JP2010226103A - 熱電変換装置 - Google Patents

熱電変換装置 Download PDF

Info

Publication number
JP2010226103A
JP2010226103A JP2010055075A JP2010055075A JP2010226103A JP 2010226103 A JP2010226103 A JP 2010226103A JP 2010055075 A JP2010055075 A JP 2010055075A JP 2010055075 A JP2010055075 A JP 2010055075A JP 2010226103 A JP2010226103 A JP 2010226103A
Authority
JP
Japan
Prior art keywords
heat
frame
thermoelectric conversion
heat conductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010055075A
Other languages
English (en)
Other versions
JP5499239B2 (ja
Inventor
Katsuhiro Tono
克博 都能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESUTO KK
Original Assignee
ESUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESUTO KK filed Critical ESUTO KK
Priority to JP2010055075A priority Critical patent/JP5499239B2/ja
Publication of JP2010226103A publication Critical patent/JP2010226103A/ja
Application granted granted Critical
Publication of JP5499239B2 publication Critical patent/JP5499239B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】長期にわたって信頼性が確保できる熱電変換装置を提供する。
【解決手段】熱電変換素子群2の中央部位から吸熱側熱導体1の枠体5によって拘束されない部分11の端面までの厚みDが、吸熱側熱導体1と熱電変換素子群2と放熱側熱導体のうちで枠体5によって拘束されない枠内凸部3の積層部の厚みLの半分の+20%〜−40%の範囲に規制され、かつ枠体5と吸熱側熱導体1の接合部の大気と接する外側部分を撥水性シール剤層36で覆い、枠体5と吸熱側熱導体1の接合部の外側部分とは反対の内側部分を水蒸気遮断シール剤層37で覆ったことを特徴とする。
【選択図】図19

Description

本発明は、例えば電子冷却装置などとして用いる熱電変換装置に係り、特に熱電変換素子群を挟持した吸熱側熱導体と放熱側熱導体を剛性の高い枠体の両端部で一体に連結した構造の熱電変換装置に関するものである。
図14は、特許文献1などで従来提案された熱電変換装置の断面図である。この熱電変換装置は、熱電変換素子群51を間にしてその上下方向(積層方向)にブロック状の吸熱側熱導体52と板状の放熱側熱導体53が配置されている。
吸熱側熱導体52は合成樹脂製枠体54の周壁55の内側に嵌合され、枠体54の上端部56と吸熱側熱導体52のフランジ部57とが接着剤58で一体に連結されている。一方、放熱側熱導体53の外周部と、枠体54の周壁55より外側に延びた基端部59とが接着剤層60で一体に連結されている。61は、熱電変換素子群51と吸熱側熱導体52の間に介在された弾性薄膜である。
この熱電変換装置は、熱電変換素子群51の上下に配置した吸熱側熱導体52と放熱側熱導体53に接合する形で前記熱電変換素子群51を取り囲むように枠体54で密閉化することにより、熱電変換素子群51を介在して前記熱導体52,53間をネジ締結しない構造になっている。
また、電子冷却装置などの熱電変換装置は、装置に動作時に片側が冷却状態、もう一方の片側が加熱状態になるため、両方の温度差や熱サイクルの繰り返しで、装置内部で大きなストレスが生じて破損する問題がある。また、冷却部に外部から水分が侵入すると、それが熱電変換素子群の電極や半導体の近傍で凝縮して結露し、電解腐食を起こして熱電変換装置の性能が劣化するという問題がある。
図22は、特許文献2などに記載されている熱電変換装置の断面図である。図中の101は吸熱側熱導体、102は熱電変換素子群、103は放熱側熱導体、104は枠体、105は水冷ジャケット、106は分散部材、107は硬化型接着剤層、108は柔軟性接着剤層である。
枠体104の内側に吸熱側熱導体101が挿入され、両者の隙間にエポキシ樹脂などの硬化型接着剤が注入、硬化されて硬化型接着剤層107が形成され、吸熱側熱導体101と枠体104は硬化型接着剤層107によって固定されている。
特許第3241270号公報 特開平11−186617号公報
前記図14に示す熱電変換装置の場合、吸熱側熱導体52の上方のフランジ部57は接着剤58によって枠体54の上端部56に固定されているが、それより下方の部分は枠体54の周壁55に囲まれているが枠体54には固定されていない。従って図14において上下方向の矢印62で示すように吸熱側熱導体52のフランジ部57より下方から放熱側熱導体53の上面までの間は、枠体54の内側にあって、枠体54に拘束されないで熱膨張、熱収縮を生じる部分である。
熱電変換素子群51は、動作時に冷却域と発熱域の境界領域は熱電変換素子群51の厚さ方向のほぼ中央部位63であるため、そのほぼ中央部位63を境にして熱膨張と熱収縮が発生する。
そのため図14に示すように、片側の熱導体(この従来例では吸熱側熱導体52)だけが枠体54の内側に突出した構造では、前記冷却域と発熱域の両側で膨張・収縮の変移量の差が出て、収縮または膨張のどちらかが大きくなる(この従来例では、吸熱側熱導体5の方が突出しているから収縮の変移量が大きくなる)。
吸熱側熱導体52と放熱側熱導体53は熱電変換素子群51を挟んだ形で枠体54に固定されているから、前述の膨張・収縮の変移量の差により熱電変換素子群51に応力が加わり、そのため長期間優れた性能を維持することが出来ず、信頼性に問題がある。
また前記図22に示す熱電変換装置の場合、金属からなる吸熱側熱導体101と合成樹脂からなる枠体104とを固く接着するためにエポキシ樹脂からなる硬化型接着剤層107が使用されている。ところで、エポキシ樹脂は活性水素を有するフェノールノボラック樹脂等を硬化剤として用いて硬化反応を行なった場合、硬化反応後にエポキシ基1個当り1個の2級アルコール性水酸基を生成する。この水酸基は高い親水性を有していることから、硬化型接着剤層107自体が高い吸湿性をもっており、硬化型接着剤層107による防湿効果は期待できない。
また、金属からなる吸熱側熱導体101と硬化型接着剤層107の接着では、水の存在が接着強度を弱める1つの要因となる。これは接着剤よりも金属の方が水に濡れ易いことが起因しており、水の存在で吸熱側熱導体101と硬化型接着剤層107の接着面が破壊される。
更に、硬化型接着剤層107は吸熱側熱導体101や枠体104との接合面で固化するときの残留応力が大きく、水分が含まれている状況下で熱サイクルを繰り返していると吸熱側熱導体101や枠体104と硬化型接着剤層107の界面で剥離が生じ、さらに水分の侵入が起こり易くなり、そのために熱電変換装置の性能が低下するという欠点を有している。
さらにまた図22に示す構造では、吸熱側熱導体101と枠体104の狭い隙間には空気があり、その空気と置換しながら接着剤を注入する必要があり、接着剤の注入作業が非常に煩雑である。またこのようなことから接着剤を規定量注入することが難しかったり、接着剤層に気泡が残り、そのために十分な防湿効果が得られず、熱電変換装置の性能が低下する。
本発明の目的は、このような従来技術の欠点を解消し、長期にわたって信頼性が確保できる熱電変換装置を提供することにある。
前記目的を達成するため本発明は、熱電変換素子群を介して吸熱側熱導体と放熱側熱導体を対向して設け、合成樹脂からなる枠体を前記吸熱側熱導体の外周部にインサートモールドで一体に形成し、その枠体内に前記吸熱側熱導体と熱電変換素子群と放熱側熱導体の一部である枠内凸部を収納して、前記枠体の端部を前記放熱側熱導体の外周部と連結した熱電変換装置を対象とするものである。
そして、前記熱電変換素子群の中央部位から前記吸熱側熱導体の前記枠体によって拘束されない部分の端面までの厚みDが、前記吸熱側熱導体と熱電変換素子群と放熱側熱導体のうちで前記枠体によって拘束されない前記枠内凸部の積層部の厚みLの半分の+20%〜−40%の範囲に規制され、
かつ前記枠体と吸熱側熱導体の接合部の大気と接する外側部分を撥水性シール剤層で覆い、前記枠体と吸熱側熱導体の接合部の前記外側部分とは反対の内側部分を水蒸気遮断シール剤層で覆ったことを特徴とするものである。
本発明は前述したように、熱電変換素子群の中央部位から吸熱側熱導体の枠体によって拘束されない部分の端面までの厚みDが、吸熱側熱導体と熱電変換素子群と放熱側熱導体のうちで枠体によって拘束されない枠内凸部の積層部の厚みLの半分の+20%〜−40%の範囲に規制することにより、吸熱側熱導体と放熱側熱導体によって挟持された状態で枠体内に設置された熱電変換素子群に掛かる応力を低減し、
さらに枠体と吸熱側熱導体の接合部の大気と接する外側部分を撥水性シール剤層で覆い、枠体と吸熱側熱導体の接合部の前記外側部分とは反対の内側部分を水蒸気遮断シール剤層で覆うことにより、枠体内部、すなわち熱電変換素子群の周囲の防湿効果を維持して、長期にわたって信頼性が確保できる熱電変換装置を提供することができる。
本発明の第1実施例に係る熱電変換装置の断面図である。 その熱電変換装置の熱電変換素子群付近の拡大断面図である。 熱電変換装置を構成する各部品の材質と厚みと熱膨張係数をまとめて表した図である。 熱電変換装置の動作条件と各部品の温度をまとめて表した図である。 吸熱側熱導体ならびに放熱側熱導体の枠内凸部の寸法構成を示す図である。 吸熱側熱導体ならびに放熱側熱導体の枠内凸部の寸法構成を示す図である。 吸熱側熱導体ならびに放熱側熱導体の枠内凸部の寸法構成を示す図である。 各種条件での厚みと変移量をまとめて示した図である。 各種条件での厚みと変移量をまとめて示した図である。 全厚みLの条件を変えた場合の比率Kと変移量との関係を示した特性図である。 全厚みLの条件を変えた場合の比率Kと変移量との関係を示した特性図である。 全厚みLの条件を変えた場合の比率Kと変移量との関係を示した特性図である。 全厚みLの条件を変えた場合の比率Kと変移量との関係を示した特性図である。 従来の熱電変換装置の断面図である。 本発明の第2実施例に係る熱電変換装置の一部を断面にした正面図である。 本発明の第3実施例に係る熱電変換装置の一部を断面にした正面図である。 本発明の第4実施例に係る熱電変換装置の一部を断面にした正面図である。 比較例に係る熱電変換装置の一部を断面にした正面図である。 本発明の第5実施例に係る熱電変換装置の一部を断面にした斜視図である。 その熱電変換装置の吸熱側熱導体と枠体の結合体の一部を断面にした斜視図である。 その熱電変換装置の放熱側熱導体基部と枠体の結合部の拡大断面図である。 従来提案された熱電変換装置の断面図である。 本発明の実施例6に係る熱電変換装置の一部拡大断面図である。 本発明の実施例7に係る熱電変換装置の一部拡大断面図である。 本発明の実施例8に係る熱電変換装置の一部拡大断面図である。
本発明は、吸熱側熱導体、熱電変換素子群ならびに放熱側熱導体の積層体を剛性の枠体で囲んだ構造の熱電変換装置において、冷却の動作時に枠体の内部で発生する応力は、動作条件よっても異なるため、冷蔵や冷凍などの異なる条件下で、各種の試験やシュミレーションを重ねて、多種多様の条件下で長期にわたって信頼性が確保できる熱電変換装置を得ることができた。
〔熱電変換装置の構成〕
次に本発明の実施例を図面とともに説明する。図1は本発明の第1実施例に係る熱電変換装置の概略構成図、図2はその熱電変換装置の熱電変換素子群付近の拡大断面図である。
図1に示すように実施例に係る熱電変換装置は、ブロック状の吸熱側熱導体1と、熱電変換素子群2と、板状の放熱側熱導体枠内凸部3と、板状の放熱側熱導体基部4が順次積層されている。前記放熱側熱導体枠内凸部3と放熱側熱導体基部4とで放熱側熱導体が構成されている。放熱側熱導体枠内凸部3と放熱側熱導体基部4を一体物で構成することもできるが、放熱側熱導体枠内凸部3と放熱側熱導体基部4を別体にした方が生産効率は良好で、安価である。
5は剛性を有する合成樹脂製の枠体で、前記放熱側熱導体基部4の上面外周部に接着剤層6を介して一体に接合する基端部7と、その基端部7の内周部から前記積層体の積層方向に沿って立設した周壁8と、その周壁8の上端部からさらに内側に狭まって前記吸熱側熱導体1の外周面に接着剤層9を介して一体に接合する接合部10が連続して形成されて、全体的に階段状になっている。
吸熱側熱導体1の前記接合部10とは接合しない点線より下部側は枠体5の内側に向けて突出して、吸熱側熱導体枠内凸部11を構成している。枠体5の周壁8は放熱側熱導体枠内凸部3と熱電変換素子群2と吸熱側熱導体枠内凸部11の外周面から離れて、空間部12を形成している。この空間部12は、動作時の熱の戻りを可及的に少なくするために形成されている。
このように熱電変換装置は、枠体5の基端部7を放熱側熱導体基部4の上面外周部に接着し、枠体5の接合部10を吸熱側熱導体1の外周面に接着することにより枠体5の内部が密閉化され、熱電変換素子群2は放熱側熱導体枠内凸部3と吸熱側熱導体枠内凸部11により挟持された構造になっている。
熱電変換素子群2と放熱側熱導体枠内凸部3と吸熱側熱導体枠内凸部11が枠体5によって拘束されない部分となっており、図1において吸熱側熱導体枠内凸部11の厚さをA、放熱側熱導体枠内凸部3の厚さをB、熱電変換素子群2の厚さをCで表している。図中の符号21は装置動作時の温度境界線で、熱電変換素子群2の厚さ方向のほぼ中央部位に相当する。
図2に示すように熱電変換素子群2は、吸熱側セラミックス基板13と、ゴム弾性膜からなる応力緩和層14と、吸熱側電極15と、多数並設されたn形とp形の熱電半導体16と、放熱側電極17と、放熱側セラミックス基板18とから構成されている。
この熱電変換素子群2と前記吸熱側熱導体枠内凸部11の間には、ゴム弾性膜からなる応力緩和層19が設けられている。また、熱電変換素子群2と前記放熱側熱導体枠内凸部3の間には、弾性体からなる接着剤20が設けられている。
〔各部品の構成〕
図3は、各部品の材質と厚みと熱膨張係数をまとめて表した図である。図中のPPSはポリフェニレンサルファイド、GFはガラス繊維である。なお、放熱側熱導体枠内凸部3ならびに吸熱側熱導体枠内凸部11としては銅やマグネシウムなども使用可能であるが、加工性や価格などの点でアルミニウムが好適である。
本実施例では電気絶縁性のためにアルミナなどのセラミックス基板13、18を使用しているが、他の絶縁手段を利用してセラミックス基板を用いない場合もある。
熱電半導体16として用いられるビスマス−テルル系半導体には結晶体と焼結体のタイプがあり、結晶体は結晶軸の方向で膨張係数が異なる。性能の高いa軸方向を使用する。a軸方向の膨張係数は22×10−6/℃(図3では、これを22ppm/℃と表記している。他の部品においても同様に表記している)、a軸と直交する方向の膨張係数は16ppm/℃である。焼結体は結晶体を粉砕して焼き固めたもので、膨張係数は18ppm/℃である。
枠体5は、変形し難い剛性の高い材料を使用する必要がある。剛性が高い材料として、合成樹脂にガラス繊維などのフィラーを混入して、弾性率と機械的強度を高めた強化樹脂材料を使用している。一般にガラス繊維を30〜60重量%混入した合成樹脂は、ガラス繊維の物性が強く出るため10〜40ppm/℃程度の膨張係数となる。枠体5の材質としては、水分透過性が低く、機械的強度ならびに寸法精度が高く、耐熱性を有し、接着などの加工性に優れていることから、PPS(ポリフェニレンサルファイド樹脂)のGF(ガラス繊維)強化グレードが好適である。
このPPSにGFを混入したグレードは、GFが繊維のため、射出成形時の樹脂の流れ方向とその直交方向とで線膨張係数が異なる。GFの充填量にもよるが、射出成形時の樹脂の流れ方向で大体膨張係数は10〜20ppm/℃程度となる。流れ方向の値は50〜100%大きくて、枠体5の設計にもよるが、熱導体や熱電変換素子群の積層方向(図1に示す上下方向)の膨張係数は20〜30ppm/℃程度である。
応力緩和層14、19にはシリコーンのゴム状弾性体が使用され、伸び率は100%以上である。通常、熱電変換装置に熱電変換素子群2を実装する場合、図2に示すように弾性を有する接着剤20を界面に介在して組み立てる。この接着剤20の厚み変動が熱電変換装置の動作時に伸び縮みとして現れ、それに伴う応力の発生を吸収するために応力緩和層14、19が用いられている。各応力緩和層14、19は1層でも2層でもよく、応力緩和層の総合厚みは10〜30μmが適当で、30μmを超えると熱抵抗が増加して性能上好ましくない。
室温下(20〜25℃)で、この応力緩和層14、19を介して熱電変換装置を組み立てる。前述のように枠体5で固定した後、熱電変換装置の動作時に生じる各部品の膨張または収縮に伴う変移をこの応力緩和層14、19で吸収する。応力緩和層14、19で熱伝導性能を落とさず安定して長期間吸収できる変移量は膜厚の±10%程度であることが分かり、従って吸収できる変位量は±3μm前後となる。
本実施例で用いる熱導体と応力緩和層の材質と熱伝導度を示せば下記の通りである。
材 質 熱伝導度(W/m・K)
熱導体 アルミニウム 120〜130
応力緩和層 シリコーン弾性体 1
〔熱電変換装置の動作条件〕
次に熱電変換装置の動作条件について説明する。
一般的な冷蔵庫の条件(a:冷蔵庫動作条件)は、外気25℃のときに庫内を5℃に冷却する条件であり、このとき熱電変換装置の吸熱側熱導体1は0℃前後、放熱側熱導体基部4は40℃前後となり、吸熱側熱導体枠内凸部11においても0℃前後、放熱側熱導体枠内凸部3においても40℃前後になっている。そしてこの温度の中間領域は図1に示すように熱電変換素子群2の厚さ方向のほぼ中央の温度境界線21であり、それを境にして吸熱側が低温、放熱側が高温となる。
また、外気が低くなったときの動作条件(b:冷蔵庫外気低温動作条件)は、外気10℃で庫内を5℃に維持する場合で、吸熱側熱導体枠内凸部11は0℃程度、放熱側熱導体枠内凸部3は15℃程度となる。
冷凍条件(c:冷凍庫動作条件)で外気25℃のときに庫内を−18℃に維持する場合、吸熱側熱導体枠内凸部11は−23℃程度、放熱側熱導体枠内凸部3は50℃程度となる。
図4は、これらの動作条件と各部品の温度をまとめて表した図である。
〔変移量の計算方法〕
熱電変換装置は、常温(25℃)で組み立てるので、その状態を基準に冷却、加温動作時の内部の膨張・収縮による変移量を計算する。
変移量は、部品の熱膨張係数と、当該部品の積層方向(変移方向)の厚みと、部品の動作時の温度から25℃を引いた温度差に基づいて、下式により計算する。
変移量=〔部品の熱膨張係数〕×〔部品の変移方向の厚み〕×〔温度差(到達温度−25℃)〕
枠体5の変移量は、吸熱側熱導体1ならびに放熱側熱導体基部4と強固に接合しているので、ほぼ同等温度と見てよい。また、冷却と加温の中間温度領域は、前述のように熱電変換素子群2の厚み方向の中央部位とした。
枠体5との接着で動きが拘束されている部分よりも内側にある構成部品の動作時における膨張・収縮の変移量と、枠体5のL部(図1参照)の膨張・収縮の変移量を求め、その差し引きから放熱側熱導体枠内凸部3と吸熱側熱導体枠内凸部11間に挟持されている熱電変換素子群2にかかる応力を計算した。
〔変移量の具体的な計算例〕
a:冷蔵庫条件(吸熱側熱導体枠内凸部11:0℃、放熱側熱導体枠内凸部3:40℃)
熱電変換素子群2の厚み方向の中央部位が冷却と加温の境界領域となり、熱電変換素子群2の上下両端部が0℃/40℃とみなせる。従って、吸熱側熱導体枠内凸部11、吸熱側セラミックス基板13ならびに吸熱側電極15は0℃、放熱側電極17、放熱側セラミックス基板18ならびに放熱側熱導体枠内凸部3は40℃として計算する。
枠体内部の変移量Xは、各部品の変移量を足し合わせたものとなる。枠体のL部の変移量Yは、下式のように枠体の積層方向の厚みを2分割して計算したY1とY2を足し合わせたものとなる(Y=Y1+Y2)。
吸熱側枠体部分の変移量Y1=〔枠体の熱膨張係数〕×〔枠体の厚み1/2〕×〔吸熱側の温度差(動作部温度−25℃)〕
加温側枠体部分の変移量Y2=〔枠体の熱膨張係数〕×〔枠体の厚み1/2〕×〔加温側の温度差(動作部温度−25℃)〕
そして前記〔内部の変移量X〕から〔枠体の変移量Y〕を差し引いた〔トータル変移量Z〕を計算し、その計算結果の値がマイナスなら熱電変換素子群に対して引き剥がしの応力が発生し、計算結果の値がプラスなら熱電変換素子群に対して圧縮の応力が発生することになる。
〔トータル変移量Z〕=〔内部の変移量X〕−〔枠体の変移量Y〕
このトータル変移量Zが、応力吸収のために設けている応力緩和層14,19による吸収範囲内であることが必要となる。
熱電変換装置の組み立て状態から前記内部の変移量Xの吸収量は、伝熱性能の観点から応力緩和層の膜厚の±10%程度であり、実際の厚みに換算すると±3μm程度である。
ガラス繊維を混入した枠体の膨張係数は繊維の流れ方向で異なるが、ガラス繊維の充填量や充填材形状から10〜40ppm/℃程度の範囲となる。そして吸水率や機械的強度、耐熱性から最適と考えられるガラス繊維40重量%のPPSの場合、枠体構造から水平方向と垂直方向が組み合わさるため20〜30ppm/℃程度と考えられる。
吸熱側熱導体ならびに放熱側熱導体の枠内凸部の寸法構成は、図5〜図7に示すような構成が考えられる。積層方向の厚みがLであり、図5は熱導体Aの厚みが熱導体Bに比べて大きい場合、図6は熱導体Aと熱導体Bの厚みがほぼ等しい場合、図7は熱導体Bの厚みが熱導体Aに比べて大きい場合を示している。熱電変換素子群Cは、通常2.0〜4.5mmであり、ここでは一般的な素子厚みとして4mmで計算する。
上面の熱導体を吸熱側として考えた場合、温度境界線より上側が収縮し、下側が膨張する。熱電変換装置は対称的な構造であり、中央部位を境にして膨張と収縮が発生するため、変移は打ち消されると見てよい。上下の熱導体の厚みとその比率が熱電変換素子群に発生する応力に強く影響すると考えられる。
一方、熱電変換素子群の装置内組み込みに際しては、発生する応力緩和の目的で、熱電変換素子群をゴム弾性を有する熱伝導性材料を介して組み込む。この熱伝導性材料は、厚さが厚すぎると熱抵抗となるためできるだけ薄い10〜20μm程度の厚さとし、この弾性薄膜で吸収できる変移量は1μm以下程度である。これ以上の変移の場合、伝熱性能に影響がでたり、熱電変換素子群に応力が大きく加わったりして、性能を急速に劣化させる。
このようなことから、熱電変換装置の信頼性を長期的に維持するために必要となる積層方向の変移量は±3μm程度の範囲に収める必要がある。
機械的な外力から熱電変換素子群を保護することと、防湿の目的で枠体を用いて外周を囲む構造において、内部に設置された熱電変換素子群への応力を低減するためには、枠体の膨張・収縮による変移と内部に構成部材の変移がほぼ等しく変移することが望ましい。そのために、内部の熱導体の厚みと上下比率を適正な範囲に収め、枠体の積層方向の膨張係数と内部の熱導体の膨張係数を合わせることで、信頼性の高い熱電変換装置が得られることを計算と各種の試験を繰り返すことにより確認した。
すなわち、
(a)枠体の積層方向の膨張係数を、20〜30ppm/℃とする。
(b)内部の枠体に拘束されない積層部の厚みLは25mm以下、好ましくは15mm以下とする。
(c)熱電変換素子群の中央部位から吸熱側熱導体の端面までの厚みDは、積層部厚みLの半分(L/2)の+20%〜−40%の範囲とする。
(d)枠体の積層方向の膨張係数と、内部熱導体の膨張係数をほぼ等しくする。
ことである。
次に、変移量の検討結果について説明する。
熱電変換装置の動作条件:外気25℃、庫内0℃。熱導体A(吸熱側熱導体枠内凸部11)0℃、熱導体B(放熱側熱導体枠内凸部3)40℃とする
前記熱導体A部(吸熱側熱導体枠内凸部11)と熱導体B部(放熱側熱導体枠内凸部3)の寸法条件を種々変えて変移量を求めた。
前記熱導体A部(吸熱側熱導体枠内凸部11)と全厚みLの半分の比率K=(A+1/2C)/(L/2)−1と変移量の関係を求めた。
これらの検討結果を示したのが図8ないし図13である。図8と図9は各種条件での厚みと変移量を示し、図10ないし図13は全厚みLの条件を変えた場合の前記比率Kと変移量との関係を示している。図8ないし図13の図中のα2枠17は枠体として膨張係数が17ppm/℃の枠体、α2枠20は枠体として膨張係数が20ppm/℃の枠体、α2枠23は枠体として膨張係数が23ppm/℃の枠体を使用した場合を示している。また、図10ないし図13の図に示している枠線は、変移量が目標としている±3μmの範囲を示している。図8および図9の欄の上に付した丸付きの数字と、図10ないし図13の図中に付した丸付きの数字が対応している。
これらの結果から明らかなように、変移量を目標としている±3μmの範囲内(枠内)に収めるためには、熱電変換素子群の中央部位から吸熱側熱導体の枠体によって拘束されない部分の端面までの厚みD(図1参照)を、吸熱側熱導体と熱電変換素子群と放熱側熱導体のうちで枠体によって拘束されない部分の積層部の厚みL(図1参照)の半分の+20%〜−40%の範囲、すなわち)図8ないし図13において比率Kが+20%〜−40%の範囲に入るように規制する必要がある。
なお、図13に示すように、吸熱側熱導体と熱電変換素子群と放熱側熱導体のうちで枠体によって拘束されない部分の積層部の厚みLが29mmと厚くなることは、実質的には吸熱側熱導体あるいは(ならびに)放熱側熱導体の厚みが厚くなり、その結果、±3μmの範囲が狭くなり、製作上の寸法誤差などによって前記範囲から外れ易くなるため、前記積層部の厚みLは25mm以下に規制した方がよい。
図15は、本発明の第2実施例に係る熱電変換装置の一部を断面にした正面図である。この実施例で前記図1に示す第1実施例と相違する点は、次の通りである。
第1の相違点は、枠体5をブロック状吸熱側熱導体1の外周部に一体成形した点である。そのために吸熱側熱導体1の外周には1本の溝が形成され、枠体5の射出成形時に前記溝内に枠体用の樹脂が入り込んで、環状の突出部22を形成している。従って、吸熱側熱導体1の溝と枠体5の突出部22との係合部(図中の点線部分)より下方の吸熱側熱導体1の部分が、吸熱側熱導体枠内凸部11となる。
第2の相違点は、枠体5の基端部7にネジ孔23が形成され、そのネジ孔23に差し込んだネジ(図示せず)により、放熱側熱導体基部4の外周部と枠体5の基端部7が一体に連結されている。
第3の相違点は、放熱側熱導体基部4の下方に放熱フィン24が一体に取り付けられている。
第4の相違点は、枠体5の接合部10の上端と吸熱熱導体基部1の周面とによって形成される角部に撥水性シール剤層36が設けられている。
図16は、本発明の第3実施例に係る熱電変換装置の一部を断面にした正面図である。この実施例で前記図15に示す第2実施例と相違する点は、次の通りである。
第1の相違点は、金属製の板の中央部分を上方に絞り加工して放熱側熱導体枠内凸部3を形成し、それの外周部を放熱側熱導体基部4としたものである。従って本実施例では、放熱側熱導体枠内凸部3と放熱側熱導体基部4が一体物となっている。
第2の相違点は、前記放熱側熱導体枠内凸部3と放熱側熱導体基部4の下部に、水冷ジャケット25が取り付けられている。水冷ジャケット25の前記放熱側熱導体枠内凸部3と対向する部分には、平面から見て蛇行状に延びた流路26が形成され、この水冷ジャケット25内に冷却水27が流通される。
図17は本発明の第4実施例に係る熱電変換装置の一部を断面にした正面図、図18は比較例に係る熱電変換装置の一部を断面にした正面図である。
通常、熱電変換装置の外周部は断熱層28で覆われている。そして放熱側熱導体基部4の外周部と枠体5の基端部7をネジなどで機械的に連結した場合に、枠体5の基端部7と断熱層28の下面との間に必然的に隙間29が形成される。また、放熱側熱導体基部4の外周部と枠体5の基端部7を接着剤で連結した場合も、部品寸法のバラツキあるいは取り付け位置のバラツキなどによって、枠体5の基端部7と断熱層28の下面との間に隙間29が形成される。
このような状況下において、図18に示すように、放熱側熱導体枠内凸部3が無くて、板状の放熱側熱導体基部4の上に直接熱電変換素子群2を載置した熱電変換装置の場合、あるいは放熱側熱導体枠内凸部3を用いても、その厚さが極めて薄い熱電変換装置の場合、熱電変換素子群2の厚さ方向の中央部位に位置する温度境界線21が、断熱層28の下面よりも下側となり、そのために吸熱側熱導体枠内凸部11の下端部が前記隙間29の近くに位置する。
そのため枠体5の周壁8を通しての隙間29からの熱の洩れがあり、熱電変換装置の性能の低下を招く。
これに対して図17に示すように、熱電変換素子群2の温度境界線21(厚さ方向の中央部位)が断熱層28の下面よりも上側、すなわち温度境界線21(厚さ方向の中央部位)が断熱層28の中にあるようにすれば、吸熱側領域が断熱層28によって完全に遮断され、隙間29からの熱の洩れが阻止でき、熱電変換装置の性能を高く維持することができる。
このように熱電変換素子群2の温度境界線21(厚さ方向の中央部位)を断熱層28の下面よりも上側に持っていくためには、或る程度の厚さを有する放熱側熱導体枠内凸部3が必要であり、本発明者の種々の実験結果から前記積層部の厚みLを8mm以上にする必要があることが分かった。
このように隙間29からの熱の洩れを阻止するとともに、前記変移量を±3μm以内に確実に収めるために、前記積層部の厚みLを8〜25mm、好ましくは8〜15mmの範囲内に規制するとよい。
なお、図17ならびに図18において、符号30は、吸熱側熱導体1に接触する吸熱側補助熱導体である。
前述した熱電変換素子群2の厚さ方向中央の温度境界線21を断熱層28の内側に位置する構成は、前記第1〜3実施例においても同様に適用できることである。
図19は本発明の第5実施例に係る熱電変換装置の一部を断面にした斜視図、図20はその熱電変換装置の吸熱側熱導体と枠体の結合体の一部を断面にした斜視図、図21はその熱電変換装置の放熱側熱導体基部と枠体の結合部の拡大断面図である。
図19に示すようにアルミニウムからなるブロック状の吸熱側熱導体1の外周には枠体5がインサートモールドにより一体に形成されて、両者で結合体31を構成している。
枠体5は、前記実施例と同様にPPS(ポリフェニレンサルファイド樹脂)のGF(ガラス繊維)強化グレードが使用され、放熱側熱導体基部4の外周部と連結される水平方向に延びた基端部7と、その基端部7の内周部から上方向に沿って立設した周壁8と、その周壁8の上端部からさらに内側に狭まって前記吸熱側熱導体1の外周面に一体に接合する接合部10が連続して形成されている。
図22に示すように、前記枠体5の基端部7には所定の間隔をおいて複数のネジ孔23が形成されている。前記接合部10の上面32と吸熱側熱導体1の外周面の隅に角部33が形成されている。
吸熱側熱導体1の外周面に水平方向に延びた係合溝34が1条あるいは複数条予め形成されている。枠体5をインサートモールドするときに溶融した合成樹脂の一部がこの係合溝34にも充填され、その樹脂が冷却固化することにより枠体5の内周部に突出部22が一体に形成される。そして前記係合溝34とそこに入り込んで形成された突出部22との係合により、吸熱側熱導体1と枠体5が機械的に強固に結合される。
前記枠体5の周壁8の内周部には吸熱側熱導体1の下部付近を取り囲むように下方に向けて開口した凹部が設けられ、この凹部の上面は吸熱側熱導体1の底面よりも若干上位置にあることから、吸熱側熱導体1の下部周囲に連続した溝状のシール剤溜め部35が形成されている。
図20に示す結合体31の前記角部33、すなわち吸熱側熱導体1と枠体5の接合部の大気と接する外側部分の全周にわたって、水よりも極性の低い材料からなるシール剤を塗布して弾性を有する撥水性シール剤層36を形成する。特に大気と接する外側部分は結露による水滴が直接付着するため、撥水性の高いシール剤で覆うことが重要である。
前述の撥水性シール剤としては、例えばシリコーンエラストマー(例えば信越化学社製シリコーンRTVゴム KE4890,KE3840 東レダウコーニング社製SE1713 SE9184等)、ポリプロピレンやポリエチレンなどのポリオレフィン系樹脂のホットメルト、ブチルゴムなどが用いられる。
また、前記シール剤溜め部35の全周にわたって、水蒸気透過率ならびに硬化度が低くて柔軟性の有るシール剤を塗布して弾性を有する水蒸気遮蔽シール剤層36を形成する。
前記水蒸気遮蔽シール剤としては、例えば硬化度の低いエポキシ系樹脂(弾性エポキシ樹脂)、アクリル系樹脂、ウレタン系樹脂、ポリプロピレンやポリエチレンなどのポリオレフィン系樹脂のホットメルト、ブチルゴムなどが用いられる。前記エポキシ系樹脂としては、エポキシ樹脂を主成分とする例えばシリコーン変性エポキシ樹脂、アクリル変性エポキシ樹脂、ウレタン変性エポキシ樹脂などを挙げることができる。前記アクリル系樹脂としては、アクリル樹脂を主成分とする例えばシリコーン変性アクリル樹脂、ウレタン変性アクリル樹脂、エポキシ変性アクリル樹脂などを挙げることができる。ウレタン系樹脂としては、ウレタン樹脂を主成分とする例えばシリコーン変性ウレタン樹脂、アクリル変性ウレタン樹脂、エポキシ変性ウレタン樹脂などを挙げることができる。
前記シリコーン変性エポキシ樹脂(セメダイン社製PM165)の諸特性は下記の通りである。
硬さ:48(ショアA)
伸び:100%
引張りせん断接着強さ:2.10N/mm
T形剥離接着強さ:1.20N/mm
前記シリコーン変性アクリル樹脂(セメダイン社製スーパーX)の諸特性は下記の通りである。
硬さ:42(ショアA)
破断時伸び:220%
破断強度:1.8N/mm
線膨張率:2.1×10−4
前述のシリコーンエラストマーなどは強い撥水性(疎水性)を有し、吸熱側熱導体1と枠体5の接合部からの水分の侵入を阻止するのに有効であるが、これらの材料は一般に分子構造の自由体積(隙間)が大きく、シール剤層内での水蒸気の透過があるという難点を有している。
これに対して硬化度の低いエポキシ系樹脂(弾性エポキシ樹脂)、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂のホットメルト、ブチルゴムなどは一般に分子構造の自由体積(隙間)が小さく緻密なため、シール剤層内での水蒸気の透過度が低いという特長を有しているから、前記撥水性シール剤と併用することにより高い防湿効果が得られる。
なお、ポリオレフィン系樹脂のホットメルトやブチルゴムなどは、高い撥水性と低い水蒸気透過性を兼ね備えているから、同じシール剤をシール剤層36,37の両方に使用することが可能である。
撥水性シール剤層36と水蒸気遮断シール剤層37の材料の好適な組合例を示せば下記の通りである。
(材料組合例1)
撥水性シール剤層36 :シリコーンエラストマー
水蒸気遮断シール剤層37:弾性エポキシ樹脂
(材料組合例2)
撥水性シール剤層36 :ブチルゴム
水蒸気遮断シール剤層37:弾性エポキシ樹脂
(材料組合例3)
撥水性シール剤層36 :シリコーンエラストマー
水蒸気遮断シール剤層37:ブチルゴム
(材料組合例4)
撥水性シール剤層36 :ブチルゴム
水蒸気遮断シール剤層37:ブチルゴム
前記撥水性シール剤層36ならびに水蒸気遮断シール剤層37のショアA硬度は100以下、好ましくは90以下に規制されている。図22で示した従来例での硬化型接着剤層107のゴム硬度は、ショアD分類される高硬度のもので、本発明で用いるゴム弾性を有する柔軟なシール剤層とは性状、性質が全く異なっている。
前述のように本発明では、係合溝34と突出部22の係合部を間にして、その係合部の外側に撥水性シール剤層36が設けられ、係合部の内側に水蒸気遮断シール剤層37が設けられている。そのため外部から侵入しようとする水分を先ず強い撥水性(疎水性)を有する撥水性シール剤層36で阻止し、さらに撥水性シール剤層36ならびに枠体5の一部を透過する水蒸気を自由体積が小さい水蒸気遮断シール剤層37で阻止することにより、熱電変換素子群2が収納されている枠体5の内部で高い防湿効果を得ることができる。
図22に示す従来の熱電変換装置の硬化型接着剤層107は、吸熱側熱導体101や枠体104との接合面で固化するときの残留応力が大きく、水分が含まれている状況下で熱サイクルを繰り返すと、吸熱側熱導体101や枠体104と固まった接着剤層107の界面で剥離が生じ、そこから水分の侵入が起こり易い。
このような弊害を排除するため本発明では、吸熱側熱導体1と枠体5の機械的結合を、吸熱側熱導体1に対して枠体5をインサートモールドするとともに、係合溝34と突出部22とで緊密な係合を行なう。その上でゴム弾性を有するシール剤層36,37を形成することにより、硬化による残留応力の発生を回避した。
またこれらのシール剤層36,37は図22に示すように狭い隙間に注入して形成するものではないから、シール剤層形成の作業が簡便であり、気泡を含まず、規定量のシール剤を装填することができ、シール効果が確実に発揮できる。
図19に示すように、吸熱側熱導体1の下側でかつ枠体5の内側には、熱電変化素子群2を介して板状の放熱側熱導体枠内凸部3が配置され、この状態で枠体5のネジ孔23からネジ38を螺挿して、枠体5を放熱側熱導体基部4上で位置決め、固定する。
さらに本実施例では図21に示すように、放熱側熱導体基部4と枠体基端部7の接合面の大気と接する外周部にゴム弾性を有する撥水性シール剤層39を形成し、その内周部にゴム弾性を有する水蒸気遮蔽シール剤層40を形成した2重シール構造となっている。これらのシール剤は、装置の組み立て時に予め放熱側熱導体基部4あるいは枠体基端部7に塗布されている。
このように放熱側熱導体基部4と枠体基端部7の接合部にも撥水性シール剤層39と水蒸気遮蔽シール剤層40を併設すれば、この接合部からの水分の侵入も有効に阻止することができる。
本実施例では図19に示すように、放熱側熱導体枠内凸部3と放熱側熱導体基部4の間にも前記応力緩和層19が形成されている。
図23は、本発明の実施例6に係る熱電変換装置の一部拡大断面図である。この実施例では同図に示すように、吸熱側熱導体1の撥水性シール剤層36と接する周面に予め断面形状が略Ω型のアンカー溝41を形成し、撥水性シール剤を塗布してその一部をアンカー溝41内に入り込ませて、吸熱側熱導体1に対する撥水性シール剤層36のアンカー効果を発揮したものである。
図24は、本発明の実施例7に係る熱電変換装置の一部拡大断面図である。この実施例では同図に示すように、吸熱側熱導体1の撥水性シール剤層36と接する周面に予め断面形状が略凹溝型のアンカー溝41を形成し、撥水性シール剤を塗布してその一部をアンカー溝41内に入り込ませて、吸熱側熱導体1に対する撥水性シール剤層36のアンカー効果を発揮したものである。
またこの実施例では、枠体5の上端部には吸熱側熱導体1の周面(アンカー溝41)に近づくにつれて徐々に低く傾斜して、上方に向けて開放したシール剤受け面42が形成されている。本実施例では傾斜したシール剤受け面42が形成されているが、傾斜していない垂直な凹溝型のシール剤受け面42であっても構わない。
本実施例のようにシール剤受け面42を設けることにより、撥水性シール剤が他の部分に流れ出ることがなく、吸熱側熱導体1の周面(アンカー溝41)とシール剤受け面42の間に撥水性シール剤層36が確実に形成され、生産性の向上が図れる。なお、このシール剤受け面42は、アンカー溝41を設けない吸熱側熱導体1を使用する熱電変換装置にも適用可能である。
図25は、本発明の実施例8に係る熱電変換装置の一部拡大断面図である。この実施例では同図に示すように、押圧リング43の下部を撥水性シール剤層36の上面から押し込むことにより、撥水性シール剤層36を吸熱側熱導体1(アンカー溝41)と枠体5(シール剤受け面42)に圧着して、密着を図っている。撥水性シール剤層36は弾性を有しているため、その圧着効果が高い。なお、この押圧リング43は、アンカー溝41を設けない吸熱側熱導体1を使用する熱電変換装置にも適用可能である。
前記押圧リング43は合成樹脂あるいは金属から構成され、吸熱側熱導体1の外周面に強嵌合されるか、あるいは吸熱側熱導体1の外周面と押圧リング43の内周面にそれぞれネジ部を設けて、押圧リング43が吸熱側熱導体1に螺着され、その後吸熱側熱導体1と押圧リング43の一部が接着される。
前記第2〜8実施例において、熱電変換素子群2の中央部位から吸熱側熱導体1の枠体5によって拘束されない部分の端面までの厚みDが、吸熱側熱導体1と熱電変換素子群2と放熱側熱導体のうちで枠体5によって拘束されない部分(実施例では放熱側熱導体枠内凸部3)の積層部の厚みLの半分(L/2)の+20%から−40%の範囲に規制されている。
熱電変換素子群2の中央部位から吸熱側熱導体1の枠体5によって拘束されない部分の端面までの厚みD1と、熱電変換素子群2の中央部位から放熱側熱導体の枠体5によって拘束されない部分(実施例では放熱側熱導体枠内凸部3)の端面までの厚みD2は、D1≒D2となるのが好ましい。
1...吸熱側熱導体、2...熱電変換素子群、3...放熱側熱導体枠内凸部、4...放熱側熱導体基部、5...枠体、6...接着剤、7...基端部、8...周壁、9...接着剤、10...接合部、11...吸熱側熱導体枠内凸部、12...空間部、19...応力緩和層、20...接着剤、21...温度境界線、22...突出部、23...ネジ孔、24...放熱フィン、25...水冷ジャケット、26...流路、27...冷却水、28...断熱層、29...隙間、30...吸熱側補助熱導体、31...結合体、32...上面、33...角部、34...係合溝、35...シール剤溜め部、36...撥水性シール剤層、37...水蒸気遮蔽シール剤層、38...ネジ、39...撥水性シール剤層、40...水蒸気遮蔽シール剤層、41...アンカー溝、42...シール剤受け面、43...押圧リング。

Claims (1)

  1. 熱電変換素子群を介して吸熱側熱導体と放熱側熱導体を対向して設け、合成樹脂からなる枠体を前記吸熱側熱導体の外周部にインサートモールドで一体に形成し、その枠体内に前記吸熱側熱導体と熱電変換素子群と放熱側熱導体の一部である枠内凸部を収納して、前記枠体の端部を前記放熱側熱導体の外周部と連結した熱電変換装置において、
    前記熱電変換素子群の中央部位から前記吸熱側熱導体の前記枠体によって拘束されない部分の端面までの厚みDが、前記吸熱側熱導体と熱電変換素子群と放熱側熱導体のうちで前記枠体によって拘束されない前記枠内凸部の積層部の厚みLの半分の+20%〜−40%の範囲に規制され、
    かつ前記枠体と吸熱側熱導体の接合部の大気と接する外側部分を撥水性シール剤層で覆い、前記枠体と吸熱側熱導体の接合部の前記外側部分とは反対の内側部分を水蒸気遮断シール剤層で覆ったことを特徴とする熱電変換装置。
JP2010055075A 2009-02-24 2010-02-23 熱電変換装置 Expired - Fee Related JP5499239B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055075A JP5499239B2 (ja) 2009-02-24 2010-02-23 熱電変換装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009065160 2009-02-24
JP2009065160 2009-02-24
JP2010055075A JP5499239B2 (ja) 2009-02-24 2010-02-23 熱電変換装置

Publications (2)

Publication Number Publication Date
JP2010226103A true JP2010226103A (ja) 2010-10-07
JP5499239B2 JP5499239B2 (ja) 2014-05-21

Family

ID=43042904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055075A Expired - Fee Related JP5499239B2 (ja) 2009-02-24 2010-02-23 熱電変換装置

Country Status (1)

Country Link
JP (1) JP5499239B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814705A (zh) * 2013-12-19 2016-07-27 罗伯特·博世有限公司 热电设备和用于制造热电设备的方法
JP2018157136A (ja) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 熱電変換モジュール
JP2020095052A (ja) * 2020-03-11 2020-06-18 株式会社小松製作所 熱電発電装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814705A (zh) * 2013-12-19 2016-07-27 罗伯特·博世有限公司 热电设备和用于制造热电设备的方法
JP2018157136A (ja) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 熱電変換モジュール
JP2020095052A (ja) * 2020-03-11 2020-06-18 株式会社小松製作所 熱電発電装置
JP7108651B2 (ja) 2020-03-11 2022-07-28 株式会社小松製作所 熱電発電装置

Also Published As

Publication number Publication date
JP5499239B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
EP0820107B1 (en) Thermoelectric apparatus
US7768109B2 (en) Semiconductor device and method of manufacturing the same
US7242582B2 (en) Semiconductor module mounting structure, a cardlike semiconductor module, and heat receiving members bonded to the cardlike semiconductor module
JP5018909B2 (ja) 半導体装置
US20130056883A1 (en) Semiconductor device and method of manufacturing the same
WO2011132748A1 (ja) 太陽電池モジュール
JP2011525686A (ja) 中圧又は高圧スイッチギヤアセンブリの電極部及び電極部の製造方法
WO2013147240A1 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体装置
JP5499239B2 (ja) 熱電変換装置
WO2012165647A1 (en) Semiconductor device
JP2011040565A (ja) 熱伝導シート、これを用いた半導体装置およびその製造方法
JP2007305702A (ja) 半導体装置およびその製造方法
JP5499240B2 (ja) 熱電変換装置およびその製造方法
JP2008258533A (ja) 熱電変換装置
JP2019125730A (ja) 半導体装置
JP5499238B2 (ja) 熱電変換装置
JPWO2019187125A1 (ja) 半導体装置
JP5019392B2 (ja) 電子冷却装置
JP5368492B2 (ja) パワー半導体装置
Kurosu et al. Packaging technologies of direct-cooled power module
JP6167535B2 (ja) 半導体装置および半導体装置の製造方法
JP5772179B2 (ja) 半導体装置
JP5488645B2 (ja) 半導体装置およびその製造方法
JP2009026960A (ja) 半導体装置
CN215704603U (zh) 一种ic封装用的复合薄膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5499239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees