JP2010180103A - 膜型素子の製造方法 - Google Patents

膜型素子の製造方法 Download PDF

Info

Publication number
JP2010180103A
JP2010180103A JP2009025587A JP2009025587A JP2010180103A JP 2010180103 A JP2010180103 A JP 2010180103A JP 2009025587 A JP2009025587 A JP 2009025587A JP 2009025587 A JP2009025587 A JP 2009025587A JP 2010180103 A JP2010180103 A JP 2010180103A
Authority
JP
Japan
Prior art keywords
solution
type element
film
crystal
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009025587A
Other languages
English (en)
Other versions
JP5286100B2 (ja
Inventor
Takaaki Koizumi
貴昭 小泉
Hideki Shimizu
清水  秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009025587A priority Critical patent/JP5286100B2/ja
Publication of JP2010180103A publication Critical patent/JP2010180103A/ja
Application granted granted Critical
Publication of JP5286100B2 publication Critical patent/JP5286100B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】Pbを含む配向性の高い結晶膜の形成方法およびこの結晶膜を用いた膜型素子の製造方法を提供する。
【解決手段】アルカリ領域においてPbを溶液化する溶液化剤によりPbを含むアルカリ溶液を調製し、調製したアルカリ溶液を用いて水熱合成することによりTiを含有する基体上にPbを含む結晶膜を形成する。この溶液化剤としては、キレート化剤としてもよい。このキレート化剤としてはエチレンジアミン四酢酸(EDTA)が好ましい。
【選択図】なし

Description

本発明は、膜型素子の製造方法に関する。
従来、膜型素子の製造方法としては、レイノルズ数が2000以下の条件、即ち乱流にならない状態で基板上に鉛を含む誘電体結晶膜を水熱合成により形成するものが提案されている(例えば、特許文献1参照)。この方法では、結晶軸の揃った配向性を有する結晶膜を得ることができるとされている。また、膜型素子の製造方法としては、基板を保持し鉛直方向に1Hz以上の振動を与えつつ水熱合成を行うことによって鉛を含む圧電特性を有する大面積且つ厚さの一定な膜型素子を製造するものが提案されている(例えば、特許文献2参照)。
特開平6−206787号公報 特開平9−217178号公報
しかしながら、この特許文献1、2に記載された膜型素子の製造方法では、攪拌や振動などを与える必要があった。例えば、鉛を含む原料では、原料溶液中で溶解析出の平衡状態となっており、溶液の濃度分布により不均質に核生成が起きることがあり、攪拌や振動を与えなければならなかった。このように、水熱合成中に溶液を攪拌したり、基板を振動させたとしても、原料の溶出の平衡による濃度差の発生は避けられず、その配向性を高めるのには十分ではなかった。
本発明は、このような課題に鑑みなされたものであり、Pbを含むものにおいて、結晶膜の配向性をより高めることができる膜型素子の製造方法を提供することを主目的とする。
上述した主目的を達成するために鋭意研究したところ、本発明者らは、Pbを溶液化する溶液化剤によりPbを含むアルカリ溶液を調製し、このアルカリ溶液を用いて水熱合成すると、結晶膜の配向性をより高めることができることを見いだし、本発明を完成するに至った。
即ち、本発明の膜型素子の製造方法は、
アルカリ領域においてPbを溶液化する溶液化剤によりPbを含むアルカリ溶液を調製する調製工程と、
前記調製したアルカリ溶液を用いて水熱合成することによりTiを含有する基体上にPbを含む結晶膜を形成する形成工程と、
を含むものである。
本発明の膜型素子の製造方法は、結晶膜の配向性をより高めることができる。この理由は定かではないが、例えば、溶液化剤によってアルカリ領域においてPbが溶液として存在するため、アルカリ領域でPbが固体の析出などを伴う状態である場合に比してPbの濃度分布の発生をより抑制可能であるためである。また、基体に含まれるTiが結晶核の生成を促進する核の役割を果たすことも考えられる。このため、基体表面に析出したPbを含む結晶膜は、結晶核の結晶面が揃いやすいため良好な配向性を示すと共に、結晶核の粒径が揃いやすいため高い表面の平滑性を示すものとなると推察される。
本発明の一実施形態である膜型素子20の製造方法の一例の説明図。 結晶核15の模式図
次に、本発明を実施するための形態を図面を用いて説明する。図1は、本発明の一実施形態である膜型素子20の製造方法の一例の説明図である。この膜型素子20の製造方法は、(1)アルカリ領域においてPbを溶液化する溶液化剤によりPbを含むアルカリ溶液を調製する調製工程と、(2)調製したアルカリ溶液を用いて水熱合成することによりTiを含有する基体上にPbを含む結晶膜を形成する形成工程と、を含むものである。この膜型素子20は、例えば、Pb、Zr及びTiを含むいわゆるPZTの結晶膜16が形成された圧電/電歪素子とすることができる。ここでは、このPZTの結晶膜16を有する膜型素子20の製造方法について主として説明する。なお、この膜型素子20は、圧電/電歪膜型素子としてもよいし、焦電体膜型素子としてもよいし、強誘電体膜型素子としてもよい。
(1)調製工程
この工程では、アルカリ領域においてPbを溶液化する溶液化剤によりPbを含むアルカリ溶液を調製する。この溶液化剤としては、アルカリ領域においてPbを溶液化するものであれば特に限定されないが、例えば、キレート化剤などが好ましい。このキレート化剤としては、例えば、エチレンジアミン四酢酸(EDTA)、ジアミノシクロヘキサン四酢酸、ジエチレントリアミン五酢酸、プロピレンジアミン四酢酸、トリエチレンテトラミン六酢酸、グリコールエーテルジアミン四酢酸などが挙げられ、このうちエチレンジアミン四酢酸が取り扱いが容易であり、好ましい。アルカリ溶液の調製は、例えば、Pbを含む塩と溶液化剤とを混合すると共に、アルカリを添加するものとしてもよい。Pbを含む塩としては、例えば溶液化剤との親和性などを考慮して選択することができるが、例えば、硝酸塩、硫酸塩、塩化物などの無機塩や、酢酸塩、シュウ酸塩などの有機酸塩などが挙げられ、酢酸塩が好ましい。添加するアルカリとしては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられるがこのうち、水酸化カリウムが好ましい。このアルカリ溶液は、例えばpHはキレート化剤の配位子の状態や解離特性に依存するがEDTAの場合、下限は4価イオンとなる10以上であればよく、より好ましくは12以上、さらに好ましくは14以上である。上限としてはアルカリが溶解可能な濃度で決まる水素イオン濃度以下であればよい。このアルカリ溶液とは別にPb以外の元素を含む原料溶液を調製し、このアルカリ溶液と混合するものとしてもよい。この原料溶液は、例えば、Zr及びTiを溶媒に溶解させたものとしてもよい。ZrやTiは、アルカリ領域で溶解する塩を用いることが好ましく、Zrは例えばオキソ塩化ジルコニウムを用いることができ、Tiは例えば四塩化チタンを用いることができる。Pb,Zr及びTiは、目的とする組成となるように適宜溶液に含まれる濃度を定めるものとしてもよい。これらの原料を含む溶液を調製したのち、十分攪拌することが好ましい。攪拌時間は、例えば1時間以上が好ましく、12時間以上がより好ましい。
(2)生成工程
この工程では、調製したアルカリ溶液を用いて水熱合成することによりTiを含有する基体上にPbを含む結晶膜を形成する。この工程では、調製した溶液に基体を投入して水熱合成を行うものとしてもよい。用いる基体12は、Tiを含有するものであるが、金属Ti、TiO2等のセラミックスのほか、単結晶やセラミックス、金属、ガラス基体上へ金属Tiがスパッタリングなどにより成膜されたもの、PtペーストにTiO2を混合し成形して表面にTiO2が析出したものやPbTiO3として表面に析出したものなどを用いることができる。基体12の表面にTi成分が存在するとそれが初期の核となり基体12の表面に結晶核15を形成しやすい。次に、上述したPb,Zr及びTiを含むアルカリ溶液と基体12とを密閉容器に入れ密閉状態で水熱合成処理を行う。水熱合成処理では、予め定められる所定の反応温度範囲の温度で行うものとすることができる。この所定の反応温度範囲は、例えば、溶液化剤などの種類に基づいて定めることができ、原料であるPbが活性化すると共に、溶液化剤が安定である温度域としてもよい。この反応温度範囲は、例えば溶液化剤としてエチレンジアミン四酢酸を用いた場合には、150℃以上250℃以下の範囲とすることができる。また、この水熱合成処理では、例えば、昇温速度を10℃/分〜50℃/分としてもよい。また、水熱合成処理では、保持時間を1時間以上としてもよいし、4時間以上としてもよい。
ここで、生成工程における結晶膜16の形成について説明する。図1に示すように、鉛キレート錯体14を含むアルカリ溶液中に基体12を入れ(図1の1段目)、加熱を行うと所定の温度以上でPbが活性化し、基体12の表面に結晶核15が生成する(図1の2段目)。そして、熱と圧力が加えられて結晶核15が成長し、基体12の表面上に結晶膜16が形成される(図1の3段目)。水熱合成後、基体12を取り出し、洗浄する。このように溶液化剤を用いたPbにより水熱合成を行うと、均一な厚さでより配向度の高い結晶膜16が表面に形成された膜型素子20を得ることができる(図1の下段)。この結晶膜16の形成について考察する。図2は、結晶核15の模式図である。ここでは、溶液化剤としてEDTAを用いた場合について説明する。まず、調製工程において、溶解析出の平衡状態になりやすいPb原料を、EDTAのキレート作用などにより、アルカリ領域において均一な溶液に溶液化することができる。このため、原料混合時や、生成工程において溶液中の濃度分布が抑制され、過飽和度不均質による不均質な核生成(図2の下段参照)を抑制することができる。また、水熱合成処理において、EDTAは、Pbが活性になる温度域までPbイオンを解離しないことが考えられる。このような溶液化剤を用いない場合は、溶液中にPbイオンが常に存在するため、昇温過程で核生成し、昇温過程で生成した核の表面に更に微粒子が生成する二次核生成が起きることが考えられる。これにより、いびつな形状の粒子が生成してしまう(図2の下段参照)。これに対して、EDTAを用いた場合は、昇温過程での核生成が抑制され、昇温過程で生成した核の表面に更に微粒子が生成する二次核生成が抑制されることが考えられる。これにより、いびつな形状の粒子が生成しにくくなり、結晶膜16の配向性が高まるものと推察される。また、EDTAでは、Pbに対するキレート安定度係数が比較的高いため、結晶核15の形成後にその表面のエッチング作用やPb原子への吸着作用などによる成長抑制効果で、結晶膜16の特定の面が安定化されたものが得られやすくなることが考えられる。そして、これらの効果により、基体12の表面に析出した粒子が結晶面が揃いやすく良好な配向性と粒径が揃うことによる表面の平滑性が両立した膜が得られるものと推察される。
このように、膜型素子20では、高い配向性を示す。この膜型素子20では、例えば、特定の結晶面のロットゲーリング法の配向度が50%以上、より好ましくは70%以上、更に好ましくは80%以上を示す。例えば、配向度が50%以上であると、より高い圧電/電歪特性を得ることができる。この特定の結晶面は、(h00)、(0k0)、(00l)を含むものとしてもよい(以下総称して{h00}とする)。ここで、ロットゲーリング法による配向度は、結晶膜16の配向した面に対しXRD回折パターンを測定し、次式(1)により求めるものとする。この数式(1)において、ΣI(hkl)が結晶膜16で測定されたすべての結晶面(hkl)のX線回折強度の総和であり、ΣI0(hkl)が結晶膜16と同一組成であり無配向のものについて測定されたすべての結晶面(hkl)のX線回折強度の総和であり、Σ’I(HKL)が結晶膜16で測定された結晶学的に等価な特定の結晶面(例えば{h00}面)のX線回折強度の総和であり、Σ’I0(HKL)が結晶膜16と同一組成であり無配向のものについて測定された特定の結晶面のX線回折強度の総和である。
Figure 2010180103
以上説明した実施例の膜型素子の製造方法によれば、アルカリ領域においてPbを溶液化する溶液化剤によりPbを含むアルカリ溶液を調製し、調製したアルカリ溶液を用いて水熱合成することによりTiを含有する基体上にPbを含む結晶膜を形成する。したがって、溶液化剤により結晶膜の配向性をより高めることができる。また、PZTの結晶粒子がいびつな形状になってしまうのを抑制可能であり、表面の平滑性を高めることができる。従来では、表面凹凸に起因すると考えられる電界分布により電界誘起歪み分布によってクラックが生じ絶縁破壊を引き起こすことがあったが、本発明の膜型素子20では、絶縁破壊の抑制効果が得られ、実用に耐える性能をより維持することができる。
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
以下には、膜型素子20の製造方法を具体的に製造した例を実施例として説明する。
[実施例1]
(調製工程)
関東化学製オキソ塩化ジルコニウム八水和物を使用して2.5mol/Lの水溶液を調整し、5.4mol/Lの和光純薬製四塩化チタン水溶液と合わせて、ZrとTiのモル比が70:30になるように混合した(A液)。次に関東化学製酢酸鉛(II)三水和物、溶液化剤としての関東化学製エチレンジアミン四酢酸(EDTA)をそれぞれ1mol/Lとなるように純水に投入し、さらに関東化学製水酸化カリウムを攪拌しながら無色透明になるまで投入し、その後合計で4mol/Lとなるまで加えた溶液を調整した(B液)。(Zr+Ti)が0.3mol/L 、Pbが0.33mol/LとなるようにA、B両液を合わせ、7mol/Lとなるように水酸化カリウムを加えたPZT原料溶液30mlを、内筒がポリテトラフルオロエチレン製の100mlの圧力容器に注いで12時間攪拌した。
(形成工程)
攪拌後に、容器内に10mm×10mm×1mmの金属Ti板を入れて、昇温速度30℃/分、最高温度165℃、保持時間4時間で水熱合成を行い、金属Ti板の表面上へPZTの圧電/電歪膜を形成した。合成終了後、室温まで冷却した後、容器から基板を取り出して純水で表面のアルカリ成分がなくなるまで洗浄し、表面にPZT膜が形成された実施例1の圧電/電歪膜型素子を得た。
[実施例2、3]
形成工程において、最高温度200℃で水熱合成を行った以外は実施例1と同様の工程を経て得られた圧電/電歪膜型素子を実施例2とした。また、形成工程において、最高温度230℃で水熱合成を行った以外は実施例1と同様の工程を経て得られた圧電/電歪膜型素子を実施例3とした。
[比較例1]
関東化学製硝酸鉛(II)を1mol/Lとなるように純水に投入した溶液を調製しこれをB液とした(EDTAを投入しなかった)以外は実施例1と同様の工程を経て得られた圧電/電歪膜型素子を比較例1とした。
(配向度の検討)
実施例1〜3及び比較例1のロットゲーリング法による配向度について検討した。X線回折装置(スペクトリス社製X’Pert PRO MPD)を用い、2θ−θスキャンを2θ=10〜80°で行った。測定結果を用い、ロットゲーリング法に従って、特定面としての{h00}面について配向評価を行った。ここで、{h00}は、(h00)、(0k0)、(00l)を総括した指数を示している。ロットゲーリング法による配向度は、圧電/電歪膜型素子の配向した面に対しXRD回折パターンを測定し、上述した式(1)により求めた。なお、上述した式(1)において、ΣI(hkl)が圧電/電歪膜型素子で測定されたすべての結晶面(hkl)のX線回折強度の総和であり、ΣI0(hkl)が圧電/電歪膜型素子と同一組成であり無配向のものについて測定されたすべての結晶面(hkl)のX線回折強度の総和であり、Σ’I(HKL)が圧電/電歪膜型素子で測定された結晶学的に等価な特定の結晶面(例えば{h00}面)のX線回折強度の総和であり、Σ’I0(HKL)が圧電/電歪膜型素子と同一組成であり無配向のものについて測定された特定の結晶面のX線回折強度の総和である。
(結果と考察)
測定結果を表1に示す。表1に示すように、原料粉体をそのまま溶解した比較例1では、配向してはいるもののその配向度が低かった。これに対して、EDTAを用いPbを溶液化した実施例1〜3では、ロットゲーリング法での配向度が70%以上であり、極めて配向性が高いことがわかった。これは、EDTAによって、Pb濃度が均一化すること、Pbイオンの生成が所定温度以上で起き二次核生成が抑制されること、結晶核の表面への吸着などによる特定面の配向が促進されること、などに起因して起きるものと推察された。
Figure 2010180103
12 基体、14 鉛キレート錯体、15 結晶核、16 結晶膜、20 膜型素子。

Claims (3)

  1. アルカリ領域においてPbを溶液化する溶液化剤によりPbを含むアルカリ溶液を調製する調製工程と、
    前記調製したアルカリ溶液を用いて水熱合成することによりTiを含有する基体上にPbを含む結晶膜を形成する形成工程と、
    を含む膜型素子の製造方法。
  2. 前記調製工程では、前記溶液化剤としてキレート化剤を用いる、請求項1に記載の膜型素子の製造方法。
  3. 前記調製工程では、前記溶液化剤としてエチレンジアミン四酢酸を用いる、請求項2に記載の膜型素子の製造方法。
JP2009025587A 2009-02-06 2009-02-06 膜型素子の製造方法 Expired - Fee Related JP5286100B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025587A JP5286100B2 (ja) 2009-02-06 2009-02-06 膜型素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025587A JP5286100B2 (ja) 2009-02-06 2009-02-06 膜型素子の製造方法

Publications (2)

Publication Number Publication Date
JP2010180103A true JP2010180103A (ja) 2010-08-19
JP5286100B2 JP5286100B2 (ja) 2013-09-11

Family

ID=42761927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025587A Expired - Fee Related JP5286100B2 (ja) 2009-02-06 2009-02-06 膜型素子の製造方法

Country Status (1)

Country Link
JP (1) JP5286100B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004644A1 (ja) * 2018-06-29 2020-01-02 国立研究開発法人産業技術総合研究所 ナノ結晶及びその製造方法、並びにナノ結晶を用いた電子デバイス及び圧電素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481083B2 (ja) 2018-08-13 2024-05-10 日本製紙クレシア株式会社 不織布ワイパーの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113623A (en) * 1979-02-26 1980-09-02 Kyushu Refract Co Ltd Fibrous titanic acid metal salt and manufacture thereof
JPH0426508A (ja) * 1990-05-21 1992-01-29 Mitsubishi Materials Corp ハイドロキシアパタイト微細結晶及びその製造方法
JPH09217178A (ja) * 1995-12-06 1997-08-19 Tokai Rubber Ind Ltd 水熱合成法による薄膜製造方法
JP2008297168A (ja) * 2007-05-31 2008-12-11 National Institute Of Advanced Industrial & Technology ZnOウィスカー膜及びその作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113623A (en) * 1979-02-26 1980-09-02 Kyushu Refract Co Ltd Fibrous titanic acid metal salt and manufacture thereof
JPH0426508A (ja) * 1990-05-21 1992-01-29 Mitsubishi Materials Corp ハイドロキシアパタイト微細結晶及びその製造方法
JPH09217178A (ja) * 1995-12-06 1997-08-19 Tokai Rubber Ind Ltd 水熱合成法による薄膜製造方法
JP2008297168A (ja) * 2007-05-31 2008-12-11 National Institute Of Advanced Industrial & Technology ZnOウィスカー膜及びその作製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012055626; Bonnie Gersten etc.: 'Engineered Low Temperature Hydrothermal Synthesis of Phase-Pure Lead-Based Perovskites Using Ethylen' Chem. Mater 2002,14, 2002, 1950-1960 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004644A1 (ja) * 2018-06-29 2020-01-02 国立研究開発法人産業技術総合研究所 ナノ結晶及びその製造方法、並びにナノ結晶を用いた電子デバイス及び圧電素子
JPWO2020004644A1 (ja) * 2018-06-29 2021-06-24 国立研究開発法人産業技術総合研究所 ナノ結晶及びその製造方法、並びにナノ結晶を用いた電子デバイス及び圧電素子
JP7109108B2 (ja) 2018-06-29 2022-07-29 国立研究開発法人産業技術総合研究所 ナノ結晶及びその製造方法、並びにナノ結晶を用いた電子デバイス及び圧電素子

Also Published As

Publication number Publication date
JP5286100B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
Li et al. Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures
Poterala et al. Mechanistic interpretation of the aurivillius to perovskite topochemical microcrystal conversion process
TWI290539B (en) Barium titanate and capacitor
JP5185224B2 (ja) 結晶配向セラミックスの製造方法
Lim et al. High-homogeneity High-performance flux-grown Pb (Zn1/3Nb2/3) O3–(6–7)% PbTiO3 single crystals
JP4899229B2 (ja) ZnOウィスカー膜及びそれらの作製方法
CN107285770B (zh) 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法
Li et al. Recent progress in piezoelectric thin film fabrication via the solvothermal process
EP2276702A1 (en) Crystalline inorganic species having optimised reactivity
US10050191B2 (en) Oxide particles, piezoelectric element, and method for producing oxide particles
EP3483309A1 (en) Mono-crystalline metal foil and manufacturing method therefor
JP2009242230A (ja) アルカリニオブ酸ペロブスカイト結晶の製造方法
JP5286100B2 (ja) 膜型素子の製造方法
KR20090115732A (ko) 무정형 미립자 분말, 그 제조 방법 및 그것을 이용한 페로브스카이트형 티탄산바륨 분말
CN106637405A (zh) 无限混熔的铁电固溶体单晶铌钪酸铅-铌镁酸铅-钛酸铅及其制备方法
TWI386369B (zh) Magnesium oxide powder
JP6266291B2 (ja) ニオブ酸系強誘電体の配向性薄膜とその作製方法
JP2005139064A (ja) 圧電単結晶、圧電単結晶素子およびその製造方法ならびに1−3コンポジット圧電素子
Bayart et al. Microstructural investigations and nanoscale ferroelectric properties in lead-free Nd 2 Ti 2 O 7 thin films grown on SrTiO 3 substrates by pulsed laser deposition
Qiu et al. Hydrothermal synthesis of Pb (Zr 0· 52 Ti 0· 48) O 3 powders at low temperature and low alkaline concentration
Bruncková et al. Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO 3, NaNbO 3, and K 0.5 Na 0.5 NbO 3 thin films
CN109402737B (zh) 低温制备锆钛酸铅单晶的方法
JP2005225724A (ja) ペロブスカイト型ナノ粒子及びその製造方法並びに膜
JPH10259094A (ja) カルサイト型炭酸カルシウム単結晶の製造方法
Pan et al. Growth mechanism of relaxor-PbTiO3 single crystals shown by morphology of crystalline grains in ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5286100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees