JP2009289715A - 燃料電池システム及び遮断弁の開閉状態判定方法 - Google Patents

燃料電池システム及び遮断弁の開閉状態判定方法 Download PDF

Info

Publication number
JP2009289715A
JP2009289715A JP2008144234A JP2008144234A JP2009289715A JP 2009289715 A JP2009289715 A JP 2009289715A JP 2008144234 A JP2008144234 A JP 2008144234A JP 2008144234 A JP2008144234 A JP 2008144234A JP 2009289715 A JP2009289715 A JP 2009289715A
Authority
JP
Japan
Prior art keywords
pressure
valve
fuel gas
fuel cell
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144234A
Other languages
English (en)
Other versions
JP5097016B2 (ja
Inventor
Koichi Takaku
晃一 高久
Hirokazu Kuwabara
宏和 桑原
Kenichiro Ueda
健一郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008144234A priority Critical patent/JP5097016B2/ja
Publication of JP2009289715A publication Critical patent/JP2009289715A/ja
Application granted granted Critical
Publication of JP5097016B2 publication Critical patent/JP5097016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】遮断弁に内蔵されるシールを損傷させずに、遮断弁の開閉状態を容易に判定可能な燃料電池システム及び遮断弁の開閉状態判定方法を提供する。
【解決手段】燃料電池スタック10と、水素タンク21と、水素供給流路と、第1遮断弁22と、第1遮断弁22を制御する弁制御手段と、水素の消費量を制御する消費量制御手段と、水素の圧力を制御する圧力制御手段と、第2圧力センサ32と、水素の圧力と水素消費量とに基づいて、第1遮断弁22の開閉状態を判定する開閉状態判定手段と、を備える燃料電池システム1であって、第1遮断弁22を閉じるように制御した後、消費量制御手段は、第1遮断弁22の検査用の検査用消費量に制御し、圧力制御手段は、閉制御時の圧力を制御目標値として維持するように制御し、開閉状態判定手段は、実際の水素の実測圧力P2と予測圧力P2´との差が、所定値以下でない場合、第1遮断弁22は閉じていないと判定する。
【選択図】図1

Description

本発明は、燃料電池システム及び遮断弁の開閉状態判定方法に関する。
近年、水素(燃料ガス、反応ガス)がアノードに、酸素を含む空気(酸化剤ガス、反応ガス)がカソードに、それぞれ供給されることで発電する固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:PEFC)等の燃料電池の開発が盛んである。
このような水素は、水素が高圧で封入された水素タンクから、燃料電池に供給され、水素タンクと燃料電池との間の水素供給流路には、複数の遮断弁や減圧弁が設けられる。遮断弁は、通常、常閉型で電磁式の遮断弁が使用され、外部から燃料電池に対して発電要求があった場合に開かれる。すなわち、発電要求がない場合、水素の漏洩等を防止するため、遮断弁を確実に閉じておく必要がある。
そこで、燃料電池の発電停止指令が発せられ、遮断弁を閉じるように制御した後、所定時間にて、燃料電池の発電を継続させることにより、水素を消費し、遮断弁の下流における水素の圧力が下がった場合、遮断弁は閉じていると判定する技術が提案されている(特許文献1参照)。
特開2005−123093号公報
しかしながら、高負荷状態において、燃料電池の発電停止指令が発せられた場合、燃料電池による水素消費量を下げると共に、この下げられた水素消費量に対応して目標水素圧力(制御目標値)を下げると、高負荷状態であったため多量に存在する水素の消費に時間を要し、遮断弁が閉じているか否か判定するために時間を要していた。
一方、低負荷状態において、燃料電池の発電停止指令が発せられた場合、燃料電池による水素消費量を上げると共に、この上げられた水素消費量に対応して目標水素圧力(制御目標値)を上げると、低負荷状態であったため少量しか存在しない水素が直ちに消費されてしまい、その結果、遮断弁の下流側の水素の圧力が急激に低下し、遮断弁が実際に閉じていたとき、遮断弁の上流側の圧力と、下流側の圧力との圧力差が大きくなり、遮断弁に内蔵されるシール(例えばOリング)等に、大きな圧力差が作用し、シールが損傷する虞があった。
なお、高負荷状態とは、外部からの発電要求量が大きいため、これに対応して、燃料電池の出力電流が大きく、燃料電池に供給される水素の圧力が高い状態を意味する。一方、低負荷状態とは、外部からの発電要求量が小さく、これに対応して、燃料電池の出力電流が小さく、燃料電池に供給される水素の圧力が低い状態を意味する。
そこで、本発明は、遮断弁に内蔵されるシールを損傷させずに、遮断弁の開閉状態を容易に判定可能な燃料電池システム及び遮断弁の開閉状態判定方法を提供することを課題とする。
前記課題を解決するための手段として、本発明は、燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスが、それぞれ供給されることで発電する燃料電池と、前記燃料ガス流路に燃料ガスを供給する燃料ガス供給源と、前記燃料ガス供給源から前記燃料ガス流路に向かう燃料ガスが通流する供給流路と、前記供給流路に設けられた第1遮断弁と、前記第1遮断弁を制御する弁制御手段と、前記燃料電池の発電を制御し、当該燃料電池による燃料ガスの消費量を制御する消費量制御手段と、前記燃料ガス流路における燃料ガスの圧力を制御する圧力制御手段と、前記第1遮断弁の下流の前記供給流路に設けられ、燃料ガスの圧力を検出する圧力検出手段と、前記圧力検出手段が検出した燃料ガスの圧力と、前記燃料電池における燃料ガス消費量とに基づいて、前記第1遮断弁の開閉状態を判定する開閉状態判定手段と、を備える燃料電池システムであって、前記燃料電池の発電停止信号を受信したことにより、前記弁制御手段が前記第1遮断弁を閉じるように制御した後、前記消費量制御手段は、前記燃料電池を発電させ、当該燃料電池による燃料ガスの消費量を、前記第1遮断弁の検査用の検査用消費量に制御し、前記圧力制御手段は、燃料ガスの圧力を、前記第1遮断弁の閉制御時の圧力を制御目標値として維持するように制御し、前記開閉状態判定手段は、前記圧力検出手段が検出した実際の燃料ガスの圧力と、前記第1遮断弁の閉制御時において前記圧力検出手段が検出した燃料ガスの圧力及び前記燃料電池の前記検査用消費量に基づいて予測される燃料ガスの圧力との差が、所定値以下でない場合、前記第1遮断弁は閉じていないと判定することを特徴とする燃料電池システムである。
ここで、第1遮断弁の検査用の検査用消費量は、燃料電池の大きさ、燃料ガスが通流する供給流路の容積、第1遮断弁に内蔵されるシールの耐圧性等に基づいて、閉指令を受けた第1遮断弁が正常に閉じたと仮定した場合において、第1遮断弁の下流で圧力検出手段の検出する燃料ガスの圧力が速やかに低下すると共に、急激に低下せず前記シールが損傷しない消費量に設定される。
このような燃料電池システムによれば、弁制御手段が第1遮断弁を閉じるように制御した後、消費量制御手段が燃料電池による燃料ガスの消費量を検査用消費量に制御する。
そして、圧力制御手段が、燃料ガス流路における燃料ガスの圧力を、第1遮断弁の閉制御時の圧力を制御目標値として維持するように制御する。つまり、燃料ガス流路における燃料ガスの圧力は、燃料電池の発電停止信号を受信後において、燃料電池が消費する燃料ガスの消費量の変化に関わらず、第1遮断弁の閉制御時の圧力を制御目標値として維持するように制御される。
すなわち、高負荷状態で燃料電池の発電停止信号を受信した場合、圧力制御手段が、燃料ガス流路における燃料ガスの圧力を、第1遮断弁の閉制御時の圧力(高負荷状態に対応した高い圧力)を、制御目標値として維持するように制御するので、第1遮断弁が正常に閉じていたとき、第1遮断弁の下流の燃料ガスの圧力が速やかに低下する。これにより、開閉状態判定手段が、第1遮断弁の開閉状態を速やかに判定でき、時間を要することはない。
一方、低負荷状態で燃料電池の発電停止信号を受信した場合、圧力制御手段が、燃料ガス流路における燃料ガスの圧力を、第1遮断弁の閉制御時の圧力(低負荷状態に対応した低い圧力)を、制御目標値として維持するように制御するので、第1遮断弁が正常に閉じていたとき、第1遮断弁の下流における燃料ガスの圧力が急激に低下しない。これにより、遮断弁に内蔵されるシールに大きな圧力差が作用することもなく、シールが損傷することもない。
また、前記第1遮断弁と前記燃料ガス流路との間に第2遮断弁を備え、前記圧力検出手段は前記第1遮断弁と前記第2遮断弁との間に配置されており、前記第1遮断弁が閉じるように制御された後において、前記圧力検出手段が検出する燃料ガスの圧力に基づいて、前記第1遮断弁のシールが損傷する虞があると判断された場合、前記弁制御手段は、前記第2遮断弁を閉じるように制御することを特徴とする燃料電池システムである。
このような燃料電池システムによれば、圧力検出手段が検出する燃料ガスの圧力に基づいて、第1遮断弁のシールが損傷する虞があると判断された場合、弁制御手段が第2遮断弁を閉じるように制御するので、第1遮断弁の下流における燃料ガスの圧力が、その後、低下することはない。これにより第1遮断弁のシールに、大きな圧力差が作用することはなく、シールが損傷することもない。
なお、第1遮断弁のシールが損傷する虞があると判断される場合とは、例えば、第1遮断弁の下流における燃料ガスの低下率が所定低下率以上である場合や、第1遮断弁に作用する圧力差が所定圧力差以上となる場合である。
また、前記燃料ガス供給源は燃料ガスが高圧で封入された高圧タンクであり、前記第1遮断弁が前記高圧タンク内に配置されていることを特徴とする燃料電池システムである。
このような燃料電池システムによれば、高圧タンク内に配置され、外部から直接視認不能である第1遮断弁のシールの損傷を防止できる。これにより、第1遮断弁を精密に検査するため、高圧タンクから第1遮断弁を取り出す検査頻度等を延ばすことができる。
また、燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスが、それぞれ供給されることで発電する燃料電池と、前記燃料ガス流路に燃料ガスを供給する燃料ガス供給源と、前記燃料ガス供給源から前記燃料ガス流路に向かう燃料ガスが通流する供給流路と、前記供給流路に設けられた第1遮断弁と、前記第1遮断弁を制御する弁制御手段と、前記燃料電池の発電を制御し、当該燃料電池による燃料ガスの消費量を制御する消費量制御手段と、前記燃料ガス流路における燃料ガスの圧力を制御する圧力制御手段と、前記第1遮断弁の下流の前記供給流路に設けられ、燃料ガスの圧力を検出する圧力検出手段と、前記圧力検出手段が検出した燃料ガスの圧力と、前記燃料電池における燃料ガス消費量とに基づいて、前記第1遮断弁の開閉状態を判定する開閉状態判定手段と、を備える燃料電池システムにおける遮断弁の開閉状態判定方法であって、前記燃料電池の発電停止信号を受信したことにより、前記弁制御手段が前記第1遮断弁を閉じるように制御した後、前記消費量制御手段は、前記燃料電池を発電させ、当該燃料電池による燃料ガスの消費量を、前記第1遮断弁の検査用の検査用消費量に制御し、前記圧力制御手段は、燃料ガスの圧力を、前記第1遮断弁の閉制御時の圧力を制御目標値として維持するように制御し、前記開閉状態判定手段は、前記圧力検出手段が検出した実際の燃料ガスの圧力と、前記第1遮断弁の閉制御時において前記圧力検出手段が検出した燃料ガスの圧力及び前記燃料電池の前記検査用消費量に基づいて予測される燃料ガスの圧力との差が、所定値以下でない場合、前記第1遮断弁は閉じていないと判定することを特徴とする遮断弁の開閉状態判定方法である。
このような遮断弁の開閉状態判定方法によれば、弁制御手段が第1遮断弁を閉じるように制御した後、消費量制御手段が燃料電池による燃料ガスの消費量を検査用消費量に制御する。
そして、圧力制御手段が、燃料ガス流路における燃料ガスの圧力を、第1遮断弁の閉制御時の圧力を制御目標値として維持するように制御する。つまり、燃料ガス流路における燃料ガスの圧力は、燃料電池の発電停止信号を受信後において、燃料電池が消費する燃料ガスの消費量の変化に関わらず、第1遮断弁の閉制御時の圧力を制御目標値として維持するように制御される。
すなわち、高負荷状態で燃料電池の発電停止信号を受信した場合、圧力制御手段が、燃料ガス流路における燃料ガスの圧力を、第1遮断弁の閉制御時の圧力(高負荷状態に対応した高い圧力)を、制御目標値として維持するように制御するので、第1遮断弁が正常に閉じていたとき、第1遮断弁の下流の燃料ガスの圧力が速やかに低下する。これにより、開閉状態判定手段が、第1遮断弁の開閉状態を速やかに判定でき、時間を要することはない。
一方、低負荷状態で燃料電池の発電停止信号を受信した場合、圧力制御手段が、燃料ガス流路における燃料ガスの圧力を、第1遮断弁の閉制御時の圧力(低負荷状態に対応した低い圧力)を、制御目標値として維持するように制御するので、第1遮断弁が正常に閉じていたとき、第1遮断弁の下流における燃料ガスの圧力が急激に低下しない。これにより、遮断弁に内蔵されるシールに大きな圧力差が作用することもなく、シールが損傷することもない。
また、前記燃料電池システムは前記第1遮断弁と前記燃料ガス流路との間に第2遮断弁を備え、前記圧力検出手段が前記第1遮断弁と前記第2遮断弁との間に配置されており、
前記第1遮断弁が閉じるように制御された後において、前記圧力検出手段が検出する燃料ガスの圧力に基づいて、前記第1遮断弁のシールが損傷する虞があると判断された場合、前記弁制御手段は、前記第2遮断弁を閉じるように制御することを特徴とする遮断弁の開閉状態判定方法である。
このような遮断弁の開閉状態判定方法によれば、圧力検出手段が検出する燃料ガスの圧力に基づいて、第1遮断弁のシールが損傷する虞があると判断された場合、弁制御手段が第2遮断弁を閉じるように制御するので、第1遮断弁の下流における燃料ガスの圧力が、その後、低下することはない。これにより第1遮断弁のシールに、大きな圧力差が作用することはなく、シールが損傷することもない。
本発明によれば、遮断弁に内蔵されるシールを損傷させずに、遮断弁の開閉状態を容易に判定可能な燃料電池システム及び遮断弁の開閉状態判定方法を提供することができる。
本発明の一実施形態について、図1から図4を参照して説明する。
≪燃料電池システムの構成≫
図1に示す本実施形態に係る燃料電池システム1は、図示しない燃料電池自動車(移動体)に搭載されている。燃料電池システム1は、燃料電池スタック10と、燃料電池スタック10のアノードに対して水素(燃料ガス、反応ガス)を給排するアノード系と、燃料電池スタック10のカソードに対して酸素を含む空気(酸化剤ガス、反応ガス)を給排するカソード系と、燃料電池スタック10の発電電力を消費する電力消費系と、これらを電子制御するECU70(Electronic Control Unit、電子制御装置)と、を備えている。
<燃料電池スタック>
燃料電池スタック10は、複数(例えば200〜400枚)の固体高分子型の単セル11が積層されることで構成されたスタックであり、複数の単セル11は電気的に直列で接続されている。単セル11は、MEA(Membrane Electrode Assembly:膜電極接合体)と、これを挟み2枚の導電性を有するアノードセパレータ及びカソードセパレータと、を備えている。
MEAは、1価の陽イオン交換膜(例えばパーフルオロスルホン酸型)からなる電解質膜(固体高分子膜)と、これを挟むアノード及びカソードとを備えている。アノード及びカソードは、カーボンペーパ等の導電性を有する多孔質体から主に構成されると共に、アノード及びカソードにおける電極反応を生じさせるための触媒(Pt、Ru等)を含んでいる。
アノードセパレータには、各MEAのアノードに対して水素を給排するため単セル11の積層方向に延びる貫通孔(内部マニホールドと称される)や、単セル11の面方向に延びる溝が形成されており、これら貫通孔及び溝がアノード流路12(燃料ガス流路)として機能している。
カソードセパレータには、各MEAのカソードに対して空気を給排するため単セル11の積層方向に延びる貫通孔(内部マニホールドと称される)や、単セル11の面方向に延びる溝が形成されており、これら貫通孔及び溝がカソード流路13(酸化剤ガス流路)として機能している。
そして、アノード流路12を介して各アノードに水素が供給されると、式(1)の電極反応が起こり、カソード流路13を介して各カソードに空気が供給されると、式(2)の電極反応が起こり、各単セル11で電位差(OCV(Open Circuit Voltage)、開回路電圧)が発生するようになっている。次いで、燃料電池スタック10と走行モータ(燃料電池自動車の動力源)等の外部回路とが電気的に接続され、電流が取り出されると、燃料電池スタック10が発電するようになっている。
2H→4H+4e …(1)
+4H+4e→2HO …(2)
<アノード系>
アノード系は、水素が高圧で封入された水素タンク21(燃料ガス源)と、常閉型の第1遮断弁22と、第1減圧弁23と、常閉型の第2遮断弁24と、第2減圧弁25と、エゼクタ28と、常閉型のパージ弁29(燃料ガス排出弁)と、第1圧力センサ31、第2圧力センサ32及び第3圧力センサ33(圧力検出手段)を備えている。
水素タンク21は、水素が高圧で封入されたタンクである。第1遮断弁22は、水素タンク21内、詳細には、水素の出口となる水素タンク21の口金部内に配置されたインタンク電磁弁である。
水素タンク21は、第1遮断弁22、配管22a、第1減圧弁23、配管23a、第2遮断弁24、配管24a、第2減圧弁25、配管25a、エゼクタ28、配管28aを介して、アノード流路12の入口に接続されている。つまり、水素タンク21からアノード流路12に向かう水素が通流する水素供給流路は、配管22aと、配管23aと、配管24aと、配管25aと、配管28aとを備えて構成されており、この水素供給流路に第1遮断弁22及び第2遮断弁24が設けられている。また、第1遮断弁22及び第2遮断弁24は、閉弁時に弁体が着座する弁座にシール(いずれも図示しない)を内蔵している。
そして、ECU70(弁制御手段)によって、第1遮断弁22及び第2遮断弁24が開かれると、水素タンク21の水素が配管22a等を介してアノード流路12に供給されるようになっている。
また、第2減圧弁25には、コンプレッサ41からカソード流路13に向かう空気の圧力が、オリフィス26が設けられた配管26aを介して、信号圧(パイロット圧)として入力されるようになっている。そして、第2減圧弁25は、入力された空気の圧力に基づいて、水素の圧力を制御する構成となっている。
さらに、配管26aは、配管27aを介して、常閉型のインジェクタ27に接続されている。インジェクタ27は、リリーフ弁として機能し、ECU70からの開指令に従って開くと、空気が外部に噴射され、配管26a及び配管27aの圧力、つまり、第2減圧弁25に入力されるパイロット圧が下がるようになっている。すなわち、ECU70が、インジェクタ27を適宜に制御することで、第2減圧弁25に入力されるパイロット圧が変化し、これにより、第2減圧弁25の二次側圧力(アノード流路12における水素の圧力P4)が制御されるようになっている。つまり、アクセルの踏み込み量が大きく、運転者からの発電要求量が大きい場合(高負荷状態)、アノード流路12における水素の圧力P4は高くなるように制御され、一方、アイドリング等、発電要求量が小さい場合(低負荷状態)、アノード流路12における水素の圧力P4は低くなるように制御される。
よって、アノード流路12における水素の圧力を制御する圧力制御手段は、第2減圧弁25と、インジェクタ27と、ECU70とを備えて構成されている。
アノード流路12の出口は、配管28b(燃料ガス循環ライン)を介して、燃料電池スタック10の上流のエゼクタ28の吸込口に接続されている。これにより、アノード流路12(アノード)から排出された未消費の水素を含むアノードオフガスは、エゼクタ28に戻され、その結果、水素が循環するようになっている。
なお、配管28bには気液分離器(図示しない)が設けられており、この気液分離器によって、循環する水素に同伴する水分が分離されるようになっている。
配管28bは、その途中で、配管29a、パージ弁29、配管29bを介して、希釈器(図示しない)に接続されている。パージ弁29は、燃料電池スタック10の発電時において、配管28bを循環する水素に同伴する不純物(水蒸気、窒素等)を排出(パージ)する場合、ECU70によって開かれる設定となっている。
なお、ECU70は、例えば、単セル11の電圧を検出するセル電圧モニタ(図示しない)から入力される最低セル電圧が、所定最低セル電圧以下となった場合、不純物を排出する必要があると判定し、パージ弁29を開く設定となっている。
第1圧力センサ31は、水素タンク21内に設けられており、水素タンク21内の圧力(実測圧力P1)を検出し、ECU70に出力するようになっている。
第2圧力センサ32は、第1遮断弁22と第1減圧弁23との間の配管22aに設けられており、配管22a内の圧力(実測圧力P2)を検出し、ECU70に出力するようになっている。
第3圧力センサ33は、第1減圧弁23と第2遮断弁24との間の配管23aに設けられており、配管23a内の圧力(実測圧力P3)を検出し、ECU70に出力するようになっている。
<カソード系>
カソード系は、コンプレッサ41(酸化剤ガス供給手段)と、背圧弁43と、希釈器(図示しない)とを備えている。
コンプレッサ41は、配管41aを介して、カソード流路13の入口に接続されている。そして、コンプレッサ41は、ECU70の指令に従って作動すると、酸素を含む空気を取り込み、これをカソード流路13に供給するようになっている。なお、コンプレッサ41の回転速度は、図示しないアクセルペダルの踏み込み量(アクセル開度)が大きくなると、空気を大流量・高圧で供給するべく、高められる設定となっている。
また、配管41aには、カソード流路13に向かう空気を加湿する加湿器(図示しない)が設けられている。この加湿器は、水分交換可能な中空糸膜を備えており、この中空糸膜を介して、カソード流路13に向かう空気と、多湿のカソードオフガスとの間で水分交換させるようになっている。
カソード流路13の出口は、配管43a、背圧弁43、配管43bを介して、希釈器(図示しない)に接続されている。そして、カソード流路13(カソード)から排出された多湿のカソードオフガスは、配管43a等を介して、希釈器に排出され、希釈器は、カソードオフガスによって、配管29bから導入されるアノードオフガス中の水素を希釈した後、車外に排出するようになっている。
背圧弁43は、バタフライ弁等から構成された常開型の弁であり、その開度はECU70によって制御される。詳細には、アクセルペダルの踏み込み量が大きくなると、ECU70は、空気を高圧で供給するべく、背圧弁43の開度は小さく制御される。
<電力消費系>
電力消費系は、走行モータ51と、VCU52(Voltage Control Unit、電流制御手段)と、高圧バッテリ53とを備えている。走行モータ51は、VCU52を介して、燃料電池スタック10の出力端子(図示しない)に接続されている。高圧バッテリ53はVCU52に接続されている。なお、走行モータ51とVCU52との間に配置されているインバータ(PDU:Power Drive Unit)は省略している。
走行モータ51は、燃料電池自動車の動力源となる外部負荷である。
VCU52は、ECU70から送られる指令電流に従って、燃料電池スタック10の発電電力(出力電流、出力電圧)を制御(制限)する機器であり、DC/DCチョッパ、DC/DCコンバータ等の電子回路を備えている。すなわち、VCU52への指令電流が大きくなると、燃料電池スタック10から取り出される電流が大きくなり、燃料電池スタック10で消費される水素及び空気の消費量が多くなる。つまり、燃料電池スタック10による水素の消費量を制御する消費量制御手段は、VCU52とECU70とを備えて構成されている。
また、VCU52は、高圧バッテリ53の電力を制御、つまり、高圧バッテリ53の充電/放電を制御する機能も備えている。
<IG等>
IG61は、燃料電池システム及び燃料電池自動車の起動スイッチであり、運転席周りに配置されている。そして、IG61は、ON信号(発電開始信号)、OFF信号(発電停止信号)をECU70に出力するようになっている。
警告ランプ62は、第1遮断弁22が故障していると判定される場合、運転者に故障を知らせるために点灯するランプであり、インストルメント・パネルに配置されている。
<ECU>
ECU70は、燃料電池システム1を電子制御する制御装置であり、CPU、ROM、RAM、各種インタフェイス、電子回路などを含んで構成されている。そして、ECU70は、その内部に記憶されたプログラムに従って、各種機器を適宜に制御するようになっている。
また、ECU70(開閉状態判定手段)は、第2圧力センサ32から入力される実測圧力P2と、後記する予測圧力P2´とに基づいて、第1遮断弁22の開閉状態を判定する機能を備えている。
≪燃料電池システムの動作≫
次に、燃料電池システム1の動作及び遮断弁の開閉状態の判定方法について、図2を主に参照して説明する。
なお、IG61がOFFされ、ECU70がIG61のOFF信号(発電停止信号)を受信すると、図2のフローチャートの処理が開始する。また、初期状態において、VCU52は外部からの発電要求に応じて制御され、燃料電池スタック10は発電している。
ステップS101において、ECU70は、第1遮断弁22に閉指令を送り、第1遮断弁22を閉じるように制御する。
ステップS102において、ECU70は、IG61のOFF時において、第2圧力センサ32から入力された実測圧力P2を、内部メモリ等に記憶する。
ステップS103において、ECU70は、燃料電池スタック10による水素消費量を、第1遮断弁22の検査(診断)用の検査用水素消費量(L/s)に制御する。この検査用水素消費量は、事前試験等によって求められ、ECU70に予め記憶されている。
さらに説明すると、検査用水素消費量(L/s)は、燃料電池スタック10の大きさ、水素が通流する供給流路(配管22a等)の容積、第1遮断弁22に内蔵されるシールの耐圧性等に基づいて、閉指令を受けた第1遮断弁22が正常に閉じたと仮定した場合において、第1遮断弁22の下流で第2圧力センサ32が検出する実測圧力P2が、速やかに低下すると共に、急激に低下せず前記シールが損傷しない消費量に設定されている。
また、ステップS103において、ECU70は、アノード流路12における水素の圧力P4を、ステップS101における第1遮断弁22の閉制御時の圧力(IG61のOFF時における圧力)を、制御目標値として維持するように制御する。すなわち、第1遮断弁22の閉制御後において、アノード流路12における水素の圧力P4は、燃料電池スタック10による水素消費量の変化に関わらず、第1遮断弁22の閉制御時の圧力となるように制御される。
つまり、高負荷状態で、IG61がOFFされ、第1遮断弁22を閉制御した場合、第1遮断弁22の閉制御後も、アノード流路12の圧力P4は、高負荷状態に対応した高い圧力で維持されるように制御する。一方、低負荷状態で、IG61がOFFされ、第1遮断弁22を閉制御した場合、第1遮断弁22の閉制御後も、アノード流路12の圧力P4は、低負荷状態に対応した低い圧力が維持されるように制御する。
具体的には、ECU70は、燃料電池スタック10で水素が検査用水素消費量で消費されるようにVCU52を適宜に制御、つまり、燃料電池スタック10の出力電流を検査用水素消費量に対応した検査用電流とする。すなわち、検査用水素消費量が多くなると、検査用電流が大きくなる関係となる。
また、ECU70は、アノード流路12における水素の圧力が、第1遮断弁22の閉制御時の圧力で維持されるように、インジェクタ27を適宜に制御する。
さらに、ECU70は、検査用水素消費量、アノード流路12の圧力P4、検査用電流に対応して、カソード流路13に空気が供給されるように、コンプレッサ41の回転速度、背圧弁43の開度を制御する。すなわち、検査用水素消費量が多く、アノード流路12の圧力P4が高く、検査用電流が大きくなると、コンプレッサ41の回転速度は高められ、背圧弁43の開度は閉方向に制御される。
ステップS104において、ECU70は、燃料電池スタック10の発電を継続させる。なお、燃料電池スタック10の発電電力は、例えば、高圧バッテリ53に充電される。その他、外部の図示しない放電抵抗(ディスチャージ抵抗)によって消費される。
そして、このように燃料電池スタック10を発電すると、水素が消費され、アノード流路12の圧力が下がり、第2減圧弁25が開く。そうすると、配管23a及び配管24a内の圧力(第3圧力センサ33が検出する実測圧力P3)が下がり、第1減圧弁23が開く。これにより、第1遮断弁22がステップS101で正常に閉じていた場合、第2圧力センサ32が検出する実測圧力P2が下がることになる。
ステップS105において、ECU70は、第1圧力センサ31から入力される実測圧力P1と、第2圧力センサ32から入力される実測圧力P2との差、つまり、第1遮断弁22に作用する圧力差が、所定圧力差ΔP0以上であるか否か判定する。所定圧力差ΔP0は、第1遮断弁22に内蔵されるシール(Oリング等)の耐圧性に基づいて設定され、実測圧力P1と実測圧力P2との差がこれ以上であると前記シールが損傷し、シールに不具合が生じる虞がある値に設定される。このような所定圧力差ΔP0は、事前試験等により求められ、ECU70に予め記憶されている。
実測圧力P1と実測圧力P2との差が所定圧力差ΔP0以上であると判定した場合(S105・Yes)、ECU70の処理はステップS109に進む。その後、ステップS109においてECU70が第2遮断弁24を閉じることにより、配管22a内の圧力がその後に下がることはなく、前記シールが損傷することはない。
一方、実測圧力P1と実測圧力P2との差が所定圧力差ΔP0以上でないと判定した場合(S105・No)、ECU70の処理はステップS106に進む。
ステップS106において、ECU70(開閉状態判定手段)は、第2圧力センサ32から入力される実測圧力P2と、予測圧力P2´との差が、所定値以下であるか否か判定する。
予測圧力P2´(Pa)は、ステップS101で第1遮断弁22が正常に閉じたと仮定した場合において、式(3)に示すように、ステップS102で記憶したIG61のOFF時における実測圧力P2(Pa)と、燃料電池スタック10の検査用水素消費量(L/s)及びこの量での発電時間(s)と、に基づいて算出される。なお、式(3)におけるKは、変換係数である。
予測圧力P2´(Pa)=OFF時の実測圧力P2(Pa)−K(Pa/L)×検査用水素消費量(L/s)×発電時間(s) …(3)
また、所定値は、第2圧力センサ32の検出誤差や、第1遮断弁22が正常に閉じた場合において、これを極少量の水素が流れたときを考慮して設定される。なお、所定値は、事前試験等により求められ、ECU70に予め記憶されている。
実測圧力P2と予測圧力P2´との差(又は差の絶対値)が、所定値以下であると判定した場合(S106・Yes)、ECU70の処理はステップS107に進む。
一方、実測圧力P2と予測圧力P2´との差(又は差の絶対値)が、所定値以下でないと判定した場合(S106・No)、ECU70の処理はステップS111に進む。なお、この場合は、閉指令を受けたにも関わらず、第1遮断弁22が閉じておらず、開いたままである(開故障)虞がある場合である。
ステップS107において、ECU70は、ステップS106の判定結果が、所定回数(例えば3〜5回)、連続してYesとなったか否かを判定する。
連続してYesとなったと判定した場合(S107・Yes)、ECU70の処理はステップS109に進む。一方、連続してYesとなっていないと判定した場合(S107・No)、ECU70の処理はステップS108に進む。
ステップS108において、ECU70は、ステップS107の判定の後、第1所定時間(例えば3〜10秒)経過したか否か判定する。
第1所定時間経過したと判定した場合(S108・Yes)、ECU70の処理はステップS105に進む。一方、第1所定時間経過していないと判定した場合(S108・No)、ECU70はステップS108の判定を繰り返す。
ステップS109において、ECU70は、第2遮断弁24を閉じる。これにより、その後、配管22a内の圧力が下がることはなく、第1遮断弁22に内蔵されるシールに過大な圧力差が作用することはなく、シールが損傷することもなく、シールの劣化は防止される。
ステップS110において、ECU70は、燃料電池スタック10の発電を停止する。具体的には、ECU70は、VCU52を制御して燃料電池スタック10の出力電流を0にすると共に、コンプレッサ41を停止する。
その後、ECU70の処理は、エンドに進み、システム停止時の制御を終了する。
次に、ステップS106の判定結果がNoとなって進むステップS111について説明する。
ステップS111において、ECU70は、ステップS104で燃料電池スタック10の発電を継続した後、第2所定時間経過したか否か判定する。第2所定時間は、ステップS106での誤判定を防止し、ステップS106の判定を複数回繰り返すために設定された時間である。このような所定時間は、事前試験等により求められ、ECU70に予め記憶されている。
第2所定時間経過したと判定した場合(S111・Yes)、第1遮断弁22は閉じておらず開いたままである、つまり、開故障していると判定し、ECU70の処理はステップS112に進む。一方、第2所定時間経過していないと判定した場合(S111・No)、ECU70の処理はステップS105に進む。
ステップS110において、ECU70は、第1遮断弁22が開故障していることを、例えばフラグで記憶する。そして、次回のシステム起動時において、ECU70は、このフラグを参照して、警告ランプ62を点灯させ、運転者に第1遮断弁22が故障していることを知らせる。
その後、ECU70の処理はステップS109に進み、ECU70は第2遮断弁24を閉じる。これにより、水素が水素タンク21から供給され続けることを防止できる。
≪燃料電池システムの効果≫
このような燃料電池システム1によれば、次の効果を得る。
IG61のOFF信号(発電停止信号)を受信したECU70が、燃料電池スタック10における水素の消費量を、第1遮断弁22の検査用の検査用消費量に制御すると共に、アノード流路12の圧力P4を、第1遮断弁22の閉制御時の圧力を制御目標値として維持するように制御するので、閉指令を受けた第1遮断弁22が正常に閉じていれば、第2圧力センサ32が検出する実測圧力P2が速やかに下がると共に、急激に下がることもない。これにより、外部から視認不能な第1遮断弁22の開閉状態を速やかに判定すると共に、第1遮断弁22に内蔵されるシールに過大な圧力差が作用せず、シールの損傷を防止できる。
また、第1遮断弁22の開閉状態を判定している場合において、仮に、実測圧力P0と実測圧力P1との差が所定圧力差ΔP0以上である場合(S105・Yes)、第2遮断弁24を閉じるので(S109)、第1遮断弁22のシールに、大きな圧力差が作用することはなく、これが損傷することもない。
≪燃料電池システムの一動作例≫
次に、燃料電池システム1の動作例について、図3、図4を参照して説明する。
<高負荷状態でIG61がOFF、水素消費量を下げるケース>
まず、図3を参照して、高負荷状態でIG61がOFFされ、燃料電池スタック10における水素の消費量を下げるケースについて説明する。なお、このようなケースは、燃料電池自動車が、水素消費量が多く、水素圧力が高くなる高速走行した直後、IG61がOFFされた場合等に生じる。
図3に示すように、IG61のOFFに連動して、第1遮断弁22が閉じられる。これと共に、燃料電池スタック10による水素の消費量は、検査用水素消費量に下げられる。また、アノード流路12における水素の圧力P4は、第1遮断弁22の閉制御時の圧力を、制御目標値として維持するように制御される。
これにより、第1遮断弁22が正常に閉じていた場合、第2圧力センサ32が検出する実測圧力P2は、水素消費量に対応して水素の圧力P4を低下させる比較例に対して、速やかに下がる。したがって、第1遮断弁22の開閉状態を速やかに判定できる。
<低負荷状態でIG61がOFF、水素消費量を上げるケース>
次に、図4を参照して、低負荷状態でIG61がOFFされ、燃料電池スタック10における水素の消費量を上げるケースについて説明する。なお、このようなケースは、水素消費量が少なく、水素圧力が低いアイドリング中の燃料電池自動車において、IG61がOFFされた場合等に生じる。
図4に示すように、IG61のOFFに連動して、第1遮断弁22が閉じられる。これと共に、燃料電池スタック10による水素の消費量は、検査用水素消費量に上げられる。また、アノード流路12における水素の圧力P4は、第1遮断弁22の閉制御時の圧力を、制御目標値として維持するように制御される。
これにより、第1遮断弁22が正常に閉じていた場合、第2圧力センサ32が検出する実測圧力P2は、水素消費量に対応して水素の圧力P4を上昇させる比較例に対して、緩やかに下がる。したがって、第1遮断弁22の開閉状態を速やかに判定しつつ、第1遮断弁22に過大な圧力差が作用することを防止できる。
以上、本発明の一実施形態について説明したが、本発明は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、例えば次のように変更することができる。
前記した実施形態では、図2のステップS105に示すように、実測圧力P1と実測圧力P0との差が所定圧力差ΔP0以上である場合(S105・Yes)、第1遮断弁22のシールが損傷する虞があると判定して、第2遮断弁24を閉じる構成を説明したが、ステップS105に代えて、又は、ステップS105の後に、第1遮断弁22の下流の実測圧力P2の低下率が所定低下率以上である場合、第1遮断弁22のシールが損傷する虞があると判定し、ステップS109に進み、第2遮断弁24を閉じる構成としてもよい。
前記した実施形態では、第1遮断弁22の閉制御後、第2圧力センサ32が検出する実測圧力P2に基づいて、第1遮断弁22が正常に閉じているか否か判定する構成としたが、その他に例えば、第3圧力センサ33が検出する実測圧力P3に基づいて判定する構成としてもよい。この構成の場合、閉指令を受けた第1遮断弁22が正常に閉じたとき、第3圧力センサ33が検出する実測圧力P3は、第1減圧弁23の上流の実測圧力P2と等しくなった後、下がるので、これを考慮して、図2の第2所定時間等は設定される。
前記した実施形態では、燃料電池自動車に搭載された燃料電池システム1に、本発明を適用した場合を例示したが、その他に例えば、自動二輪車、列車、船舶に搭載された燃料電池システム、家庭用や業務用の据え置き型の燃料電池システムや、給湯システムに組み込まれた燃料電池システムに適用してもよい。また、その他のシステムに適用してもよい。
本実施形態に係る燃料電池システムの構成を示す図である。 本実施形態に係る燃料電池システムの動作を示すフローチャートである。 本実施形態に係る燃料電池システムの一動作例を示すタイムチャートである。 本実施形態に係る燃料電池システムの一動作例を示すタイムチャートである。
符号の説明
1 燃料電池システム
10 燃料電池スタック(燃料電池)
11 単セル(燃料電池)
12 アノード流路(燃料ガス流路)
13 カソード流路(酸化剤ガス流路)
21 水素タンク(燃料ガス源)
22 第1遮断弁
22a、23a、24a、25a、28a 配管(供給流路)
24 第2遮断弁
25 第2減圧弁(圧力制御手段)
27 インジェクタ(圧力制御手段)
32 第2圧力センサ(圧力検出手段)
51 走行モータ
52 VCU(消費量制御手段)
70 ECU(弁制御手段、消費量制御手段、圧力制御手段、開閉状態判定手段)

Claims (5)

  1. 燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスが、それぞれ供給されることで発電する燃料電池と、
    前記燃料ガス流路に燃料ガスを供給する燃料ガス供給源と、
    前記燃料ガス供給源から前記燃料ガス流路に向かう燃料ガスが通流する供給流路と、
    前記供給流路に設けられた第1遮断弁と、
    前記第1遮断弁を制御する弁制御手段と、
    前記燃料電池の発電を制御し、当該燃料電池による燃料ガスの消費量を制御する消費量制御手段と、
    前記燃料ガス流路における燃料ガスの圧力を制御する圧力制御手段と、
    前記第1遮断弁の下流の前記供給流路に設けられ、燃料ガスの圧力を検出する圧力検出手段と、
    前記圧力検出手段が検出した燃料ガスの圧力と、前記燃料電池における燃料ガス消費量とに基づいて、前記第1遮断弁の開閉状態を判定する開閉状態判定手段と、
    を備える燃料電池システムであって、
    前記燃料電池の発電停止信号を受信したことにより、前記弁制御手段が前記第1遮断弁を閉じるように制御した後、
    前記消費量制御手段は、前記燃料電池を発電させ、当該燃料電池による燃料ガスの消費量を、前記第1遮断弁の検査用の検査用消費量に制御し、
    前記圧力制御手段は、燃料ガスの圧力を、前記第1遮断弁の閉制御時の圧力を制御目標値として維持するように制御し、
    前記開閉状態判定手段は、前記圧力検出手段が検出した実際の燃料ガスの圧力と、前記第1遮断弁の閉制御時において前記圧力検出手段が検出した燃料ガスの圧力及び前記燃料電池の前記検査用消費量に基づいて予測される燃料ガスの圧力との差が、所定値以下でない場合、前記第1遮断弁は閉じていないと判定する
    ことを特徴とする燃料電池システム。
  2. 前記第1遮断弁と前記燃料ガス流路との間に第2遮断弁を備え、
    前記圧力検出手段は前記第1遮断弁と前記第2遮断弁との間に配置されており、
    前記第1遮断弁が閉じるように制御された後において、前記圧力検出手段が検出する燃料ガスの圧力に基づいて、前記第1遮断弁のシールが損傷する虞があると判断された場合、前記弁制御手段は、前記第2遮断弁を閉じるように制御する
    ことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記燃料ガス供給源は燃料ガスが高圧で封入された高圧タンクであり、
    前記第1遮断弁が前記高圧タンク内に配置されている
    ことを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスが、それぞれ供給されることで発電する燃料電池と、
    前記燃料ガス流路に燃料ガスを供給する燃料ガス供給源と、
    前記燃料ガス供給源から前記燃料ガス流路に向かう燃料ガスが通流する供給流路と、
    前記供給流路に設けられた第1遮断弁と、
    前記第1遮断弁を制御する弁制御手段と、
    前記燃料電池の発電を制御し、当該燃料電池による燃料ガスの消費量を制御する消費量制御手段と、
    前記燃料ガス流路における燃料ガスの圧力を制御する圧力制御手段と、
    前記第1遮断弁の下流の前記供給流路に設けられ、燃料ガスの圧力を検出する圧力検出手段と、
    前記圧力検出手段が検出した燃料ガスの圧力と、前記燃料電池における燃料ガス消費量とに基づいて、前記第1遮断弁の開閉状態を判定する開閉状態判定手段と、
    を備える燃料電池システムにおける遮断弁の開閉状態判定方法であって、
    前記燃料電池の発電停止信号を受信したことにより、前記弁制御手段が前記第1遮断弁を閉じるように制御した後、
    前記消費量制御手段は、前記燃料電池を発電させ、当該燃料電池による燃料ガスの消費量を、前記第1遮断弁の検査用の検査用消費量に制御し、
    前記圧力制御手段は、燃料ガスの圧力を、前記第1遮断弁の閉制御時の圧力を制御目標値として維持するように制御し、
    前記開閉状態判定手段は、前記圧力検出手段が検出した実際の燃料ガスの圧力と、前記第1遮断弁の閉制御時において前記圧力検出手段が検出した燃料ガスの圧力及び前記燃料電池の前記検査用消費量に基づいて予測される燃料ガスの圧力との差が、所定値以下でない場合、前記第1遮断弁は閉じていないと判定する
    ことを特徴とする遮断弁の開閉状態判定方法。
  5. 前記燃料電池システムは前記第1遮断弁と前記燃料ガス流路との間に第2遮断弁を備え、前記圧力検出手段が前記第1遮断弁と前記第2遮断弁との間に配置されており、
    前記第1遮断弁が閉じるように制御された後において、前記圧力検出手段が検出する燃料ガスの圧力に基づいて、前記第1遮断弁のシールが損傷する虞があると判断された場合、前記弁制御手段は、前記第2遮断弁を閉じるように制御する
    ことを特徴とする請求項4に記載の遮断弁の開閉状態判定方法。
JP2008144234A 2008-06-02 2008-06-02 燃料電池システム及び遮断弁の開閉状態判定方法 Active JP5097016B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144234A JP5097016B2 (ja) 2008-06-02 2008-06-02 燃料電池システム及び遮断弁の開閉状態判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144234A JP5097016B2 (ja) 2008-06-02 2008-06-02 燃料電池システム及び遮断弁の開閉状態判定方法

Publications (2)

Publication Number Publication Date
JP2009289715A true JP2009289715A (ja) 2009-12-10
JP5097016B2 JP5097016B2 (ja) 2012-12-12

Family

ID=41458719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144234A Active JP5097016B2 (ja) 2008-06-02 2008-06-02 燃料電池システム及び遮断弁の開閉状態判定方法

Country Status (1)

Country Link
JP (1) JP5097016B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597714A1 (en) * 2011-11-28 2013-05-29 Aisin Seiki Kabushiki Kaisha Fuel cell system
CN107515111A (zh) * 2017-08-30 2017-12-26 广东电网有限责任公司东莞供电局 一种蓄电池阀门测试装置及蓄电池阀门检测方法
CN114204082A (zh) * 2020-09-02 2022-03-18 本田技研工业株式会社 燃料电池系统及燃料电池系统的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123093A (ja) * 2003-10-17 2005-05-12 Honda Motor Co Ltd 遮断弁の開閉状態判定システム及び遮断弁の開閉状態判定方法
JP2006092860A (ja) * 2004-09-22 2006-04-06 Toyota Motor Corp 燃料電池システム
JP2007035446A (ja) * 2005-07-27 2007-02-08 Toyota Motor Corp 燃料電池システムおよびガス漏れ検知装置
JP2007134168A (ja) * 2005-11-10 2007-05-31 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの水素漏れ検知方法
JP2007149496A (ja) * 2005-11-28 2007-06-14 Honda Motor Co Ltd 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123093A (ja) * 2003-10-17 2005-05-12 Honda Motor Co Ltd 遮断弁の開閉状態判定システム及び遮断弁の開閉状態判定方法
JP2006092860A (ja) * 2004-09-22 2006-04-06 Toyota Motor Corp 燃料電池システム
JP2007035446A (ja) * 2005-07-27 2007-02-08 Toyota Motor Corp 燃料電池システムおよびガス漏れ検知装置
JP2007134168A (ja) * 2005-11-10 2007-05-31 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの水素漏れ検知方法
JP2007149496A (ja) * 2005-11-28 2007-06-14 Honda Motor Co Ltd 燃料電池システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597714A1 (en) * 2011-11-28 2013-05-29 Aisin Seiki Kabushiki Kaisha Fuel cell system
JP2013114852A (ja) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd 燃料電池システム
CN107515111A (zh) * 2017-08-30 2017-12-26 广东电网有限责任公司东莞供电局 一种蓄电池阀门测试装置及蓄电池阀门检测方法
CN107515111B (zh) * 2017-08-30 2024-03-19 广东电网有限责任公司东莞供电局 一种蓄电池阀门测试装置及蓄电池阀门检测方法
CN114204082A (zh) * 2020-09-02 2022-03-18 本田技研工业株式会社 燃料电池系统及燃料电池系统的控制方法
CN114204082B (zh) * 2020-09-02 2024-03-29 本田技研工业株式会社 燃料电池系统及燃料电池系统的控制方法

Also Published As

Publication number Publication date
JP5097016B2 (ja) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5155734B2 (ja) 燃料電池システム及びその運転方法
JP5421553B2 (ja) 高圧ガス供給システム
JP5957664B2 (ja) 燃料電池システム及びその運転方法
JP2017152253A (ja) 圧力センサの異常検出方法及び燃料電池システム
JP5171423B2 (ja) 燃料電池システム
JP5113634B2 (ja) 燃料電池システム
US8148033B2 (en) Fuel cell system with suppressed noise and vibration
JP5108345B2 (ja) 燃料電池システム
JP2010244778A (ja) 燃料電池システム
JP5411443B2 (ja) 燃料電池システム
JP5231847B2 (ja) 燃料電池システム及びその運転方法
JP5097016B2 (ja) 燃料電池システム及び遮断弁の開閉状態判定方法
JP5199645B2 (ja) 燃料電池システム
JP5384140B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
US11855319B2 (en) Fuel cell system
JP2009048945A (ja) 燃料電池システム
JP2012209154A (ja) 燃料電池システムを制御する制御装置
JP5319160B2 (ja) 燃料電池システム
JP4956481B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5302568B2 (ja) 燃料電池システム及びその運転方法
JP5144152B2 (ja) 放電システム
JP5161650B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2007059067A (ja) 燃料電池システム
JP4956489B2 (ja) 燃料電池システム及びその運転方法
JP2023151802A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5097016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250