WO2013147240A1 - 流路部材およびこれを用いた熱交換器ならびに半導体装置 - Google Patents

流路部材およびこれを用いた熱交換器ならびに半導体装置 Download PDF

Info

Publication number
WO2013147240A1
WO2013147240A1 PCT/JP2013/059707 JP2013059707W WO2013147240A1 WO 2013147240 A1 WO2013147240 A1 WO 2013147240A1 JP 2013059707 W JP2013059707 W JP 2013059707W WO 2013147240 A1 WO2013147240 A1 WO 2013147240A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
side wall
bottom plate
path member
wall portion
Prior art date
Application number
PCT/JP2013/059707
Other languages
English (en)
French (fr)
Inventor
阿部 裕一
寛 鍋島
佳孝 岩田
森 昌吾
大蔵 上山
Original Assignee
京セラ株式会社
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 株式会社豊田自動織機 filed Critical 京セラ株式会社
Priority to US14/389,636 priority Critical patent/US20150076685A1/en
Priority to CN201380018428.2A priority patent/CN104247008A/zh
Priority to JP2014508217A priority patent/JP5968425B2/ja
Priority to KR1020147027603A priority patent/KR20140142269A/ko
Priority to EP13767597.1A priority patent/EP2833402A1/en
Publication of WO2013147240A1 publication Critical patent/WO2013147240A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a flow path member, a heat exchanger using the same, and a semiconductor device.
  • Such a semiconductor device is not limited to being mounted on a vehicle, but many of them repeatedly generate large currents and generate heat to a high temperature. Therefore, forced cooling is necessary to prevent the function of the semiconductor element from being deteriorated.
  • Patent Document 1 discloses an in-vehicle inverter device (using a flow path member) in which a cooler having a laminated aluminum nitride layer having excellent thermal conductivity and a cooling flow path inside is used as a cooling means for a semiconductor device that becomes high temperature. Semiconductor device).
  • Patent Document 1 forms a flow path through which a fluid flows by a laminated body in which aluminum nitride thin plates are laminated, the laminated body is joined by screwing. If it is installed near the engine, the semiconductor device is subjected to a severe thermal cycle, and the thermal stress accompanying this thermal cycle loosens the screwing of the laminate (broken channel) and seals the channel. There was a problem that the property was easily impaired.
  • the present invention has been devised in order to solve the above-described problem, and even when thermal stress is generated in the flow path member, the flow path member capable of suppressing breakage of the flow path, a heat exchanger using the same, and
  • An object of the present invention is to provide a semiconductor device.
  • the flow path member of the present invention includes a lid body portion, a bottom plate portion, a partition wall portion and a side wall portion provided between the lid body portion and the bottom plate portion, and the lid body portion, the partition wall portion, and the The side wall portion and the bottom plate portion constitute a flow path through which fluid flows, and at least one of the lid portion and the bottom plate portion has at least one part of the partition wall portion and the side wall portion. It is characterized in that it is inserted and directly joined.
  • the heat exchanger according to the present invention is characterized by including the flow path member having the above-described configuration and a metal member provided on the lid portion of the flow path member.
  • the semiconductor device of the present invention is characterized in that a semiconductor element is provided on the metal member of the heat exchanger having the above-described configuration.
  • the lid body part, the partition wall part, the side wall part, and the bottom plate part form a flow path through which fluid flows, and at least one of the lid body part and the bottom plate part includes a partition wall. Since at least one part of the part and the side wall part enters and is directly joined, even if thermal stress occurs in the flow path member, the partition part and the joint part of each member constituting the flow path A joint part in which at least one part of the side wall part enters and is directly joined is not easily broken, and the airtightness of the flow path can be improved.
  • the heat exchanger of this invention can perform heat exchange with a cover body part and a metal member efficiently. And a heat exchanger with high heat exchange efficiency.
  • the semiconductor device of the present invention is a semiconductor device that suppresses a temperature rise due to heat generation of the semiconductor element with a simple structure because the semiconductor element is provided on the metal member of the heat exchanger having the above configuration. Can do.
  • FIG. 1B is a partial cross-sectional view taken along line XX shown in FIG. 1A.
  • FIG. 1B is a partial cross-sectional view taken along line XX shown in FIG. 1A. It is the fragmentary sectional view which expanded the C section enclosed with the broken line of FIG. 1B. It is the fragmentary sectional view which expanded the C section enclosed with the broken line of FIG. 1C. It is the fragmentary sectional view which expanded the part corresponded to the C section enclosed with the broken line of FIG. 1B which shows another example of the flow-path member of this embodiment.
  • FIG. 2 is a cross-sectional view showing an example in which a housing housing semiconductor device in which the semiconductor device of the present embodiment is housed in a housing is installed on a heating element, in which a bottom plate portion of a flow path member and the housing are integrated. It is sectional drawing which shows an example which installed the housing
  • FIG. 1A is a perspective view of a flow path member of the present embodiment.
  • 1B and 1C are partial sectional views taken along line XX shown in FIG. 1A.
  • FIG. 1D is an enlarged partial cross-sectional view of a portion C surrounded by a broken line in FIG. 1B.
  • FIG. 1E is an enlarged partial cross-sectional view of a portion C surrounded by a broken line in FIG. 1C.
  • the flow path member 1 of the present embodiment includes a lid body portion 2, a bottom plate portion 4, a partition wall portion 3b provided between the lid body portion 2 and the bottom plate portion 4, and An internal space that is configured by the side wall portion 3 and is surrounded by the lid body portion 2, the partition wall portion 3b, the side wall portion 3, and the bottom plate portion 4 serves as a flow path 5 for flowing a fluid such as gas or liquid.
  • At least one of the partition wall portion 3b and the side wall portion 3 enters and is directly joined to at least one of the lid body portion 2 and the bottom plate portion 4. .
  • the direct bonding means that at least one of the partition wall portion 3b and the side wall portion 3 is directly bonded to at least one of the lid portion 2 and the bottom plate portion 4, for example, the bonding portion 8
  • the bonding portion 8 This refers to a joint having no elastic body such as an O-ring or adhesive.
  • a part of the bottom surface side of the side wall part 3 and the partition wall part 3 b constituting the flow path 5 enters inside the surface constituting the flow path wall of the bottom plate part 4. It is directly joined with.
  • a part of the upper surface side of the side wall part 3 and the partition part 3b penetrates into the inner side from the surface which comprises the flow path wall of the cover part 2, and is joined directly. Has been.
  • FIG. 2A and 2B show another mode in which a part of the bottom surface side of the side wall portion 3 constituting the flow path 5 enters the bottom plate portion 4, and FIG. 2A shows a portion A surrounded by a broken line.
  • 2B shows an example in which the bottom plate portion 4 is partially protruded, and a part of the bottom surface side of the side wall portion 3 enters a recess formed in the protruded region.
  • FIG. 2B is a broken line.
  • a convex part is provided at one end of the side wall part 3
  • a concave part is provided on the surface of the opposite bottom plate part 4
  • the convex part at one end of the side wall part 3 enters the concave part of the bottom plate part 4.
  • An example is shown.
  • the same configuration can be adopted on the side of the lid portion 2 of the side wall portion 3, and the same configuration as that of the side wall portion 3 can be adopted for the partition wall portion 3 b.
  • the sintered member used as the partition part 3b and the side wall part 3 is prepared first.
  • the lid body part 2 and the bottom plate part 4 are formed into a desired shape with a powder material having a melting point lower than that of the partition wall part 3 b and the side wall part 3.
  • a melt of a low melting point material is formed into a desired shape by injection molding or the like.
  • the partition part 3b and the side wall part 3 previously prepared are combined so as to be sandwiched between the lid part 2 and the bottom plate part 4, and then fired at a desired temperature in a pressurized state, whereby the lid part 2 and the bottom plate
  • the flow path member 1 in which the portion 4, the partition wall portion 3b, and the side wall portion 3 are directly joined can be obtained.
  • the lid 2 and the bottom plate 4 use a material having a lower melting point than the partition 3b and the side wall 3 prepared in advance, the firing temperature is determined from the melting points of the partition 3b and the side wall 3.
  • part of the partition wall portion 3b and the side wall portion 3 enters the lid body portion 2 and the bottom plate portion 4 and is directly joined thereto.
  • the lid portion 2 and the bottom plate portion 4 are made of a metal or resin such as copper or aluminum as a material having a relatively low melting point.
  • the lid body portion 2 and the bottom plate portion 4 can be made of a resin as a material having a relatively low melting point.
  • the flow path member 1 of the present embodiment is directly joined to at least one of the lid portion 2 and the bottom plate portion 4 with at least one of the partition wall portion 3b and the side wall portion 3 entering. .
  • the partition wall portion 3b and the side wall portion 3 enters and is joined. It can suppress that it breaks and the gap
  • the sealing performance of the flow path 5 can be improved and the pressure of the fluid flowing in the flow path 5 can be increased, so that the cooling capacity can be increased.
  • FIG. 3A and 3B show still another example of the flow path member of the present embodiment
  • FIG. 3A is an enlarged partial cross-sectional view of a portion corresponding to a C portion surrounded by a broken line in FIG. 1B
  • FIG. 2 is an enlarged partial cross-sectional view of a portion corresponding to a portion C surrounded by a broken line in FIG. 1C.
  • a plurality of concave portions are provided at one end of the side wall portion 3, and at least a part of the lid body portion 2 and the bottom plate portion 4 corresponds to the concave portions. It is preferable that the convex part is provided and the concave part enters the convex part and is joined.
  • the partition wall portion 3b is not shown in FIGS. 3A and 3B, but the partition wall portion 3b is similarly provided with a recess at one end thereof, and the recess is formed on the lid body portion 2 and the bottom plate portion 4. At least a part of the protrusions can enter and be joined.
  • each joint portion 8 includes a plurality of concave portions in the partition wall portion 3b and the side wall portion 3, and is attached to the lid body portion 2 and the bottom plate portion 4.
  • a two-stage joint configuration comprising a plurality of convex portions corresponding to the concave portions, and the concave portions of the partition wall portion 3b and the side wall portion 3 entering and joining the corresponding convex portions of the lid body portion 2 and the bottom plate portion 4 Is taking. Therefore, it is possible to have a stronger anchor effect at the joint 8 and to suppress the destruction of the joint 8 that is the most vulnerable to thermal stress. Thereby, the sealing performance of the flow path 5 can be improved and the pressure of the fluid flowing in the flow path 5 can be increased, so that the cooling capacity can be increased.
  • the size of the recesses provided in the partition wall portion 3b and the side wall portion 3 is, for example, an equivalent circle diameter when the width dimension of the partition wall portion 3b and the side wall portion 3 is 1 to 20 mm, and the partition wall portion 3b and the side wall portion 3 It is preferable that the width dimension is in the range of 100,000 to 1 / 1,000,000, and the depth is in the range of 0.1 to 10 ⁇ m. Since a plurality of such recesses are provided uniformly over the entire bonding surface of the partition wall portion 3b and the side wall portion 3, stress can be distributed over the entire bonding surface and the bonding strength can be increased.
  • the convex portion may have a size corresponding to the concave portion.
  • the joint portion 8 of the lid portion 2 and the bottom plate portion 4 does not have a deteriorated layer, whereby the original strength of each member can be ensured and a decrease in the joint strength can be suppressed.
  • the altered layer refers to a layer in which, for example, when a resin is used as each member, the property of the bonding strength is deteriorated due to the resin being thermally welded.
  • ceramics is used as part of the material of the flow path member and the thermal conductivity is improved by removing the glassy component of the surface layer by applying heat to improve heat dissipation characteristics, it is called an altered layer. Instead, it shall be called a modified layer.
  • the flow path member 1 of the present embodiment is more flexible when at least one of the partition wall portion 3b and the side wall portion 3 of the lid portion 2 and the bottom plate portion 4 enters and is directly joined. It is preferable to consist of materials. With such a configuration, when an electronic component such as a semiconductor element is mounted on a highly rigid ceramic substrate or the like further provided above the lid portion 2 or below the bottom plate portion 4, the electronic component and the flow path It is possible to suppress the problem of peeling due to the difference in thermal expansion from the member 1 and the occurrence of a large warp in response to the electronic component of the lid portion 2 or the bottom plate portion 4. Therefore, the burden on each joint portion 8 of the lid portion 2 and the bottom plate portion 4, the side wall portion 3 and the partition wall portion 3b can be reduced.
  • examples of the flexible material that can be used as the lid portion 2 and the bottom plate portion 4 include resin materials and metal materials.
  • an inflexible material can be used as the material of the partition wall portion 3b and the side wall portion 3.
  • a resin material as the material of the partition wall portion 3b and the side wall portion 3
  • a highly rigid ceramic, a resin composite ceramic, or a metal material can be used.
  • the cover part 2 and the baseplate part 4 are metal materials, as a material of the partition part 3b and the side wall part 3, metal materials, such as copper and aluminum, or ceramics may be sufficient.
  • the lid part 2 and the bottom plate part 4 may be a metal foil, and in the case of stainless steel or titanium other than copper, aluminum, or an alloy thereof, it is more preferable because it has particularly high chemical resistance. .
  • the partition wall portion 3b and the side wall portion 3 are made of ceramics or a metal material and the lid body portion 2, the partition wall portion 3b, the side wall portion 3 and the bottom plate portion 4 are pressure bonded, the partition wall portion 3b and the side wall portion 3 are used.
  • the partition wall portion 3b and the side wall portion 3 are used.
  • the flow path member 1 can be made high.
  • POM polyoxymethylene
  • ABS acrylonitrile butadiene styrene
  • PA polypropylene
  • PE Polyethylene
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PEI polyetherimide resin
  • PBT polybutylene terephthalate resin
  • PA polyamide resin
  • PAI polyamideimide resin
  • PPS polyphenylene sulfide resin
  • PEEK polyether ether ketone
  • PTFE polytetrafluoroethylene fluororesin
  • the ceramic material constituting the partition wall portion 3b and the side wall portion 3 may be alumina, silicon nitride, aluminum nitride, silicon carbide, zirconia, and a composite thereof, all of which are heat resistant and chemical resistant. If the heat conductivity is preferred, silicon carbide, aluminum nitride, and silicon nitride are preferable. If the low-cost and high-strength flow path member 1 is used, alumina or silicon carbide is preferable.
  • the resin material of the cover part 2 or the baseplate part 4 is resin with high heat conductivity. It is preferable that Thereby, the heat generated in the heating element is efficiently transferred to the fluid flowing inside the flow path member 1, and the flow path member 1 with higher heat exchange efficiency can be obtained.
  • the resin material having high thermal conductivity a resin to which a filler having high thermal conductivity is added is preferable, and the thermal conductivity may be in the range of 15 to 30 W / m ⁇ K.
  • the filler body 2 and the bottom plate portion 4 only need to use alumina, aluminum nitride, boron nitride, or the like as a main component, and the insulating properties are not required.
  • a metal such as tin, aluminum, magnesium, silver, manganese and copper may be used as the filler.
  • a resin material having high thermal conductivity is used as the lid portion 2 or the bottom plate portion 4 of the flow path member 1, and the flow path member 1 is incorporated in a heat exchanger or a semiconductor device, and these are disposed in a high-temperature environment.
  • the hardness of the partition wall portion 3 b and the side wall portion 3 is harder than the hardness of the lid body portion 2 and the bottom plate portion 4.
  • the partition wall portion 3b and the side wall portion 3 are ceramics having an alumina content of 96% by mass and the bottom plate portion 4 is a polycarbonate resin
  • the partition wall portion 3b, the side wall portion 3, the lid body portion 2, and the bottom plate portion. 4 is flat
  • the pressure applied at the time of bonding may be about 1 MPa
  • a recess of about 5 to 10 ⁇ m is obtained at the bonding portion 8 in the lid portion 2 and the bottom plate portion 4.
  • the larger the dent amount the higher the effect of suppressing the destruction of the joint 8 due to the pressure of the fluid, but even if the dent amount is small, the probability of channel breakage is significantly reduced compared to when there is no dent. it can.
  • a base such as sodium hydroxide is preliminarily formed on a portion to be the joint portion 8 of the partition wall portion 3b and the side wall portion 3. After immersion in an aqueous solution and pretreatment, a plurality of fine recesses are formed by electrochemical treatment etching.
  • the non-flexible material is a ceramic
  • a method of uniformly dispersing spherical resin particles by a known method for producing a porous body into a ceramic slurry and molding it may be used.
  • a plurality of recesses can be formed at a site to be the joint 8 by firing at a predetermined temperature.
  • the non-flexible material may be alumina.
  • the glass component such as silica is removed by immersing only the portion to be the joint portion 8 in the hydrofluoric acid solution, and a gap serving as a concave portion is obtained between the alumina particles only in the surface layer necessary for the joint.
  • the concave portion may be formed by removing glass components such as silica by surface irradiation with laser light.
  • the thermal resistance of the joint portion with the opposing metal material or resin material can be reduced.
  • the removed portion may be regarded as a modified layer, not a deteriorated layer.
  • partition wall portions 3b and the side wall portion 3 are placed in the mold, and the resin or metal obtained by melting the lid body portion 2 and the bottom plate portion 4 is injection molded. If it shape
  • the joint portion 8 between the flexible member and the non-flexible member obtained in this manner is a non-flexible member at least one of the lid portion 2 and the bottom plate portion 4 that are flexible members. At least one part of the partition wall part 3b and the side wall part 3 enters and is directly joined, and each joint part 8 includes at least one part of the partition wall part 3b and the side wall part 3 provided with a plurality of recesses.
  • a two-stage joining configuration in which at least one convex portion of the portion 2 and the bottom plate portion 4 enters and is joined can be achieved.
  • the bonding part 8 is more It can have a strong anchor effect and can suppress the joint 8 from being destroyed by thermal stress.
  • the heating elements When the heating elements are mounted above the lid part 2 or below the bottom plate part 4, if these are resin, it may be a highly thermally conductive resin for transferring heat to the flow path member 1.
  • resin if these are resin, it may be a highly thermally conductive resin for transferring heat to the flow path member 1.
  • the molten resin that becomes the highly thermally conductive resin is disposed in the mold so that the members that become the side wall portion 3 and the partition wall portion 3b are disposed in the mold and the joint portion 8 with the lid portion 2 and the bottom plate portion 4.
  • PPS, PTFE or PAI resin having a heat resistance of at least 200 ° C. and a melting point of about 230 ° C. or more, for example, tin and magnesium or manganese, silver, copper, aluminum, etc.
  • the low melting point metal alloy powder added with the above members is added, and injection molding is performed at a temperature equal to or higher than these melting points, so that the lid portion 2 and the bottom plate portion 4 of the high thermal conductive resin, the partition wall portion 3b and the side wall portion Thus, the flow path member 1 can be joined to the flow path member 1.
  • the thermal conductivity is controlled by the amount of metal powder added to the molten resin, the flow of the resin will be worsened by the added metal powder and the moldability will be worsened, but the amount of metal powder added will be reduced and high thermal conductivity will be achieved. Can be obtained by increasing the aspect ratio of the metal powder, or by controlling the temperature at the time of injection molding near the melting point of the metal powder, so that the major axis direction of the metal filler can be oriented, and therefore low amount Even if the metal powder is added, a heat transfer path can be formed between the metal fillers to obtain a highly thermally conductive resin. In particular, the fact that the major axis direction of the metal filler is substantially perpendicular to the joint portion 8 can be accommodated by the design of the mold structure and the gate position.
  • FIG. 4A is a perspective view showing still another example of the flow path member of the present embodiment
  • FIG. 4B is a plan view showing a part of the laminated body of the flow path member.
  • the flow path member 21 of the present embodiment includes a plurality of plate-like bodies 7 (here, three layers) in which at least one of the partition wall portion 3b and the side wall portion 3 is formed of a ceramic layer.
  • the example which consists of the plate-shaped body 7 is shown.) It consists of the laminated body which was laminated
  • the complicated flow path 5 can be easily formed, and any of heat resistance, chemical resistance, and pressure resistance can be achieved.
  • a rich channel member 21 can be obtained.
  • the flow path 5 is a simple shape, it can be easily processed by extrusion molding or the like, but if the shape of the flow path 5 when viewed in plan is a complicated shape such as a wavy line, It is difficult to process, and even when the width between the flow paths 5 is narrow, it may be difficult to ensure heat resistance, chemical resistance, and pressure resistance. Therefore, when it is intended to provide the channel 5 having such a shape, a through-hole 5a to be a desired channel 5 is formed on a flat plate of an unfired ceramic green sheet, and this is laminated and fired. Thus, the partition wall portion 3b and the side wall portion 3 which are laminates obtained by laminating the plate-like bodies 7 of the ceramic layer may be produced.
  • FIG. 5A shows still another example of the flow path member of the present embodiment, and is a side view of a state in which a lid portion, a partition wall portion, a side wall portion, and a bottom plate portion constituting the flow path member are fastened with screws.
  • FIG. 5B is a side view of a state where it is fastened with a caulking member.
  • the flow path member 41 shown in FIG. 5B joins both ends in the longitudinal direction of the lid 2, the partition 3 b, the side wall 3, and the bottom plate 4 by the caulking member 12.
  • the partition wall portion 3b and the side wall portion 3 in which the plate-like body 7 of the ceramic layer is integrated is obtained by laminating and firing ceramic green sheets has been described.
  • the plate-like body 7 may be overlapped, and the lid body portion 2 and the bottom plate portion 4 may be sandwiched and joined together and fixed together by screwing or caulking members.
  • FIG. 6 is a perspective view of a heat exchanger in which a metal member is provided on the lid portion of the flow path member, showing an example of the heat exchanger of the present embodiment.
  • the heat exchanger 101 of the present embodiment is provided with a metal member 102 on the lid body portion 2 of the flow path member 1 of the present embodiment.
  • the bottom plate portion 4 is made of a flexible material. Since the metal member is provided on the lid part 2, heat exchange between the lid part 2 and the metal member 102 can be performed efficiently, and a heat exchanger with high heat exchange efficiency can be obtained. . And since the baseplate part 4 consists of a flexible material, even when a thermal stress repeatedly generate
  • FIG. 7 is a perspective view of a semiconductor device in which a semiconductor element is mounted on a heat exchanger, showing an example of the semiconductor device of this embodiment.
  • the semiconductor device 201 of the present embodiment has the semiconductor element 202 mounted on the heat exchanger 101 of the present embodiment, the heat stress generated by the semiconductor device 201 itself is repeatedly applied from the fluid, fluid, or external environment. Even when it occurs, the heat exchanger 101 that can absorb and reduce thermal stress is used, so that the flow path 5 is prevented from being destroyed, and the fluid and the semiconductor flowing through the flow path 5 via the heat exchanger 101 Since the element 202 has high heat exchange efficiency, the temperature of the semiconductor element 202 can be efficiently reduced.
  • FIG. 8A shows an example in which a housing housing semiconductor device in which the semiconductor device of this embodiment is housed in a housing is installed on a heating element, and a cross-sectional view in which a bottom plate portion and a housing of a flow path member are individually formed.
  • 8B is a cross-sectional view in which the bottom plate portion of the flow path member and the housing are integrated
  • FIG. 8C is a cross-sectional view showing a modification of the flow path member in which fins are housed in the flow path.
  • a housing housing semiconductor device 211 of this embodiment shown in FIG. 8A is obtained by housing and covering the semiconductor device 201 using the flow path member 1 of this embodiment in the housing 13.
  • a storage semiconductor device 211 is disposed on the heating element 301.
  • the heat conductivity of the bottom plate portion 4 of the flow path member 1 is lower than the heat conductivity of the side wall portion 3, and the signal terminal 15 connected to the semiconductor element 202.
  • all of the semiconductor device 201 including the flow path member 1 excluding the fluid supply pipe and the discharge pipe (not shown), or at least the bottom plate portion 4 and the side wall portion 3 of the flow path member 1 It is preferable to cover with a housing 13 made of a low thermal conductivity material equivalent to the portion 4.
  • the housing 13 for example, the resin material used in the above-described bottom plate portion 4 can be used.
  • the casing 13 and the bottom plate portion 4 and the side wall portion 3 of the flow path member 1 pick up heat from the heating element 301. It can suppress receiving. Thereby, it can suppress that ambient heat influences the fluid which flows through the flow-path member 1, and it can be set as the housing
  • FIG 8B shows a modified example of the flow path member 1 of the present embodiment described above, and the bottom plate portion 14 of the casing 13 replaces the bottom plate portion of the flow path member 51.
  • the housing housing semiconductor device 212 of this embodiment is disposed on the heating element 301.
  • the thermal conductivity of the bottom plate portion 14 of the housing 13 that also serves as the bottom plate portion of the flow path member 51 is preferably lower than the thermal conductivity of the side wall portion 3.
  • the bottom plate portion 14 and the side wall portion 3 of the housing 13 that also serves as the bottom plate portion of the flow path member 51 pick up the heat of the heating element 301. It can suppress receiving. Thereby, it is possible to suppress the influence of ambient heat on the fluid flowing through the flow path member 51, and the housing-encased semiconductor device 212 with high heat exchange efficiency can be obtained.
  • FIG. 8C shows a further modification of the flow path member 1 of the present embodiment described above, and the bottom plate portion 24 of the housing 13 is the bottom plate portion of the flow path member 61. Furthermore, a plurality of plate-like fins 16 protruding into the flow path 5 are joined to the surface of the partition wall portion 3b, and the housing-encased semiconductor device 213 of this embodiment is mounted on the heating element 301. It is arranged.
  • the fins 16 are a plurality of square fins or square fins including a long ellipse (oval shape) in cross section or a rectangle or rhombus, and a metal such as aluminum or copper having high thermal conductivity. It is preferably formed of a plate or a ceramic plate such as aluminum nitride, silicon carbide, or silicon nitride and connected to the lid portion 2 through a metal having high thermal conductivity so as to be capable of heat transfer.
  • casing accommodation semiconductor device 213 of this embodiment WHEREIN: It is preferable that the heat conductivity of the baseplate part 24 of the housing
  • the housing-storing semiconductor device 213 configured as described above is disposed on the heating element 301, the bottom plate portion 24 and the side wall portion 3 of the housing 13, which also serves as the bottom plate portion of the flow path member 61, heat the heating element 301. Therefore, it is possible to suppress the influence of ambient heat on the fluid flowing through the flow path member 61, and the housing-containing semiconductor device 213 with high heat exchange efficiency can be obtained.
  • the fins 16 may be provided by being bonded to the surfaces of the bottom plate portions 4, 14, and 24 of the respective housing housing semiconductor devices 211, 212, and 213.
  • the bottom plate portions 4, 14, and 24 are in contact with the surface of the joining side end portion of the fin 16 even at the joint portion with the bottom plate portions 4, 14, and 24.
  • the joint strength of the joint portion between the bottom plate portions 4, 14, 24 and the fins 16 is increased, and the solid flow path members 1, 51, 61 can be obtained.
  • the metal member 102 is directly provided on the upper surface of the lid portion 2.
  • a highly insulating member for example, a ceramic thin plate, aluminum that has been subjected to electrolytic treatment of aluminum to form an alumina oxide film on the surface is used.
  • a metal member coated with a highly heat-resistant resin such as a thin plate, polyimide, or a metal member coated with glass may be used by interposing between the lid portion 2 and the metal member 102.

Abstract

 流路の破壊を抑制した流路部材およびこれを用いた熱交換器ならびに半導体装置が提供される。本発明の流路部材(1)は、蓋体部(2)と隔壁部(3b)と側壁部(3)と底板部(4)とで内部に流体が流れる流路(5)を構成し、蓋体部(2)および底板部(4)のうち少なくとも一方に、隔壁部および側壁部のうち少なくとも一方の一部が入りこんで直接接合されていることから、流路部材(1)に繰り返し熱応力が発生しても、流路を構成する蓋体部(2)と隔壁部(3b)と側壁部(3)と底板部(4)とのそれぞれの接合部(8)に破損が生じることを抑制し、流路(5)の密閉性を高められる。また、流路(5)に高い圧力の流体を流したときでも流路(5)が破壊されることを抑制でき、この流路部材(1)を用いた熱交換器および半導体装置は熱応力による流路の破壊を抑制でき、熱交換効率を向上できるとともに、信頼性を向上することができる。

Description

流路部材およびこれを用いた熱交換器ならびに半導体装置
 本発明は、流路部材およびこれを用いた熱交換器ならびに半導体装置に関する。
 近年、ハイブリッド自動車や電気自動車の急速な普及に伴い、インバータ装置や、交流-直流電力変換装置などのパワーモジュールと呼ばれる半導体装置が多く用いられようになってきている。
 そして、このような半導体装置は、車載用に限らず、多くは大電流のスイッチングを繰り返し高温に発熱するため、半導体素子の機能を低下させないためには強制的な冷却が必要である。
 特許文献1には、熱伝導性に優れた窒化アルミニウムを積層し内部に冷却流路を備えた冷却器を、高温となる半導体デバイスの冷却手段として用いた車載用インバータ装置(流路部材を用いた半導体装置)が開示されている。
特開2007―184479号公報
 しかしながら、特許文献1における半導体装置は、窒化アルミニウムの薄板を積層した積層体によって、内部に流体が流れる流路を形成しているものの、積層体はねじ止めにより接合されており、この半導体装置がエンジンの近くに設けられている場合には、半導体装置に過酷な熱サイクルがかかり、この熱サイクルに伴う熱応力により積層体のねじ止めに緩み(流路の破壊)が生じ、流路の密閉性が損なわれ易いという問題があった。
 本発明は、上記課題を解決するために案出されたものであり、流路部材に熱応力が発生しても、流路の破壊を抑制できる流路部材およびこれを用いた熱交換器ならびに半導体装置を提供することを目的とするものである。
 本発明の流路部材は、蓋体部と底板部と、前記蓋体部と前記底板部との間に設けられた隔壁部および側壁部とを備え、前記蓋体部と前記隔壁部と前記側壁部と前記底板部とで内部に流体が流れる流路を構成してなり、前記蓋体部および前記底板部のうち少なくとも一方に、前記隔壁部および前記側壁部のうち少なくとも一方の一部が入りこんで直接接合されていることを特徴とするものである。
 また、本発明の熱交換器は、上記構成の流路部材と、前記流路部材の前記蓋体部上に設けられた金属部材とを備えることを特徴とするものである。
 また、本発明の半導体装置は、上記構成の熱交換器の前記金属部材上に半導体素子が設けられていることを特徴とするものである。
 本発明の流路部材によれば、蓋体部と隔壁部と側壁部と底板部とで内部に流体が流れる流路を構成してなり、蓋体部および底板部のうち少なくとも一方に、隔壁部および側壁部のうち少なくとも一方の一部が入りこんで直接接合されていることから、流路部材に熱応力が発生しても、流路を構成する各部材の接合部のうち、隔壁部および側壁部のうち少なくとも一方の一部が入り込んで直接接合された接合部が破壊しにくく、流路の密閉性を高めることができる。
 また、本発明の熱交換器は、上記構成の流路部材の前記蓋体部上に金属部材が設けられていることから、蓋体部と金属部材との熱交換を効率的に行なうことができ、熱交換効率の高い熱交換器とすることができる。
 また、本発明の半導体装置は、上記構成の熱交換器の前記金属部材上に半導体素子が設けられていることから、シンプルな構造で半導体素子の発熱による温度上昇を抑制する半導体装置とすることができる。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本実施形態の流路部材の斜視図である。 図1Aに示すX-X線の部分断面図である。 図1Aに示すX-X線の部分断面図である。 図1Bの破線で囲んだC部を拡大した部分断面図である。 図1Cの破線で囲んだC部を拡大した部分断面図である。 本実施形態の流路部材の他の一例を示し、図1Bの破線で囲んだC部に相当する部分を拡大した部分断面図である。 本実施形態の流路部材の他の一例を示し、図1Cの破線で囲んだC部に相当する部分を拡大した部分断面図である。 本実施形態の流路部材のさらに他の一例を示し、図1Bの破線で囲んだC部に相当する部分を拡大した部分断面図である。 本実施形態の流路部材のさらに他の一例を示し、図1Cの破線で囲んだC部に相当する部分を拡大した部分断面図である。 本実施形態の流路部材のさらに他の一例を示す斜視図である。 本実施形態の流路部材のさらに他の一例を示し、積層体の一部を取り外して示す平面図である。 本実施形態の流路部材のさらに他の一例を示し、流路部材を構成する蓋体部、隔壁部、側壁部および底板部をねじで締結した状態の側面図である。 本実施形態の流路部材のさらに他の一例を示し、かしめ部材で締結した状態の側面図である。 本実施形態の熱交換器の一例を示す、流路部材の蓋体部上に金属部材を設けた熱交換器の斜視図である。 本実施形態の半導体装置の一例を示す、熱交換器に半導体素子が実装された半導体装置の斜視図である。 本実施形態の半導体装置を筐体に収納してなる筐体収納半導体装置を発熱体上に設置した一例を示し、流路部材の底板部と筐体を個別に形成した断面図である。 本実施形態の半導体装置を筐体に収納してなる筐体収納半導体装置を発熱体上に設置した一例を示し、流路部材の底板部と筐体を一体とした断面図である。 本実施形態の半導体装置を筐体に収納してなる筐体収納半導体装置を発熱体上に設置した一例を示し、流路内にフィンを収納した流路部材の変形例を示す断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。
 図1Aは、本実施形態の流路部材の斜視図である。図1Bおよび図1Cは、図1Aに示すX-X線の部分断面図である。図1Dは、図1Bの破線で囲んだC部を拡大した部分断面図である。図1Eは、図1Cの破線で囲んだC部を拡大した部分断面図である。
 図1A~図1Eに示すように、本実施形態の流路部材1は、蓋体部2と底板部4と、この蓋体部2と底板部4との間に設けられた隔壁部3bおよび側壁部3とにより構成され、蓋体部2と隔壁部3bと側壁部3と底板部4とで囲まれた内部空間が、気体または液体などの流体を流すための流路5となる。
 そして、本実施形態の流路部材1によれば、蓋体部2および底板部4のうち少なくとも一方に、隔壁部3bおよび側壁部3のうち少なくとも一方の一部が入りこんで直接接合されている。
 ここで、直接接合とは、蓋体部2および底板部4のうち少なくとも一方に、隔壁部3bおよび側壁部3のうち少なくとも一方が直接接合されていることを指しており、例えば、接合部8にOリング等の弾性体や、接着材等がない接合を指すものである。
 図1Bおよび図1Dに示す流路部材1においては、流路5を構成する側壁部3および隔壁部3bの底面側の一部が底板部4の流路壁を構成する表面よりも内側に入りこんで直接接合されている。また、図1Cおよび図1Eに示す流路部材1においては、側壁部3および隔壁部3bの上面側の一部が蓋体部2の流路壁を構成する表面よりも内側に入りこんで直接接合されている。
 さらに、図2Aおよび図2Bでは、流路5を構成する側壁部3の底面側の一部が底板部4に入りこんでいる別の態様を示し、図2Aは破線で囲んだA部に示すように、底板部4を部分的に突出させてあり、突出させた領域に形成される凹部に側壁部3の底面側の一部が入りこんでいる例を示したものであり、図2Bは破線で囲んだB部に示すように、側壁部3の一端に凸部を設け、相対する底板部4の表面に凹部を設け、側壁部3の一端の凸部が底板部4の凹部に入り込んでいる例を示したものである。なお、図示していないが、側壁部3の蓋体部2側でも同様の構成とすることができ、さらに、隔壁部3bにおいても側壁部3と同様の構成とすることもできる。
 また、本実施形態の流路部材1の製造方法の一例として、先ず、隔壁部3bおよび側壁部3となる焼結部材を準備する。次に、蓋体部2および底板部4を、隔壁部3bおよび側壁部3より低融点の粉末材料を所望の形状に成形する。あるいは、低融点材料の溶湯を射出成形等により所望の形状に形成する。そして先に準備した隔壁部3bおよび側壁部3を、蓋体部2および底板部4で挟み込むようにして組み合わせたのち加圧した状態で所望の温度で焼成することにより、蓋体部2および底板部4と、隔壁部3bおよび側壁部3とがそれぞれ直接接合した流路部材1を得ることができる。なお、このとき、蓋体部2および底板部4は、先に準備した隔壁部3bおよび側壁部3より低融点の材料を用いることから、焼成の温度を隔壁部3bおよび側壁部3の融点より高い温度で焼成することによって蓋体部2および底板部4に隔壁部3bおよび側壁部3の一部が入り込んで直接接合される。なお、上述の例では、隔壁部3bおよび側壁部3の両方の一部が、蓋体部2および底板部4の両方に入り込んでいる例の場合について説明したが、隔壁部3bおよび側壁部3のうち少なくとも一方の一部が、蓋体部2および底板部4のうち少なくとも一方に入り込んでいればよく、適宜調整して製造することができる。以下の説明において、特に断りがない場合には、隔壁部3bおよび側壁部3の両方の一部が、蓋体部2および底板部4の両方に入り込んでいる例を用いて説明する。
 ここで、隔壁部3bおよび側壁部3を比較的融点の高い材料としてセラミックスを用いる場合には、蓋体部2および底板部4は比較的融点の低い材料として銅やアルミニウムなどの金属または樹脂を用いることができ、隔壁部3bおよび側壁部3を比較的融点の高い材料として金属を用いる場合には、蓋体部2および底板部4は比較的融点の低い材料として樹脂を用いることができる。
 このように、本実施形態の流路部材1は、蓋体部2および底板部4のうち少なくとも一方に、隔壁部3bおよび側壁部3のうち少なくとも一方の一部が入りこんで直接接合されている。それにより、流路部材1に外側および内側から高温により発生した熱応力が加わっても、隔壁部3bおよび側壁部3のうち少なくとも一方の一部が入りこんで接合された部位である接合部8が破壊されることや、接合部8に流路5側に開口する隙間が発生することを抑制できる。それにより、流路5の密閉性を高めることができるほか、流路5内を流れる流体の圧力を高くすることができることから、冷却能力を上げることができる。
 図3Aおよび図3Bは、本実施形態の流路部材のさらに他の一例を示し、図3Aは、図1Bの破線で囲んだC部に相当する部分を拡大した部分断面図であり、図3Bは、図1Cの破線で囲んだC部に相当する部分を拡大した部分断面図である。
 図3Aおよび図3Bに示すように、側壁部3の一端に複数の凹部(側壁部3の凹部)を備え、また、蓋体部2および底板部4の少なくとも一部がこの凹部に対応する複数の凸部を備え、凹部が凸部に入り込んで接合されていることが好ましい。なお、以下の説明において、図3Aおよび図3Bにおいて、隔壁部3bは示されていないが、隔壁部3bも同様にその一端に凹部を備え、その凹部が、蓋体部2および底板部4の少なくとも一部の凸部に入り込んで接合することができる。
 つまり、蓋体部2と隔壁部3bおよび側壁部3と、底板部4と隔壁部3bおよび側壁部3とを接合するにあたり、蓋体部2および底板部4のうち少なくとも一方に、隔壁部3bおよび側壁部3のうち少なくとも一方の一部が入りこんで直接接合されているとともに、各接合部8は、隔壁部3bおよび側壁部3に複数の凹部を備え、蓋体部2および底板部4に、この凹部と対応する複数の凸部を備え、隔壁部3bおよび側壁部3の凹部が、対応する蓋体部2および底板部4の凸部に入り込んで接合される構成の二段階の接合構成を取っている。それゆえ、接合部8においてより強固なアンカー効果を有することができ、熱応力に対しもっとも脆弱な部分である接合部8が破壊されることを抑制できる。それにより、流路5の密閉性を高めることができるほか、流路5内を流れる流体の圧力を高くすることができることから、冷却能力を上げることができる。
 なお、隔壁部3bおよび側壁部3に設ける凹部の大きさは、例えば、隔壁部3bおよび側壁部3の幅寸法が1~20mmである場合には、円相当径で、隔壁部3bおよび側壁部3の幅寸法の10万~100万分の1の範囲であって、その深さは、0.1~10μmの範囲であることが好ましい。このような凹部を隔壁部3bおよび側壁部3の接合面全体に満遍なく複数備えることから、応力を接合面全体に分散することができ接合強度を高めることができる。凸部については、上記凹部と対応する大きさとすればよい。
 また、蓋体部2および底板部4の接合部8には変質層を有さないことが好ましく、それにより、各部材の本来の強度を確保でき、接合強度の低下を抑制できる。なお変質層とは、例えば、各部材として樹脂を用いた場合に、樹脂が熱溶着することにより変性して接合強度の特性が劣化した層のことを言う。但し、流路部材の材料の一部にセラミックスを用い、放熱特性を上げるために熱照射を加え表面層のガラス質成分を除去することにより、熱伝導性が向上する場合は変質層とは呼ばず、改質層と呼ぶものとする。
 また、本実施形態の流路部材1は、蓋体部2および底板部4のうち、隔壁部3bおよび側壁部3のうち少なくとも一方の一部が入り込んで直接接合されている方が可撓性材料からなることが好ましい。このような構成とすることによって、蓋体部2の上方または底板部4の下方にさらに設けられた剛性の高いセラミックス基板などに半導体素子などの電子部品を実装する場合に、電子部品と流路部材1との熱膨張差による剥がれの問題や、蓋体部2または底板部4が電子部品に呼応して大きな反りが生じることを抑制できる。それゆえ、蓋体部2および底板部4と側壁部3および隔壁部3bとの各接合部8への負担も軽減できる。
 ここで、蓋体部2および底板部4として用いることのできる可撓性材料としては、樹脂材料や金属材料が例示できる。なお、この場合において、隔壁部3bおよび側壁部3の材料としては、非可撓性材料を用いることができる。具体的には、蓋体部2および底板部4が樹脂材料であるときには、隔壁部3bおよび側壁部3の材料としては、剛性の高いセラミックス、樹脂複合セラミックス、または、金属材料を用いることができる。また、蓋体部2および底板部4が金属材料であるときは、隔壁部3bおよび側壁部3の材料としては、銅、アルミニウム系などの金属材料またはセラミックスであってもよい。さらに、また、蓋体部2および底板部4は金属箔であってもよく、銅やアルミニウムまたはそれらの合金以外にステンレスやチタンである場合には、特に耐薬品性に富むことから、より好ましい。
 特に、蓋体部2および底板部4の可撓性材料としては、樹脂材料を用いることが好ましい。それにより、隔壁部3bおよび側壁部3をセラミックスや金属材料により作製し、蓋体部2と隔壁部3bおよび側壁部3と底板部4を加圧接合する場合に、隔壁部3bおよび側壁部3の一部が、可撓性のある樹脂材料の蓋体部2および底板部4に入り込んで接合されることから、隔壁部3bおよび側壁部3の一部が蓋体部2および底板部4で覆われた形状となる。それにより、流路部材1に繰り返し熱応力が発生しても接合部8に隙間が現れることを抑制でき、流路5に高い圧力の流体を流しても流路5が破壊されにくく、密閉性の高い流路部材1とすることができる。
 ここで、蓋体部2および底板部4に用いることができる樹脂材料としては、POM(ポリオキシメチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PA(ナイロン66)、PP(ポリプロピレン)、PE(ポリエチレン)、PMMA(ポリメタクリル酸メチル)、PET(ポリエチレンテレフタレート)、PEI(ポリエーテルイミド系樹脂)、PBT(ポリブチレンテレフタレート系樹脂)、PA(ポリアミド系樹脂)、PAI(ポリアミドイミド系樹脂)、PPS(ポリフェニレンサルファイド系樹脂)、ポリフェニレンエーテル系樹脂、PEEK(ポリエーテルエーテルケトン)、ポリフェニレンエーテル系樹脂-スチレン系樹脂-ポリアミド系樹脂混合樹脂、PTFE(ポリテトラフルオロエチレンフッ素樹脂)および、PC(ポリカーボネート系樹脂)などがあるが、特に耐熱性、耐薬品性に富む点で、PPS、PEI、PAI、PTFEおよびPEEKとすることが好ましい。
 また、隔壁部3bおよび側壁部3を構成するセラミックス材料としては、アルミナ、窒化珪素、窒化アルミニウム、炭化珪素、ジルコニアおよび、それらの複合体であってもよいが、いずれも、耐熱性、耐薬品性が良好であり、熱伝導性を優先するならば炭化珪素、窒化アルミニウム、窒化珪素が好ましく、安価で高強度の流路部材1とするならばアルミナまたは炭化珪素が好ましい。
 また、本実施形態の流路部材1の蓋体部2の上面または底板部4の下面に発熱体を実装する場合は、蓋体部2または底板部4の樹脂材料が、高熱伝導性の樹脂であることが好ましい。それにより、発熱体で発生した熱が流路部材1の内部を流れる流体に効率よく伝熱され、より熱交換効率の高い流路部材1とすることができる。
 ここで、高熱伝導性の樹脂材料としては、熱伝導性の高いフィラーを添加した樹脂が好ましく、熱伝導率が15~30W/m・Kの範囲であればよい。なお、蓋体部2および底板部4が、絶縁性を要求される場合には、フィラーとしてアルミナや窒化アルミニウム、窒化ホウ素などを主成分として用いたものであればよく、絶縁性を求められない場合はフィラーとして錫、アルミニウム、マグネシウム、銀、マンガンおよび銅等の金属を用いればよい。
 また、流路部材1の蓋体部2または底板部4として高熱伝導性の樹脂材料を用い、かつ、流路部材1を熱交換器あるいは半導体装置に組み込み、これらを高温の環境下に配設する場合、流路部材1の蓋体部2または底板部4が周囲の熱を拾受することを抑制するために、低熱伝導性の樹脂材料等からなる筐体に収納することが望ましい。
 また、本実施形態の流路部材1は、隔壁部3bおよび側壁部3の硬さが、蓋体部2および底板部4の硬さより硬いことが好ましい。このような構成とすることによって、蓋体部2と隔壁部3bと側壁部3と底板部4とを、ねじ止めなどにより接合するときに、硬さの低い蓋体部2および底板部4側に隔壁部3bおよび側壁部3が入り込むことで、流路5を形成する隔壁部3bおよび側壁部3の一部を底板部4が覆うこととなる。それにより、流路部材1に繰り返し熱応力が発生しても、蓋体部2と隔壁部3bおよび側壁部3、隔壁部3bおよび側壁部3と底板部4との各接合部8に隙間が生ずることを抑制でき、高い圧力の流体を流しても流路5が破壊されることを抑制できる。
 ここで、例えば、隔壁部3bおよび側壁部3がアルミナ含有率96質量%のセラミックスであって、底板部4がポリカーボネート樹脂であるときには、隔壁部3bと側壁部3と蓋体部2と底板部4とが平坦な形状であっても、接合時の加圧力を約1MPa程度で行えばよく、蓋体部2および底板部4には、接合部8において5~10μm程度の凹みが得られる。この凹み量が大きいほど、流体の圧力による接合部8の破壊を抑制する効果は高くなるが、凹み量が僅かであっても、凹みがないときに比べれば、流路破壊の確率は著しく低減できる。これは、凹みがないときは、流路部材1に繰り返し熱応力がかかると蓋体部2と隔壁部3bおよび側壁部3との間、隔壁部3bおよび側壁部3と底板部4との間に、僅かな隙間が発生し、流路5に高い圧力の流体を流したときに、隙間が切り欠き効果となり、容易に流路部材1を破壊することが考えられるからである。僅かであっても凹みがあれば最初の隙間の発生を抑えることができるので、本実施形態の流路部材1は、流路破壊の確率を低減できる。
 以下に、可撓性部材である蓋体部2および底板部4と、隔壁部3bおよび側壁部3との接合方法の一例を説明する。
 隔壁部3bおよび側壁部3を、非可撓性材料としてアルミニウムまたはアルミニウム合金にて形成する場合は、予め、隔壁部3bおよび側壁部3の接合部8となる部分に、水酸化ナトリウムなどの塩基性水溶液へ浸し前処理したあとに、電気化学処理エッチングすることにより微細な凹部を複数形成する。
 また、非可撓性材料がセラミックスであるときは、公知の多孔質体の製造方法による球状樹脂粒子をセラミックスラリーに均一分散して成形する方法などによればよく、部分的に多孔質セラミックとなるスラリーを緻密質セラミックスラリーで成形した部材上に被覆した後、所定の温度で焼成することで接合部8となる部位に凹部を複数作製できる。また、側壁部3および隔壁部3bの焼結体を作製したあとに、側壁部3および隔壁部3bの接合部8となる部位に凹部を複数形成するときには、非可撓性材料がアルミナであれば、接合部8となる部分のみをフッ酸溶液に浸漬することによりシリカ等のガラス成分が除去され、接合に必要な表面層のみに、アルミナ粒子間に凹部となる隙間が得られる。また、さらに、レーザ光の面照射によりシリカ等のガラス成分を除去して凹部を形成してもよい。
 なお、このようにセラミックスの表面のガラス成分を除去した場合は、流路部材1においては、相対する金属材料または樹脂材料との接合部の熱抵抗を小さくすることができるため、このガラス成分が除去された部分は変質層ではなく改質層と捉えてよい。
 そして、金型内に、これらの隔壁部3bおよび側壁部3となる部材を配置し、蓋体部2および底板部4となる部材を溶融した樹脂または金属を射出成形する。このようにして成形すれば、蓋体部2および底板部4の一部が隔壁部3bおよび側壁部3の凹部に入り込むことで凸部となり、結果的に、蓋体部2および底板部4の凸部に、隔壁部3bおよび側壁部3の凹部が入り込むことで、蓋体部2または底板部4と接合された隔壁部3bまたは側壁部3が得られる。
 このようにして得られた可撓性部材と非可撓性部材の接合部8は、可撓性部材である蓋体部2および底板部4のうち少なくとも一方に、非可撓性部材である隔壁部3bおよび側壁部3のうち少なくとも一方の一部が入りこんで直接接合され、各接合部8は、複数の凹部を備える隔壁部3bおよび側壁部3のうち少なくとも一方の一部が、蓋体部2および底板部4のうち少なくとも一方の凸部に入り込んで接合される構成の二段階の接合構成ができる。さらには、蓋体部2および底体部4に接合強度の低下を招く変質層が存在しないことから、熱交換効率を上げるために流体の圧力を上げて流体を流しても接合部8においてより強固なアンカー効果を有することができ熱応力に対し接合部8が破壊されることを抑制できる。
 蓋体部2の上方または底板部4の下方に発熱体を実装するとき、これらが樹脂であるときは、流路部材1に熱を伝熱するためには高熱伝導性の樹脂であることが好ましく、以下、その製造方法の一例を説明する。
 前述したように、側壁部3および隔壁部3bとなるそれぞれの部材を金型内に配置し、蓋体部2および底板部4との接合部8となる位置に高熱伝導性樹脂となる溶融樹脂を射出成形するが、耐熱性が少なくとも200℃以上であって、融点が約230℃以上であるPPS、PTFEまたはPAI樹脂に、例えば、錫とマグネシウムまたはマンガン、銀、銅、アルミニウムなどとなるそれぞれの部材を加えた低融点金属の合金粉末を添加して、これらの融点以上の温度で射出成形することにより、高熱伝導性樹脂の蓋体部2および底板部4と、隔壁部3bおよび側壁部3とを接合した流路部材1とすることができる。
 なお、溶融樹脂に添加する金属粉の量によって熱伝導性をコントロールしようとすると添加した金属粉により樹脂の流れが悪くなり成形性が悪くなるが、金属粉の添加量を少なくして高熱伝導性を得るには、金属粉のアスペクト比を大きくすることや、射出成形時の温度を金属粉の融点付近に制御することにより、金属フィラーの長軸方向を配向させることができ、したがって、低量の金属粉添加であっても金属フィラー間で熱伝達経路を形成し高熱伝導性樹脂とすることができる。特に、金属フィラーの長軸方向が接合部8に対して略鉛直方向とすることは金型構造とゲート位置の設計により対応できる。
 図4Aは、本実施形態の流路部材のさらに他の一例を示す斜視図であり、図4Bは、流路部材の積層体の一部を取り外して示す平面図である。
 図4Aおよび図4Bに示すように、本実施形態の流路部材21は、隔壁部3bおよび側壁部3のうち少なくとも一方が、セラミックス層からなる複数の板状体7(ここでは、3層の板状体7からなる例を示す。)が積層された積層体からなっている。
 隔壁部3bおよび側壁部3をこの様な積層構造とすることによって、複雑な流路5の形成を容易に行なうことができ、また、耐熱性、耐薬品性、さらに、耐圧性のいずれにも富む流路部材21とすることができる。
 例えば、流路5が単純な形状であれば、押出成形等で容易に加工できるものの、流路5を平面視したときの形状が波線状のような複雑な形状の場合には、押出成形では加工が困難であり、また、流路5間の幅が狭い場合も、耐熱性、耐薬品性、および耐圧性を確保することが難しい場合がある。それゆえ、このような形状の流路5を設けようとする場合においては、未焼成のセラミックグリーンシートの平板に所望の流路5となる貫通孔5aを形成し、これを積層して焼成することにより、セラミックス層の板状体7を積層した積層体である隔壁部3bおよび側壁部3を作製すればよい。
 図5Aは、本実施形態の流路部材のさらに他の一例を示し、流路部材を構成する蓋体部、隔壁部、側壁部および底板部をねじで締結した状態の側面図であり、図5Bは、かしめ部材で締結した状態の側面図である。
 図5Aに示す流路部材31は、蓋体部2と隔壁部3bと側壁部3と底板部4とにねじ孔9を設け、ねじ10によって、積層した蓋体部2と隔壁部3bと側壁部3と底板部4とを螺合している。図5Bに示す流路部材41は、蓋体部2と隔壁部3bと側壁部3と底板部4との長手方向両端部を、かしめ部材12によって接合している。
 上述において、セラミックグリーンシートを積層して焼成することによってセラミック層の板状体7が一体化した隔壁部3bおよび側壁部3を得る例を示したが、セラミックグリーンシートを個別に焼成したセラミック層の板状体7を重ね合わせ、蓋体部2と底板部4でこれらを狭持し、それらをねじ止めや、かしめ部材などにより一括して接合、固定してもよい。
 次に、本実施形態の熱交換器について、図6を用いて説明する。図6は本実施形態の熱交換器の一例を示す、流路部材の蓋体部上に金属部材を設けた熱交換器の斜視図である。
 本実施形態の熱交換器101は、本実施形態の流路部材1の蓋体部2上に金属部材102を設けている。なおここでは、底板部4は可撓性材料からなっている。蓋体部2の上に金属部材を設けていることから、蓋体部2と金属部材102との熱交換を効率的に行なうことができ、熱交換効率の高い熱交換器とすることができる。そして、底板部4が可撓性材料からなることから、熱交換器101に繰り返し熱応力が発生したときでも、底板部4で熱応力を吸収軽減することにより流路5の破壊を抑制することができ、信頼性の向上した熱交換器101とすることができる。なお、さらに蓋体部2が可撓性材料からなる場合には、さらに熱応力を吸収軽減することができる。
 次に、本実施形態の半導体装置について、図7を用いて説明する。図7は本実施形態の半導体装置の一例を示す、熱交換器に半導体素子が実装された半導体装置の斜視図である。
 本実施形態の半導体装置201は、本実施形態の熱交換器101に半導体素子202を実装したことから、半導体装置201自身で発生した熱または流体や外部環境から繰り返し熱が加えられて熱応力が発生したときでも、熱応力を吸収軽減できる熱交換器101を用いていることから、流路5が破壊されることを抑制し、熱交換器101を介して、流路5を流れる流体と半導体素子202とが高い熱交換効率を有することから、半導体素子202の温度を効率よく低下させることができる。
 次に、本実施形態の流路部材、熱交換器、および半導体装置の変形例について説明する。
 図8Aは、本実施形態の半導体装置を筐体に収納してなる筐体収納半導体装置を発熱体上に設置した一例を示し、流路部材の底板部と筐体を個別に形成した断面図であり、図8Bは、流路部材の底板部と筐体を一体とした断面図であり、図8Cは、流路内にフィンを収納した流路部材の変形例を示す断面図である。
 図8Aに示す本実施形態の筐体収納半導体装置211は、前述した本実施形態の流路部材1を用いた半導体装置201を、筐体13に収納して覆ったものであり、この筐体収納半導体装置211が発熱体301上に配設されている。
 このような筐体収納半導体装置211においては、流路部材1の底板部4の熱伝導性が、側壁部3の熱伝導性よりも低いことに加え、半導体素子202に接続される信号端子15および流体の供給管および排出管(不図示)を除く流路部材1を含む半導体装置201の全てを、あるいは、少なくとも、流路部材1の底板部4と側壁部3の一部とを、底板部4と同等の低熱伝導性の材質からなる筐体13で覆うことが好ましい。筐体13としては、例えば上述した底板部4で用いた樹脂材料等を用いることができる。
 このような構成とした筐体収納半導体装置211は、発熱体301上に配設したとき、筐体13と流路部材1の底板部4および側壁部3とが、発熱体301の熱を拾受することを抑制できる。それにより、周囲の熱が流路部材1を流れる流体に影響することを抑制でき、熱交換効率の高い筐体収納半導体装置211とすることができる。
 図8Bに示す本実施形態の筐体収納半導体装置212は、前述した本実施形態の流路部材1の変形例を示しており、筐体13の底板部14が流路部材51の底板部を兼ねた構成であり、本実施形態の筐体収納半導体装置212が発熱体301上に配設されている。
 本実施形態の筐体収納半導体装置212は、流路部材51の底板部を兼ねる筐体13の底板部14の熱伝導性が、側壁部3の熱伝導性より低いことが好ましく、このような構成とした筐体収納半導体装置212を発熱体301上に配設したときには、流路部材51の底板部を兼ねる筐体13の底板部14と側壁部3とが、発熱体301の熱を拾受することを抑制できる。それにより、周囲の熱が流路部材51に流れる流体に影響することを抑制でき、熱交換効率の高い筐体収納半導体装置212とすることができる。
 図8Cに示す本実施形態の筐体収納半導体装置213は、前述した本実施形態の流路部材1のさらなる変形例を示しており、筐体13の底板部24が流路部材61の底板部を兼ねており、さらに、流路5内に突出する複数の板状のフィン16が隔壁部3bの表面に接合された構成であり、本実施形態の筐体収納半導体装置213が発熱体301上に配設されている。
 ここで、フィン16は横断面が長楕円(小判形状)を含む円形や、長方形や菱形を含む方形の柱状または板状の複数のフィンであって、熱伝導性の高いアルミニウムや銅などの金属板あるいは、窒化アルミや炭化珪素または窒化珪素などのセラミックス板で形成され、熱伝導性の高い金属等を介して蓋体部2に熱移動可能に繋がっていることが好ましい。
 そして、本実施形態の筐体収納半導体装置213は、流路部材61の底板部を兼ねる筐体13の底板部24の熱伝導性が、側壁部3の熱伝導性より低いことが好ましく、このような構成とした筐体収納半導体装置213を発熱体301上に配設したとき、流路部材61の底板部を兼ねる筐体13の底板部24と側壁部3とが、発熱体301の熱を拾受することを抑制でき、したがって、周囲の熱が流路部材61に流れる流体に影響することを抑制でき、熱交換効率の高い筐体収納半導体装置213とすることができる。
 また、フィン16は、上記の各筐体収納半導体装置211,212,213の底板部4,14,24の表面に接合させて設けてもよい。特にフィン16が非可撓性材料からなるときは、底板部4,14,24との接合部においても、底板部4,14,24が、フィン16の接合側端部の表面と接することになり、底板部4,14,24とフィン16との接合部の接合強度が高められ、堅固な流路部材1,51,61とすることができる。
 また、図7~8A,8B,8Cに示した熱交換器101、半導体装置201および筐体収納半導体装置211,212,213の例では、蓋体部2の上面に直接金属部材102を設けているが、蓋体部2が絶縁性の低いもので形成されている場合には、絶縁性の高い部材、たとえば、セラミックスの薄板、アルミニウムを電解処理して表面にアルミナ酸化膜を生成したアルミニウムの薄板、ポリイミド等耐熱性の高い樹脂をコーティングした金属部材、ガラスコーティングした金属部材を蓋体部2と金属部材102との間に介在させて用いればよい。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
 1,21,31,41,51,61:流路部材
 2:蓋体部、2a:内面
 3:側壁部、3b:隔壁部、
 4,14,24:底板部
 5:流路、5a:貫通孔
 7:板状体
 8:接合部
 9:ねじ孔
 10:ねじ
 12:かしめ部材
 13:筐体
 16:フィン
 101:熱交換器
 102:金属部材
 201:半導体装置
 202:半導体素子
 211,212,213:筐体収納半導体装置
 301:発熱体

Claims (7)

  1. 蓋体部と底板部と、前記蓋体部と前記底板部との間に設けられた隔壁部および側壁部とを備え、
    前記蓋体部と前記隔壁部と前記側壁部と前記底板部とで内部に流体が流れる流路を構成してなり、
    前記蓋体部および前記底板部のうち少なくとも一方に、前記隔壁部および前記側壁部のうち少なくとも一方の一部が入りこんで直接接合されていることを特徴とする流路部材。
  2.  前記蓋体部および前記底板部のうち、前記隔壁部および前記側壁部のうち少なくとも一方の一部が入り込んで直接接合されている方が可撓性材料からなることを特徴とする請求項1に記載の流路部材。
  3. 前記可撓性材料が樹脂材料であることを特徴とする請求項2に記載の流路部材。
  4. 前記樹脂材料が高熱伝導性の樹脂であることを特徴とする請求項3に記載の流路部材。
  5. 前記側壁部および前記隔壁部のうち少なくとも一方がセラミックスの積層体からなることを特徴とする請求項1乃至請求項4に記載の流路部材。
  6. 請求項1乃至請求項5のいずれかに記載の流路部材と、前記流路部材の前記蓋体部上に設けられた金属部材とを備えることを特徴とする熱交換器。
  7. 請求項6に記載の熱交換器の前記金属部材上に半導体素子が設けられていることを特徴とする半導体装置。
PCT/JP2013/059707 2012-03-30 2013-03-29 流路部材およびこれを用いた熱交換器ならびに半導体装置 WO2013147240A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/389,636 US20150076685A1 (en) 2012-03-30 2013-03-29 Flow path member, and heat exchanger and semiconductor device using the same
CN201380018428.2A CN104247008A (zh) 2012-03-30 2013-03-29 流路构件和使用该流路构件的换热器以及半导体装置
JP2014508217A JP5968425B2 (ja) 2012-03-30 2013-03-29 流路部材およびこれを用いた熱交換器ならびに半導体装置
KR1020147027603A KR20140142269A (ko) 2012-03-30 2013-03-29 유로 부재 및 이것을 사용한 열교환기와 반도체 장치
EP13767597.1A EP2833402A1 (en) 2012-03-30 2013-03-29 Flow path member, and heat exchanger and semiconductor device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012079114 2012-03-30
JP2012-079114 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147240A1 true WO2013147240A1 (ja) 2013-10-03

Family

ID=49260479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059707 WO2013147240A1 (ja) 2012-03-30 2013-03-29 流路部材およびこれを用いた熱交換器ならびに半導体装置

Country Status (6)

Country Link
US (1) US20150076685A1 (ja)
EP (1) EP2833402A1 (ja)
JP (1) JP5968425B2 (ja)
KR (1) KR20140142269A (ja)
CN (1) CN104247008A (ja)
WO (1) WO2013147240A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985824A (zh) * 2014-04-10 2014-08-13 四川虹视显示技术有限公司 柔性屏制成方法及玻璃基板剥离方法
WO2016158020A1 (ja) * 2015-04-01 2016-10-06 富士電機株式会社 半導体モジュール
JP2017022374A (ja) * 2015-07-08 2017-01-26 株式会社フジクラ コールドプレートおよびその製造方法
KR20170057465A (ko) * 2014-10-31 2017-05-24 비와이디 컴퍼니 리미티드 히트싱크 및 파워 배터리 시스템
WO2020196878A1 (ja) * 2019-03-28 2020-10-01 三井化学株式会社 冷却ユニット、冷却装置、電池構造体および電動車両

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075447B1 (en) * 2013-11-28 2021-03-24 Kyocera Corporation Duct member
US10415901B2 (en) * 2016-09-12 2019-09-17 Hamilton Sundstrand Corporation Counter-flow ceramic heat exchanger assembly and method
JP6988399B2 (ja) * 2016-12-05 2022-01-05 トヨタ自動車株式会社 車載用バッテリリレー接続構造
CN108036668B (zh) * 2017-12-07 2024-03-15 程向锋 换热管、包括它的换热器和换热管的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237357A (ja) * 2000-02-24 2001-08-31 Sts Kk 蛇行通路付熱伝達装置
JP2007036094A (ja) * 2005-07-29 2007-02-08 Mitsubishi Materials Corp 冷却器及びパワーモジュール
JP2007184479A (ja) 2006-01-10 2007-07-19 Toyota Central Res & Dev Lab Inc 冷却器と、その冷却器上に半導体素子が実装されている半導体装置
JP2011210822A (ja) * 2010-03-29 2011-10-20 Toyota Industries Corp 冷却装置
JP2011233608A (ja) * 2010-04-26 2011-11-17 Kaneka Corp 高熱伝導性熱可塑性樹脂製ヒートシンク

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072188A (en) * 1975-07-02 1978-02-07 Honeywell Information Systems Inc. Fluid cooling systems for electronic systems
DE2903685A1 (de) * 1979-01-31 1980-08-14 Siemens Ag Kuehlvorrichtung zur kuehlung von elektrischen bauelementen, insbesondere von integrierten bausteinen
US5239200A (en) * 1991-08-21 1993-08-24 International Business Machines Corporation Apparatus for cooling integrated circuit chips
CA2089435C (en) * 1992-02-14 1997-12-09 Kenzi Kobayashi Semiconductor device
US5275237A (en) * 1992-06-12 1994-01-04 Micron Technology, Inc. Liquid filled hot plate for precise temperature control
US5585671A (en) * 1994-10-07 1996-12-17 Nagesh; Voddarahalli K. Reliable low thermal resistance package for high power flip clip ICs
DE19514548C1 (de) * 1995-04-20 1996-10-02 Daimler Benz Ag Verfahren zur Herstellung einer Mikrokühleinrichtung
WO1997025741A1 (de) * 1996-01-04 1997-07-17 Daimler-Benz Aktiengesellschaft Kühlkörper mit zapfen
JP2828055B2 (ja) * 1996-08-19 1998-11-25 日本電気株式会社 フリップチップの製造方法
DE19643717A1 (de) * 1996-10-23 1998-04-30 Asea Brown Boveri Flüssigkeits-Kühlvorrichtung für ein Hochleistungshalbleitermodul
US6400012B1 (en) * 1997-09-17 2002-06-04 Advanced Energy Voorhees, Inc. Heat sink for use in cooling an integrated circuit
US5829514A (en) * 1997-10-29 1998-11-03 Eastman Kodak Company Bonded cast, pin-finned heat sink and method of manufacture
US6218730B1 (en) * 1999-01-06 2001-04-17 International Business Machines Corporation Apparatus for controlling thermal interface gap distance
US6578626B1 (en) * 2000-11-21 2003-06-17 Thermal Corp. Liquid cooled heat exchanger with enhanced flow
US6367543B1 (en) * 2000-12-11 2002-04-09 Thermal Corp. Liquid-cooled heat sink with thermal jacket
DE10223035A1 (de) * 2002-05-22 2003-12-04 Infineon Technologies Ag Elektronisches Bauteil mit Hohlraumgehäuse, insbesondere Hochfrequenz-Leistungsmodul
JP2004085186A (ja) * 2002-07-05 2004-03-18 Sony Corp 冷却装置、電子機器装置、音響装置及び冷却装置の製造方法。
US6936919B2 (en) * 2002-08-21 2005-08-30 Texas Instruments Incorporated Heatsink-substrate-spacer structure for an integrated-circuit package
US6986382B2 (en) * 2002-11-01 2006-01-17 Cooligy Inc. Interwoven manifolds for pressure drop reduction in microchannel heat exchangers
WO2004042306A2 (en) * 2002-11-01 2004-05-21 Cooligy, Inc. Method and apparatus for achieving temperature uniformity and hot spot cooling in a heat producing device
US6903929B2 (en) * 2003-03-31 2005-06-07 Intel Corporation Two-phase cooling utilizing microchannel heat exchangers and channeled heat sink
US6934154B2 (en) * 2003-03-31 2005-08-23 Intel Corporation Micro-channel heat exchangers and spreaders
US20050269691A1 (en) * 2004-06-04 2005-12-08 Cooligy, Inc. Counter flow micro heat exchanger for optimal performance
US8125781B2 (en) * 2004-11-11 2012-02-28 Denso Corporation Semiconductor device
JP4464914B2 (ja) * 2004-12-22 2010-05-19 学校法人東京理科大学 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品
US7268428B2 (en) * 2005-07-19 2007-09-11 International Business Machines Corporation Thermal paste containment for semiconductor modules
JP4605009B2 (ja) * 2005-12-28 2011-01-05 三菱マテリアル株式会社 パワーモジュールの製造方法
JP4169045B2 (ja) * 2006-05-12 2008-10-22 セイコーエプソン株式会社 熱交換器、光源装置及びプロジェクタ
US7635916B2 (en) * 2007-03-23 2009-12-22 Honeywell International Inc. Integrated circuit package with top-side conduction cooling
US8415809B2 (en) * 2008-07-02 2013-04-09 Altera Corporation Flip chip overmold package
JP4920071B2 (ja) * 2009-11-12 2012-04-18 株式会社日本自動車部品総合研究所 半導体素子の冷却装置
JP2012004405A (ja) * 2010-06-18 2012-01-05 Denso Corp 冷却器およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237357A (ja) * 2000-02-24 2001-08-31 Sts Kk 蛇行通路付熱伝達装置
JP2007036094A (ja) * 2005-07-29 2007-02-08 Mitsubishi Materials Corp 冷却器及びパワーモジュール
JP2007184479A (ja) 2006-01-10 2007-07-19 Toyota Central Res & Dev Lab Inc 冷却器と、その冷却器上に半導体素子が実装されている半導体装置
JP2011210822A (ja) * 2010-03-29 2011-10-20 Toyota Industries Corp 冷却装置
JP2011233608A (ja) * 2010-04-26 2011-11-17 Kaneka Corp 高熱伝導性熱可塑性樹脂製ヒートシンク

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985824A (zh) * 2014-04-10 2014-08-13 四川虹视显示技术有限公司 柔性屏制成方法及玻璃基板剥离方法
KR20170057465A (ko) * 2014-10-31 2017-05-24 비와이디 컴퍼니 리미티드 히트싱크 및 파워 배터리 시스템
JP2018503934A (ja) * 2014-10-31 2018-02-08 ビーワイディー カンパニー リミテッドByd Company Limited 放熱板及び動力電池システム
KR101940577B1 (ko) 2014-10-31 2019-01-22 비와이디 컴퍼니 리미티드 히트싱크 및 파워 배터리 시스템
US10396409B2 (en) 2014-10-31 2019-08-27 Byd Company Limited Heat sink and power battery system
WO2016158020A1 (ja) * 2015-04-01 2016-10-06 富士電機株式会社 半導体モジュール
JP2017022374A (ja) * 2015-07-08 2017-01-26 株式会社フジクラ コールドプレートおよびその製造方法
WO2020196878A1 (ja) * 2019-03-28 2020-10-01 三井化学株式会社 冷却ユニット、冷却装置、電池構造体および電動車両
CN113614913A (zh) * 2019-03-28 2021-11-05 三井化学株式会社 冷却单元、冷却装置、电池结构体及电动车辆
JPWO2020196878A1 (ja) * 2019-03-28 2021-12-02 三井化学株式会社 冷却ユニット、冷却装置、電池構造体および電動車両
JP7212762B2 (ja) 2019-03-28 2023-01-25 三井化学株式会社 冷却ユニット、冷却装置、電池構造体および電動車両

Also Published As

Publication number Publication date
CN104247008A (zh) 2014-12-24
KR20140142269A (ko) 2014-12-11
JPWO2013147240A1 (ja) 2015-12-14
JP5968425B2 (ja) 2016-08-10
US20150076685A1 (en) 2015-03-19
EP2833402A1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5968425B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体装置
JP6871183B2 (ja) 放熱構造体およびそれを備えるバッテリー
CN108604718B (zh) 复合片以及使用该复合片的电池组
US8650886B2 (en) Thermal spreader assembly with flexible liquid cooling loop having rigid tubing sections and flexible tubing sections
KR101782886B1 (ko) 전기 발열체, 차량용 난방 장치, 및 발열체를 생산하기 위한 방법
CN108701880B (zh) 复合片以及使用该复合片的电池组
JP5433160B2 (ja) 電気化学デバイスユニットモジュール
KR101652515B1 (ko) 열처리 장치 및 이 장치를 제조하는 방법
US11165110B2 (en) Stored electrical energy source having cooling plates arranged between the cells for emergency cooling
JP6235695B2 (ja) 防水型電子機器の製造方法
JP5207961B2 (ja) 反応装置、反応装置の組立方法
JP2006245479A (ja) 電子部品冷却装置
JP4039339B2 (ja) 浸漬式両面放熱パワーモジュール
JP2011525686A (ja) 中圧又は高圧スイッチギヤアセンブリの電極部及び電極部の製造方法
WO2019131018A1 (en) Heat dissipating structure and battery provided with the same
JP2012516558A (ja) 複合構成部分および複合構成部分を製造する方法
JP2007311274A (ja) 電池
JP5392196B2 (ja) 半導体装置
JP2008082596A (ja) パワーモジュール及びそれを用いた空気調和機
JP5327150B2 (ja) 半導体モジュールの積層体及びその製造方法
JP2010165743A (ja) 半導体モジュールおよびその製造方法
JP5869399B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体装置
JP5135101B2 (ja) 基板キャリア用の密閉機構を備えるパワー半導体モジュールおよびその製造方法
JP6738193B2 (ja) 伝熱構造体、絶縁積層材、絶縁回路基板およびパワーモジュール用ベース
US8584743B2 (en) Solid type heat dissipation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508217

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027603

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389636

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013767597

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE