WO2015029506A1 - 電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池 - Google Patents

電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池 Download PDF

Info

Publication number
WO2015029506A1
WO2015029506A1 PCT/JP2014/062952 JP2014062952W WO2015029506A1 WO 2015029506 A1 WO2015029506 A1 WO 2015029506A1 JP 2014062952 W JP2014062952 W JP 2014062952W WO 2015029506 A1 WO2015029506 A1 WO 2015029506A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
electrode
fuel cell
nickel
catalyst material
Prior art date
Application number
PCT/JP2014/062952
Other languages
English (en)
French (fr)
Inventor
千尋 平岩
奈保 水原
真嶋 正利
孝浩 東野
愛子 富永
順次 飯原
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP14840966.7A priority Critical patent/EP3041073B1/en
Priority to CN201480047867.0A priority patent/CN105493324B/zh
Priority to KR1020167005162A priority patent/KR101841504B1/ko
Priority to US14/913,395 priority patent/US10003082B2/en
Publication of WO2015029506A1 publication Critical patent/WO2015029506A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode catalyst material in a solid oxide fuel cell. More specifically, the present invention relates to an electrode catalyst material, a fuel cell electrode, a method for producing an electrode catalyst material, and the like that can increase the reduction rate and improve the catalyst performance.
  • a solid oxide fuel cell (hereinafter referred to as “SOFC”) includes a solid electrolyte-electrode stack in which an anode electrode and a cathode electrode are provided on both sides of a solid electrolyte layer.
  • YSZ yttria-stabilized zirconia
  • BCY yttrium-added barium selenate
  • BZY yttrium-added barium zirconate
  • the anode electrode of the SOFC is usually configured by adding a catalyst component to the solid oxide constituting the solid electrolyte layer.
  • a catalyst component such as platinum
  • platinum can be used as the catalyst component, there is a problem that the manufacturing cost increases.
  • inexpensive nickel (Ni) can be employed as a catalyst.
  • nickel (Ni) is employed as an electrode catalyst
  • a nickel oxide powder is added to a powder material constituting a solid electrolyte, formed into a predetermined shape, and then sintered and reduced to provide a catalytic function. To come out. For this reason, it is thought that a catalyst function improves, so that a reduction rate is large.
  • the present invention has been devised to solve the above-described problems, and it is an object of the present invention to provide an electrode catalyst material capable of enhancing the catalytic function in a fuel cell by increasing the reduction rate of the catalyst. To do.
  • One aspect of the present invention is a catalyst material for an electrode of a fuel cell, comprising nickel oxide and cobalt oxide, and with respect to the total mass of the nickel metal component and the cobalt metal component, It comprises 2 to 15% by mass of a metal component.
  • One aspect of the present invention is a method for producing an electrode catalyst material for a fuel cell comprising nickel oxide and cobalt oxide, wherein the cobalt metal component is a total amount of the nickel metal component and the cobalt metal component.
  • an addition step of adding cobalt oxide to nickel oxide by an impregnation method so as to be 2 to 15% by mass is included.
  • One aspect of the present invention is a fuel cell electrode catalyst material comprising nickel oxide and iron oxide, and with respect to the total mass of nickel metal component and iron metal component, iron metal Contains 2-10% by weight of ingredients.
  • One aspect of the present invention is a method for producing an electrode catalyst material for a fuel cell comprising nickel oxide and iron oxide, wherein the amount of iron metal relative to the total amount of nickel metal component and iron metal component An addition step of adding iron oxide to nickel oxide by an impregnation method is included so that the component becomes 2 to 10% by mass.
  • NiO nickel oxide
  • XAFS X-ray absorption fine structure analysis
  • the nickel catalyst component compounded in the electrode of the fuel cell is present as an oxide at the initial stage of being incorporated in the fuel cell.
  • the initial reduction step is performed by heating the electrolyte-electrode stack of the fuel cell and allowing hydrogen to act. If nickel oxide is not sufficiently reduced in this initial reduction step, the performance of the fuel cell is lowered. Therefore, it is considered that the higher the degree of reduction of nickel oxide, the better the performance of the fuel cell.
  • Ni has been sufficiently reduced by measuring the voltage between the electrodes or by monitoring the change in the supply amount of fuel gas and the partial pressure of water vapor in the exhaust gas. It was. However, since the degree of reduction measured by these methods varies depending on the concentration and flow rate of hydrogen gas, the actual reduction state of nickel cannot be accurately detected.
  • the inventors of the present invention have developed a technique that can accurately measure the reduction state of nickel oxide in the initial reduction process without using an actual fuel cell, and invented the present invention using this technique. I arrived.
  • the reduction rate of nickel oxide is obtained by an apparatus that reproduces the reducing atmosphere of an electrode in a fuel cell by using X-ray absorption fine structure analysis (hereinafter referred to as XAFS). Ask.
  • XAFS X-ray absorption fine structure analysis
  • Ask a reduction rate is a value shown by the mass% of the reduced nickel metal with respect to the mass of the nickel metal component of the added catalyst.
  • XAFS is a spectrum obtained due to excitation of internal electrons by X-ray irradiation, and information for each element of interest can be obtained. Depending on the energy range and the excitation process, it is divided into XANS (X-ray Absorption Near Edge Structure) and EXAFS (Extended X-ray Absorption Fine Structure).
  • XANS is a spectral structure that depends on the valence and coordination structure of the element of interest due to excitation to an unoccupied orbit.
  • EXAFS is a vibration structure obtained due to the interaction between excited electrons and scattered electrons from neighboring atoms, and the radial distribution function obtained by Fourier transform is the local structure of the element of interest (the type of surrounding atoms). , Interatomic distance).
  • XAFS allows the reduction gas (H 2 ) to act and measures changes in the reduction state in a heated atmosphere, so the initial reduction process of the fuel cell can be performed with high accuracy without using an actual fuel cell. It became possible to measure while reproducing.
  • the K absorption edge spectrum of NiO has a form in the direction of an arrow according to the degree of reduction (or as the reduction operation time elapses), that is, It changes so as to approach the K absorption edge spectrum of nickel metal.
  • the K absorption edge spectrum of NiO is high, and it can be seen that the peak spectrum decreases as the reduction proceeds (as time elapses).
  • the Ni absorption standard spectrum (before reduction) and the K absorption edge spectrum of Ni metal are measured.
  • the reduction rate of the Ni catalyst of the electrode material is determined by LCF analysis (Linear Combination Fitting) by combining the NiO standard sample and the K absorption edge spectrum of the Ni metal.
  • the K absorption edge spectrum of the nickel oxide (NiO standard sample) and the Ni metal with respect to the measured K absorption edge spectrum of the nickel oxide (NiO) of the electrode material are assumed to appear at a rate corresponding to the reduction rate.
  • the reduction rate of nickel oxide can be quantified and measured.
  • One aspect of the present invention is a fuel cell electrode catalyst material comprising nickel oxide and cobalt oxide, and cobalt metal with respect to the total mass of nickel metal component and cobalt metal component. It contains 2 to 15% by mass of components.
  • the cobalt metal component is added as cobalt oxide and reduced together with nickel oxide.
  • the reason why the reduction rate of nickel is increased by adding a cobalt metal component is unknown, but when nickel is reduced, cobalt has some effect on the reduction of nickel, so that the reduction rate is considered to increase. .
  • NiO, Ni 2 O 3 or the like can be used as the nickel oxide that can be used in this embodiment.
  • cobalt oxides may be employed CoO, Co 2 O 3, Co 3 O 4 and the like.
  • Ni—Co composite oxides such as NiCo 2 O 4 can be employed.
  • the cobalt metal component can be added in an amount of 2 to 15% by mass based on the total mass of the nickel metal component and the cobalt metal component.
  • the addition amount is less than 2% by mass, the reduction rate of nickel cannot be increased.
  • the addition amount of the cobalt metal component is 5% by mass or less.
  • the catalyst material according to the present embodiment has a structure in which cobalt oxide is dispersedly supported on part or all of the outer peripheral portion of nickel oxide.
  • the particle diameter of the nickel oxide is preferably set to 0.5 to 10 ⁇ m, and the particle diameter of the cobalt oxide is preferably set to 0.1 to 5 ⁇ m.
  • the reduction rate of Ni can be further increased.
  • the Ni—Co oxide can be formed by an impregnation method. Although the details of the reason why the reduction rate of Ni oxide in the Ni—Co oxide formed by the impregnation method is increased are unknown, these oxides are close to each other compared to a simple mixture of Ni oxide and Co oxide. This is considered to be because the influence of the Co component on the reduction of the Ni component is increased.
  • the catalyst material containing the Ni—Co oxide is composed of 50% or more of oxide composite particles having a particle size of 1 ⁇ m to 50 ⁇ m. It is preferable to adopt. If the particle size is smaller than 1 ⁇ m, the cost required for pulverization increases. On the other hand, when the particle size is larger than 50 ⁇ m, the active sites are decreased and the catalyst performance is lowered. Moreover, in order to ensure a catalyst function, it is preferable to employ those containing 50% or more of the above particle diameter.
  • the electrode catalyst material can be used for various electrode materials to form electrodes.
  • the electrode of a fuel cell is formed by mixing the solid electrolyte used for the solid electrolyte layer of the fuel cell and the electrode catalyst material, and molding and sintering.
  • Examples of the solid electrolyte constituting the electrode include yttria-stabilized zirconia (YSZ), yttrium-added barium selenate (BCY), yttrium-added barium zirconate (BZY), scandia-stabilized zirconia (SSZ), lanthanum strontium gallium manga Nate (LSGM) or the like can be employed.
  • the electrode catalyst material is kneaded together with the solid electrolyte material, molded, and then sintered.
  • an anode electrode but a cathode electrode can be comprised using the electrode material which concerns on this embodiment.
  • the electrode catalyst material is an addition step of adding cobalt oxide to nickel oxide by an impregnation method so that the cobalt metal component is 2 to 15% by mass with respect to the total amount of the nickel metal component and the cobalt metal component.
  • the electrode material employing the iron oxide includes nickel oxide and iron oxide, and contains 2 to 10% by mass of the iron metal component with respect to the total mass of the nickel metal component and the iron metal component. It is preferable to include it.
  • the electrode material in which the iron oxide is blended is obtained by impregnating nickel oxide with iron oxide so that the iron metal component is 2 to 10% by mass with respect to the total amount of nickel metal component and iron metal component. It can manufacture including the addition process to add.
  • the electrode catalyst material blended with pig iron oxide can constitute an electrode of a fuel cell together with various solid electrolyte materials.
  • the reduction rate of the Ni component is preferably set to 95% or more. Thereby, the efficiency of the fuel cell can be increased.
  • sample preparation by impregnation method As shown in FIG. 3, a predetermined amount of Co (NO 3 ) 2 .6H 2 O and Fe (NO 3 ) 3 .9H 2 O are weighed in predetermined amounts, respectively, to obtain a Co component and an Fe component.
  • the catalyst material blended with is adjusted.
  • the last two digits of the sample name are the mass% of the Co metal component relative to the total mass of the Ni metal component and the Co metal component, and the mass% of the Fe metal component relative to the total mass of the Ni metal component and the Fe metal component. Show.
  • NiO is put into 150 mL of pure water obtained by ion exchange. After stirring for 10 minutes at room temperature, the above Co (NO 3 ) 2 .6H 2 O and Fe (NO 3 ) 3 .9H 2 O are added. Add pure water to make a total of 300 mL, add a stirrer and further stir with a stirrer while heating at 80 ° C. or higher. When water evaporates from the solution to 50 mL or less, the stirrer is removed, and the water is further evaporated while stirring with a glass rod.
  • the powder obtained by the above operation is put in a crucible, heated to 400 ° C. over 1 hour, held at 400 ° C. for 2 hours, and then cooled. Then, it grind
  • the powder obtained by the above operation is heated to 1200 ° C. over 6 hours, held at 1200 ° C. for 6 hours, and then cooled.
  • each of the above samples has a form in which cobalt oxide or iron oxide is supported on part or all of the surface of nickel oxide.
  • EC catalyst Nihon Kasei Co., Ltd. EC Vehicle 3-097
  • uniaxial compression molding was performed to obtain a green compact with a diameter of 10 mm and a thickness of 1 mm.
  • the measuring device 3 In order to reproduce the initial reduction process of the fuel cell, the measuring device 3 according to the present embodiment heats the hydrogen gas while acting on each sample 2 as described above, and measures the reduction rate, as shown in FIG. . For this reason, the sample 2 was placed in a container 1 in which hydrogen gas can flow, and this container was placed between the detectors 4 and 5 of the XAFS measuring apparatus 3a for measurement.
  • the reduction rate was as described above by heating the sample 2 to 400 ° C. over a predetermined time in a nitrogen atmosphere and flowing helium gas containing 3% hydrogen at a temperature of 400 ° C. Measurements were taken every 90 seconds by the method. The measurement was performed on nickel oxide (NiO standard sample) and each of the above samples, and the reduction rate of Ni in each sample was obtained by the method described above. Moreover, the reduction rate was calculated
  • FIG. 7 is a graph showing the change over time in the reduction rate of a composite catalyst composed of nickel oxide and cobalt oxide.
  • FIG. 8 is a graph showing the change over time in the reduction rate of the composite catalyst composed of nickel oxide and iron oxide.
  • FIG. 9 shows a change with time of the reduction rate of the cobalt oxide according to FIG. 7, and
  • FIG. 10 shows a change with time of the reduction rate of the iron oxide according to FIG.
  • nickel oxide added with 4 to 7% by mass of cobalt oxide is reduced at a high reduction rate exceeding 90% in a few minutes.
  • nickel oxide added with iron oxide at 10% by mass or less is reduced at a high reduction rate exceeding 90% in several minutes.
  • the reduction rate of the cobalt oxide is higher as the amount of cobalt metal is increased, but the reduction rate is not as high as that of nickel oxide.
  • the reduction rate of the iron oxide does not change greatly depending on the amount added, and the reduction rate changes with the same tendency.
  • FIG. 11 and FIG. 12 show reduction rate tables and bar graphs after nickel oxide is subjected to the above reduction operation.
  • the reduction rates shown in FIGS. 11 to 14 are measured values after 900 seconds.
  • the nickel oxide added with 4 to 10% by mass of the iron metal component is higher than the reduction rate of the NiO standard sample (Fe addition rate is 0% by mass). A reduction rate was obtained. The total reduction rate also changes with the same tendency.
  • the reduction rate of the nickel oxide is greatly reduced when the amount of iron metal component added exceeds 10% by mass. Therefore, the amount of iron metal component added is preferably set to 2 to 10% by mass.
  • the reduction rate is 54%
  • Co metal In the case of the Ni—Co catalyst to which 50% by mass of the component was added, the reduction rate was 80%.
  • An electrolyte-electrode laminate for a fuel cell is formed using the electrode catalyst material.
  • the electrode material and YSZ powder are pulverized and kneaded by a ball mill, and then uniaxially molded to obtain a plate-like molded body having a required form. After pre-sintering this at 1000 ° C., a YSZ paste constituting the electrolyte layer is applied by screen printing. After heating this to 750 degreeC and removing the binder for shaping
  • a lanthanum strontium cobalt iron-based material (LSFC) constituting the air electrode is laminated and baked at 1000 ° C.
  • a Pt mesh is disposed as the air electrode current collector and a nickel porous body is disposed as the fuel electrode current collector to obtain an SOFC electrolyte layer-electrode layer laminate.
  • a fuel cell is constructed using this electrolyte layer-electrode layer laminate, and the above-described initial reduction step is performed before operation.
  • the type of the solid electrolyte is not particularly limited, and an electrode can be formed using various solid electrolytes employed in the electrolyte layer and the catalyst material according to the embodiment.
  • a highly efficient fuel cell can be configured by increasing the reduction rate of the soot catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

ニッケル触媒の還元率を高めることにより、燃料電池における触媒機能を高めることができる電極用触媒材料を提供する。燃料電池の電極用触媒材料であって、ニッケル酸化物とコバルト酸化物とを含んで構成されるとともに、ニッケル金属成分とコバルト金属成分の合計質量に対して、上記コバルト金属成分を2~15質量%含んで構成される。

Description

電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池
  本発明は、固体酸化物型燃料電池における電極用触媒材料等に関する。詳しくは、還元率を高めて触媒性能を高めることができる電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法等に関する。
  固体酸化物型燃料電池(以下、「SOFC」という)は、固体電解質層の両側にアノード電極とカソード電極とを設けた固体電解質-電極積層体を備えて構成される。
  上記SOFCにおける固体電解質層を構成する材料として、ペロブスカイト型酸化物であるイットリア安定化ジルコニア(以下、YSZ)、イットリウム添加バリウムセレイト(以下、BCYという)、イットリウム添加ジルコン酸バリウム(以下、BZYという)等が知られている。
  上記SOFCのアノード電極は、通常、固体電解質層を構成する固体酸化物に触媒成分を加えて構成されている。上記触媒成分として、白金等の貴金属を使用できるが、製造コストが増大するという問題がある。上記不都合を回避するため、安価なニッケル(Ni)を触媒として採用することができる。
特開2013-161662号
  ニッケル(Ni)を電極の触媒として採用する場合、たとえば、固体電解質を構成する粉体材料に、ニッケル酸化物粉体を添加し、所定形状に成形した後、焼結及び還元されて触媒機能を発揮するようになる。このため、還元率が大きいほど、触媒機能が高まると考えられる。
  ところが、SOFCの電極における従来のニッケル還元率は90%程度である。このため、本来の触媒機能を十分に発揮しているとはいえない。
  本発明は、上述の問題を解決するために案出されたものであり、触媒の還元率を高めることにより、燃料電池における触媒機能を高めることができる電極用触媒材料を提供することを課題とする。
  本発明の一形態は、燃料電池の電極用触媒材料であって、ニッケル酸化物とコバルト酸化物とを含んで構成されるとともに、ニッケル金属成分とコバルト金属成分の合計質量に対して、上記コバルト金属成分を2~15質量%含んで構成される。
  本発明の一形態は、ニッケル酸化物とコバルト酸化物とを含んで構成される燃料電池用電極触媒材料の製造方法であって、コバルト金属成分が、ニッケル金属成分とコバルト金属成分の合計量に対して2~15質量%となるように、ニッケル酸化物にコバルト酸化物を含浸法によって添加する添加工程を含む。
  本発明の一形態は、燃料電池の電極用触媒材料であって、ニッケル酸化物と鉄酸化物とを含んで構成されるとともに、ニッケル金属成分と鉄金属成分の合計質量に対して、鉄金属成分を2~10質量%含む。
  本発明の一形態は、ニッケル酸化物と鉄酸化物とを含んで構成される燃料電池用電極触媒材料の製造方法であって、ニッケル金属成分と鉄金属成分の合計量に対して、鉄金属成分が2~10質量%となるように、ニッケル酸化物に鉄酸化物を含浸法によって添加する添加工程を含む。
  ニッケル酸化物の還元率を高めて、触媒反応に関与するニッケル金属を増加させることにより、燃料電池の発電効率を向上させることができる。
X線吸収微細構造解析(XAFS)によって測定した、ニッケル酸化物(NiO)と、ニッケル金属のデータの一例である。 還元過程におけるニッケル酸化物のX線吸収微細構造解析データに、ニッケル酸化物(NiO)と、ニッケル金属のデータをフィッティングさせて、実測したニッケル酸化物の還元率を求める手法を説明する図である。 実施形態に係る各試料を形成するための粉体材料の配合量を示す表である。 含浸法によって形成される本発明に係る触媒材料の構造を模式的に示す図である。 実施形態に係るX線吸収微細構造解析(XAFS)装置の一例を示す図である。 測定の際の加熱過程の温度とガス雰囲気変化を示す図である。 Ni酸化物とCo酸化物から構成される複合触媒の還元率の経時変化を示すグラフである。 Ni酸化物とFe酸化物から構成される複合触媒の還元率の経時変化を示すグラフである。 図7に係るCo酸化物の還元率の経時変化を示すグラフである。 図8に係るFe酸化物の還元率の経時変化を示すグラフである。 Ni酸化物とCo酸化物から構成される複合触媒の還元率を示す表である。 図11におけるNi酸化物及びCo酸化物の還元率を棒グラフで表した図である。 Ni酸化物とFe酸化物から構成される複合触媒の還元率を示す表である。 図13におけるNi酸化物及びFe酸化物の還元率を棒グラフで表した図である。
〔燃料電池用電極におけるNi触媒の還元について〕
  燃料電池の電極に配合されたニッケル触媒成分は、燃料電池に組み込まれた初期には、酸化物として存在する。上記ニッケルの触媒機能を発現させて、燃料電池から電力を取り出すには、電極中のニッケル酸化物をニッケル金属に還元する必要がある。このため、燃料電池の電解質-電極積層体を加熱するとともに水素を作用させることにより、初期還元工程が行われる。この初期還元工程におけるニッケル酸化物の還元が十分に行われない場合、燃料電池の性能が低下することから、ニッケル酸化物の還元程度が高いほど、燃料電池の性能が向上すると考えられる。
  従来、上記初期還元工程において、電極間の電圧を測定したり、燃料ガスの供給量と排気ガス中の水蒸気分圧の変化をモニターすることにより、Niが十分に還元されているかどうかを検出していた。ところが、これらの手法で計測される還元程度は、水素ガスの濃度や流量等によって変動するため、ニッケルの実際の還元状態を精度よく検出することができなかった。
  そこで、本発明の発明者らは、初期還元工程におけるニッケル酸化物の還元状態を、実際の燃料電池を用いずに、精度高く測定できる手法を開発するとともに、この手法を用いて本発明を発明するに到った。
〔還元率の測定〕
  本実施形態では、X線吸収微細構造解析(X-ray  Absorption  Fine  Structure:以下、XAFSという。)を利用し、燃料電池中の電極の還元雰囲気等を再現した装置によってニッケル酸化物の還元率を求める。なお、還元率は、添加した触媒のニッケル金属成分の質量に対して、還元されたニッケル金属の質量%で示される値である。
  XAFSは、X線照射により、内部電子の励起に起因して得られるスペクトルであり、着目元素ごとの情報を得ることができる。エネルギー範囲及び励起過程の違いにより、XANS(X-ray  Absorption  Near  Edge  Structure)と、EXAFS(Extened  X-ray  Absorption  Fine  Structure)に分けられる。XANSは、非占有軌道への励起に起因し、着目元素の価数や配位構造等に依存したスペクトル構造である。一方、EXAFSは、励起電子と近接原子からの散乱電子の相互作用に起因して得られる振動構造であり、フーリエ変換により得られる動径分布関数は、着目元素の局所構造(周囲の原子の種類、原子間距離)に関する情報を含んでいる。特に、XAFSは、還元ガス(H2)を作用させるとともに、加熱雰囲気下における還元状態の変化を測定することができるため、実際の燃料電池を用いることなく、燃料電池の初期還元工程を精度高く再現しながら計測を行うことが可能となった。
〔測定手順の概要〕
  以下、本実施形態における還元率の測定手順について説明する。本実施形態では、試料を400℃に加熱するとともに、H2ガスを10%含むHeガスの雰囲気下で測定を行う。ニッケル酸化物(NiO)を上記条件下で還元する過程における上記XANSのK吸収端スペクトルの変化の一例を図1に示す。
  図1に示すように、ニッケル酸化物(NiO)を上記手順で還元すると、NiOのK吸収端スペクトルが、還元程度に応じて(あるいは還元操作時間の経過とともに)矢印の方向の形態、すなわち、ニッケル金属のK吸収端スペクトルに近づくように変化する。還元初期においては、NiOのK吸収端スペクトルは高く、還元が進行するにつれて(時間が経過するにつれて)、ピークスペクトルが低下することが判る。まず、図1に示すように、NiO標準試料(還元前)とNi金属のK吸収端スペクトルを計測しておく。
  本実施形態では、上記NiO標準試料と上記Ni金属のK吸収端スペクトルを組み合わせて、電極材料のNi触媒の還元率をLCF分析(Linear  Combination  Fitting)によって求める。
  具体的には、図2に示すように、実測した電極材料のニッケル酸化物(NiO)のK吸収端スペクトルに対して、上記ニッケル酸化物(NiO標準試料)と上記Ni金属のK吸収端スペクトルが、還元率に対応した割合で出現すると仮定して、フィッティングを行う。図2の例では、NiO標準試料のK吸収端スペクトルの48%と、Ni金属のK吸収端スペクトルの52%を組み合わせると、上記実測したニッケル酸化物のスペクトルになる。そして、上記Ni金属のK吸収端スペクトルの52%を還元率と定義する。上記手法を採用することにより、ニッケル酸化物の還元率を数値化して計測することが可能となる。
〔本発明の実施形態の概要〕
  本発明の一形態は、燃料電池の電極用触媒材料であって、ニッケル酸化物とコバルト酸化物とを含んで構成されるとともに、ニッケル金属成分とコバルト金属成分の合計質量に対して、コバルト金属成分を2~15質量%含むものである。
  上述した還元率の測定手法を用いて、コバルト金属成分を添加したニッケル触媒材料の還元率を測定したところ、金属ニッケルのみの場合よりも高い還元率が測定された。すなわち、コバルト金属成分を添加することによりニッケルの還元率が高まり、その分触媒機能が高まって、燃料電池の効率を高めることが可能となる。
  上記コバルト金属成分は、コバルト酸化物として添加され、ニッケル酸化物とともに還元される。コバルト金属成分を添加することによりニッケルの還元率が高まる理由は不明であるが、ニッケルが還元される際に、コバルトがニッケルの還元に対して何らかの作用を及ぼす結果、還元率が高まると考えられる。
  本実施形態で採用できるニッケル酸化物として、NiO、Ni23等を採用できる。また、コバルト酸化物として、CoO、Co23、Co34等を採用できる。さらに、NiCo24等のNi-Co複合酸化物を採用できる。
  上記コバルト金属成分は、ニッケル金属成分とコバルト金属成分の合計質量に対して2~15質量%添加することができる。添加量が2質量%未満では、ニッケルの還元率を高めることができない。一方、15重量%を越えて添加した場合、還元率が低下するのみならず、コバルト原材料のコストが増加するため全体としての製造コストが増加する。還元率を高めるとともに、製造コストへの影響を考慮すると、コバルト金属成分の添加量を5質量%以下にするのがより好ましい。
  本実施形態に係る触媒材料は、図4に示すように、ニッケル酸化物の外周部の一部又は全部に、コバルト酸化物が分散担持された構造を備える。上記ニッケル酸化物の粒径を0.5~10μmに設定するとともに、コバルト酸化物の粒径を0.1~5μmに設定するのが好ましい。
  上記構造のNi-Co酸化物を採用することにより、Niの還元率をより高めることができる。上記Ni-Co酸化物は、含浸法によって形成することができる。含浸法によって形成したNi-Co酸化物におけるNi酸化物の還元率が高まる理由の詳細は不明であるが、Ni酸化物とCo酸化物を単に混合したものに比べてこれら酸化物が近接した状態で一体化されるため、Co成分のNi成分の還元に対する影響が大きくなるためであると考えられる。
  電極を成形できるとともに、所要の還元率を確保するため、上記Ni-Co酸化物を含む触媒材料は、1μm~50μmの粒径を備える酸化物複合粒子を50%以上含んで構成されるものを採用するのが好ましい。粒径が1μmより小さいと粉砕に要するコストが大きくなる。一方、粒径が50μmより大きいと活性点が少なくなり、触媒性能が低下する。また、触媒機能を確保するため、上記粒径の粒子を50%以上含むものを採用するのが好ましい。
  上記電極用触媒材料を、種々の電極材料に用いて電極を構成することができる。通常、燃料電池の固体電解質層に用いた固体電解質と上記電極用触媒材料を混合し、成形及び焼結することにより、燃料電池の電極が形成される。
  上記電極を構成する固体電解質として、たとえば、イットリア安定化ジルコニア(YSZ)、イットリウム添加バリウムセレイト(BCY)と、イットリウム添加ジルコン酸バリウム(BZY)、スカンジア安定化ジルコニア(SSZ)、ランタンストロンチウムガリウムマンガネイト(LSGM)等を採用することができる。上記電極用触媒材料は、上記固体電解質材料とともに混練され、成形された後に焼結される。なお、本実施形態に係る電極材料を用いて、アノード電極のみならず、カソード電極を構成できる。
  上記触媒材料の機能を発揮させるには、上記触媒材料を還元して、ニッケル金属を生成させる必要がある。このため、水素雰囲気中で400℃に加熱して還元が行われる。本実施形態では、ニッケル酸化物の還元率を95%以上に設定するのが好ましい。これにより、電極中にこれまでにない割合のニッケル金属が生成され、触媒性能を高めて燃料電池の効率を高めることが可能となる。
  上記電極用触媒材料は、ニッケル金属成分とコバルト金属成分の合計量に対して、コバルト金属成分が2~15質量%となるように、ニッケル酸化物にコバルト酸化物を含浸法によって添加する添加工程を含んで製造される。
  ニッケル酸化物粒子の表面の一部又は全部に、含浸法を用いてコバルト酸化物粒子を分散担持させるのが好ましい。ニッケル酸化物の表面にコバルト酸化物を分散担持させることにより、ニッケル酸化物の還元率を高めることができる。
  ニッケル酸化物を還元する際、コバルト酸化物の代わりに、鉄酸化物を添加することによっても、ニッケル酸化物の還元率が高まることが判明した。
  上記鉄酸化物を採用した電極材料は、ニッケル酸化物と鉄酸化物とを含んで構成されるとともに、ニッケル金属成分と鉄金属成分の合計質量に対して、鉄金属成分を2~10質量%含んで構成するのが好ましい。
  上記鉄金属成分の配合割合が2質量%未満の場合、所要のニッケル還元率を得ることができない。一方、10質量%を越えて添加した場合、還元率が低下する。
  上記鉄酸化物を配合した電極材料は、ニッケル金属成分と鉄金属成分の合計量に対して、鉄金属成分が2~10質量%となるように、ニッケル酸化物に鉄酸化物を含浸法によって添加する添加工程を含んで製造することができる。
  鉄酸化物を配合した電極用触媒材料も、コバルト酸化物を配合した電極用触媒材料と同様に、種々の固体電解質材料とともに、燃料電池の電極を構成することができる。また、上記電極において、Ni成分の還元率が95%以上に設定するのが好ましい。これにより、燃料電池の効率を高めることができる。
〔本発明の実施形態の詳細〕
  以下、実施形態の詳細を説明する。
〔含浸法による試料の調整〕
  図3に示すように、所定量のNiO粉末に、Co(NO32・6H2Oと、Fe(NO3 )3・9H2Oとをそれぞれ所定量秤量して、Co成分とFe成分を配合した触媒材料を調整する。なお、試料名称の末尾の2桁の数字は、Ni金属成分とCo金属成分の合計質量に対するCo金属成分の質量%、及びNi金属成分とFe金属成分の合計質量に対するFe金属成分の質量%を示している。
  イオン交換により得た純水150mLに、NiOを投入する。室温で10分間攪拌した後、上記Co(NO32・6H2Oと、Fe(NO33・9H2Oとをそれぞれ投入する。
純水を足し、全体を300mLとし、スターラを投入して80℃以上で加熱しながら攪拌器によりさらに攪拌する。上記溶液から水分が蒸発して50mL以下になったら、スターラを取り除き、ガラス棒によって攪拌しながら、さらに水分を蒸発させる。
  上記操作により得られた粉末を、るつぼに入れて400℃まで1時間かけて加熱昇温させ、400℃で2時間保持した後、冷却する。その後、乳鉢で30分間粉砕する。
  上記操作によって得られた粉体を1200℃まで6時間かけて加熱昇温させて、1200℃で6時間保持した後、冷却する。
  次に、ボールミルにて、エタノールを加えて12時間粉砕した後、エタノールを蒸発させる。上記操作によって、コバルト酸化物を添加したニッケル触媒材料、及び鉄酸化物を添加したニッケル触媒材料を得た。
  上記各試料は、図4に示すように、ニッケル酸化物の表面の一部又は全部に、コバルト酸化物又は鉄酸化物が担持された形態を備えている。
〔触媒材料の成形〕
  上記操作によって得られた触媒材料にバインダとしてECヒビクル(日進化成株式会社ECヒビクル  試作3-097)を添加して1軸圧縮成形し、直径10mm厚み1mmの圧粉成形体を得た。
〔XAFS測定装置〕
  本実施形態に係る測定装置3は、燃料電池の初期還元工程を再現するため、図5に示すように、水素ガスを上記各試料2に作用させながらヒータ6によって加熱し、還元率を測定する。このため、水素ガスを流動させることができる容器1内に、上記試料2を設置し、この容器ごとXAFS測定装置3aの検出器4,5間に設置して測定を行った。
〔還元率の測定〕
  図6に示すように、還元率は、試料2を窒素雰囲気下、所定時間をかけて400℃まで昇温させ、400℃の温度下において、水素3%を含むヘリウムガスを流動させ、上述した手法によって、90秒ごとに測定を行った。測定は、ニッケル酸化物(NiO標準試料)と、上記各試料について行い、上述した手法によって各試料におけるNiの還元率を求めた。また、添加したコバルト酸化物及び鉄酸化物についても還元率を求め、これら還元率から触媒金属の全質量に対するトータル還元率も求めた。
〔測定結果〕
  図7は、ニッケル酸化物とコバルト酸化物から構成される複合触媒の還元率の経時変化を示すグラフである。図8は、ニッケル酸化物と鉄酸化物から構成される複合触媒の還元率の経時変化を示すグラフである。また、図9に、図7に係るコバルト酸化物の還元率の経時変化を、図10に、図8に係る鉄酸化物の還元率の経時変化を示す。
  図7に示すように、コバルト酸化物を4~7質量%添加したニッケル酸化物は、数分で90%を越える高い還元率で還元されることが判る。また、図8に示すように、鉄酸化物を10質量%以下で添加したニッケル酸化物においても、数分で90%を越える高い還元率で還元されることが判る。
  図9に示すように、上記コバルト酸化物の還元率は、コバルト金属の配合量の多い程高いが、ニッケル酸化物ほどの還元率は得られない。一方、図10に示すように、鉄酸化物の還元率は、添加量によっては大きな変化はなく、還元率は同様の傾向で変化する。
  図11及び図12に、ニッケル酸化物について、上記還元操作をおこなった後の還元率の表及び棒グラフを示す。なお、図11~図14に示す還元率は、900秒後の測定値である。
  これらの図から明らかなように、NiO標準試料(Co添加率が0質量%)の還元率が92%であるところ、コバルト酸化物を4~10%添加して還元した場合、ニッケル酸化物の還元率が100%となり、従来に比べて高い還元率を得ることができた。なお、コバルト金属成分の添加量が50質量%程度まで、NiO標準試料の還元率を上回っていることが判る。また、ニッケル酸化物とコバルト酸化物を総合したトータル還元率もコバルト金属成分の添加量が50重量%程度まで、NiO標準試料の還元率を上回っている。一方、コバルト金属成分の配合割合が大きくなると、還元率が低下するのみならず、コバルト酸化物がニッケル酸化物より高価であることから製造コストも増加する。このため、コバルト金属成分の配合割合を、2~15質量%に設定するのが好ましい。さらに、コバルト金属成分の配合割合を、2~10質量%に設定するのがより好ましい。
  上記測定結果から、この手法により燃料電池の電極を形成することにより、ニッケル還元率が高まり、導電性等も高まる。このため、燃料電池の効率を高めることが可能となる。
  また、触媒の還元率と還元操作時間の関係が判明するため、初期還元工程の所要時間を短縮することも可能となる。
  同様に、図13及び図14に示すように、鉄金属成分を4~10質量%添加したニッケル酸化物においても、NiOの標準試料(Fe添加率が0質量%)の還元率に比べて高い還元率を得た。また、トータル還元率も、同様の傾向で変化する。一方、上記ニッケル酸化物の還元率は、鉄金属成分の添加量が10質量%を越えると大きく低下するため、鉄金属成分の添加量は、2~10質量%に設定するのが好ましい。
  なお、含浸法を用いず、上記酸化物粉体を単に混合しただけの触媒材料の場合、たとえば、Fe金属成分を10質量%添加したNi-Fe触媒の場合の還元率は54%、Co金属成分を50質量%添加したNi-Co触媒の場合の還元率は80%であった。
  上記電極触媒材料を用いて、燃料電池の電解質-電極積層体が形成される。たとえば、YSZからなる電解質層を備える電解質-電極積層体を形成する場合、上記電極材料と、YSZ粉末をボールミルにて粉砕混練後、一軸成形して所要形態の板状成形体を得る。これを1000℃で仮焼結した後、電解質層を構成するYSZペーストをスクリーン印刷で塗布する。これを750℃に加熱して成形用のバインダを除去した後、1000℃で一体焼結する。その後、空気極を構成するランタンストロンチウムコバルト鉄系材料(LSFC)を積層塗布し、1000℃で焼成する。空気極集電体としてPtメッシュを、燃料極集電体としてニッケル多孔質体を配置し、SOFCの電解質層-電極層積層体を得る。この電解質層-電極層積層体を用いて燃料電池を構成し、運転前に上述した初期還元工程が行われる。
  上記固体電解質の種類は特に限定されることはなく、電解質層に採用される種々の固体電解質と実施形態に係る触媒材料を用いて電極を形成することができる。
  本発明の範囲は、上述の実施形態に限定されることはない。今回開示された実施形態は、すべての点で例示であって、制限的なものでないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
  触媒の還元率を高めて、効率の高い燃料電池を構成できる。
    1    容器
    2    試料
    3    実施形態に係る試料を装着した容器を設けたX線吸収微細構造解析(XAFS)装置
    3a  X線吸収微細構造解析(XAFS)装置
    4    検出器
    5    検出器
    6    ヒータ
 

Claims (11)

  1.   固体酸化物型燃料電池の電極用触媒材料であって、
      ニッケル酸化物とコバルト酸化物とを含んで構成されるとともに、
      ニッケル金属成分とコバルト金属成分の合計質量に対して、コバルト金属成分を2~15質量%含む電極用触媒材料。
  2.   ニッケル酸化物粒子の表面の一部又は全部に、コバルト酸化物粒子を分散担持させた構造を備える、請求項1に記載の電極用触媒材料。
  3.   1μm~50μmの粒径を備えるNi-Co酸化物複合粒子を50%以上含んで構成される、請求項1又は請求項2に記載の電極用触媒材料。
  4.   請求項1から請求項3に記載の電極用触媒材料を用いて形成された、燃料電池用電極。
  5.   Ni成分の還元率が95%以上である、請求項4に記載の燃料電池用電極。
  6.   ニッケル酸化物とコバルト酸化物とを含んで構成される燃料電池用電極触媒材料の製造方法であって、
      コバルト金属成分が、ニッケル金属成分とコバルト金属成分の合計量に対して2~15質量%となるように、ニッケル酸化物にコバルト酸化物を含浸法によって添加する添加工程を含む、燃料電池用電極触媒材料の製造方法。
  7.   燃料電池の電極用触媒材料であって、
      ニッケル酸化物と鉄酸化物とを含んで構成されるとともに、
      ニッケル金属成分と鉄金属成分の合計質量に対して、鉄金属成分を2~10質量%含む電極用触媒材料。
  8.   ニッケル酸化物と鉄酸化物とを含んで構成される燃料電池用電極触媒材料の製造方法であって、
      ニッケル金属成分と鉄金属成分の合計量に対して、鉄金属成分が2~10質量%となるように、ニッケル酸化物に鉄酸化物を含浸法によって添加する添加工程を含む、燃料電池用電極触媒材料の製造方法。
  9.   請求項7に記載の電極用触媒材料を用いて形成された、燃料電池用電極。
  10.   Ni成分の還元率が95%以上である、請求項9に記載の燃料電池用電極。
  11.   請求項1又は請求項7の電極用触媒材料を用いて形成された電極を備える、燃料電池。
PCT/JP2014/062952 2013-08-30 2014-05-15 電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池 WO2015029506A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14840966.7A EP3041073B1 (en) 2013-08-30 2014-05-15 Catalyst material for electrode, electrode for fuel cell, method for producing catalyst material for electrode, and fuel cell
CN201480047867.0A CN105493324B (zh) 2013-08-30 2014-05-15 电极用催化剂材料、燃料电池用电极、电极用催化剂材料的制造方法和燃料电池
KR1020167005162A KR101841504B1 (ko) 2013-08-30 2014-05-15 전극용 촉매 재료, 연료 전지용 전극, 전극용 촉매 재료의 제조 방법 및, 연료 전지
US14/913,395 US10003082B2 (en) 2013-08-30 2014-05-15 Electrode catalyst material, fuel cell electrode, method for producing electrode catalyst material, and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013179937A JP6252973B2 (ja) 2013-08-30 2013-08-30 電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池
JP2013-179937 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029506A1 true WO2015029506A1 (ja) 2015-03-05

Family

ID=52586088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062952 WO2015029506A1 (ja) 2013-08-30 2014-05-15 電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池

Country Status (6)

Country Link
US (1) US10003082B2 (ja)
EP (1) EP3041073B1 (ja)
JP (1) JP6252973B2 (ja)
KR (1) KR101841504B1 (ja)
CN (1) CN105493324B (ja)
WO (1) WO2015029506A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764444A4 (en) * 2018-03-06 2022-01-05 Sumitomo Electric Industries, Ltd. ELECTROLYTE LAYER-ANODE COMPOSITE PART FOR FUEL CELL, CELL STRUCTURE, FUEL CELL AND METHOD FOR MANUFACTURING A COMPOSITE PART

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158377A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2006318769A (ja) * 2005-05-12 2006-11-24 Shinko Electric Ind Co Ltd 電極材料及び燃料電池
JP2008140652A (ja) * 2006-12-01 2008-06-19 Shinko Electric Ind Co Ltd 直接火炎型燃料電池
JP2010232134A (ja) * 2009-03-30 2010-10-14 Mitsubishi Materials Corp 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池
JP2013161662A (ja) 2012-02-06 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> 燃料極の評価方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3208935B2 (ja) 1993-06-14 2001-09-17 石川島播磨重工業株式会社 溶融炭酸塩型燃料電池用電極の製造方法
US7351491B2 (en) * 2003-04-28 2008-04-01 Battelle Memorial Institute Supporting electrodes for solid oxide fuel cells and other electrochemical devices
KR20130040640A (ko) * 2011-10-14 2013-04-24 삼성전자주식회사 고체산화물 연료전지용 복합체 음극 소재, 상기 소재를 포함하는 음극 및 고체산화물 연료전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158377A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2006318769A (ja) * 2005-05-12 2006-11-24 Shinko Electric Ind Co Ltd 電極材料及び燃料電池
JP2008140652A (ja) * 2006-12-01 2008-06-19 Shinko Electric Ind Co Ltd 直接火炎型燃料電池
JP2010232134A (ja) * 2009-03-30 2010-10-14 Mitsubishi Materials Corp 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池
JP2013161662A (ja) 2012-02-06 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> 燃料極の評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3041073A4 *

Also Published As

Publication number Publication date
EP3041073A4 (en) 2016-07-06
JP2015049993A (ja) 2015-03-16
KR20160036615A (ko) 2016-04-04
CN105493324B (zh) 2017-10-31
KR101841504B1 (ko) 2018-03-23
CN105493324A (zh) 2016-04-13
US20160248101A1 (en) 2016-08-25
US10003082B2 (en) 2018-06-19
EP3041073A1 (en) 2016-07-06
EP3041073B1 (en) 2017-03-08
JP6252973B2 (ja) 2017-12-27

Similar Documents

Publication Publication Date Title
Wang et al. Ni–Fe–La (Sr) Fe (Mn) O3 as a new active cermet cathode for intermediate‐temperature CO2 electrolysis using a LaGaO3‐based electrolyte
Jiang et al. Fabrication and performance of impregnated Ni anodes of solid oxide fuel cells
Osinkin et al. The electrochemical behavior of the promising Sr2Fe1. 5Mo0. 5O6–δ+ Ce0. 8Sm0. 2O1. 9–δ anode for the intermediate temperature solid oxide fuel cells
JP5584796B1 (ja) 固体酸化物型燃料電池
Dogdibegovic et al. Stability and Activity of (Pr1‐xNdx) 2NiO4 as Cathodes for Solid Oxide Fuel Cells: I. Quantification of Phase Evolution in Pr2NiO4
Shi et al. Electrochemical performance of cobalt‐free Nd0. 5Ba0. 5Fe1–xNixO3–δ cathode materials for intermediate temperature solid oxide fuel cells
Mohamed et al. The structural, thermal and electrochemical properties of MnFe1− x-yCuxNiyCoO4 spinel protective layers in interconnects of solid oxide fuel cells (SOFCs)
Lou et al. Preparation and electrochemical characterization of Ruddlesden–Popper oxide La 4 Ni 3 O 10 cathode for IT-SOFCs by sol–gel method
Ahuja et al. Effect of processing route on the properties of LSCF-based composite cathode for IT-SOFC
Ling et al. Tailoring electrochemical property of layered perovskite cathode by Cu‐doping for proton‐conducting IT‐SOFCs
JP2010282772A (ja) 固体酸化物形燃料電池用電極材及び固体酸化物形燃料電池用電極
JP2013191558A (ja) 無機イオン伝導体、その製造方法及びそれを採用した燃料電池
Bo et al. Rare-earth elements doped Nd2CuO4 as Cu-based cathode for intermediate-temperature solid oxide fuel cells
Hu et al. Smart Dual‐Exsolved Self‐Assembled Anode Enables Efficient and Robust Methane‐Fueled Solid Oxide Fuel Cells
Zhu et al. A cobalt-free composite cathode prepared by a superior method for intermediate temperature solid oxide fuel cells
Xie et al. Composite Cathode Based on Redox‐Reversible NbTi0. 5Ni0. 5O4 Decorated with In Situ Grown Ni Particles for Direct Carbon Dioxide Electrolysis
Hou et al. Electrochemical properties of La 0.5 Sr 0.5 Fe 0.95 Mo 0.05 O 3− δ as cathode materials for IT-SOEC
Khandale et al. Nd1. 8Ce0. 2CuO4+ δ: Ce0. 9Gd0. 1O2− δ as a composite cathode for intermediate-temperature solid oxide fuel cells
JP2004327278A (ja) 燃料電池用電極材料及びこれを用いた固体酸化物形燃料電池
Thommy et al. Ru exsolution in substituted La0. 75Sr0. 25Cr0. 5Mn0. 5O3-δ compound as anode material for an IT-SOFCs
Jiang et al. Co‐synthesis of Sm0. 5Sr0. 5CoO3‐Sm0. 2Ce0. 8O1. 9 Composite Cathode with Enhanced Electrochemical Property for Intermediate Temperature SOFCs
JP6252973B2 (ja) 電極用触媒材料、燃料電池用電極、電極用触媒材料の製造方法、及び燃料電池
Yeong-Ju et al. Cr-poisoning under open-circuit condition in LaNi0. 6Fe0. 4O3–δ-based nano composite cathodes for solid oxide fuel cells prepared by infiltration process
Zeng et al. Enhanced stability and electrochemical investigations of Ni/ZSM-5 catalyst layer on nickel-based anodes for ammonia-fed solid oxide fuel cells
US9553317B2 (en) Ceramic cathode material of solid oxide fuel cell and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047867.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14913395

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014840966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014840966

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167005162

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE