WO2007020768A1 - 燃料電池システム及び発電制御装置 - Google Patents

燃料電池システム及び発電制御装置 Download PDF

Info

Publication number
WO2007020768A1
WO2007020768A1 PCT/JP2006/314434 JP2006314434W WO2007020768A1 WO 2007020768 A1 WO2007020768 A1 WO 2007020768A1 JP 2006314434 W JP2006314434 W JP 2006314434W WO 2007020768 A1 WO2007020768 A1 WO 2007020768A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
amount
gas
water
flow rate
Prior art date
Application number
PCT/JP2006/314434
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Orihashi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/989,582 priority Critical patent/US8431277B2/en
Priority to CN2006800298353A priority patent/CN101243570B/zh
Priority to CA2616990A priority patent/CA2616990C/en
Priority to DE112006002169T priority patent/DE112006002169T5/de
Publication of WO2007020768A1 publication Critical patent/WO2007020768A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/0435Temperature; Ambient temperature of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04343Temperature; Ambient temperature of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/045Humidity; Ambient humidity; Water content of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04507Humidity; Ambient humidity; Water content of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04514Humidity; Ambient humidity; Water content of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04522Humidity; Ambient humidity; Water content of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel tank system and a power generation control device.
  • a fuel gas typified by hydrogen gas and an oxidizing gas typified by air are supplied to the fuel cell, and electric power is generated by a power generation reaction (water generation reaction) between the fuel gas and the oxidizing gas.
  • Various types of fuel cells have been developed. Among them, there are no problems such as electrolyte dissipation and retention, solid polymer that has advantages such as startup at room temperature and extremely fast startup time. Particular attention is paid to PEFC (Polymer Electrolyte Fuel Cells), and PEFCs that have been stacked to obtain high voltage are being used in mobile vehicles such as automobiles.
  • the polymer electrolyte layer is responsible for the conduction of the proton in the reaction between the fuel gas and the oxidizing gas. Therefore, in order to maintain the power generation reaction efficiently, the polymer electrolyte layer is in a wet state or It is necessary to monitor the temperature state and control it to an appropriate state. In order to perform such control, for example, in Patent Document 1, the temperature, humidity, and flow rate of the inflow gas to the fuel cell and the exhaust gas from the fuel cell are measured to calculate the balance of the amount of water to the fuel cell.
  • the flow rate of the inflowing gas is controlled by comparing with the amount of generated water calculated from the power of the fuel cell, and the amount of water remaining inside the fuel cell is controlled within a level suitable for the polymer electrolyte layer.
  • Fuel cell systems and methods have been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 4-1 9 2 9 7 3 Disclosure of Invention
  • the present invention has been made in view of such circumstances, and it is possible to more accurately grasp the moisture content inside the fuel cell, and thereby the wet state inside the fuel cell can be more accurately and accurately determined. It is an object of the present invention to provide a fuel cell system that can be determined. In addition, the present invention uses a data table in which the power generation amount obtained from the operation result of the fuel cell system of the present invention and the optimal supply amount of fuel gas and acid gas are associated with each other. Another object of the present invention is to provide an operation control device that can easily perform appropriate operation control.
  • a fuel cell system determines a water balance in a fuel cell from the amount of water flowing into and out of the fuel cell and the amount of water generated in the fuel cell, and wets the fuel cell.
  • a wet state determination unit for determining a state wherein the wet state determination unit is based on a physical quantity of gas flowing into the fuel cell, a physical quantity of exhaust gas from the fuel cell, and a state quantity of the fuel cell.
  • the wet state determination unit calculates the amount of water flowing into the fuel cell, the amount of water discharged from the fuel cell, and the amount of generated water, and based on these, the water balance in the fuel cell is calculated. As a result, the inside of the fuel cell The amount of water remaining is determined and the wet state inside is determined. At this time, not only the amount of water discharged as a gas component but also the amount of water discharged as a liquid component is taken into account as the amount of water discharged, so the water balance inside the fuel cell can be accurately grasped. .
  • the wet state determination unit calculates the inflow moisture amount using the flow rate, pressure, and humidity or dew point temperature as the physical amount of the inflow gas, and the moisture amount discharged as a gas component is the exhaust gas. It is preferable that the flow rate, pressure, and humidity or dew point temperature or temperature are used as physical quantities, and the generated water content is calculated from the generated current as the state quantity of the fuel cell.
  • the volume of the inflowing gas per unit time is calculated from the flow rate and pressure of the inflowing gas, and this and the humidity (which can be either relative humidity or absolute humidity) or dew point temperature, that is, the moisture content as the gas component of the inflowing gas.
  • the amount of water brought into the fuel cell as a gaseous component that is, the amount of inflow water can be obtained.
  • the amount of water discharged as a gaseous component from the fuel cell can be obtained from the flow rate, pressure, and humidity or dew point temperature of the exhaust gas.
  • the generated current corresponds to the reaction amount of the inflow gas (fuel gas and oxidizing gas) in the fuel cell, the amount of water produced by the reaction per unit time can be obtained from the generated current.
  • the water balance inside the fuel cell is positive (plus), that is, the sum of the amount of water flowing into the fuel cell and the amount of generated water (increase in water) force Exhaust water (increase in water)
  • the inside of the fuel cell is supersaturated, and a part of the water can exist as a liquid component, for example, as a mist-like microdroplet. Therefore, the presence / absence of moisture that can be discharged as a liquid component is determined based on the amount of inflow water calculated as described above, the amount of water discharged as a gas component, and the positive / negative (plus or minus) of the balance of the generated water amount. You can also
  • the amount of water discharged as a gas component from the fuel cell may be calculated using the saturated water vapor amount uniquely determined from the temperature. This eliminates the need to measure humidity and dew point temperatures.
  • the wet state determination unit calculates the flow rate of the inflow gas consumed inside the fuel cell from the generated current, and calculates the flow rate of the exhaust gas from the consumption flow rate and the flow rate of the inflow gas. And preferred.
  • the generated current corresponds to the amount of reaction of the inflow gas (fuel gas and oxidant gas) in the fuel cell, that is, the consumption amount, so the consumption flow rate of the inflow gas can be easily calculated. Thus, it is not necessary to actually measure the exhaust gas flow rate.
  • the relationship between the amount of water discharged as a liquid component from the fuel cell with respect to the flow rate of the exhaust gas acquired in advance prior to the actual operation of the fuel cell, and the actual operation of the fuel cell is calculated based on the flow rate of the exhaust gas when the fuel cell is being operated.
  • the amount of water discharged as a liquid component from the fuel cell may be calculated from at least one of the power generation amount of the fuel cell, the temperature of the exhaust gas, and the flow rate of the exhaust gas.
  • the ratio of the moisture of the gas component and the moisture of the liquid component that can exist in the exhaust gas is determined by the saturated water vapor pressure determined from its temperature,
  • the amount of water in the liquid component discharged out of the fuel cell by the gas is greatly affected by the flow rate of the exhaust gas.
  • the exhaust gas flow rate tends to correlate with the amount of power generated by the fuel cell (output power, power generation current) when the fuel cell is operating. Therefore, the parameters of the fuel cell power generation load and z or the flow rate of the exhaust gas can be correlated with the amount of water discharged as a liquid component from the fuel cell. Therefore, by acquiring the correlation for the target fuel cell in advance and comparing it with the measured values of those parameters, the amount of water discharged as a liquid component can be calculated easily and accurately.
  • the wet state determination unit is particularly preferably used to calculate the amount of water discharged as a liquid component when the temperature of the fuel cell or the exhaust gas is equal to or lower than a predetermined temperature.
  • the inflow gas and the exhaust gas are fuel gas and / or oxidizing gas.
  • the amount of water discharged as a liquid component with respect to both the fuel gas and the oxidizing gas, and either the fuel gas or the oxidizing gas is calculated.
  • the water balance in the fuel cell is determined by taking into account not only the amount of water discharged from the fuel cell as a gas component but also the amount of water discharged as a liquid component. Therefore, it is possible to grasp the amount of water in the interior more accurately, and thereby to determine the wet state inside the fuel cell more accurately and accurately.
  • the power generation control device includes a determination result of the water balance of the fuel cell in the fuel cell system of the present invention, and a power generation amount in the fuel cell set based on the determination result of the wet state of the fuel cell,
  • a storage unit for storing a data table in which the supply flow rates of the fuel gas and the oxidant gas to the fuel cell for obtaining the power generation amount are associated, and the fuel cell or the fuel cell based on the data table
  • a control unit that performs operation control for supplying fuel gas and oxidizing gas to the fuel cell or another fuel cell so that a desired power generation amount can be obtained by another fuel cell different from the above.
  • FIG. 1 is a configuration diagram schematically showing one embodiment of a fuel cell system according to the present invention.
  • Fig. 2 is a graph showing the relationship between the flow rate of air discharged from the fuel cell and the flow rate of hydrogen gas, and the amount of water discharged as a liquid component.
  • Figure 3 ' is a graph showing the relationship between the generated current of the fuel cell and the total amount of water discharged as a liquid component.
  • FIG. 1 is a configuration diagram schematically showing one embodiment of a fuel cell system according to the present invention.
  • the fuel cell system 1 includes a solid polymer electrolyte type fuel cell 2 made of a stack structure in which a large number of cells are stacked.
  • the fuel cell 2 generates electric power by receiving supply of air as an oxidation gas and hydrogen gas (H 2 ) as a fuel gas.
  • H 2 hydrogen gas
  • the fuel cell system 1 includes a supply pipe 1 1 for supplying air (inflow gas) to the fuel cell 2 and an exhaust for exhausting air off-gas (exhaust gas) discharged from the fuel cell 2 to the outside.
  • Pipe 1 2 and air supply system 3 are connected.
  • the supply pipe 11 is provided with a compressor 14 that takes in air through the filter 13 and a humidifier 15 that humidifies the air pressure-fed by the compressor 14. Further, a flow meter F 10, a pressure gauge P 10, and a hygrometer H 10 are provided in a portion between the fuel cell 2 and the humidifier 15 in the supply pipe 11.
  • the calo moisturizer 15 is provided so as to be also disposed on the discharge pipe 12, thereby performing moisture exchange between the pressure-fed air and the air off-gas.
  • the air after the moisture exchange is sent to the fuel cell 2 through the supply pipe 11 and supplied to the power generation in the fuel cell 2.
  • a back pressure adjusting valve 16 for adjusting the pressure of air in the fuel cell 2 is installed at a portion between the humidifier 15 and the fuel cell 2 in the discharge pipe 1 2.
  • the air off-gas flowing through the exhaust pipe 1 2 passes through the back pressure regulating valve 16 and is used for moisture exchange in the humidifier 15 and is finally exhausted to the atmosphere outside the system.
  • a pressure gauge P 11 and a thermometer T 11 are provided in the discharge pipe 12 between the fuel cell 2 and the back pressure regulating valve 16.
  • the fuel cell system 1 also includes a high-pressure tank 21 as a hydrogen supply source that stores high-pressure hydrogen gas (inflow gas), and a supply pipe 2 2 that supplies the hydrogen gas from the high-pressure tank 21 to the fuel cell 2. And a circulation pipe 2 3 for returning the hydrogen off-gas (unreacted hydrogen gas; exhaust gas) discharged from the fuel cell 2 to the supply pipe 2 2 and the hydrogen off-gas from the circulation pipe 2 3 to the supply pipe 2 2 Split into hydrogen pump 2 4 and circulation pipe 2 3 A hydrogen gas supply system 4 having a branch connection and a discharge pipe 2 5 having a downstream end connected to a discharge pipe 12 of the air supply system 3 is connected.
  • a regulator 27 that adjusts the pressure of the new hydrogen gas from the high-pressure tank 21, and the circulation pipe 2 3 at the junction A on the downstream side of the regulator 2 7. Is connected.
  • a mixed gas composed of new hydrogen gas and hydrogen off gas that merged at junction A is supplied to the fuel cell 2.
  • a flow meter F 20, a pressure gauge P 20, and a humidity meter H 20 are provided in the supply pipe 22 between the fuel cell 2 and the junction A.
  • a gas-liquid separator 30 for separating water from the hydrogen off-gas flowing in the circulation pipe 23 is provided.
  • the fluid flowing through the circulation pipes 2 and 3 includes hydrogen off-gas discharged from the fuel cell 2 and generated water generated by an electrochemical reaction in the fuel cell 2.
  • the generated water is separated from the hydrogen off-gas.
  • the hydrogen off-gas separated by the gas-liquid separator 30 reaches the confluence point A by the hydrogen pump 24, while the water separated by the gas-liquid separator 30 becomes fluid pipe 3 2 through the drain valve 31. From the air supply system 3 to the exhaust pipe 1 2.
  • the fluid pipe 3 2 has an upstream end connected to the drain valve 3 1 of the gas-liquid separator 30 and a downstream end connected to the exhaust pipe 1 2 of the air supply system 3 and is separated by the gas-liquid separator 30. It functions as a pipe that allows the drained water to flow into the discharge pipe 1 2. Further, a pressure gauge P 21 and a thermometer T 21 are provided in a portion of the circulation pipe 23 between the fuel cell 2 and the gas-liquid separator 30.
  • the discharge pipe 25 is provided with a purge valve 33 that functions as a short valve for opening and closing the discharge pipe 25.
  • a purge valve 33 that functions as a short valve for opening and closing the discharge pipe 25.
  • impurities in the hydrogen off-gas are discharged together with the hydrogen off-gas through the discharge pipe 25 to the oxygen-based discharge pipe 12.
  • the fluid flowing through the discharge pipe 25 has a gas-liquid separator 30 but contains moisture in addition to this kind of impurities. That is, the discharge pipe 25 functions as a fluid pipe that allows a fluid containing water flowing through the discharge pipe 25 to flow into the discharge pipe 12 of the air supply system 3.
  • an output system 5 having a DC-DC converter and a power storage unit (both not shown) is connected to the fuel cell 2 via a service plug (not shown).
  • the fuel cell system 1 has an arithmetic processing / storage unit 91 having a CPU, MPU, storage device, and the like, and an input / output interface 92, and through the input / output interface 92.
  • a control unit 9 (wet state determination unit) connected to the air supply system 3, the hydrogen gas supply system 4, and the output system 5 is provided.
  • various operations are performed as will be described later, and the calculation results of these operations are sequentially stored in the storage device.
  • control unit 9 includes the flow meters F 10, F 20, pressure gauges P 10, P 11, P 20, P 21, hygrometers H 10, H 20, and The thermometers T 1 1, T 2 1 force are connected via the I / O interface 9 2.
  • the flow meter F 1 0 provided in the air supply pipe 1 1
  • the pressure gauge P 1 0 and the hygrometer H 1 0 are used to adjust the flow rate of air flowing into the fuel cell 2 ⁇ (air-in), pressure p (air-in;), and humidity h (air-in). Measured.
  • the pressure p (air-out) and the temperature t (air-out) of the air discharged from the fuel cell 2 are measured by the pressure gauge P 11 and the thermometer T 11 installed in the air discharge pipe 12. out) is actually measured.
  • the flow rate f (hyd-in) of the hydrogen gas flowing into the fuel cell 2 is measured by the flow meter F 2 0, the pressure gauge P 2 0 and the hygrometer H 2 0 provided in the hydrogen gas supply pipe 2 2. ), Pressure p (hyd-in), and humidity h (hyd-in).
  • the hydrogen gas circulation pipe 2 3 is discharged from the fuel cell 2 by the pressure gauge P 2 1 and the thermometer T 2 1 installed. The hydrogen gas pressure p (hyd-out) and the temperature t (hyd-out) are measured.
  • the measured value signals of these physical quantities for air and hydrogen gas are output to the control unit 9 continuously or intermittently at predetermined time intervals.
  • the generated current I obtained by the power generation of the fuel cell 2 is measured, and the actual measurement value signal is output to the control unit 9.
  • the volume (amount) of air flowing into the fuel cell 2 per unit time is obtained from the air inflow flow rate f (air-in) and the inflow pressure p (air-in), and this is the humidity. From the h (air-in) force, the amount of water W (air-in) that is brought into (inflows) into the fuel cell 2 by the air per unit time is calculated. In addition, the volume (amount) of hydrogen gas flowing into the fuel cell 2 per unit time is obtained from the inflow flow rate f (hyd-in) of hydrogen gas and the inflow pressure p (hid-in), and this is compared with the humidity. From h (air-in), the amount of water W (hyd-in) brought into (flowing into) the fuel cell 2 per unit time by hydrogen gas is calculated.
  • the generated current I correlates with the amount of oxygen gas and hydrogen gas contained in the air consumed per unit time inside the fuel cell 2, the generated current I is consumed inside the fuel cell 2 from the generated current I.
  • Air flow rate and hydrogen gas flow rate are calculated.
  • the difference between the consumption flow rate and the inflow flow rate f (air-in) of the air into the fuel cell 2 and the inflow flow rate f (hyd-in) of the hydrogen gas is the discharge of air from the fuel cell 2, respectively. Calculated as flow rate f (air-out) and hydrogen gas discharge flow rate f (hyd-out).
  • the volume of air discharged from the fuel cell 2 per unit time (the air discharge flow f (air-out) and the measured discharge pressure p (air-out)) From this and the saturated water vapor pressure (saturated water vapor volume) at the temperature t (air-out), it is taken out as a gas component per unit time by air from inside the fuel cell 2 ( Water content W v (air-out) is calculated.
  • the amount of water W v (hyd-out) that is taken out (discharged) as a gas component per unit time by hydrogen gas from the inside of the fuel cell 2 is calculated from the amount.
  • the generated current I correlates with the amount of oxygen gas and the amount of hydrogen gas contained in the air consumed per unit time inside the fuel cell 2. Then, the amount of water W g produced in the fuel cell 2 is calculated.
  • W (air-in), W (hyd-in), and W g calculated in this way are added together to calculate the amount of water increase per unit time in fuel cell 2, and W
  • the sum of v (air-out) and W v (hyd-out) is calculated to calculate the amount of water decrease per unit time in the fuel cell 2 (however, the amount of water discharged as a gas component).
  • the water balance in the fuel cell 2 is determined to be positive or negative by subtracting the amount of decrease from the amount of increase in water thus obtained.
  • this water balance is negative (minus), it indicates that the amount of water discharged from the fuel cell 2 as a gaseous component is greater than the total amount of water flowing into the fuel cell 2 and the water generated inside it. Therefore, normally, the air and hydrogen gas inside the fuel cell 2 are not supersaturated, and it is unlikely that moisture exists as a liquid component due to condensation or the like.
  • the air discharge flow rate f (air-out) and the hydrogen gas discharge flow rate f (hyd-out), or the fuel cell 2 Various changes are made to the electric current I, and the amount of water discharged as a liquid component from the fuel cell 2 is measured at that time, and the relationship between them is acquired in advance.
  • the obtained relationship is stored in the control unit 9 as, for example, table data or mathematical formula data, and when the fuel cell system 1 is actually operated, the air discharge flow rate f ( air-out) and hydrogen gas discharge flow rate f (hyd-out), or by measuring the generated current I to the stored data, the water content W 1 (air-out) and the water content W 1 (hyd-out), or the total amount can be calculated.
  • Fig. 2 shows the discharge flow rate f (air-out) of air from the fuel cell 2 and the discharge flow rate f (hyd-out) of hydrogen gas (unit: L Zmin), for each gas. It is a graph showing the relationship between the amount of water discharged as a liquid component W l (air-out) and W l (hyd-out) (unit: g / min, for example). In the figure, curves C I and C 2 indicate the relationship in air and hydrogen gas, respectively.
  • Fig. 3 shows the relationship between the power generation current I of the fuel cell 2 and the total amount of water discharged as a liquid component (ie, W l (air-out) + W 1 (hyd-out)). It is a graph.
  • the water amount W 1 (air-out) and W 1 (hyd-out) discharged as liquid components calculated in this way, or the total amount thereof, is used to reduce the above-mentioned water content in the fuel cell 2.
  • the water balance is further determined, and the wet state inside the fuel cell 2 is determined based on the result.
  • the amount of water discharged from the fuel cell 2 includes only water amounts W v (air-out) and W v (hyd-out) discharged as gaseous components.
  • the amount of water discharged as a liquid component W 1 (air-out) and W 1 (hyd-out) is taken into account, so the water balance inside the fuel cell 2 can be grasped more accurately. be able to. Therefore, the wet state inside the fuel cell 2 (gas phase humidity and wetness of the solid polymer electrolyte layer) can be determined more correctly.
  • the amount of water inside the fuel cell may be excessively determined and evaluated, whereas the fuel cell system of the present invention According to 1, the amount of water inside the fuel cell 2 can be properly determined and evaluated. Therefore, it is possible to suppress a situation in which the wetness of the solid polymer electrolyte layer is undesirably lowered due to excessive take-out of water due to the discharge of the liquid component, resulting in dry out.
  • the control unit 9 when the internal temperature (stack temperature) of the fuel cell 2 or the temperature of discharged air and Z or hydrogen gas is below a predetermined temperature, the amount of water discharged as a liquid component
  • the water balance and wet state may be determined as described above.
  • the proportion of water (mass basis) present as droplets out of the total moisture present in the discharged air or hydrogen gas is approximately 9 5%.
  • control unit 9 allows the air inflow rate to efficiently maintain the power generation reaction in the fuel cell 2.
  • f (air-in) and the flow rate f (hyd-in) of hydrogen gas can be adjusted and controlled (that is, optimized).
  • the optimum supply amount of air and hydrogen gas for obtaining the desired power generation amount in the fuel cell 2 can be easily determined based on the data table. Therefore, efficient operation control of the fuel cell 2 can be realized.
  • a data table is set in advance from the operation data of the fuel cell 2 and stored in a device such as the arithmetic processing / storage unit 91, each time the fuel cell 2 is operated, the above-described data table is stored. Even without determining the water balance and the wet state, the control unit 9 can efficiently control the operation of the fuel cell 2 based on the data table. Furthermore, if such a data table is used, efficient and simple operation control of another fuel cell of the same type or the same type as the fuel cell 2 can be performed.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without changing the gist thereof.
  • a flow meter and a hygrometer may be provided in the discharge pipes 1 2 and 2 3, and the discharge flow rates of air and hydrogen gas may be calculated from the actual measurement value and the actual pressure measurement value.
  • a moisture content in air and hydrogen gas may be measured by providing a dew point meter or the like.
  • the humidifier 15 does not need to be provided.
  • the fuel cell system 1 is a system that does not humidify the air. Become.
  • the amount of water W (air-in) brought into the fuel cell 2 by air per unit time is an amount that can be ignored compared to the amount of water W g generated in the fuel cell 2, for example,
  • the water balance may be calculated assuming that the water content W (air_in) is substantially zero.
  • the amount of water W (hyd-in) brought into the fuel cell 2 by the hydrogen gas per unit time is negligible compared to the amount of water W g produced in the fuel cell 2, the water content
  • the water balance may be calculated with the amount W (hyd-in) regarded as substantially zero.
  • the fuel cell system 1 of the present invention can be mounted on a moving body such as a vehicle or a portable device.
  • the fuel cell 2 is used for stationary use
  • the fuel cell system 1 is used as a cogeneration system.
  • the co-generation system can be installed not only for commercial use but also for home use. Industrial applicability
  • the moisture content inside the fuel cell can be grasped more accurately, and thereby the wet state inside the fuel cell can be more accurately and accurately determined.
  • it can be mounted on mobile objects such as mobile phones and mobile devices, and commercial and household cogeneration systems that use fuel cells as stationary devices.
  • the power generation control device of the present invention uses a data table in which the power generation amount obtained from the operation result of the fuel cell system of the present invention and the optimum supply amount of fuel gas and oxidizing gas are associated with each other. This makes it possible to easily perform efficient operation control of the fuel cell, so that it can be mounted on a moving body such as a vehicle or portable device, as well as the above. It can also be widely used for equipment such as household cogeneration systems.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、燃料電池の内部の湿潤状態をより正確に精度良く判定することができる燃料電池システムを提供することを目的とする。このため、本発明による燃料電池システムは、スタック構造を有する固体高分子電解質型の燃料電池を備えている。燃料電池には、空気供給系、水素ガス供給系、出力系、及び制御部が接続されている。制御部には、燃料電池に流入する空気及び水素ガスの流量等、排出されるそれらの圧力等、及び発電電流の実測信号が出力され、燃料電池から気体成分及び液体成分として排出されるそれぞれの水分量が算定され、燃料電池における水収支が判断される。

Description

明細書 燃料電池システム及び発電制御装置 技術分野
本発明は、 燃料竃池システム及び発電制御装置に関する。 背景技術
燃料電池システムでは、 水素ガスに代表される燃科ガス、 及び空気に代表され る酸化ガスが燃料電池に供給され、 燃料ガスと酸化ガスとの発電反応 (水生成反 応) により電力が発生する。 燃料電池としては、 種々のタイプのものが開発され ており、 それらのなかでは、 電解質の散逸 ·保持等の問題がなく、 常温で起動し 且つ起動時間が極めて早い等の利点を有する固体高分子型燃料電池 (P E F C : Polymer Electrolyte Fuel Cells ) が特に注目され、 高電圧を得るためにスタ ック化された P E F Cが自動車等の移動体等に採用されつつある。
この固体高分子型燃料電池では、 燃料ガスと酸化ガスとの反応におけるプロト ンの伝導を高分子電解質層が担うため、 発電反応を効率よく維持するには、 高分 子電解質層の湿潤状態や温度状態を監視して適正な状態に制御する必要がある。 このような制御を行うべく、 例えば特許文献 1には、 燃料電池への流入ガス及 ぴ燃料電池からの排出ガスの温度、 湿度、 及び流量を測定して燃料電池に対する 水分量の収支を算出し、 燃料電池の電力から算出された生成水分量との比較を行 つて流入ガスの流量制御を行い、 燃料電池内部に残留している水分量を高分子電 解質層に好適な水準内に制御する燃料電池システム及び方法が提案されている。 〔特許文献 1〕 特開 2 0 0 4— 1 9 2 9 7 3号公報 発明の開示 ところで、 燃料電池システムの運転中において、 燃料電池の内部には、 水蒸気 すなわち気体成分として存在する水のみならず、 特に、 過飽和の状態が生起され ている場合には、 例えば微小な水滴となって液体成分として存在する水も含まれ ている。 よって、 燃料電池の水収支を確実に把握して残留水分を正確に把握する には、 そのように液体成分として燃料電池システムの系外へ持ち去られる水分量 を考慮する必要がある。
しかし、 上記従来の燃料電池システムでは、 水収支の算定においてこのような 液体成分として存在し排出される水分についての考慮がされておらず、 燃料電池 内部の水分量ひいては湿潤状態を正確に把握することが困難であった。
そこで、 本発明は、 かかる事情に鑑みてなされたものであり、 燃料電池の内部 の水分量をより正確に把握することができ、 これにより燃料電池の内部の湿潤状 態をより正確に精度良く判定することができる燃料電池システムを提供すること を目的とする。 また、 本発明は、 本発明の燃料電池システムの運転結果で得られ た発電量と燃料ガス及び酸ィヒガスの最適な供給量とが対応付けられたデータテー ブルを用いることにより、 燃料電池の効率的な運転制御を簡易に行うことができ る運転制御装置を提供することも目的とする。
上記課題を解決するために、 本発明による燃料電池システムは、 燃料電池への 流入水分量及び排出水分量並びに該燃料電池における生成水分量から、 燃料電池 における水収支が判断され、 燃料電池の湿潤状態が判定される湿潤状態判定部を 備えるものであって、 湿潤状態判定部では、 燃料電池への流入ガスの物理量、 燃 料電池からの排出ガスの物理量、 及び、 燃料電池の状態量に基づいて、 流入水分 量、 排出水分量として燃料電池から気体成分として排出される水分量及び液体成 分として排出される水分量、 並びに生成水分量が算定される。
このような構成の燃料電池システムでは、 湿潤状態判定部において、 燃料電池 への流入水分量、 燃料電池からの排出水分量、 及び生成水分量が算定され、 それ らに基づいて燃料電池における水収支が判断され、 その結果、 燃料電池の内部に 残留する水分量が把握され、 その内部の湿潤状態が判定される。 このとき、 排出 水分量として、 気体成分として排出される水分量のみならず、 それに加えて液体 成分として排出される水分量が加味されるので、 燃料電池の内部の水収支が正確 に把握される。
具体的には、 湿潤状態判定部は、 流入水分量が、 流入ガスの物理量としての流 量、 圧力、 及び湿度又は露点温度を用いて算定され、 気体成分として排出される 水分量が、 排出ガスの物理量としての流量、 圧力、 及び、 湿度若しくは露点温度 又は温度を用いて算定され、 生成水分量が、 前記燃料電池の状態量としての発電 電流から算定されるものであると好適である。
この場合、 流入ガスの流量及び圧力から単位時間あたりの流入ガスの体積が算 出され、 これと湿度 (相対湿度でも絶対湿度でもよい) 又は露点温度、 つまり流 入ガスの気体成分としての水分の含有率とから、 燃料電池へ気体成分として持ち 込まれる水の量すなわち流入水分量が得られる。 また、 同様にして排出ガスの流 量、 圧力、 及び湿度又は露点温度から、 燃料電池から気体成分として排出される 水分量が得られる。 さらに、 発電電流は、 燃料電池における流入ガス (燃料ガス と酸化ガス) の反応量に相当するので、 発電電流から単位時間あたりのその反応 によって生じる生成水分の量が得られる。
ここで、 燃料電池の内部における水収支が正 (プラス)、 すなわち燃料電池へ の流入水分量と生成水分量の合計 (水の増加量) 力 排出水分量 (水の減少量) よりも多い場合には、 通常、 燃料電池の内部が過飽和になっており、 水の一部が 例えばミスト状の微小液滴となって液体成分として存在し得る。 よって、 上記の ように算定された流入水分量、 気体成分として排出される水分量、 及び生成水分 量の収支の正負 (プラス 'マイナス) に基づいて、 液体成分として排出され得る 水分の存否を判断することもできる。
また、 燃料電池が運転されているときには、 '通常、 燃料電池の内部のガス及び 排出ガスは過飽和になっているので、 排出ガスの湿度若しくは露点温度に代え て、 その温度から一義的に決定される飽和水蒸気量を用いて燃料電池から気体成 分として排出される水分量を算定してもよい。 こうすれば、 湿度及び露点温度を 実測する必要がない。
さらに、 湿潤状態判定部は、 発電電流から燃料電池の内部で消費される流入ガ スの消費流量が算出され、 その消費流量と流入ガスの流量とから排出ガスの流量 が算定されるものであると好ましい。
上述の如く、 発電電流は、 燃料電池における流入ガス (燃料ガスと酸化ガス) の反応量つまり消費量に相当するので、 流入ガスの消費流量が簡易に算出され る。 よって、 このようにすれば、 排出ガスの流量を実測する必要がない。
またさらに、 湿潤状態判定部では、 燃料電池の実際の運転に先立って予め取得 された 「排出ガスの流量に対する燃料電池から液体成分として排出される水分量 の関係」 と、 燃料電池が実際に運転されているときの排出ガスの流量とに基づい て、 燃料電池が実際に運転されているときの液体成分として排出される水分量が 算定されると好ましい。 なお、 燃料電池から液体成分として排出される水分量 は、 燃料電池の発電量、 排出ガスの温度、 及び排出ガスの流量の少なくともいず れか一つにより算定されてもよい。
また、 燃料電池の内部に例えば微小液滴のような液体成分として存在する水分 は排出ガスの流れと共に燃料電池の外に排出され得るので、 排出ガス中の液滴だ けを捕捉して、 或いは排出ガスをサンプリングして、 液体成分として排出される 水分量を測定又は評価することも可能である。
燃料電池からの排出ガスが過飽和な状態にあれば、 排出ガスに存在し得る気体 成分の水分と液体成分の水分との割合は、 その温度から決定される飽和水蒸気圧 によって決定されるが、 排出ガスによって燃料電池の外に排出される液体成分の 水分量は、 排出ガスの流量に大きく影響される。 また、 排出ガスの流量は、 燃料 電池の運転状態においては、 燃料電池の発電量 (出力電力、 発電電流) と相関す る傾向にある。 よって、 これら燃料電池の発電量負荷及び z又は排出ガスの流量というパラメ ータと、 燃料電池から液体成分として排出される水分量とは相関し得る。 したが つて、 その相関関係を、 対象の当該燃料電池に対して予め取得しておき、 それら パラメータの実測値と対比することにより、 液体成分として排出される水分量が 簡易に且つ精度よく算定される。
また、 湿潤状態判定部は、 燃料電池又は排出ガスの温度が所定の温度以下であ るときに、 液体成分として排出される水分量を算定するものであると特に好まし レ、。
排出ガスの温度が低レヽほど飽和水蒸気圧も下がるので、 排出ガス中に存在し得 る液体成分の水分量が増大し、 もって燃料電池から液体成分として排出される水 分量も増大する。 よって、 特に、 燃料電池が低温状態にあり排出ガスの温度があ る所定の温度以下であるときに、 液体成分として排出される水分量を算定して水 収支を判断することにより、 そのような低温運転時における燃料電池の内部に残 留する水分量がより正確に把握される。
より具体的には、 流入ガス及び排出ガスが、 燃料ガス及び/又は酸化ガスであ ると有用である。
一般に、 燃料電池では、 発電の際に酸化ガスが供給される酸素極 (力ソード) 側で水が生成され、 この水が凝縮によって液体化し、 '結露等によってガス流路内 に滞留してしまい、 それが系外へ排出できない場合には、 酸化ガスの流路が閉塞 されるいわゆるフラッデイング状態が生起され易くなる。 こうなると、 発電が阻 害され燃料電池の出力が低下してしまう。 また、 生成した水は、 電解質膜を介し て燃料極 (アノード) 側にも浸出し得るので、 燃料ガスの流路が閉塞されて同様 にフラッデイングが生じ得る。 よって、 かかるフラッデイングを防止するための 制御に資する観点から、 燃料ガス及び酸化ガスの両方に対して液体成分として排 出される水分量を算定することが好ましく、 燃料ガス及ぴ酸化ガスのいずれか一 方に対して行う場合には、 酸化ガスに対して行うことが好ましい。 このような本発明の燃料電池システムによれば、 燃料電池から気体成分として 排出される水分量のみならず、 液体成分として排出される水分量をも加味して、 燃料電池における水収支を判断するので、 その内部の水分量をより正確に把握す ることができ、 これにより燃料電池の内部の湿潤状態をより正確に精度良く判定 することが可能となる。
また、 本発明による発電制御装置は、 本発明の燃料電池システムにおける燃料 電池の水収支の判断結果、 及び、 その燃料電池の湿潤状態の判定結果に基づいて 設定された燃料電池における発電量と、 その発電量を得るための燃料ガス及び酸 化ガスの燃料電池への供給流量とが対応付けられたデータテーブルを記憶する記 憶部と、 そのデータテーブルに基づいて、 その燃料電池又はその燃料電池とは異 なる他の燃料電池で所望の発電量が得られるように、 その燃料電池又は他の燃料 電池へ燃料ガス及び酸化ガスを供給する運転制御を行う制御部とを備える。
図面の簡単な説明
図 1は、 本発明による燃料電池システムの一実施形態を模式的に示す構成図で ある。
図 2は、 燃料電池からの空気の排出流量及び水素ガスの排出流量と、 液体成分 として排出される水分量との関係を示すグラフである。
図 3'は、 燃料電池の発電電流と、 液体成分として排出される水分量の合計量と の関係を示すグラフである。
発明を実施するための最良の形態
以下、 本発明の実施形態について詳細に説明する。 なお、 同一要素には同一の 符号を付し、 重複する説明を省略する。 また、 上下左右等の位置関係は、 特に断 らない限り、 図面に示す位置関係に基づくものとする。 さらに、 図面の寸法比率 は、 図示の比率に限られるものではない。 上述の如く、 図 1は、 本発明による燃料電池システムの一実施形態を模式的に 示す構成図である。 燃料電池システム 1は、 多数のセルを積層したスタック搆造 からなる固体高分子電解質型の燃料電池 2を備えている。 燃料電池 2は、 酸化ガ スとしての空気及び燃料ガスとしての水素ガス (H 2) の供給を受けて電力を発 生する。
燃料電池システム 1には、 空気 (流入ガス) を燃料電池 2に供給するための供 給配管 1 1と、 燃料電池 2から排出された空気オフガス (排出ガス) を外部に排 出するための排出配管 1 2とを有する.空気供給系 3が接続されている。 供給配管 1 1には、 フィルタ 1 3を介して大気を取り込むコンプレッサ 1 4と、 コンプレ ッサ 1 4により圧送される空気を加湿する加湿器 1 5がそれぞれ配設されてい る。 また、 供給配管 1 1における燃料電池 2と加湿器 1 5との間の部位には、 流 量計 F 1 0、 圧力計 P 1 0、 及ぴ湿度計 H 1 0が設けられている。
また、 カロ湿器 1 5は、 排出配管 1 2上にも配置されるように設けられており、 これにより、 圧送される空気と空気オフガスとの間で水分交換を行う。 水分交換 後の空気は、 供給配管 1 1を介して燃料電池 2に送られ、 燃料電池 2での発電に 供される。 排出配管 1 2における加湿器 1 5と燃料電池 2との間の部位には、 燃 料電池 2内の空気の圧力を調整する背圧調整弁 1 6が設置されている。 排出配管 1 2を流れる空気オフガスは、 その背圧調整弁 1 6を通って加湿器 1 5で水分交 換に供された後、 最終的にシステム外の大気中に排気される。 さらに、 排出配管 1 2における燃料電池 2と背圧調整弁 1 6との間の部位には、 圧力計 P 1 1及び 温度計 T 1 1·が設けられている。
また、 燃料電池システム 1には、 高圧の水素ガス (流入ガス) を貯蔵した水素 供給源としての高圧タンク 2 1と、 高圧タンク 2 1の水素ガスを燃料電池 2に供 給する供給配管 2 2と、 燃料電池 2から排出された水素オフガス (未反応の水素 ガス;排出ガス) を供給配管 2 2に戻すための循環配管 2 3と、 循環配管 2 3の 水素オフガスを供給配管 2 2に還流させる水素ポンプ 2 4と、 循環配管 2 3に分 岐接続され且つ下流端が空気供給系 3の排出配管 1 2に接続された排出配管 2 5 とを有する水素ガス供給系 4が接続されている。
供給配管 2 2の上流側には、 高圧タンク 2 1からの新たな水素ガスの圧力を調 整するレギユレータ 2 7が介設され、 レギユレータ 2 7の下流側の合流点 Aに循 環配管 2 3が接続されている。 合流点 Aで合流した新たな水素ガスと水素オフガ スとからなる混合ガスが燃料電池 2に供給される。 また、 供給配管 2 2における 燃料電池 2と合流点 Aとの間の部位には、 流量計 F 2 0、 圧力計 P 2 0、 及ぴ湿 度計 H 2 0が設けられている。
循環配管 2 3の水素ポンプ 2 4の上流側には、 循環配管 2 3を流れる水素オフ ガスから水分を分離させる気液分離器 3 0が介設されている。 循環配管 2 3を流 れる流体には、 燃料電池 2から排出される水素オフガスと、 燃料電池 2での電気 化学反応によって生成された生成水が含まれている。 気液分離器 3 0では、 この 生成水たる水分を水素オフガスから分離させる。 気液分離器 3 0で分離された水 素オフガスは水素ポンプ 2 4によって合流点 Aに達する一方、 気液分離器 3 0で 分離された水分は、 ドレイン弁 3 1を介して流体配管 3 2から空気供給系 3の排 出配管 1 2に排出される。
流体配管 3 2は、 上流端が気液分離器 3 0のドレイン弁 3 1に接続され、 下流 端が空気供給系 3の排出配管 1 2に接続されており、 気液分離器 3 0で分離され た水分を排出配管 1 2に流入させる配管として機能する。 さらに、 循環配管 2 3 における燃料電池 2と気液分離器 3 0との間の部位には、 圧力計 P 2 1及ぴ温度 計 T 2 1が設けられている。
排出配管 2 5には、 これを開閉するシャツトバルブとして機能するパージ弁 3 3が設けられている。 パージ弁 3 3が燃料電池システム 1の稼動時に適宜開弁す ることで、 水素オフガス中の不純物が水素オフガスと共に排出配管 2 5を通つ て、 酸素系の排出配管 1 2に排出される。 排出配管 2 5を設けることで、 水素ォ フガス中の不純物の濃度が下がり、 循環供給される水素オフガス中の水素の濃度 を上げることができる。 排出配管 2 5を流れる流体には、 気液分離器 3 0を設け てはいるものの、 この種の不純物のほかに水分が含有されている。 すなわち、 排 出配管 2 5は、 これに流れる水分を含む流体を空気供給系 3の排出配管 1 2に流 入させる流体配管として機能する。
また、 燃料電池 2には、 D C— D Cコンバータ及び蓄電部 (共に図示せず) を 有する出力系 5が図示しないサービスプラグを介して接続されている。 さらに、 燃料電池システム 1は、 C P Uや M P U、 及ぴ記憶装置等を有する演算処理 ·記 憶部 9 1と入出力インターフェイス 9 2を有し、 且つ、 その入出力インターフエ イス 9 2を介して空気供給系 3、 水素ガス供給系 4、 及ぴ出力系 5に接続された 制御部 9 (湿潤状態判定部) を備えている。 なお、 演算処理 ·記憶部 9 1では、 後述するように種々の演算が行われ、 それらの各演算における計算結果が逐次記 憶装置に記憶されるようになっている。
また、 この制御部 9には、 上述した流量計 F 1 0, F 2 0、 圧力計 P 1 0 , P 1 1 , P 2 0 , P 2 1、 湿度計 H 1 0, H 2 0、 及ぴ温度計 T 1 1 , T 2 1力 入出力インターフェイス 9 2を介して接続されている。
こめように構成された燃料電池システム 1においては、 燃料電池 2に空気及び 水素ガスの供給が開始され燃料電池 2が運転状態になると、 空気の供給配管 1 1 に設けられた流量計 F 1 0、 圧力計 P 1 0、 及ぴ湿度計 H 1 0により、 燃料電池 2に流入する空気の流量 ί (air- in)、 圧力 p (air- in;)、 及び湿度 h (air-in)が実 測される。 また、 空気の排出配管 1 2に設けられた圧力計 P 1 1、 及ぴ温度計 T 1 1により、 燃料電池 2から排出される空気の圧力 p (air-out)、 及び温度 t (air-out)が実測される。
同様に、 水素ガスの供給配管 2 2に設けられた流量計 F 2 0、 圧力計 P 2 0、 及ぴ湿度計 H 2 0により、 燃料電池 2に流入する水素ガスの流量 f (hyd-in)、 圧 力 p (hyd- in)、 及び湿度 h (hyd-in)が実測される。 また、 水素ガスの循環配管 2 3に設けられた圧力計 P 2 1、 及び温度計 T 2 1により、 燃料電池 2から排出さ れる水素ガスの圧力 p (hyd-out)、 及び温度 t (hyd- out)が実測される。
空気及び水素ガスに対するこれら物理量の実測値信号は、 連続的に又は所定時 間間隔で断続的に制御部 9へ出力される。 また、 出力系 5では、 燃料電池 2の発 電によって得られる発電電流 Iが測定され、 その実測値信号が制御部 9へ出力さ れる。
制御部 9では、 それらの実測値信号に基づいて、 種々の演算が行われる。 すな わち、 空気の流入流量 f (air- in)、 及び流入圧力 p (air-in)から、 燃料電池 2に 単位時間あたりに流入する空気の体積 (量) が求められ、 これと湿度 h (air - in) 力 ら、 空気によって燃料電池 2の内部に単位時間あたりに持ち込まれる (流入す る) 水分量 W (air- in)が算出される。 また、 水素ガスの流入流量 f (hyd-in)、 及 ぴ流入圧力 p (hid- in)から、 燃料電池 2に単位時間あたりに流入する水素ガスの 体積 (量) が求められ、 これと湿度 h (air - in)から、 水素ガスによって燃料電池 2の内部に単位時間あたりに持ち込まれる (流入する) 水分量 W (hyd-in)が算出 される。
さらに、 発電電流 Iは、 燃料電池 2の内部で単位時間に消費される空気に含ま れる酸素ガスの量及び水素ガスの量と相関するので、 発電電流 Iから、 燃料電池 2の内部で消費される空気流量及び水素ガス流量 (ともに消費流量) が算出され る。 そして、 それらの消費流量と、 燃料電池 2への空気の流入流量 f (air- in)及 ぴ水素ガスの流入流量 f (hyd-in)との差分が、 それぞれ燃料電池 2からの空気の 排出流量 f (air - out)及び水素ガスの排出流量 f (hyd- out)として算定される。 また、 そうして得られた空気の排出流量 f (air-out)と実測された排出圧力 p (air-out)と力ゝら、 燃料電池 2から単位時間あたりに排出される空気の体積 (量) が求められ、 これと、 温度 t (air-out)における飽和水蒸気圧 (飽和水蒸 気量) とから、 燃料電池 2の内部から空気によって単位時間あたりに気体成分と して持ち出される (排出される) 水分量 W v (air-out)が算出される。
同様に、 上記の如く得られた水素ガスの排出流量 f (hyd- out)と実測された排 1 出圧力 p (hyd- out)とから、 燃料電池 2から単位時間あたりに排出される空気の 体積 (量) が求められ、 これと、 温度 t (hyd-out)における飽和水蒸気圧 (飽和 水蒸気量) とから、 燃料電池 2の内部から水素ガスによって単位時間あたりに気 体成分として持ち出される (排出される) 水分量 W v (hyd- out)が算出される。 またさらに、 前述の如く、 発電電流 Iは、 燃料電池 2の内部で単位時間に消費 される空気に含まれる酸素ガスの量及び水素ガスの量と相関するので、 発電電流 Iから化学量論的に燃料電池 2における生成水量 W gが算出される。
それから、 このようにして算出された W (air-in)、 W (hyd - in)、 及び W gが合 算されて燃料電池 2における単位時間あたりの水分の増加量が算出され、 また、 W v (air-out)及ぴ W v (hyd-out)が合算されて燃料電池 2における単位時間あた りの水分の減少量 (但し、 気体成分として排出される水分量) が算出される。 そ して、 必要に応じて、 そのように得られた水分の増加量から減少量を減じること により、 燃料電池 2における水収支の正 ·負が判断される。
この水収支が負 (マイナス) であれば、 燃料電池 2から気体成分として排出さ れる水分量が、 燃料電池 2へ流入した水分とその内部で生成した水分の合計量よ りも多いことを示すので、 通常、 燃料電池 2の内部の空気及び水素ガスは過飽和 とはなっておらず、 水分が凝縮により液滴化する等して液体成分として存在して いる可能性は低い。
それとは逆に、 この水収支が正 (プラス) であれば、 燃料電池 2の内部にある 空気及び/又は水素ガスが過飽和となっており、 そのため凝縮により液滴化する 等して液体成分として存在している可能性が高い。 この場合、 そのように液体成 分として存在する水分は、 燃料電池 2から排出される空気及び水素ガスによって 燃料電池 2の外部へ排出され得る。
そこで、 この水収支が正 (プラス) の場合には、 上記のように算出された排出 される空気の排出流量 f (air- out)及ぴ水素ガスの排出流量 f (hyd-out)、 又は燃 料電池 2の発電電流 Iに基づいて、 燃料電池 2から空気によって液体成分として 排出される水分量 W l (air - out)及び水素ガスによって液体成分として排出され る水分量 W l (hyd-out) , 又はそれらの合計量が算出される。
この場合、 具体的には、 まず、 燃料電池システム 1の運転に先立って、 空気の 排出流量 f (air- out)及ぴ水素ガスの排出流量 f (hyd-out) , 又は燃料電池 2の発 電電流 Iを種々変化させ、 そのとき燃料電池 2から液体成分として排出される水 分量を測定し、 それらの関係を予め取得しておく。 それから、 得られた関係を、 例えば、 表データや数式データとして制御部 9に記憶させておき、 燃料電池シス テム 1の実際の運転時に、 実測値に基づいて算出された空気の排出流量 f (air- out)及ぴ水素ガスの排出流量 f (hyd-out)、 又は実測された発電電流 Iを、 その 記憶させたデータに当てはめることにより、 水分量 W 1 (air-out)及ぴ水分量 W 1 (hyd-out) , 又はその合計量を算定することができる。
ここで、 図 2は、 燃料電池 2からの空気の排出流量 f (air-out)及ぴ水素ガス の排出流量 f (hyd- out) (単位は例えば L Zm i n ) と、 それぞれのガスによつ て液体成分として排出される水分量 W l (air-out)及ぴ W l (hyd-out) (単位は、 例えば g /m i n ) との関係を示すグラフである。 図中、 曲線 C I , C 2は、 そ れぞれ空気及び水素ガスにおける関係を示す。 また、 図 3は、 燃料電池 2の発電 電流 I と、 液体成分として排出される水分量の合計量 (すなわち、 W l (air- out) +W 1 (hyd-out) ) との関係を示すグラフである。
制御部 9では、 こうして算定された液体成分として排出される水分量 W 1 (air - out)及ぴ W 1 (hyd-out)、 又はそれらの合計量を、 燃料電池 2における上述 した水分の減少量に加えて更に水収支が判断され、 その結果に基づいて燃料電池 2の内部における湿潤状態が判定される。
このような燃料電池システム 1によれば、 燃料電池 2から排出される水分量と して、 気体成分として排出される水分量 W v (air - out)及び W v (hyd-out)のみな らず、 それに加えて液体成分として排出される水分量 W 1 (air-out)及び W 1 (hyd- out)が加味されるので、 燃料電池 2の内部の水収支をより正確に把握する ことができる。 よって、 燃料電池 2の内部の湿潤状態 (気相の湿度及ぴ固体高分 子電解質層の湿潤度) をより正しく判定することができる。
また、 従来のように液体成分として排出される水分量を考慮しない場合には、 燃料電池の内部の水分量を過大に判定 ·評価してしまうおそれがあるのに対し、 本発明の燃料電池システム 1によれば、 燃料電池 2の内部の水分量を適正に判 定 ·評価できる。 よって、 液体成分の排出による水分の過度な持ち出しに起因し て固体高分子電解層の湿潤度が不都合に低下し、 ドライアゥトが生じてしまうと いった事態を抑止できる。
さらに、 燃料電池 2の内部の水収支の判定結果に基づいて、 燃料電池 2の内部 に過剰な液体の水が滞留する可能性を予見し得る。 もしそのような事態が予見さ れる場合には、 結露によって燃料電池 2内の空気又は水素ガスの流路にフラッデ ィングが生じることも予想されるので、 燃料電池 2 へ流入する空気及び Z又は水 素ガスの流量又は流速を増大させて燃料電池 2の内部の過剰な水分を強制的に排 出させることができる。 これにより、 フラッデイングの発生を確実に防止して発 電効率や始動性を高めるといつた制御が可能となる。
また、 制御部 9では、 燃料電池 2の内部温度 (スタック温度)、 或いは排出さ れる空気及び Z又は水素ガスの温度が所定の温度以下であるときに、 液体成分と して排出される水分量を算定して上述した水収支及び湿潤状態の判定を行っても よい。
本発明者の知見によれば、 ある燃料電池 2のスタック温度が 8 0 °Cのときに、 排出される空気又は水素ガス中に存在する全水分のうち液滴として存在する水の 割合 (質量基準) は、 概ね 5 %であった。 これに対し、 その燃料電池 2のスタツ ク温度が 2 0 °Cのときには、 排出される空気又は水素ガス中に存在する全水分の うち液滴として存在する水の割合 (質量基準) は、 概ね 9 5 %であった。
このように、 排出される空気又は水素ガスの温度が低い場合に液体成分として 含まれる水分量は、 温度がより高い場合に比して大きいので、 燃料電池 2の外部 へ持ち去られる液体成分の水分量も増大する傾向にある。 その場合、 燃料電池 2 の水収支に与える影響が相対的に大きくなる。 よって、 燃料電池 2或いは排出さ れる空気の温度 t (air- out)又は水素ガスの温度 t (hyd_out)が所定の温度以下で あるときに、 上述した液体成分として排出される水分量 W l (air - out)及び W 1 (hyd-out)を算定すれば、 そのような低温時における燃料電池 2の水収支及ぴ内 部の湿潤状態をより正確に判断できるので、 燃科電池システム 1の運転性能を一 層向上させることができる。
さらに、 以上のとおり判定された燃料電池 2内の水収支及ぴその内部の湿潤状 態に基づいて、 制御部 9は、 燃料電池 2における発電反応を効率よく維持できる ように、 空気の流入流量 f (air- in)、 及び、 水素ガスの流入流量 f (hyd- in)を調 節 ·制御 (つまり最適化) することができる。
また、 こうして最適化された空気の流入流量 f (air-in)、 及び、 水素ガスの流 入流量 f (hyd- in)と、 そのときの発電量 (出力電力や発電電流 I ) との数値デー タを採取することにより、 その燃料電池 2における発電量と、 その発電量を得る ために必要かつ最適な空気の供給流量、 及ぴ、 水素ガスの供給流量とが対応付け られたデータテーブル (データベース、 制御マップ) を得ることができる。
そして、 一旦、 そのようなデータテーブルが設定されれば、 そのデータテープ ルに基づいて、 燃料電池 2で所望の発電量を得るために最適な空気及び水素ガス の供給量を簡易に決定することが可能となるので、 燃料電池 2の効率的な運転制 御を実現できる。
また、 燃料電池 2の運転データから、 そのようなデータテーブルを予め設定 し、 それを演算処理 ·記憶部 9 1のような装置に記憶させておけば、 燃料電池 2 の運転の都度、 上述した水収支及ぴ湿潤状態の判定を行わなくとも、 そのデータ テーブルに基づいて、 制御部 9による燃料電池 2の効率的な運転制御が可能とな る。 さらに、 そのようなデータテーブルを用いれば、 燃料電池 2と同種又は同型 の他の燃料電池の効率的かつ簡便な運転制御も可能となる。 なお、 本発明は上述した実施形態に限定されるものではなく、 その要旨を変更 しない限度において様々な変形が可能である。 例えば、 排出配管 1 2 , 2 3に流 量計及び湿度計を設けて、 それらの実測値と圧力の実測値により空気及び水素ガ スの排出流量を算出してもよい。 また、 湿度計 H I 0 , H 2 0に代えて、 露点計 等を設けて空気及び水素ガス中の水分含有量を実測してもよい。 さらに、 空気供 給系 3及ぴ水素ガス供給系 4の両方において、 液体成分として排出される水分量 を加味した水収支の判断を行うことが好ましいが、 いずれか一方のみにおいて実 施しても構わず、 その場合、 生成水によるフラッデイングが比較的生じ易い空気 供給系 3において実施することが好ましい。
また、 加湿器 1 5は設けなくてもよく、 この場合、 燃料電池システム 1は空気 を加湿しないシステムとなり、 そうすると、 システムに流入する空気に含まれる 水分量は加湿される場合に比して少なくなる。 このとき、 空気によって燃料電池 2の内部に単位時間あたりに持ち込まれる水分量 W (air-in)が、 例えば、 燃料電 池 2における生成水量 W gに比して無視できる程度の量であれば、 水分量 W (air_in)を実質的にゼロとみなして水収支の計算を行ってもよい。 同様に、 水素 ガスによって燃料電池 2の内部に単位時間あたりに持ち込まれる水分量 W (hyd - in)が、 燃料電池 2における生成水量 W gに比して無視できる程度の量であれ ば、 水分量 W(hyd- in)を実質的にゼロとみなして水収支の計算を行ってももちろ んよい。 - このように、 本発明における湿潤状態判定部における水収支の計算において は、 流入水分量、 排出水分量 (気体成分として排出される水分量及び液体成分と して排出される水分量)、 並びに生成水分量のうち、 液体成分として排出される 水分量を除く水分量以外の水分量については、 水収支に影響を及ぼさない程度の 量であれば、 実質的にないものとみなして (換言すれば、 ゼロと計算して) 計算 を簡略化してもよく、 そのような水収支計算を行うものも本発明における 「湿潤 状態判定部」 に含まれる。 6 なお、 本発明の燃料電池システム 1は、 車両や携帯機器等の移動体に搭載する ことはもちろん、 例えば、 燃料電池 2を定置用として、 燃料電池システム 1をコ 一ジェネレーション (熱電併給) システムに組み入れることもでき、 コージエネ レーションシステムについては、 商用はもちろんのこと家庭用住居にも導入する ことが可能である。 産業上の利用可能性
本発明による燃料電池システムによれば、 燃料電池の内部の水分量をより正確 に把握することができ、 これにより燃料電池の内部の湿潤状態をより正確に精度 良く判定することができるので、 車両や携帯機器等の移動体に搭載することはも ちろん、 燃料電池を定置用として用いる商用及ぴ家庭用のコージェネレーション
(熱電併給) システム等の設備等にも広く利用することができる。
また、 本発明の発電制御装置は、 本発明の燃料電池システムの運転結果で得ら れた発電量と燃料ガス及ぴ酸化ガスの最適な供給量とが対応付けられたデータテ 一ブルを用いることにより、 燃料電池の効率的な運転制御を簡易に行うことがで きるので、 上記と同様に、 車両や携帯機器等の移動体に搭載することはもちろ ん、 燃料電池を定置用として用いる商用及ぴ家庭用のコージェネレーションシス テム等の設備等にも広く利用することができる。

Claims

請求の範囲
1 . 燃料電池への流入水分量及び排出水分量並びに該燃料電池における生成水 分量から、 該燃料電池における水収支が判断され、 該燃料電池の湿潤状態が判定 される湿潤状態判定部を備える燃料電池システムであって、
前記湿潤状態判定部では、 前記燃料電池への流入ガスの物理量、 該燃料電池か らの排出ガスの物理量、 及び、 該燃料電池の状態量に基づいて、 前記流入水分 量、 前記排出水分量として該燃料電池から気体成分として排出される水分量及び 液体成分として排出される水分量、 並びに前記生成水分量が算定される、 燃料電池システム。
2 . 前記湿潤状態判定部では、
' 前記流入水分量が、 前記流入ガスの物理量としての流量、 圧力、 及び湿度又は 露点温度を用いて算定され、
前記気体成分として排出される水分量が、 該排出ガスの物理量としての流量、 圧力、 及ぴ、 湿度若しくは露点温度又は温度を用いて算定され、
前記生成水分量が、 前記燃料電池の状態量としての発電電流から算定される、 請求項 1記載の燃料電池システム。
3 . 前記湿潤状態判定部では、 前記発電電流から前記燃料電池の内部で消費さ れる前記流入ガスの消費流量が算出され、 該消費流量と前記流入ガスの流量とか ら、 前記排出ガスの流量が算定される、
請求項 1又は 2に記載の燃科電池システム。
4 . 前記湿潤状態判定部では、 前記燃料電池の実際の運転に先立って予め取得 された排出ガスの流量に対する燃科電池から液体成分として排出される水分量の 関係と、 該燃料電池が実際に運転されているときの排出ガスの流量とに基づい て、 該燃料電池が実際に運転されているときに液体成分として排出される水分量 が算定される、 8 請求項 1〜 3のいずれか 1項に記載の燃料電池システム。
5 . 前記湿潤状態判定部は、 前記燃料電池又は前記排出ガスの温度が所定の温 度以下であるときに、 前記液体成分として排出される水分量を算定するものであ る、
請求項 1〜 4のいずれか 1項に記載の燃料電池システム。
6 . 前記流入ガス及び前記排出ガスが、 燃料ガス及び Z又は酸化ガスである、 請求項 1〜 5のいずれか 1項に記載の燃料電池システム。
7 . 請求項 1〜6のいずれか 1項に記載の燃料電池システムにおける前記燃料 電池の前記水収支の判断結果、 及び、 該燃料電池の前記湿潤状態の判定結果に基 づいて設定された該燃料電池における発電量と、 該発電量を得るための前記燃料 ガス及び前記酸化ガスの該燃料電池への供給流量とが対応付けられたデータテー ブルを記憶する記憶部と、
前記データテーブルに基づいて、 前記燃料電池又は該燃料電池とは異なる他の 燃料電池で所望の発電量が得られるように、 該燃料電池又は該他の燃料電池へ前 記燃料ガス及び前記酸化ガスを供給する運転制御を行う制御部と、
を備える発電制御装置。
PCT/JP2006/314434 2005-08-15 2006-07-14 燃料電池システム及び発電制御装置 WO2007020768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/989,582 US8431277B2 (en) 2005-08-15 2006-07-14 Fuel cell system and generation control device
CN2006800298353A CN101243570B (zh) 2005-08-15 2006-07-14 燃料电池系统和发电控制装置
CA2616990A CA2616990C (en) 2005-08-15 2006-07-14 Fuel cell system and generation control device
DE112006002169T DE112006002169T5 (de) 2005-08-15 2006-07-14 Brennstoffzellensystem und Vorrichtung zum Steuern der Stromerzeugung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005235509A JP2007052936A (ja) 2005-08-15 2005-08-15 燃料電池システム
JP2005-235509 2005-08-15

Publications (1)

Publication Number Publication Date
WO2007020768A1 true WO2007020768A1 (ja) 2007-02-22

Family

ID=37757434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314434 WO2007020768A1 (ja) 2005-08-15 2006-07-14 燃料電池システム及び発電制御装置

Country Status (6)

Country Link
US (1) US8431277B2 (ja)
JP (1) JP2007052936A (ja)
CN (1) CN101243570B (ja)
CA (1) CA2616990C (ja)
DE (1) DE112006002169T5 (ja)
WO (1) WO2007020768A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106992A1 (de) * 2007-03-06 2008-09-12 Daimler Ag Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530176B2 (ja) * 2006-10-26 2010-08-25 トヨタ自動車株式会社 燃料電池車両
JP5151275B2 (ja) * 2007-07-03 2013-02-27 トヨタ自動車株式会社 燃料電池内水分量推定システム
JP2010108628A (ja) * 2008-10-28 2010-05-13 Espec Corp 燃料電池用水収支計測装置、燃料電池評価試験装置、並びに、燃料電池システム
JP5044676B2 (ja) * 2010-03-31 2012-10-10 本田技研工業株式会社 水噴射手段を備えた燃料電池システム
JP5003792B2 (ja) * 2010-05-07 2012-08-15 トヨタ自動車株式会社 燃料電池システム
JP5454556B2 (ja) 2011-11-22 2014-03-26 トヨタ自動車株式会社 燃料電池システム、および、燃料電池システムの制御方法
JP5482897B2 (ja) 2011-12-12 2014-05-07 トヨタ自動車株式会社 燃料電池内部の液水量の推定方法、燃料電池から排出される液水量の推定方法、燃料電池内部液水量推定装置、燃料電池システム
US9531017B2 (en) 2012-05-07 2016-12-27 Aalborg Universitet Method of operating a fuel cell
JP5935537B2 (ja) * 2012-06-21 2016-06-15 アイシン精機株式会社 燃料電池システム
DE102012018102B4 (de) * 2012-09-13 2023-04-06 Cellcentric Gmbh & Co. Kg Verfahren zur Luftversorgung einer Brennstoffzelle
JP2015185406A (ja) 2014-03-25 2015-10-22 トヨタ自動車株式会社 燃料電池システム及び燃料電池の水分量制御方法
US10115288B2 (en) 2016-04-15 2018-10-30 Ingersoll-Rand Company Automatic battery fluid reminder system for vehicles with flooded lead acid batteries and method thereof
CN109935856A (zh) * 2017-12-19 2019-06-25 中国科学院大连化学物理研究所 一种液体燃料电池系统水平衡的控制方法
JP7087770B2 (ja) * 2018-07-23 2022-06-21 トヨタ自動車株式会社 燃料電池システム
US10593971B1 (en) * 2018-11-06 2020-03-17 Nuvera Fuel Cells, LLC Methods and systems for controlling water imbalance in an electrochemical cell
CN110429306A (zh) * 2019-07-29 2019-11-08 武汉中极氢能产业创新中心有限公司 一种燃料电池水平衡测试设备和方法
CN112054230B (zh) * 2020-09-15 2022-02-08 上海燃料电池汽车动力系统有限公司 一种用于氢燃料电池排水排气装置的故障诊断方法及系统
CN114204081B (zh) * 2021-12-08 2024-04-09 上海澄朴科技有限公司 一种燃料电池系统氢气循环流量检测装置
CN116742080B (zh) * 2023-07-19 2024-05-28 江苏申氢宸科技有限公司 氢燃料电池水分离方法及系统
CN116995273B (zh) * 2023-08-16 2024-05-10 上海澄朴科技有限公司 一种大功率燃料电池系统含水状态检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256988A (ja) * 2000-03-08 2001-09-21 Toyota Motor Corp 燃料電池システムおよび燃料電池の運転方法
JP2003068337A (ja) * 2001-08-24 2003-03-07 Toyota Motor Corp 燃料電池システム
JP2004119052A (ja) * 2002-09-24 2004-04-15 Toyota Motor Corp 燃料電池システム
JP2004158274A (ja) * 2002-11-06 2004-06-03 Toyota Motor Corp 燃料電池の水分状態推定装置および燃料電池システム
JP2004192973A (ja) * 2002-12-12 2004-07-08 Sony Corp 燃料電池システム及び燃料電池運転方法
JP2006216255A (ja) * 2005-02-01 2006-08-17 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164065A (ja) 2000-11-27 2002-06-07 Nissan Motor Co Ltd 燃料電池及びその運転方法
JP4622313B2 (ja) * 2003-08-26 2011-02-02 トヨタ自動車株式会社 移動体
US6940255B2 (en) * 2003-10-23 2005-09-06 Cardiac Pacemakers, Inc. Battery charge indicator such as for an implantable medical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256988A (ja) * 2000-03-08 2001-09-21 Toyota Motor Corp 燃料電池システムおよび燃料電池の運転方法
JP2003068337A (ja) * 2001-08-24 2003-03-07 Toyota Motor Corp 燃料電池システム
JP2004119052A (ja) * 2002-09-24 2004-04-15 Toyota Motor Corp 燃料電池システム
JP2004158274A (ja) * 2002-11-06 2004-06-03 Toyota Motor Corp 燃料電池の水分状態推定装置および燃料電池システム
JP2004192973A (ja) * 2002-12-12 2004-07-08 Sony Corp 燃料電池システム及び燃料電池運転方法
JP2006216255A (ja) * 2005-02-01 2006-08-17 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106992A1 (de) * 2007-03-06 2008-09-12 Daimler Ag Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem

Also Published As

Publication number Publication date
CN101243570B (zh) 2011-03-02
CA2616990C (en) 2012-07-10
CA2616990A1 (en) 2007-02-22
JP2007052936A (ja) 2007-03-01
CN101243570A (zh) 2008-08-13
DE112006002169T5 (de) 2008-10-23
US8431277B2 (en) 2013-04-30
US20090155651A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
WO2007020768A1 (ja) 燃料電池システム及び発電制御装置
US8450016B2 (en) Fuel cell system and control method of fuel cell system
JP4200576B2 (ja) 燃料電池システム
JP5338903B2 (ja) 燃料電池の水素濃度推定装置、燃料電池システム
JP2007052937A (ja) 燃料電池システム及びその運転方法
JP5126480B2 (ja) 燃料電池システム
EP1132986A2 (en) Fuel cell system and method for operating fuel cell
JP2006351506A (ja) 燃料電池システム
JP2006210004A (ja) 燃料電池システム
JP2008103137A (ja) 燃料電池システムおよびその膜含水量調節方法
US9444115B2 (en) Fuel cell system with calculation of liquid water volume
WO2007117018A1 (ja) 燃料電池運転システム及び燃料電池運転システムにおける弁の凍結防止方法
US10333161B2 (en) Low-temperature startup method for fuel cell system
WO2008142564A1 (en) Control device and control method for fuel cell system
JP5459223B2 (ja) 燃料電池システム
JP2007165103A (ja) 燃料電池システム及びその運転方法並びに移動体
JP7312283B2 (ja) 燃料電池スタックの劣化判定方法及び燃料電池スタックを搭載する燃料電池車両
JP5411443B2 (ja) 燃料電池システム
JP7117279B2 (ja) 燃料電池車両及び該車両の停止時掃気時間の設定方法
CN102193030A (zh) 用于基于hfr的rh控制的基本堆电阻的自学习
JP4956567B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5091903B2 (ja) 燃料電池システム
JP2023132389A (ja) 燃料電池システム及び燃料電池システムの弁制御方法
JP2008262875A (ja) 燃料電池システム及び燃料電池の出力診断方法
JP2010176952A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029835.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2616990

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11989582

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112006002169

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006002169

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781389

Country of ref document: EP

Kind code of ref document: A1