方法
JP5384140B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2008021448A (ja) 燃料電池システムおよび燃料電池の制御方法
JP4495575B2 (ja) 燃料電池システムおよびその制御方法
US7829232B2 (en) Fuel cell system and fuel cell control method
JP2013246935A (ja) 燃料電池システム
JP2011204447A (ja) 燃料電池システム
JP2005251517A (ja) 燃料電池システム
JP5144152B2 (ja) 放電システム
JP2009289715A (ja) 燃料電池システム及び遮断弁の開閉状態判定方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250