WO2008106992A1 - Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem - Google Patents

Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem Download PDF

Info

Publication number
WO2008106992A1
WO2008106992A1 PCT/EP2007/001920 EP2007001920W WO2008106992A1 WO 2008106992 A1 WO2008106992 A1 WO 2008106992A1 EP 2007001920 W EP2007001920 W EP 2007001920W WO 2008106992 A1 WO2008106992 A1 WO 2008106992A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
fuel cell
cathode
flow field
operating state
Prior art date
Application number
PCT/EP2007/001920
Other languages
English (en)
French (fr)
Inventor
Bernd Buchauer
Wolfgang Maurerm
Klaus Scherrbacher
Original Assignee
Daimler Ag
Ford Global Technologies, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag, Ford Global Technologies, Llc filed Critical Daimler Ag
Priority to DE112007003340T priority Critical patent/DE112007003340A5/de
Priority to PCT/EP2007/001920 priority patent/WO2008106992A1/de
Publication of WO2008106992A1 publication Critical patent/WO2008106992A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a device for determining operating state related quantities in a fuel cell system, comprising an electric power fuel cell comprising an anode flow field, the anode flow field having an anode inlet line for supplying an oxidant stream and an anode outlet line for leading out an anode exhaust stream, and the cathode flow field wherein the cathode flow field comprises a cathode inlet conduit for supplying a fuel gas stream and a cathode outlet conduit for removing a cathode exhaust stream.
  • Such a device for a fuel cell system is known from JP 2005-093231.
  • the fuel cell system has a fuel cell for generating electrical energy, is compressed in the air by means of a compressor and fed via an air supply port to a cathode space.
  • the steam-containing exhaust gas produced during operation of the fuel cell in the cathode chamber is then led out of the fuel cell via an air outlet.
  • Separate pressure sensors are associated with both the air supply port and the air outlet of the cathode compartment, and a microprocessor calculates from the provided sensor signals a differential pressure quantity on the basis of which the operation of the compressor is controlled.
  • the task is to create a universal device that allows complete detection of the pressure conditions on a fuel cell.
  • the apparatus for determining operating state related quantities in a fuel cell system includes a conventional electric power generation fuel cell including an anode flow panel, the anode flow panel having an anode inlet line for supplying an oxidant flow and an anode outlet line for leading an anode exhaust stream, and comprising a cathode flow field.
  • the cathode flow field comprises a cathode inlet conduit for supplying a fuel gas flow and a cathode outlet conduit for removing a cathode exhaust gas flow.
  • a pressure sensor for detecting an internal line pressure is arranged in each of the lines, wherein an evaluation unit combines the sensor signals of the pressure sensors for determining the operating state-related variables in a combinatorial manner. That the determined operating state-related variables in each case represent the pressures or pressure conditions which occur during operation of the fuel cell.
  • the device according to the invention thus allows complete detection of the pressure conditions occurring at the fuel cell.
  • the number of pressure sensors is limited to an absolutely necessary level.
  • a total of four pressure sensors are present, which are distributed on the inlet pipes and outlet pipes of the fuel cell.
  • a data bus Preferably, it is a fail-safe and fault-tolerant CAN data bus, as it is mainly used in the automotive sector.
  • the sensor signals are transmitted pulse width modulated to the evaluation unit.
  • FIGURE shows an exemplary embodiment of the device according to the invention for determining operating state-related variables in a fuel cell system.
  • the fuel cell system 10 includes a fuel cell 11 that generates electric power by electrochemically reacting an oxidant with a fuel gas.
  • the Fuel cell 11 is in the present case of the type of a so-called PEMC (Polymer Exchange Membrane Fuel Cell) or a so-called PEFC (Polymer Electrolyte Fuel Cell).
  • the fuel cell 11 has an anode flow field IIa and a cathode flow field IIb separated by an electrolyte in the form of a polymer membrane.
  • the polymer membrane is coated on both sides with a catalytically active electrode material, which consists predominantly of graphite with admixtures of platinum and / or ruthenium.
  • the anode flow field IIa is supplied via an anode inlet line 12 with a hydrogen-containing fuel gas 13 which is provided by a high-pressure tank or a reformer.
  • the hydrogen-containing fuel gas 13 may be pure hydrogen gas. If the fuel cell system 10 is switched off, the anode inlet line 12 is blocked by means of an electromagnetic valve 14 in order to preclude an undesired release of hydrogen gas into the environment.
  • the anode exhaust gas stream produced in the anode flow field IIa is either discharged directly to the environment via an anode outlet line 15 or at least partially returned to the anode flow field IIa via an anode rinse line 20 which opens into the anode inlet line 12 of the fuel cell 11.
  • the volume flow of the recirculated anode exhaust gas flow can be controlled by means of an electrical throttle valve 21 arranged in the anode flushing line 20.
  • an oxygen-containing oxidizing agent 23 in the form of compressed air is fed to the cathode flow field IIb via a cathode inlet line 22.
  • the compression of the air which is transmitted via an air filter system (7)atmospphrase the vehicle is taken, takes place here by means of an electrically operated compressor 24a.
  • the air filter system has, among other things, in addition to a chemical and / or mechanical particulate filter on a silencer to reduce the noise of the compressor.
  • the water vapor-containing cathode exhaust gas stream produced in the cathode compartment IIb during operation of the fuel cell is subsequently expanded via a cathode outlet conduit 25 via an expander 24b connected to the compressor 24a and led out to the environment.
  • a cooling device 11c For cooling the fuel cell 11, a cooling device 11c is also provided.
  • the cooling device 11c is connected to a coolant circuit 30, which has an electrically operated feed pump 31 for circulating a coolant circulating in the coolant circuit 30.
  • the heat generated during operation of the fuel cell 11 process heat is discharged through a located in the coolant circuit 30 radiator 32 to the environment.
  • a separate pressure sensor 33a, 33b, 33c or 33d is arranged in each of the lines 12, 15, 22 and 25 for detecting an existing line internal pressure, wherein the sensor signals provided by the pressure sensors 33a, ..., 33d via an input port 34 are supplied to an evaluation unit 35 which combines the sensor signals for determining the operating state-related variables in a combinatorial manner. That The determined operating state-related variables in each case represent the pressures or pressure conditions which occur during operation of the fuel cell 11.
  • a total of four pressure sensors 33a, ..., 33d are provided.
  • the evaluation unit 35 determines based on the sensor signals, the individual pressures p a , ..., p d in the respective lines 12, 15, 22 and 25. Furthermore, all differential pressures I Pa -Pb L- / I Pc-Pd I between the lines 12, 15, 22 and 25, for which purpose the sensor signals provided by two of the pressure sensors 33a, ..., 33d are linked together.
  • the operating state-related variables thus obtained are subsequently provided at an output port 36 of the evaluation unit 35 for further processing by a central control unit of the fuel cell system 10.
  • the actual transmission of the sensor signals to the evaluation unit 35 takes place here by means of a data bus 37, in the present case by means of a CAN data bus.
  • the sensor signals are transmitted to the evaluation unit 35 in pulse-width-modulated fashion via separate signal lines.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung zur Ermittlung betriebszustandsbezogener Größen in einem Brennstoffzellensystem, mit einer Brennstoffzelle (11) zur Erzeugung elektrischer Energie, die ein Anodenströmungsfeld (11a) umfasst, wobei das Anodenströmungsfeld (11a) eine Anodeneinlassleitung (12) zum Zuführen eines Oxidationsmittelstroms und eine Anodenauslassleitung (15) zum Herausführen eines Anodenabgasstroms aufweist, und die ein Kathodenströmungsfeld (11b) umfasst, wobei das Kathodenströmungsfeld (11b) eine Kathodeneinlassleitung (22) zum Zuführen eines Brenngasstroms und eine Kathodenauslassleitung (25) zum Herausführen eines Kathodenabgasstroms aufweist. Erfindungsgemäß ist in jeder der Leitungen (12, 15, 22, 25) ein Drucksensor (33a,..., 33d) zur Erfassung eines Leitungsinnendrucks (pa,…,pd) angeordnet, wobei eine Auswerteeinheit (35) die Sensorsignale der Drucksensoren (33a,..., 33d) zur Ermittlung der betriebszustandsbezogenen Größen kombinatorisch miteinander verknüpft.

Description

Vorrichtung zur Ermittlung betriebszustandsbezogener Größen in einem Brennstoffzellensystem
Die Erfindung bezieht sich auf eine Vorrichtung zur Ermittlung betriebszustandsbezogener Größen in einem Brennstoffzellensystem, mit einer Brennstoffzelle zur Erzeugung elektrischer Energie, die ein Anodenströmungsfeld umfasst, wobei das Anodenströmungsfeld eine Anodeneinlassleitung zum Zuführen eines Oxidationsmittelstroms und eine Anodenauslassleitung zum Herausführen eines Anodenabgasstroms aufweist, und die ein Kathodenströmungsfeld umfasst, wobei das Kathodenströmungsfeld eine Kathodeneinlassleitung zum Zuführen eines Brenngasstroms und eine Kathodenauslassleitung zum Herausführen eines Kathodenabgasstroms aufweist.
Eine derartige Vorrichtung für ein Brennstoffzellensystem ist aus der JP 2005-093231 bekannt. Das Brennstoffzellensystem weist eine Brennstoffzelle zur Erzeugung elektrischer Energie auf, bei der Luft mittels eines Kompressors verdichtet und über einen Luftversorgungsanschluss einem Kathodenraum zugeführt wird. Das beim Betrieb der Brennstoffzelle im Kathodenraum entstehende wasserdampfhaltige Abgas wird anschließend über einen Luftauslass aus der Brennstoffzelle herausgeführt. Ferner ist ein Brenngasversorgungsanschluss vorhanden, der mit einem Anodenraum verbunden ist, um ein wasserstoffhalti- ges Brenngas zuzuführen. Da der im Brenngas enthaltene Wasserstoff beim Betrieb der Brennstoffzelle im allgemeinen nur unvollständig verbraucht wird, lässt sich dieser über eine an einem Auslass des Anodenraums angeschlossene Anodenspüllei- tung zum Brenngasversorgungsanschluss zurückführen.
Sowohl dem Luftversorgungsanschluss wie auch dem Luftauslass des Kathodenraums sind separate Drucksensoren zugeordnet, wobei ein Mikroprozessor aus den bereitgestellten Sensorsignalen eine Differenzdruckgröße berechnet, auf deren Grundlage der Betrieb des Kompressors gesteuert wird.
Vor diesem Hintergrund stellt sich die Aufgabe, eine universelle Vorrichtung zu schaffen, die eine vollständige Erfassung der Druckverhältnisse an einer Brennstoffzelle erlaubt.
Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1 gelöst.
Die Vorrichtung zur Ermittlung betriebszustandsbezogener Größen in einem Brennstoffzellensystem weist eine herkömmliche Brennstoffzelle zur Erzeugung elektrischer Energie auf, die ein Anodenströmungsfeld umfasst, wobei das Anodenströmungsfeld eine Anodeneinlassleitung zum Zuführen eines Oxidations- mittelstroms und eine Anodenauslassleitung zum Herausführen eines Anodenabgasstroms aufweist, und die ein Kathodenströmungsfeld umfasst, wobei das Kathodenströmungsfeld eine Ka- thodeneinlassleitung zum Zuführen eines Brenngasstroms und eine Kathodenauslassleitung zum Herausführen eines Kathodenabgasstroms aufweist. Erfindungsgemäß ist in jeder der Leitungen ein Drucksensor zur Erfassung eines Leitungsinnendrucks angeordnet, wobei eine Auswerteeinheit die Sensorsignale der Drucksensoren zur Ermittlung der betriebszu- standsbezogenen Größen kombinatorisch miteinander verknüpft. D.h. die ermittelten betriebszustandsbezogenen Größen geben jeweils die beim Betrieb der Brennstoffzelle auftretenden Drücke bzw. Druckverhältnisse wieder.
Auf Grundlage der Sensorsignale lassen sich dann nicht nur die Einzeldrücke in den jeweiligen Leitungen, sondern auch durch entsprechende Kombination der Sensorsignale sämtliche Differenzdrücke zwischen den verschiedenen Leitungen ermitteln.
Die erfindungsgemäße Vorrichtung erlaubt somit eine vollständige Erfassung der an der Brennstoffzelle auftretenden Druckverhältnisse.
Vorteilhafte Ausführungen der erfindungsgemäßen Vorrichtung gehen aus den Unteransprüchen hervor.
Vorteilhafterweise ist die Anzahl der Drucksensoren auf ein unbedingt notwendiges Maß begrenzt. In diesem Fall sind insgesamt vier Drucksensoren vorhanden, die auf die Einlassleitungen und Auslassleitungen der Brennstoffzelle verteilt sind.
Um die Anzahl der Signalleitungen zwischen den Drucksensoren und der Auswerteeinheit zu verringern, ist es ferner von Vorteil, wenn die Übertragung der Sensorsignale mittels eines Datenbusses erfolgt. Vorzugsweise handelt es sich um einen störsicheren und fehlertoleranten CAN-Datenbus, wie er vor allem im Automobilbereich verbreitet ist.
Im Sinne einer Erhöhung der Störsicherheit ist es denkbar, dass die Sensorsignale pulsweitenmoduliert an die Auswerteeinheit übertragen werden.
Die erfindungsgemäße Vorrichtung wird im folgenden anhand der beigefügten Zeichnung näher erläutert. Die einzige Figur zeigt ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zur Ermittlung betriebszustandbezogener Größen in einem Brennstoffzellensystem.
Das Brennstoffzellensystem 10 umfasst eine Brennstoffzelle 11, die elektrische Energie durch elektrochemische Reaktion eines Oxidationsmittels mit einem Brenngas erzeugt. Die Brennstoffzelle 11 ist im vorliegenden Fall vom Typ einer sogenannten PEMC (Polymer Exchange Membrane Fuel Cell) bzw. einer sogenannten PEFC (Polymer Electrolyte Fuel Cell) .
Dementsprechend weist die Brennstoffzelle 11 ein Anodenströmungsfeld IIa und ein Kathodenströmungsfeld IIb auf, die durch einen Elektrolyten in Gestalt einer Polymermembran voneinander getrennt sind. Die Polymermembran ist auf beiden Seiten mit einem katalytisch aktiven Elektrodenmaterial beschichtet, das vorwiegend aus Graphit mit Beimischungen von Platin und/oder Ruthenium besteht.
Zum Betrieb der Brennstoffzelle 11 wird dem Anodenströmungsfeld IIa über eine Anodeneinlassleitung 12 ein wasserstoff- haltiges Brenngas 13 zugeführt, das von Seiten eines Hochdrucktanks oder eines Reformers bereitgestellt wird. Bei dem wasserstoffhaltigen Brenngas 13 kann es sich um reines Wasserstoffgas handeln. Ist das Brennstoffzellensystem 10 abgeschaltet, so wird die Anodeneinlassleitung 12 mittels eines elektromagnetischen Ventils 14 gesperrt, um eine unerwünschte Freisetzung von Wasserstoffgas in die Umgebung auszuschließen.
Der im Anodenströmungsfeld IIa entstehende Anodenabgasstrom wird über eine Anodenauslassleitung 15 entweder unmittelbar zur Umgebung hin abgelassen oder aber zumindest teilweise ü- ber eine Anodenspülleitung 20, die in die Anodeneinlassleitung 12 der Brennstoffzelle 11 mündet, in das Anodenströmungsfeld IIa zurückgeführt. Der Volumenfluss des zurückgeführten Anodenabgasstroms lässt sich mittels eines in der A- nodenspülleitung 20 angeordneten elektrischen Drosselklappenventils 21 steuern.
Gleichzeitig wird dem Kathodenströmungsfeld IIb über eine Ka- thodeneinlassleitung 22 ein sauerstoffhaltiges Oxidationsmit- tel 23 in Form von komprimierter Luft zugeführt. Die Komprimierung der Luft, die über ein Luftfiltersystem aus der Au- ßenatmosphäre des Fahrzeugs entnommen wird, erfolgt hierbei mittels eines elektrisch betriebenen Kompressors 24a. Das Luftfiltersystem weist unter anderem neben einem chemischen und/oder mechanischen Partikelfilter einen Schalldämpfer zur Verringerung des Kompressorgeräuschs auf. Der im Kathodenraum IIb beim Betrieb der Brennstoffzelle entstehende wasserdampf- haltige Kathodenabgasstrom wird anschließend über eine Katho- denauslassleitung 25 über einen mit dem Kompressor 24a verbundenen Expander 24b entspannt und zur Umgebung hin herausgeführt.
Zur Kühlung der Brennstoffzelle 11 ist ferner eine Kühleinrichtung llc vorgesehen. Die Kühleinrichtung 11c ist an einen Kühlmittelkreislauf 30 angeschlossen, der eine elektrisch betriebene Förderpumpe 31 zum Umwälzen eines in dem Kühlmittelkreislauf 30 zirkulierenden Kühlmittels aufweist. Die beim Betrieb der Brennstoffzelle 11 anfallende Prozesswärme wird über einen im Kühlmittelkreislauf 30 befindlichen Radiator 32 an die Umgebung abgegeben.
Beispielsgemäß ist in jeder der Leitungen 12, 15, 22 bzw. 25 ein separater Drucksensor 33a, 33b, 33c bzw. 33d zur Erfassung eines jeweils vorliegenden Leitungsinnendrucks angeordnet, wobei die von den Drucksensoren 33a,..., 33d bereitgestellten Sensorsignale über einen Eingangsport 34 einer Auswerteeinheit 35 zugeführt werden, die die Sensorsignale zur Ermittlung der betriebszustandsbezogenen Größen kombinatorisch miteinander verknüpft. D.h. die ermittelten betriebszustandsbezogenen Größen geben jeweils die beim Betrieb der Brennstoffzelle 11 auftretenden Drücke bzw. Druckverhältnisse wieder.
Beispielsgemäß sind insgesamt vier Drucksensoren 33a,..., 33d vorgesehen. Es ist allerdings auch vorstellbar, diese durch Anordnung weiterer Drucksensoren redundant auszuführen. Die Auswerteeinheit 35 ermittelt auf Grundlage der Sensorsignale die Einzeldrücke pa,..., pd in den jeweiligen Leitungen 12, 15, 22 und 25. Ferner werden sämtliche Differenzdrücke I Pa-Pb L-/ I Pc-Pd I zwischen den Leitungen 12, 15, 22 und 25 berechnet, wozu die von jeweils zwei der Drucksensoren 33a,..., 33d bereitgestellten Sensorsignale miteinander verknüpft werden. Die so gewonnenen betriebszustandsbezogenen Größen werden anschließend an einem Ausgangsport 36 der Auswerteeinheit 35 zur Weiterverarbeitung durch eine zentrale Steuereinheit des Brennstoffzellensystems 10 bereitgestellt.
Die eigentliche Übertragung der Sensorsignale zur Auswerteeinheit 35 erfolgt hierbei mittels eines Datenbusses 37, im vorliegenden Fall mittels eines CAN-Datenbusses .
Gemäß einer alternativen Ausführungsform werden die Sensorsignale über separate Signalleitungen pulsweitenmoduliert an die Auswerteeinheit 35 übertragen.
Bezugszeichenliste
Figure imgf000009_0001

Claims

Patentansprüche
1. Vorrichtung zur Ermittlung betriebszustandsbezogener Größen in einem Brennstoffzellensystem, mit einer Brennstoffzelle (11) zur Erzeugung elektrischer Energie, die ein Anodenströmungsfeld (IIa) umfasst, wobei das Anodenströmungsfeld (IIa) eine Anodeneinlassleitung (12) zum Zuführen eines Oxidationsmittelstroms und eine Anodenaus- lassleitung (15) zum Herausführen eines Anodenabgasstroms aufweist, und die ein Kathodenströmungsfeld (IIb) umfasst, wobei das Kathodenströmungsfeld (IIb) eine Katho- deneinlassleitung (22) zum Zuführen eines Brenngasstroms und eine Kathodenauslassleitung (25) zum Herausführen eines Kathodenabgasstroms aufweist, dadurch gekennzeichnet, dass in jeder der Leitungen (12, 15, 22, 25) ein Drucksensor (33a, ..., 33d) zur Erfassung eines Leitungsinnendrucks ( pa, ...,Pd) angeordnet ist, wobei eine Auswerteeinheit (35) die Sensorsignale der Drucksensoren (33a,..., 33d) zur Ermittlung der betriebszustandsbezogenen Größen kombinatorisch miteinander verknüpft.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass insgesamt vier Drucksensoren (33a, ..., 33d) vorhanden sind, die auf die Einlassleitungen (12, 22) und Auslassleitungen (15, 25) der Brennstoffzelle (11) verteilt sind.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Sensorsignale mittels eines Datenbusses (37), insbesondere mittels eines CAN-Busses an die Auswerteeinheit (35) übertragen werden.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Sensorsignale pulsweitenmoduliert an die Auswerteeinheit (35) übertragen werden.
PCT/EP2007/001920 2007-03-06 2007-03-06 Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem WO2008106992A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112007003340T DE112007003340A5 (de) 2007-03-06 2007-03-06 Vorrichtung zur Ermittlung betriebszustandsbezogener Größen in einem Brennstoffzellensystem
PCT/EP2007/001920 WO2008106992A1 (de) 2007-03-06 2007-03-06 Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/001920 WO2008106992A1 (de) 2007-03-06 2007-03-06 Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem

Publications (1)

Publication Number Publication Date
WO2008106992A1 true WO2008106992A1 (de) 2008-09-12

Family

ID=38230179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/001920 WO2008106992A1 (de) 2007-03-06 2007-03-06 Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem

Country Status (2)

Country Link
DE (1) DE112007003340A5 (de)
WO (1) WO2008106992A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014139718A1 (de) 2013-03-12 2014-09-18 Robert Bosch Gmbh Verfahren zum regeln einer feuchte eines kathodengases einer brennstoffzelle sowie brennstoffzellenanordnung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948069A2 (de) * 1998-02-10 1999-10-06 General Motors Corporation Erfassung und Korrektion von Brennstoffzellen-Überfluten
US20020074047A1 (en) * 2000-12-15 2002-06-20 Siemens Automotive Inc. Air mass flow controller
DE10214868A1 (de) * 2002-04-04 2003-10-23 Daimler Chrysler Ag Vorrichtung mit einer Überwachungseinheit und Verfahren hierzu
JP2004192919A (ja) * 2002-12-10 2004-07-08 Toyota Motor Corp 燃料電池システム
US20050220634A1 (en) * 2004-03-31 2005-10-06 Fogelstrom Kenneth A Air brake system characterization by self- learning algorithm
CN1719201A (zh) * 2005-07-15 2006-01-11 中国船舶重工集团公司第七一一研究所 多参数智能传感器
WO2007020768A1 (ja) * 2005-08-15 2007-02-22 Toyota Jidosha Kabushiki Kaisha 燃料電池システム及び発電制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948069A2 (de) * 1998-02-10 1999-10-06 General Motors Corporation Erfassung und Korrektion von Brennstoffzellen-Überfluten
US20020074047A1 (en) * 2000-12-15 2002-06-20 Siemens Automotive Inc. Air mass flow controller
DE10214868A1 (de) * 2002-04-04 2003-10-23 Daimler Chrysler Ag Vorrichtung mit einer Überwachungseinheit und Verfahren hierzu
JP2004192919A (ja) * 2002-12-10 2004-07-08 Toyota Motor Corp 燃料電池システム
US20050220634A1 (en) * 2004-03-31 2005-10-06 Fogelstrom Kenneth A Air brake system characterization by self- learning algorithm
CN1719201A (zh) * 2005-07-15 2006-01-11 中国船舶重工集团公司第七一一研究所 多参数智能传感器
WO2007020768A1 (ja) * 2005-08-15 2007-02-22 Toyota Jidosha Kabushiki Kaisha 燃料電池システム及び発電制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014139718A1 (de) 2013-03-12 2014-09-18 Robert Bosch Gmbh Verfahren zum regeln einer feuchte eines kathodengases einer brennstoffzelle sowie brennstoffzellenanordnung
DE102013204270A1 (de) 2013-03-12 2014-09-18 Robert Bosch Gmbh Verfahren zum Regeln einer Feuchte eines Kathodengases einer Brennstoffzelle sowie Brennstoffzellenanordnung

Also Published As

Publication number Publication date
DE112007003340A5 (de) 2010-01-28

Similar Documents

Publication Publication Date Title
DE112008002901T5 (de) Brennstoffzellensystem und Startsteuerverfahren für ein Brennstoffzellensystem
DE10107128B4 (de) Brennstoffzellensystem und Verfahren zum Steuern eines Brennstoffzellensystems
DE102016218059A1 (de) Brennstoffzellensystem und verfahren zum steuern desselben
DE102007039928B4 (de) Verfahren und System zur Detektion einer Flutung von Einzelzellen eines Brennstoffzellenstapels unter Verwendung von Mustererkennungstechniken
DE102007059737B4 (de) Verfahren zur Bestimmung des Anodenabgasablasses sowie dazugehöriges Brennstoffzellensystem
DE112008000869B4 (de) Brennstoffzellensystem
DE102008055803B4 (de) System und Verfahren zur modellbasierten Abgasmischsteuerung in einer Brennstoffzellenanwendung
DE112009005381T5 (de) Verfahren und Vorrichtung zur Bestimmung von Feuchtigkeitszuständen einzelner Zellen in einer Brennstoffzelle, Verfahren und Vorrichtung zur Steuerung von Feuchtigkeitszuständen einzelner Zellen in einer Brennstoffzelle, und Brennstoffzellensystemen
DE112005000906T5 (de) Brennstoffzellensystem
DE102008010493B4 (de) Waschflüssigkeitsanlage für Brennstoffzellen-Fahrzeuge
DE102015213913A1 (de) Verfahren und System zum Ablassen von Anodenabgas einer Brennstoffzelle
DE102007059738B4 (de) Verfahren zur Bestimmung, ob sich ein Brennstoffzellenstapel überhitzt sowie entsprechend betreibbares Brennstoffzellensystem
DE102013105044A1 (de) Algorithmus zum Extremasuchen in einem variablen Zeitintervall zur Ermittlung eines Anodendrucksensorausfallfehlers in einem Brennstoffzellensystem
DE102008053345B4 (de) Brennstoffzellensystem
DE102007038173A1 (de) Diagnosesystem für unwuchtige Motorwellen für einen Hochgeschwindigkeitskompressor
DE102007041870A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennstoffzellenanordnung
WO2007098782A1 (de) Anodenversorgungssystem für einen brennstoff zellenstapel sowie methode zur reinigung des anodenversorgungssystems
DE112008002292T5 (de) Brennstoffzellensystem und Verfahren zum Steuern einer Reaktionsgaszuführmenge
WO2008106992A1 (de) Vorrichtung zur ermittlung betriebszustandsbezogener grössen in einem brennstoffzellensystem
DE102007015955B4 (de) Vorrichtung zum Betreiben eines Brennstoffzellensystems
DE112008002705T5 (de) Brennstoffzellensystem und Aktivierungsverfahren für eine Brennstoffzelle
DE102016118346A1 (de) Kathodenversorgung für eine Brennstoffzelle
WO2023272326A1 (de) Anlage zur durchführung einer elektrolyse
WO2019048217A1 (de) Verfahren zum betreiben einer brennstoffzelle
WO2021083660A1 (de) Verfahren zum betreiben eines brennstoffzellensystems und steuergerät dafür

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07723065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120070033401

Country of ref document: DE

REF Corresponds to

Ref document number: 112007003340

Country of ref document: DE

Date of ref document: 20100128

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07723065

Country of ref document: EP

Kind code of ref document: A1