JP2010232134A - 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池 - Google Patents

耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池 Download PDF

Info

Publication number
JP2010232134A
JP2010232134A JP2009081176A JP2009081176A JP2010232134A JP 2010232134 A JP2010232134 A JP 2010232134A JP 2009081176 A JP2009081176 A JP 2009081176A JP 2009081176 A JP2009081176 A JP 2009081176A JP 2010232134 A JP2010232134 A JP 2010232134A
Authority
JP
Japan
Prior art keywords
solid oxide
power generation
fuel electrode
oxide fuel
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009081176A
Other languages
English (en)
Inventor
Satoshi Uozumi
学司 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2009081176A priority Critical patent/JP2010232134A/ja
Publication of JP2010232134A publication Critical patent/JP2010232134A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】耐久性のある燃料極およびこの燃料極を組み込んだ酸化物形燃料電池を提供する。
【解決手段】ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体電解質形燃料電池用発電セルにおいて、前記燃料極の骨格構造をNiに代えてNi−Fe合金またはNi−Co合金からなる骨格構造を採用することにより骨格構造の前記合金の凝集が抑制されて長期間運転してもセル電圧低下率が小さい。
【選択図】なし

Description

この発明は、耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池に関するものである。
一般に、固体酸化物形燃料電池は、純水素ガスを燃料として発電しているが純水素ガスは比較的高価であるために、近年、都市ガス、天然ガス、メタノール、石炭ガスなどを改質して得られた水素ガスを燃料とすることが主流となってきた。この固体酸化物形燃料電池の構造は、一般に、酸化物からなる固体電解質の片面に空気極を積層し、固体電解質のもう一方の片面に燃料極を積層してなる構造を有している発電セルと、この発電セルの空気極の外側に空気極集電体を積層させ、一方、発電セルの燃料極の外側に燃料極集電体を積層させ、前記空気極集電体および燃料極集電体の外側にそれぞれセパレータを積層させた積層構造体を複数積層させた構造を有している。
前記発電セルを構成する固体電解質として、ランタンガレート系酸化物イオン伝導体を用いることが知られており、このランタンガレート系酸化物イオン伝導体は、一般式:La1−XSrGa1−Y−ZMg(式中、A=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体であることが知られている(特許文献1参照)。
また、前記発電セルを構成する燃料極は、B(ただし、BはSm、Gd、Y、Caの1種または2種以上)をドープしたセリア(以下、「Bドープセリア」という)とニッケルからなるサーメットからなることが知られており、このBドープセリアは、一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表され、このBドープセリアとニッケルからなるサーメットは、ニッケル:Bドープセリア=90:10〜20:80(体積%)の範囲内にある焼結体であり、酸化ニッケル粉末とBドープセリア粉末との混合粉末に有機結合剤を添加したペーストを印刷、乾燥、焼成して作製することが知られている。そして、この燃料極となるサーメットは、発電時に酸化ニッケルは還元されてニッケルとなり、ニッケルからなる多孔質な骨格構造の表面に大粒径のBドープセリア粒が前記多孔質な骨格構造のニッケル表面を取り囲むようにネットワーク構造を形成してニッケル表面に固着しているとされている(特許文献2参照)。
さらに、固体酸化物形燃料電池用発電セルを構成する燃料極として、一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBドープセリアとニッケルとの焼結体からなり、このBドープセリアとニッケルの焼結体におけるBドープセリア粒とニッケル粒の粒径が厚さ方向に変化し、その粒径は固体電解質に近いほど微細にした傾斜粒径を有する構造の燃料極(特許文献3参照)、Bドープしたセリア粒が固体電解質に接する界面およびその近傍の多孔質ニッケルの骨格表面に最も多く固着している構造の燃料極(特許文献4参照)などが知られている。
特開平11−335164号公報 特開平11−297333号公報 特開2004−55194号公報 特開2006−331798号公報
固体酸化物形燃料電池を広く普及させるためには、長期間の運転を行っても発電効率が低下しないことが求められているが、現在使用されている固体酸化物形燃料電池は短期間の使用で電圧が低下するという問題点があった。
そのため、本発明者らは、長期間の運転を行っても発電効率が低下しない固体酸化物形燃料電池を開発すべく鋭意研究を行った。その結果、
(イ)固体酸化物形燃料電池の発電効率が低下する原因の一つとして、固体酸化物形燃料電池を長期間運転を行うと、固体酸化物形燃料電池の発電セルを構成する燃料極の多孔質なニッケル骨格構造体のNiが凝集し、気孔率が低下することにより発電効率が低下すること、
(ロ)前記ニッケル骨格構造体のNiが凝集する理由は、都市ガス、天然ガス、メタノール、石炭ガスなどを改質して得られた改質ガスには硫黄が不純物として含まれており、この硫黄がNiと化合してニッケル硫化物(主にNi)となり、ニッケル硫化物は共融点が635℃で、固体酸化物形燃料電池の発電セルの運転温度(750℃)以下であるためにニッケルの凝集が進み、燃料極の気孔率が低下すること、
(ハ)Niに代えて、Fe:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi合金(以下、Ni−Fe合金という)またはCo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi合金(Ni−Co合金と言う)を用いて作製したニッケル合金骨格構造体は、前記従来のニッケル骨格構造体と比べて硫黄を不純物として含む改質ガスに固体酸化物形燃料電池の発電セルの運転温度である750℃で長期間曝しても凝集が少なく、したがって、前記ニッケル合金骨格構造体とBドープセリアとのサーメットからなる燃料極は凝集が少なくなって気孔率の低下が少なくなり、耐久性が向上すること、などの研究結果が得られたのである。
この発明は、かかる研究結果に基づいて成されたものであって、
(1)一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとFe:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Fe合金のサーメットからなる固体電解質形燃料電池の発電セル用燃料極、
(2)一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとCo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Co合金のサーメットからなる固体電解質形燃料電池の発電セル用燃料極、に特徴を有するものである。
前記燃料極を組み込んだ固体酸化物形燃料電池用発電セルもこの発明に含まれる。したがって、この発明は、
(3)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体酸化物形燃料電池用発電セルにおいて、
前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとFe:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Fe合金のサーメットからなる固体電解質形燃料電池の発電セル、
(4)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体酸化物形燃料電池用発電セルにおいて、
前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとCo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Co合金のサーメットからなる固体電解質形燃料電池の発電セル、に特徴を有するものである。
次に、この発明の燃料極のサーメットに含まれるNi合金の成分組成を上記のごとく限定した理由は、FeまたはCoを1質量%未満含んでも純Niとほぼ同じとなるため、合金(Ni−Fe合金、Ni−Co合金)と硫黄(S)の相図がNiとSの相図に近付き、共融点が低下し、硫化物の共融点(635℃)に近付くために凝集を起しやすくなるので好ましくなく、一方、FeまたはCoを20質量%を越えて含むと、凝集効果が高くなって劣化率が低減するが、燃料極としての活性が落ちるために発電セルの性能が低下するので好ましくないという理由によるものである。
この発明の固体酸化物形燃料電池用発電セルで使用される固体電解質は、一般式:La1−XSrGa1−Y−ZMg(式中、A=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される既に知られている酸化物イオン伝導体であり、また、この発明の固体酸化物形燃料電池用発電セルで使用される燃料極は、Bドープセリアと骨格構造を有する多孔質Ni−Fe合金または多孔質Ni−Co合金の骨格表面に固着した焼結体からなり、このBドープセリアは一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表される酸化物からなる一般に知られている材料である。
この発明の固体酸化物形燃料電池の発電セル用燃料極を製造するには、まず、酸化ニッケル粉末と酸化鉄粉末との混合粉末または酸化コバルト粉末と酸化鉄粉末との混合粉末をそれぞれ作製し、これら混合粉末をそれぞれ仮焼して焼成体を作製し、これら焼成体をそれぞれ粉砕してNiとFeの複合酸化物粉末またはNiとCoの複合酸化物粉末を作製し、NiとFeの複合酸化物粉末とBドープセリア粉末を含むスラリーまたはNiとCoの複合酸化物粉末とBドープセリア粉末を含むスラリーを作製し、このスラリーを基板の表面にスクリーン印刷などの方法により基板に塗布し、大気中、温度:1000〜1200℃で焼成することにより作製する。
また、この発明の固体酸化物形燃料電池用発電セルを製造するには、NiとFeの複合酸化物粉末とBドープセリア粉末を含むスラリーまたはNiとCoの複合酸化物粉末とBドープセリア粉末を含むスラリーを作製し、このスラリーを固体電解質の一方の面にスクリーン印刷などの方法により塗布し、大気中、温度:1000〜1200℃で焼き付け、その後、固体電解質の他方の面に通常の方法で空気極を形成することにより発電セルを製造することができる。
この発明の燃料極を設けてなる発電セルを組込んだ固体酸化物型燃料電池は、燃料ガスである改質水素ガスに微量の硫黄が含まれていても発電効率を低下させることなく長期間にわたって高効率で発電することができる。
実施例1
酸化ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルトの粉体を用意し、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oで示される組成となるよう秤量し、ボールミル混合の後、空気中、1200℃に3時間加熱保持し、得られた塊状焼結体をハンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径1.8μmのランタンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固体電解質原料粉末をトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだした後、空気中、1450℃に6時間加熱保持して焼結し、厚さ200μm、直径120mmの円板状のランタンガレート系固体電解質板を製造した。
さらに、原料粉末として、平均粒径0.5μmのNiO粉末およびFe粉末を用意し、これら粉末を表1に示される割合となるように配合し混合して混合粉末を作製し、これら混合粉末を空気中、温度:1200℃に6時間加熱保持の条件で焼成を行うことにより焼成体を作製し、この焼成体を粉砕することにより平均粒径:0.5μmのNiFe複合酸化物粉末A〜Gを作製した。
このNiFe複合酸化物粉末A〜Gに対して平均粒径:0.04μmのSmドープセリア(以下、SDCという)の微粉末を表2に示される割合で配合し混合して混合粉末を作製し、この混合粉末にトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液を混合してスラリーとし、このスラリーをスクリーン印刷法で、前記ランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるようにスラリーを塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の条件で焼結を行うことにより、ランタンガレート系固体電解質板の表面にNiFe複合酸化物とSDCからなる燃料極を形成した。
さらに、サマリウムストロンチウムコバルタイト系空気極原料粉をトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレート系固体電解質の燃料極と反対側の他方の面にスクリーン印刷法により厚さ:30μmになるように成形し乾燥したのち、空気中、1100℃に3時間加熱保持して、空気極を成形・焼きつけることにより空気極を形成し、固体電解質、燃料極および空気極からなる本発明固体酸化物形燃料電池用発電セル(以下、本発明発電セルと言う)1〜5および比較固体酸化物形燃料電池用発電セル(以下、比較発電セルと言う)1〜2をそれぞれ複数個製造した。
得られた本発明発電セル1〜5および比較発電セル1〜2の燃料極の上にいずれも厚さ1mmの燃料極集電体を積層し、一方、本発明発電セル1〜5および比較発電セル1〜2の空気極の上にいずれも厚さ1.2mmの空気極集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にセパレータを積層することにより本発明固体酸化物形燃料電池1〜5および比較固体酸化物形燃料電池1〜2をそれぞれ複数個作製した。
さらに比較のために、下記に示される方法で従来固体酸化物形燃料電池を作製した。まず、平均粒径:0.5μmのNiO粉末とSDCの微粉末を表2に示される割合で配合し混合して混合粉末を作製し、この混合粉末にトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液を混合してスラリーとし、このスラリーをスクリーン印刷法で、前記ランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるようにスラリーを塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の条件で焼結を行うことにより、ランタンガレート系固体電解質板の表面に燃料極を形成した。
さらに実施例1と同様にして空気極を形成して従来発電セル1を複数個製造した。この従来発電セル1の片面に燃料極集電体を積層しさらにその上にセパレータを積層し、一方、従来の発電セルの他方の片面に空気極集電体を積層しさらにセパレータを積層することにより従来固体酸化物形燃料電池1を複数個作製した。
これら複数個の本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1を、
温度:750℃、
燃料ガス:水素(0.05ppmの硫黄含有)、
燃料ガス流量:0.34L/min、
酸化剤ガス:空気、
酸化剤ガス流量:1.7L/min、
の発電条件で1時間運転するセル検査を行い、その時得られたセル電圧低下率を測定し、その結果を表2に示した。その後、本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1の内の1個を分解し、本発明発電セル1〜5および比較発電セル1〜2の燃料極を構成する骨格構造のNi−Fe合金の成分組成および平均粒径を測定し、さらに従来発電セル1の燃料極を構成する骨格構造のNiの平均粒径を測定し、それらの結果を表2に示した。
さらに、本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1について、本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1を先の発電条件で12時間運転したのち12時間停止する運転を40回繰り返し行う起動−停止繰返し運転を行ったのちセル電圧低下率を測定し、その結果を表2に示し、さらに、この起動−停止繰返し運転を行った本発明固体酸化物形燃料電池1〜5および比較固体酸化物形燃料電池1〜2を分解して燃料極を構成する骨格構造を有するNi−Fe合金の平均粒径を測定し、さらに従来固体酸化物形燃料電池1を分解して従来発電セル1の燃料極を構成する骨格構造を有するNiの平均粒径を測定し、その結果を表2に示した。
さらに、本発明固体酸化物形燃料電池1〜5、比較固体酸化物形燃料電池1〜2および従来固体酸化物形燃料電池1を連続して5000時間連続運転したのちセル電圧低下率を測定し、その結果を表2に示し、さらにこの5000時間連続運転した本発明固体酸化物形燃料電池1〜5および比較固体酸化物形燃料電池1〜2を分解して燃料極を構成する骨格構造のNi−Fe合金の平均粒径を測定し、さらに従来固体酸化物形燃料電池1を分解して燃料極を構成する骨格構造のNiの平均粒径を測定し、その結果を表2に示した。
Figure 2010232134
Figure 2010232134
表1〜2に示される結果から、SmドープされたセリアとFe:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Fe合金のサーメットを燃料極とした本発明固体酸化物形燃料電池1〜5は、SmドープされたセリアとNiのサーメットを燃料極とした従来固体酸化物形燃料電池1と比べて、燃料極を構成する骨格構造のNi−Fe合金の凝集が遅く、したがって長期間運転してもセル電圧の低下率が少ないことから耐久性に優れた固体酸化物形燃料電池を提供することができることが分かる。しかし、この発明の条件から外れた量のFeを含むNi−Fe合金を骨格構造とする比較固体酸化物形燃料電池1〜2はFeの含有率が1質量%未満の場合、本発明の効果が期待できず、Feの含有率が20質量%を越える場合は燃料極の触媒活性が低下するので好ましくないことがわかる。
実施例2
酸化ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルトの粉体を用意し、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oで示される組成となるよう秤量し、ボールミル混合の後、空気中、1200℃に3時間加熱保持し、得られた塊状焼結体をハンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径1.8μmのランタンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固体電解質原料粉末をトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだした後、空気中、1450℃に6時間加熱保持して焼結し、厚さ200μm、直径120mmの円板状のランタンガレート系固体電解質板を製造した。
さらに、原料粉末として、平均粒径0.5μmのNiO粉末およびCoO粉末を用意し、これら粉末を表3に示される割合となるように配合し混合して混合粉末を作製し、これら混合粉末を空気中、温度:800℃に6時間加熱保持の条件で焼成を行うことにより焼成体を作製し、この焼成体を粉砕することにより平均粒径:0.5μmのNiCo複合酸化物粉末A〜Gを作製した。
このNiCo複合酸化物粉末A〜Gに対して平均粒径:0.04μmのGdドープセリア(以下、GDCという)の微粉末を表3に示される割合で配合し混合して混合粉末を作製し、この混合粉末にトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーとし、このスラリーをスクリーン印刷法で、前記ランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるようにスラリーを塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の条件で焼結を行うことにより、ランタンガレート系固体電解質板の表面にNiCo複合酸化物とGDCからなる燃料極を形成した。
さらに、サマリウムストロンチウムコバルタイト系空気極原料粉をトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレート系固体電解質の燃料極と反対側の他方の面にスクリーン印刷法により厚さ:30μmになるように成形し乾燥したのち、空気中、1100℃に3時間加熱保持して、空気極を成形・焼きつけることにより空気極を形成し、固体電解質、燃料極および空気極からなる本発明固体酸化物形燃料電池用発電セル(以下、本発明発電セルと言う)6〜10および比較固体酸化物形燃料電池用発電セル(以下、比較発電セルと言う)3〜4をそれぞれ複数個製造した。
得られた本発明発電セル6〜10および比較発電セル3〜4の燃料極の上にいずれも厚さ1mmの燃料極集電体を積層し、一方、本発明発電セル6〜10および比較発電セル3〜4の空気極の上にいずれも厚さ1.2mmの空気極集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にセパレータを積層することにより本発明固体酸化物形燃料電池6〜10および比較固体酸化物形燃料電池3〜4をそれぞれ複数個作製した。
さらに比較のために、下記に示される方法で従来固体酸化物形燃料電池を作製した。まず、平均粒径:0.5μmのNiO粉末とGDCの微粉末を表4に示される割合で配合し混合して混合粉末を作製し、この混合粉末にトルエン-エタノール混合溶媒に有機結合剤を溶解した有機バインダー溶液を混合してスラリーとし、このスラリーをスクリーン印刷法で、前記ランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるようにスラリーを塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の条件で焼結を行うことにより、ランタンガレート系固体電解質板の表面に燃料極を形成した。
さらに実施例1と同様にして空気極を形成して従来発電セル2を複数個製造した。この従来発電セル2の片面に燃料極集電体を積層しさらにその上にセパレータを積層し、一方、従来の発電セルの他方の片面に空気極集電体を積層しさらにセパレータを積層することにより従来固体酸化物形燃料電池2を複数個作製した。
これら複数個の本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2を、
温度:750℃、
燃料ガス:水素(0.05ppmの硫黄含有)、
燃料ガス流量:0.34L/min、
酸化剤ガス:空気、
酸化剤ガス流量:1.7L/min、
の発電条件で1時間運転するセル検査を行い、その時得られたセル電圧低下率を測定し、その結果を表4に示した。その後、本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2の内の1個を分解し、本発明発電セル6〜10の燃料極を構成する骨格構造のNi−Co合金の成分組成および平均粒径を測定し、さらに従来発電セル2の燃料極を構成する骨格構造のNiの平均粒径を測定し、それらの結果を表4に示した。
さらに、本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2について、本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2を先の発電条件で12時間運転したのち12時間停止する運転を40回繰り返し行う起動−停止繰返し運転を行ったのちセル電圧低下率を測定し、その結果を表4に示し、さらに、この起動−停止繰返し運転を行った本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2を分解して燃料極を構成する骨格構造のNi−Co合金の平均粒径、並びに従来発電セル2の燃料極を構成する骨格構造のNiの平均粒径を測定し、その結果を表4に示した。
さらに、本発明固体酸化物形燃料電池6〜10、比較固体酸化物形燃料電池3〜4および従来固体酸化物形燃料電池2を5000時間連続運転したのちセル電圧低下率を測定し、その結果を表4に示し、さらに、この5000時間連続運転した本発明固体酸化物形燃料電池6〜10および比較固体酸化物形燃料電池3〜4を分解して燃料極を構成する骨格構造のNi−Co合金の平均粒径を測定し、さらに従来固体酸化物形燃料電池2を分解して燃料極を構成する骨格構造のNiの平均粒径を測定し、その結果を表4に示した。
Figure 2010232134
Figure 2010232134
表3〜4に示される結果から、GdドープされたセリアとCo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi合金のサーメットを燃料極とした本発明固体酸化物形燃料電池6〜10は、GdドープされたセリアとNiのサーメットを燃料極とした従来固体酸化物形燃料電池1と比べて、燃料極を構成する骨格構造のNi−Co合金の凝集が遅く、したがって長期間運転してもセル電圧の低下率が少ないことから耐久性に優れた固体酸化物形燃料電池を提供することができることが分かる。しかし、この発明の条件から外れた量のCoを含むNi−Co合金を骨格構造とする比較固体酸化物形燃料電池3〜4はCoの含有率が1質量%未満の場合、本発明の効果が期待できず、Coの含有率が20質量%を越える場合は燃料極の触媒活性が低下するので好ましくないことがわかる。

Claims (5)

  1. 一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとFe:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Fe合金のサーメットからなることを特徴とする固体電解質形燃料電池用燃料極。
  2. 一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとCo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Co合金のサーメットからなることを特徴とする固体電解質形燃料電池用燃料極。
  3. ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体酸化物形燃料電池用発電セルにおいて、
    前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとFe:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Fe合金のサーメットからなることを特徴とする固体電解質形燃料電池の発電セル。
  4. ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体酸化物形燃料電池用発電セルにおいて、
    前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリアとCo:1〜20質量%を含有し、残部がNiおよび不可避不純物からなるNi−Co合金のサーメットからなることを特徴とする固体電解質形燃料電池の発電セル。
  5. 請求項3または4記載の固体電解質形燃料電池用発電セルを組み込んだことを特徴とする固体電解質形燃料電池。
JP2009081176A 2009-03-30 2009-03-30 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池 Pending JP2010232134A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081176A JP2010232134A (ja) 2009-03-30 2009-03-30 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081176A JP2010232134A (ja) 2009-03-30 2009-03-30 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池

Publications (1)

Publication Number Publication Date
JP2010232134A true JP2010232134A (ja) 2010-10-14

Family

ID=43047754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081176A Pending JP2010232134A (ja) 2009-03-30 2009-03-30 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池

Country Status (1)

Country Link
JP (1) JP2010232134A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109586A1 (ko) * 2013-01-11 2014-07-17 지브이퓨얼셀 주식회사 응집현상 감소를 위한 박막형 sofc 스택
WO2015022912A1 (ja) * 2013-08-14 2015-02-19 国立大学法人 鹿児島大学 電気化学反応器並びにそれを使用した一酸化炭素及び水蒸気からの水素及び二酸化炭素の製造方法
WO2015029506A1 (ja) * 2013-08-30 2015-03-05 住友電気工業株式会社 電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池
JP2016066568A (ja) * 2014-09-26 2016-04-28 Toto株式会社 固体酸化物形燃料電池セル及びその製造方法
WO2019171903A1 (ja) * 2018-03-06 2019-09-12 住友電気工業株式会社 燃料電池用電解質層-アノード複合部材、セル構造体および燃料電池、ならびに複合部材の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982335A (ja) * 1995-09-11 1997-03-28 Mitsui Eng & Shipbuild Co Ltd 高温固体電解質型燃料電池用燃料極
JP2006228587A (ja) * 2005-02-18 2006-08-31 Mitsubishi Materials Corp 固体電解質型燃料電池用発電セルの燃料極
JP2008140652A (ja) * 2006-12-01 2008-06-19 Shinko Electric Ind Co Ltd 直接火炎型燃料電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982335A (ja) * 1995-09-11 1997-03-28 Mitsui Eng & Shipbuild Co Ltd 高温固体電解質型燃料電池用燃料極
JP2006228587A (ja) * 2005-02-18 2006-08-31 Mitsubishi Materials Corp 固体電解質型燃料電池用発電セルの燃料極
JP2008140652A (ja) * 2006-12-01 2008-06-19 Shinko Electric Ind Co Ltd 直接火炎型燃料電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109586A1 (ko) * 2013-01-11 2014-07-17 지브이퓨얼셀 주식회사 응집현상 감소를 위한 박막형 sofc 스택
WO2015022912A1 (ja) * 2013-08-14 2015-02-19 国立大学法人 鹿児島大学 電気化学反応器並びにそれを使用した一酸化炭素及び水蒸気からの水素及び二酸化炭素の製造方法
JPWO2015022912A1 (ja) * 2013-08-14 2017-03-02 国立研究開発法人科学技術振興機構 電気化学反応器並びにそれを使用した一酸化炭素及び水蒸気からの水素及び二酸化炭素の製造方法
EP3041073A4 (en) * 2013-08-30 2016-07-06 Sumitomo Electric Industries CATALYST MATERIAL FOR ELECTRODES, ELECTRODE FOR FUEL CELLS, METHOD FOR PRODUCING A CATALYST MATERIAL FOR ELECTRODE AND FUEL CELL
CN105493324A (zh) * 2013-08-30 2016-04-13 住友电气工业株式会社 电极用催化剂材料、燃料电池用电极、电极用催化剂材料的制造方法和燃料电池
JP2015049993A (ja) * 2013-08-30 2015-03-16 住友電気工業株式会社 電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池
WO2015029506A1 (ja) * 2013-08-30 2015-03-05 住友電気工業株式会社 電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池
KR101841504B1 (ko) * 2013-08-30 2018-03-23 스미토모덴키고교가부시키가이샤 전극용 촉매 재료, 연료 전지용 전극, 전극용 촉매 재료의 제조 방법 및, 연료 전지
US10003082B2 (en) 2013-08-30 2018-06-19 Sumitomo Electric Industries, Ltd. Electrode catalyst material, fuel cell electrode, method for producing electrode catalyst material, and fuel cell
JP2016066568A (ja) * 2014-09-26 2016-04-28 Toto株式会社 固体酸化物形燃料電池セル及びその製造方法
WO2019171903A1 (ja) * 2018-03-06 2019-09-12 住友電気工業株式会社 燃料電池用電解質層-アノード複合部材、セル構造体および燃料電池、ならびに複合部材の製造方法
JPWO2019171903A1 (ja) * 2018-03-06 2021-03-11 住友電気工業株式会社 燃料電池用電解質層−アノード複合部材、セル構造体および燃料電池、ならびに複合部材の製造方法
JP7243709B2 (ja) 2018-03-06 2023-03-22 住友電気工業株式会社 燃料電池用電解質層-アノード複合部材、セル構造体および燃料電池、ならびに複合部材の製造方法

Similar Documents

Publication Publication Date Title
JP2009064641A (ja) 固体酸化物電気化学セルの燃料極、その製造方法、及び固体酸化物電気化学セル
EP1850411A1 (en) Power generation cell for solid electrolyte fuel battery and structure of fuel electrode in said cell
JP2010232134A (ja) 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池
Hao et al. Performance of Ce0. 85Sm0. 15O1. 9–La0. 9Sr0. 1Ga0. 8Mg0. 2O2. 85 composite electrolytes for intermediate-temperature solid oxide fuel cells
Fu et al. Characterization of nanosized Ce0. 8Sm0. 2O1. 9-infiltrated Sm0. 5Sr0. 5Co0. 8Cu0. 2O3− δ cathodes for solid oxide fuel cells
JP2000133280A (ja) 高性能固体酸化物燃料電池用アノ―ド
JP2010232135A (ja) 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池
JP2015088284A (ja) 固体酸化物形燃料電池
JP2013175479A (ja) 固体酸化物電気化学セルの燃料極及び固体酸化物電気化学セル
JP5336207B2 (ja) 固体酸化物形燃料電池
Zhu et al. Preparation and performance of Pr0. 7Sr0. 3Co1− yCuyO3− δ as cathode material of IT-SOFCs
JP2014186941A (ja) 燃料電池用空気極
JP5242840B1 (ja) 燃料電池セル
JP6625855B2 (ja) 水蒸気電解用セルおよびその製造方法
JP6372283B2 (ja) 固体酸化物形燃料電池セルの製造方法
JP2007213891A (ja) 固体電解質形燃料電池用発電セル
JP2007095673A (ja) 固体電解質型燃料電池用発電セル
JP2008234915A (ja) 固体酸化物形燃料電池の集電体材料、空気極集電体及び固体酸化物形燃料電池
JP2013051043A (ja) 燃料電池用燃料極およびその製造方法
JP2012156097A (ja) 固体酸化物形燃料電池の発電セルの燃料極
JP5093741B2 (ja) 固体電解質形燃料電池用発電セル及びその製造方法
JP2017071831A (ja) 水蒸気電解用セル
JP2016030844A (ja) 水蒸気電解用セル
Fu et al. Composite cathodes of La0. 9Ca0. 1Ni0. 5Co0. 5O3–Ce0. 8Sm0. 2O1. 9 for solid oxide fuel cells
JP2004273143A (ja) 固体酸化物形燃料電池及び固体酸化物形燃料電池の空気極用材料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119