JP2010170103A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2010170103A
JP2010170103A JP2009272254A JP2009272254A JP2010170103A JP 2010170103 A JP2010170103 A JP 2010170103A JP 2009272254 A JP2009272254 A JP 2009272254A JP 2009272254 A JP2009272254 A JP 2009272254A JP 2010170103 A JP2010170103 A JP 2010170103A
Authority
JP
Japan
Prior art keywords
imaging device
imaging
vertical
longitudinal
hall element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009272254A
Other languages
English (en)
Other versions
JP5509817B2 (ja
Inventor
Yukio Uenaka
行夫 上中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2009272254A priority Critical patent/JP5509817B2/ja
Publication of JP2010170103A publication Critical patent/JP2010170103A/ja
Application granted granted Critical
Publication of JP5509817B2 publication Critical patent/JP5509817B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

【課題】撮像素子の重力方向と垂直な水平面に対する光軸周りの傾きを補正する傾き補正処理を行う撮像装置を提供する。
【解決手段】撮像装置は、レンズを介して入射した光学像を撮像する撮像素子を有し、レンズの光軸に垂直な平面上で回転を含めた移動が可能な可動部を備える。撮像素子を含む撮像装置の重力方向と垂直な水平面に対する光軸周りの傾き角度を算出し、傾き補正処理のために、傾き角度に基づいて、可動部の移動制御を行う制御部を備える。撮像装置がスリープモードにされている間、制御部は、傾き角度の算出を行い、移動制御を停止する。
【選択図】図15

Description

本発明は、撮像装置に関し、傾き補正処理を行う撮像装置に関する。
従来、カメラなどの撮像装置において、像ブレ補正レンズまたは撮像素子を光軸と垂直な平面上を移動させて、像ブレを抑制する像ブレ補正処理を行う装置が提案されている。
特許文献1は、ヨーイング、ピッチング、及びローリングに基づくブレ角度を算出し、これらに基づいて像ブレ補正処理を行う像ブレ補正装置を開示する。
特開2006−71743号公報
しかし、ローリングに基づくブレ量(ブレ角度)を補正する像ブレ補正処理の際、補正開始時点からの撮像装置の回転角度(ブレ角度)の算出が行われるが、保持状態によって変動する撮像装置の重力方向と垂直な水平面に対する光軸周りの傾きは考慮されていない。像ブレ補正処理を開始した時点で撮像装置が傾いていれば、その傾いた状態を保持するようにローリングに基づく像ブレ補正が行われるため、かかる傾きを無くす補正は行われない。このため、水平線や地平線などが画像の外形を構成する長方形(または正方形)の上下の対辺と平行でない状態、すなわち傾いた状態の画像が撮像によって得られることになる。
したがって本発明の目的は、撮像素子の重力方向と垂直な水平面に対する光軸周りの傾きを補正する傾き補正処理を行う撮像装置を提供することである。
本発明に係る撮像装置は、レンズを介して入射した光学像を撮像する撮像素子を有し、レンズの光軸に垂直な平面上で回転を含めた移動が可能な可動部と、撮像素子を含む撮像装置の重力方向と垂直な水平面に対する光軸周りの傾き角度を算出し、傾き補正処理のために、傾き角度に基づいて、可動部の移動制御を行う制御部とを備え、撮像装置がスリープモードにされている間、制御部は、傾き角度の算出を行い、移動制御を停止する。
傾き角度の算出は、撮像装置がスリープモードにされた時も、継続して行われる。傾き角度の算出では、デジタルローパスフィルタ処理など、処理が開始されてから出力が安定化するまでに一定の時間が必要になる処理がある。例えば、カットオフ周波数が4Hzだと、デジタルローパスフィルタ処理の安定化のために約250msの時間が必要になる。本発明では、スリープモードにされた時でも、デジタルローパスフィルタ処理など安定化に時間が必要な処理が継続して行われるため、出力が安定化するまで待機する時間が必要なく、スリープモードが解除された直後も正確に傾き角度を算出し、傾き補正処理を行うことが出来る。
好ましくは、撮像装置がスリープモードにされている間、制御部は、可動部の位置検出を行う。
移動制御に必要な可動部の現在位置の算出は、撮像装置がスリープモードにされた時も、継続して行われる。このため、撮像装置の電源がオン状態にされている間は、常時、現在位置の特定が行われるため、スリープモードが解除された直後も正確に傾き補正処理のための移動制御を行うことが出来る。
以上のように本発明によれば、撮像素子の重力方向と垂直な水平面に対する光軸周りの傾きを補正する傾き補正処理を行う撮像装置を提供することができる。
本実施形態における撮像装置の外観を示す背面からみた斜視図である。 撮像装置が正立横位置姿勢状態にある場合の撮像装置の正面図である。 撮像装置が倒立横位置姿勢状態にある場合の撮像装置の正面図である。 撮像装置が第1縦位置姿勢状態にある場合の撮像装置の正面図である。 撮像装置が第2縦位置姿勢状態にある場合の撮像装置の正面図である。 撮像装置の回路構成図である。 傾き補正処理における各手順の詳細と演算式を示す図である。 撮像装置が、正立横位置姿勢状態から、正面からみて反時計回りにKθだけ回転した(傾いた)場合の、撮像装置の正面図である。 撮像装置が、第1縦位置姿勢状態から、正面からみて反時計回りにKθだけ回転した(傾いた)場合の、撮像装置の正面図である。 撮像装置が、倒立横位置姿勢状態から、正面からみて反時計回りにKθだけ回転した(傾いた)場合の、撮像装置の正面図である。 撮像装置が、第2縦位置姿勢状態から、正面からみて反時計回りにKθだけ回転した(傾いた)場合の、撮像装置の正面図である。 可動部の構成図を示す図である。 回転量αに対応した横方向駆動点の第1方向xの移動量、第1縦方向駆動点、第2縦方向駆動点の第2方向yの移動量を示す図である。 撮像装置のメイン動作処理を示すフローチャートである。 割り込み処理を示すフローチャートである。 カメラ傾き角度の演算処理手順を示すフローチャートである。
以下、本実施形態について、図を用いて説明する。撮像装置1は、デジタルカメラであるとして説明する。なお、方向を説明するために、撮像装置1において撮影レンズ67の光軸LLと直交する方向を第1方向x、第1方向x及び光軸LLと直交する方向を第2方向y、光軸LLと平行な方向を第3方向zとして説明する。
第1方向x、第2方向y、及び第3方向zと、重力方向との関係は、撮像装置1の保持姿勢によって変動する。例えば、撮像装置1が、正立横位置姿勢状態にある場合、すなわち、撮像装置1が、水平保持状態で、且つ撮像装置1の上面部が上を向いた状態(図2参照)にある場合は、第1方向xと第3方向zは重力方向と垂直で、第2方向yは重力方向に平行である。撮像装置1が、倒立横位置姿勢状態にある場合、すなわち、撮像装置1が、水平保持状態で、且つ撮像装置1の底面部が上を向いた状態(図3参照)にある場合は、第1方向xと第3方向zは重力方向と垂直で、第2方向yは重力方向に平行である。第1縦位置姿勢状態にある場合、すなわち、撮像装置1が、縦保持状態で、且つ撮像装置1の側面の一方が上を向いた状態(図4参照)にある場合は、第1方向xが重力方向に平行で、第2方向yと第3方向zが重力方向に垂直である。撮像装置1が、第2縦位置姿勢状態にある場合、すなわち、撮像装置1が、縦保持状態で、且つ撮像装置1の側面の他方が上を向いた状態(図5参照)にある場合は、第1方向xが重力方向に平行で、第2方向yと第3方向zが重力方向に垂直である。撮像装置1の正面部(撮影レンズ67がある側)が重力方向を向いた状態にある場合は、第1方向xと第2方向yが重力方向に垂直で、第3方向zが重力方向に平行である。
撮像装置1の撮像に関する部分は、主電源のオンオフ切り替えを行うPonボタン11、レリーズボタン13、傾き補正オンオフボタン14、表示部17、DSP19、CPU21、AE部23、AF部24、傾き補正部30の撮像部39a、及び撮影レンズ67から構成される(図1、図2、図6参照)。Ponボタン11の押下に対応してPonスイッチ11aのオンオフ状態が切り替えられ、これにより撮像装置1の主電源のオンオフ状態が切り替えられる。被写体像は、撮像部39aによって撮影レンズ67を介した光学像として撮像され、表示部17によって撮像された画像が表示される(スルー画像表示)。また被写体像は光学ファインダ18によって光学的に観察することも可能である。
レリーズボタン13は、全押しすることによりレリーズスイッチ13aがオン状態にされ撮像部39a(撮像手段)による撮像(撮像動作)が行われ、撮影像がメモリされる。レリーズスイッチ13aのオン/オフ情報は、1ビットのデジタル信号としてCPU21のポートP13に入力される。
表示部17は、ポートP6で信号の入出力が行われ、スルー画像や、撮像により得られた静止画像を表示する。
ただし、撮像装置1がスリープモードにされている間は、撮像動作、スルー画像表示、可動部30aの移動制御などは行われず、後述するカメラ傾き角度Kθの算出、現在位置P(横方向検出位置信号px、第1、第2縦方向検出位置信号pyl、pyr)の算出だけが行われる。
撮影レンズ67は、撮像装置1の交換レンズであり、CPU21のポートP8と接続され、撮影レンズ67に内蔵されたレンズROMなどに記録されたレンズ情報を、撮像装置1の電源がオン状態にされた時などにCPU21に出力する。DSP19は、CPU21のポートP9、及び撮像部39aと接続され、CPU21の指示に基づいて、撮像部39aにおける撮像により得られた画像信号について、画像処理などの演算処理を行う。
CPU21は、撮像に関する各部の制御、特に、傾き補正を行う際に、可動部30aの移動制御を行う制御手段である。
撮像装置1の消費電力を抑えるため、CPU21、傾き検出部25、横方向ホール素子hh10、第1、第2縦方向ホール素子hv1、hv2、及びホール素子信号処理回路45を駆動するために最低限必要な電力が供給された状態で、かかるスリープモード時には、撮像部39や、横方向コイル31aなど、撮像動作や可動部30aの移動に必要な部位への電力供給は行われない。CPU21は、レリーズボタン13など撮像装置1の操作ボタンが、継続して操作されない時間(不使用経過時間パラメータNSW)を計測し、不使用経過時間パラメータNSWが第1時間OTMより長くなると、撮像装置1をスリープモードにする(スリープモードパラメータSLP=1)。いずれかの操作ボタンが操作されると、スリープモードが解除される(スリープモードパラメータSLP=0)。第1時間OTMは、スリープモードにされるまでの待機時間を示すが、その長さは使用者により任意に決定される形態であってもよいし、予め設定された値で固定される形態であってもよい。
AE部23は、被写体の測光動作を実行して露光値を演算し、この露光値に基づき撮影に必要となる絞り値及び露光時間を演算する。AF部24は、測距を行い、この測距結果に基づき撮影レンズ67を光軸方向に変位させ焦点調節を行う。AE部23、AF部24は、それぞれポートP4、P5で信号の入出力が行われる。
撮像装置1の傾き補正装置すなわち傾き補正処理に関する部分は傾き補正オンオフボタン14、表示部17、CPU21、傾き検出部25、駆動用ドライバ回路29、傾き補正部30、及び磁界変化検出素子の信号処理回路としてのホール素子信号処理回路45を有する。
傾き補正オンオフボタン14は、押下することにより傾き補正スイッチ14aがオン状態にされる。この場合、測光など他の動作と独立して、一定時間ごとに、傾き検出部25、及び傾き補正部30が駆動されて傾き補正処理が行われる。傾き補正スイッチ14aがオン状態にされた傾き補正モードの場合に傾き補正パラメータCPが1に設定され、傾き補正スイッチ14aがオフ状態にされた傾き補正モードでない場合に傾き補正パラメータCPが0に設定される。本実施形態ではこの一定時間を1msであるとして説明する。傾き補正スイッチ14aのオン/オフ情報は、1ビットのデジタル信号としてCPU21のポートP14に入力される。
次に、傾き検出部25、駆動用ドライバ回路29、傾き補正部30、ホール素子信号処理回路45についての詳細、及びCPU21との入出力関係について説明する。
傾き検出部25は、加速度センサ26、及び第1、第2アンプ28a、28bを有する。加速度センサ26は、重力加速度の第1方向x成分(横方向成分)である第1重力加速度成分と、重力加速度の第2方向y成分(縦方向成分)である第2重力加速度成分を検出するセンサである。第1アンプ28aは、加速度センサ26から出力された第1重力加速度成分に関する信号を増幅し、第1加速度ahとしてアナログ信号をCPU21のA/D1に出力する。第2アンプ28bは、加速度センサ26から出力された第2重力加速度成分に関する信号を増幅し、第2加速度avとしてアナログ信号をCPU21のA/D2に出力する。
傾き補正部30は、傾き補正処理を行う場合(CP=1)に、撮像装置1の重力方向と垂直な水平面に対する光軸LL周りの傾きを考慮して、撮像部39aを含む可動部30aを回転させて、傾きを補正する(傾きを少なくする)傾き補正処理を行う。すなわち、撮像素子39a1の撮像面の外形を構成する長方形(または正方形)の2組の対辺のうち、一方の対辺(上下の対辺)が重力方向と垂直になり、且つ他方の対辺(左右の対辺)が重力方向に平行になるように可動部30aが移動制御される。これにより、水準器などを用いることなく、撮像素子39a1の水平状態を自動的に維持することが可能になる。すなわち、水平線や地平線などを撮像する場合に、撮像素子39a1の撮像面の外形を構成する長方形(または正方形)の2組の対辺のうち、一方の対辺(上下の対辺)が水平線や地平線などと平行な状態で撮像することが可能になる。具体的には、傾き補正部30は、傾き検出部25からの情報に基づいて、CPU21が演算した移動すべき位置Sに撮像部39aを、移動させることによって、傾き補正を行う装置であり、撮像部39aを含みxy平面上に移動可能領域をもつ可動部30aと、固定部30bとを備える。
CPU21、及び傾き検出部25の各部への電力供給は、Ponスイッチ11aがオン状態にされた(主電源がオン状態にされた)後に開始される。傾き検出部25における傾き検出演算は、Ponスイッチ11aがオン状態にされた(主電源がオン状態にされた)後に開始され、撮像装置1がスリープモードにされた時も、継続して行われる。
CPU21は、A/D1、A/D2に入力された第1、第2加速度ah、avをA/D変換し(第1、第2デジタル加速度信号Dah、Dav)、ノイズ除去のために高周波成分をカットし(デジタルローパスフィルタ処理、第1、第2デジタル加速度Aah、Aav)、撮像装置1の重力方向と垂直な水平面に対する光軸LL周りの傾き角度(カメラ傾き角度Kθ)を求める(図7の(1)参照)。傾き角度(カメラ傾き角度Kθ)は、保持姿勢などにより変動する撮像装置1の傾き角度(水平に保持された状態と比較した光軸LL周りの傾き度合い)である。言い換えると、撮像装置1の傾きは、重力方向と垂直な水平面と第1方向xとのなす角度または水平面と第2方向yとのなす角度で表される。第1方向xと第2方向yの一方と水平面とのなす角度が0度で且つ第1方向xと第2方向yの他方と水平面とのなす角度が90度である場合に、撮像装置1が傾いていない状態である。従って、傾き検出部25とCPU21は、撮像装置1の傾き角度を演算する機能を有する。
カメラ傾き角度Kθの算出は、撮像装置1がスリープモードにされた時も、継続して行われる。カメラ傾き角度Kθの算出では、デジタルローパスフィルタ処理など、処理が開始されてから出力が安定化するまでに一定の時間が必要になる処理がある。例えば、カットオフ周波数が4Hzだと、約250msの時間が必要になる。本実施形態では、スリープモードにされた時でも、デジタルローパスフィルタ処理など安定化に時間が必要な処理が継続して行われるため、出力が安定化するまで待機する時間が必要なく、スリープモードが解除された直後も正確にカメラ傾き角度Kθを算出し、傾き補正処理を行うことが出来る。
第1、第2重力加速度成分に相当する第1、第2デジタル加速度Aah、Aavは、それぞれ、撮像装置1の保持姿勢によって変動し、−1から+1までの値を示す。例えば、撮像装置1が、正立横位置姿勢状態にある場合、すなわち、撮像装置1が、水平保持状態で、且つ撮像装置1の上面部が上を向いた状態(図2参照)にある場合は、第1デジタル加速度Aahは0で、第2デジタル加速度Aavは+1である。撮像装置1が、倒立横位置姿勢状態にある場合、すなわち、撮像装置1が、水平保持状態で、且つ撮像装置1の底面部が上を向いた状態(図3参照)にある場合は、第1デジタル加速度Aahは0で、第2デジタル加速度Aavは−1である。撮像装置1が、第1縦位置姿勢状態にある場合、すなわち、撮像装置1が、縦保持状態で、且つ撮像装置1の側面の一方が上を向いた状態(図4参照)にある場合は、第1デジタル加速度Aahは−1で、第2デジタル加速度Aavは0である。撮像装置1が、第2縦位置姿勢状態にある場合、すなわち、撮像装置1が、縦保持状態で、且つ撮像装置1の側面の他方が上を向いた状態(図5参照)にある場合は、第1デジタル加速度Aahは+1で、第2デジタル加速度Aavは0である。
撮像装置1の正面部(撮影レンズ67がある側)が反重力方向あるいは重力方向(上または下)を向いた状態にある場合は、第1、第2デジタル加速度Aah、Aavはいずれも0である。
撮像装置1が、正立横位置姿勢状態から、正面からみて反時計回りにKθだけ回転した(傾いた)場合(図8参照)は、第1デジタル加速度Aahは−sin(Kθ)で、第2デジタル加速度Aavは+cos(Kθ)である。従って、傾き角度(カメラ傾き角度Kθ)を求めるには、第1デジタル加速度Aahについてアークサイン変換を施し且つ負符号を付すこと、または第2デジタル加速度Aavについてアークコサイン変換を施すことによって求めることが出来る。但し、傾き角度(Kθ)の絶対値が微少である(0に近い)場合は、余弦関数の変化量よりも、正弦関数の変化量の方が大きいため、アークサイン変換を施す計算の方が、アークコサイン変換を施す計算に比べて、高精度に傾き角度を算出することが可能になる(Kθ=−Sin−1(Aah)、図16のステップS77参照)。
撮像装置1が、第1縦位置姿勢状態から、正面からみて反時計回りにKθだけ回転した(傾いた)場合(図9参照)は、第1デジタル加速度Aahは−cos(Kθ)で、第2デジタル加速度Aavは−sin(Kθ)である。従って、傾き角度(カメラ傾き角度Kθ)を求めるには、第1デジタル加速度Aahについてアークコサイン変換を施し且つ負符号を付すこと、または第2デジタル加速度Aavについてアークサイン変換を施し且つ負符号を付すことによって求めることが出来る。但し、傾き角度(Kθ)の絶対値が微少である(0に近い)場合は、余弦関数の変化量よりも、正弦関数の変化量の方が大きいため、アークサイン変換を施す計算の方が、アークコサイン変換を施す計算に比べて、高精度に傾き角度を算出することが可能になる(Kθ=−Sin−1(Aav)、図16のステップS73参照)。
撮像装置1が、倒立横位置姿勢状態から、正面からみて反時計回りにKθだけ回転した(傾いた)場合(図10参照)は、第1デジタル加速度Aahは+sin(Kθ)で、第2デジタル加速度Aavは−cos(Kθ)である。従って、傾き角度(カメラ傾き角度Kθ)を求めるには、第1デジタル加速度Aahについてアークサイン変換を施すこと、または第2デジタル加速度Aavについてアークコサイン変換を施し且つ負符号を付すことによって求めることが出来る。但し、傾き角度(Kθ)の絶対値が微少である(0に近い)場合は、余弦関数の変化量よりも、正弦関数の変化量の方が大きいため、アークサイン変換を施す計算の方が、アークコサイン変換を施す計算に比べて、高精度に傾き角度を算出することが可能になる(Kθ=+Sin−1(Aah)、図16のステップS76参照)。
撮像装置1が、第2縦位置姿勢状態から、正面からみて反時計回りにKθだけ回転した(傾いた)場合(図11参照)は、第1デジタル加速度Aahは+cos(Kθ)で、第2デジタル加速度Aavは+sin(Kθ)である。従って、傾き角度(カメラ傾き角度Kθ)を求めるには、第1デジタル加速度Aahについてアークコサイン変換を施すこと、または第2デジタル加速度Aavについてアークサイン変換を施すことによって求めることが出来る。但し、傾き角度(Kθ)の絶対値が微少である(0に近い)場合は、余弦関数の変化量よりも、正弦関数の変化量の方が大きいため、アークサイン変換を施す計算の方が、アークコサイン変換を施す計算に比べて、高精度に傾き角度を算出することが可能になる(Kθ=+Sin−1(Aav)、図16のステップS74参照)。
傾き角度すなわちカメラ傾き角度Kθは、第1デジタル加速度Aahと第2デジタル加速度Aavとで絶対値の小さい方の値について、アークサイン変換を行い、プラスまたはマイナスの符号を付すことにより求められる(Kθ=+Sin−1(Aah)、−Sin−1(Aah)、+Sin−1(Aav)、及び−Sin−1(Aav)のうちいずれか1つ)。付される符号の正負は、第1デジタル加速度Aahと第2デジタル加速度Aavとで絶対値の大きい方の値の符号(0よりも小さいか否か)に基づいて決定される。具体的には、図16のフローチャートを用いて後述する。
本実施形態では、割り込み処理における加速度検出処理は、傾き検出部25における処理、及び傾き検出部25からCPU21への第1、第2加速度ah、avの入力処理を言うものとする。カメラ傾き角度Kθは、傾き補正処理における可動部30aの回転量αの算出に使用される(α=−Kθ)。
CPU21は、回転量αに対応して移動すべき可動部30aの位置S(可動部30aの駆動点の移動位置(Sx、Syl、Syr))を算出(図7の(2)参照、図15のステップS65参照)し、かかる位置Sに移動させる。
傾き補正処理を行わない場合(CP=0)、CPU21は、可動部30aが初期状態(可動部30aが移動可能範囲の中心で且つ撮像素子39a1の撮像面の外形を構成する4辺が第1方向xまたは第2方向yに平行な状態)で固定されるように、可動部30aの移動すべき位置S(Sx、Syl、Syr)を設定し(図7の(6)参照、図15のステップS63参照)、かかる位置Sに移動させる。
なお、撮像装置1の電源をオン状態にしてから最初に可動部30aを初期状態の位置に移動させる時間を確保するため、CPU21は、撮像装置1の電源がオン状態にされてからの経過時間(経過時間パラメータTT)を計測し、経過時間パラメータTTが第2時間Twait(=250ms)より短い間は、強制的に傾き補正パラメータCPを0に設定する。
可動部30aの第1方向xへ移動させるための駆動点を横方向駆動点DPxとし、第2方向yへの移動及び回転させるための駆動点を第1縦方向駆動点DPyl、DPyrとする(図12、図13参照)。横方向駆動点DPxは、可動部30aの第1方向xへの駆動に使用されるコイル(横方向コイル31a)によって力が加えられる点で、横方向ホール素子hh10と近い位置に設定される。第1縦方向駆動点DPylは、可動部30aの第2方向yへの駆動に使用されるコイル(第1縦方向コイル32a1)によって力が加えられる点で、第1縦方向ホール素子hv1と近い位置に設定される。第2縦方向駆動点DPyrは、可動部30aの第2方向yへの駆動に使用されるコイル(第2縦方向コイル32a2)によって力が加えられる点で、第2縦方向ホール素子hv2と近い位置に設定される。
横方向駆動点DPxの移動位置(傾き補正処理を開始する時点、すなわち初期状態における横方向駆動点DPxの位置に対する第1方向xの移動量)Sxは、回転量αに基づいて算出される(Sx=Lx×cos(θx+α)−Lx×cos(θx))。Lxは、撮像素子39a1の撮像面の回転中心Oから横方向駆動点DPxまでの距離、θxは、初期状態における横方向駆動点DPxと回転中心Oとを結ぶ線と第1方向xとのなす角度であり、設計により予め求められる定数である(図13参照)。
第1縦方向駆動点DPylの移動位置(初期状態における第1縦方向駆動点DPylの位置に対する第2方向yの移動量)Sylは、回転量αに基づいて算出される(Syl=Lyl×cos(θyl−α)−Lyl×cos(θyl))。Lylは、回転中心Oから第1縦方向駆動点DPylまでの距離、θylは、初期状態における第1縦方向駆動点DPylと回転中心Oとを結ぶ線と第2方向yとのなす角度であり、設計により予め求められる定数である。
第2縦方向駆動点DPyrの移動位置(初期状態における第2縦方向駆動点DPyrの位置に対する第2方向yの移動量)Syrは、回転量αに基づいて算出される(Syr=Lyr×cos(θyr+α)−Lyr×cos(θyr))。Lyrは、回転中心Oから第2縦方向駆動点DPyrまでの距離、θyrは、初期状態における第2縦方向駆動点DPyrと回転中心Oとを結ぶ線と第2方向yとのなす角度であり、設計により予め求められる定数である。
撮像部39aを含む可動部30aの移動は、後述する電磁力によって行われる。可動部30aを位置Sまで移動させるために駆動用ドライバ回路29を介して横方向コイル31aを駆動する駆動力Dの横方向成分を横方向駆動力Dx(横方向PWMデューティdx)、第1縦方向コイル32a1を駆動する縦方向成分を第1縦方向駆動力Dyl(第1縦方向PWMデューティdyl)、第2縦方向コイル32a2を駆動する縦方向成分を第2縦方向駆動力Dyr(第2縦方向PWMデューティdyr)とする。
傾き補正部30の可動部30aの駆動(初期状態での固定を含む)は、CPU21のPWM0から横方向PWMデューティdx、PWM1から第1縦方向PWMデューティdyl、及びPWM2から第2縦方向PWMデューティdyrの出力を受けた駆動用ドライバ回路29を介して、駆動手段に含まれるコイル部、駆動用磁石部による電磁力によって行われる(図7の(3)参照)。可動部30aの移動前または移動後の位置Pはホール素子部44a、ホール素子信号処理回路45によって検出される。検出された位置Pの情報は、横方向検出位置信号pxが横方向成分として、2つの第1、第2縦方向検出位置信号pyl、pyrが縦方向成分としてそれぞれCPU21のA/D3、A/D4、A/D5に入力される(図7の(4)参照)。横方向検出位置信号px、第1、第2縦方向検出位置信号py1、py2はA/D3、A/D4、A/D5を介してA/D変換される。
横方向検出位置信号pxに対してA/D変換後の位置Pの横方向成分を横方向成分pdxとする。第1、第2縦方向検出位置信号pyl、plrに対してA/D変換後の位置Pの縦方向成分を第1、第2縦方向成分pdyl、pdyrとする。検出された位置P(pdx、pdyl、pdyr)のデータと移動すべき位置S(Sx、Syl、Syr)のデータによりPID制御(横方向駆動力Dx、第1縦方向駆動力Dyl、第2縦方向駆動力Dyrの算出)が行われる(図7の(5)参照)。
傾き補正処理すなわちPID制御による移動すべき位置Sへの可動部30aの駆動は、傾き補正スイッチ14aがオン状態にされた傾き補正モード(CP=1)の時に行われる。傾き補正パラメータCPが0の時には、可動部30aは、傾き補正処理に対応せず初期状態で固定するためのPID制御が行われ、撮像素子39a1の撮像面の外形を構成する長方形(または正方形)の4辺のそれぞれが、第1方向x、第2方向yのいずれかに平行な状態で且つ移動中心位置に移動せしめられる(図7の(6)参照)。
ただし、上述の移動制御は、撮像装置1がスリープモードにされている時には行われない。スリープモードにされている間、横方向コイル31aなど可動部30aを移動させる部位への電力供給を停止して、消費電力を抑える趣旨である。
可動部30aは駆動用コイル部として横方向コイル31a、第1、第2縦方向コイル32a1、32a2、撮像素子39a1を有する撮像部39a、及び磁界変化検出素子部としてのホール素子部44aを有する(図6、図12参照)。本実施形態では、撮像素子39a1がCCDであるとして説明するが、CMOSなど他の撮像素子であってもよい。
固定部30bは、位置検出及び駆動用磁石部として、横方向磁石411b、第1、第2縦方向磁石412b1、412b2、横方向ヨーク431b、及び第1、第2縦方向ヨーク432b1、432b2を有する。
固定部30bは、ボールなどを使って可動部30aを挟み、可動部30aをxy平面上での矩形領域(移動可能領域)内で回転を含む移動が可能な状態を維持する。
撮像素子39a1の撮像範囲を最大限活用して傾き補正処理を行うために、撮影レンズ67の光軸LLが撮像素子39a1の中心(回転中心O)近傍を通る位置関係にある時に、第1方向x、第2方向yともに可動部30aが移動可能範囲の中心に位置する(移動中心位置にある)ように可動部30aと固定部30bの位置関係を設定する。Ponボタン11の押下に対応してPonスイッチ11aがオン状態されて、傾き補正処理を開始する時点、すなわち初期状態においては、可動部30aが移動可能範囲の中心に位置し、さらに、撮像素子39a1の撮像面の外形を構成する長方形(または正方形)の4辺のそれぞれは、第1方向x、第2方向yのいずれかに平行な状態にあるように可動部30aと固定部30bの位置関係を設定され、その後、傾き補正処理が開始される(図14のステップS15参照)。撮像素子39a1の中心とは、撮像素子39a1の撮像面を形成する矩形が有する2つの対角線の交点をいう。
可動部30aには、シート状でかつ渦巻き状のコイルパターンが形成された横方向コイル31a、第1、第2縦方向コイル32a1、32a2、及びホール素子部44aが取り付けられている。横方向コイル31aのコイルパターンは、横方向コイル31aの電流の方向と横方向磁石411bの磁界の向きから生じる電磁力により横方向コイル31aを含む可動部30aにおける横方向駆動点DPxを第1方向xに移動させるべく、第2方向yと平行な線分を有する。第1縦方向コイル32a1のコイルパターンは、第1縦方向コイル32a1の電流の方向と第1縦方向磁石412b1の磁界の向きから生じる電磁力により第1縦方向コイル32a1を含む可動部30aにおける第1縦方向駆動点DPylを第2方向yに移動させるべく、第1方向xと平行な線分を有する。第2縦方向コイル32a2のコイルパターンは、第2縦方向コイル32a2の電流の方向と第2縦方向磁石412b2の磁界の向きから生じる電磁力により第2縦方向コイル32a2を含む可動部30aにおける第2縦方向駆動点DPyrを第2方向yに移動させるべく、第1方向xと平行な線分を有する。ホール素子部44aについては後述する。
横方向コイル31a、第1、第2縦方向コイル32a1、32a2は、フレキシブル基板(不図示)を介してこれらを駆動する駆動用ドライバ回路29と接続される。駆動用ドライバ回路29は、CPU21のPWM0、PWM1、PWM2から横方向PWMデューティdx、第1、第2縦方向PWMデューティdyl、dyrのそれぞれが入力される。駆動用ドライバ回路29は、入力された横方向PWMデューティdxの値に応じて横方向コイル31aに電力を供給し、可動部30aにおける横方向駆動点DPxを第1方向xに移動させる。駆動用ドライバ回路29は、入力された第1、第2縦方向PWMデューティdyl、dyrの値に応じて第1、第2縦方向コイル32a1、32a2に電力を供給し、可動部30aにおける第1、第2縦方向駆動点DPyl、DPyrを第2方向yに移動させる。
第1縦方向コイル32a1と第2縦方向コイル32a2とは、初期状態において、第1方向xに並べられて配置される。撮像素子39a1の中心と第1縦方向コイル32a1の中心近傍との第2方向yの距離と、撮像素子39a1の中心(回転中心O)と第2縦方向コイル32a2の中心近傍との第2方向yの距離は初期状態において等しい位置関係になるように、第1、第2縦方向コイル32a1、32a2は配置される。
横方向磁石411bは、横方向コイル31a及び横方向ホール素子hh10と対向するように固定部30bの可動部30a側に取り付けられる。
第1縦方向磁石412b1は、第1縦方向コイル32a1及び第1縦方向ホール素子hv1と対向するように固定部30bの可動部30a側に取り付けられる。第2縦方向磁石412b2は、第2縦方向コイル32a2及び第2縦方向ホール素子hv2と対向するように固定部30bの可動部30a側に取り付けられる。
横方向磁石411bは、第3方向zにおいて固定部30b上で且つ可動部30a側に取り付けられた横方向ヨーク431bの上であって、第1方向xにN極とS極が並べて取り付けられる(不図示)。第1、第2縦方向磁石412b1、412b2は、第3方向zにおいて固定部30b上で且つ可動部30a側に取り付けられた第1、第2縦方向ヨーク432b1、432b2の上であって、第2方向yにN極とS極が並べて取り付けられる(不図示)。
横方向ヨーク431bは、軟磁性体材料で構成され、固定部30b上に取り付けられる。横方向ヨーク431bは、横方向磁石411bの磁界が周囲に漏れないようにする役目、及び横方向磁石411bと横方向コイル31a、及び横方向磁石411bと横方向ホール素子hh10との間の磁束密度を高める役目を果たす。
第1、第2縦方向ヨーク432b1、432b2は、軟磁性体材料で構成され、固定部30b上に取り付けられる。第1縦方向ヨーク432b1は、第1縦方向磁石412b1の磁界が周囲に漏れないようにする役目、及び第1縦方向磁石412b1と第1縦方向コイル32a1、及び第1縦方向磁石412b1と第1縦方向ホール素子hv1との間の磁束密度を高める役目を果たす。第2縦方向ヨーク432b2は、第2縦方向磁石412b2の磁界が周囲に漏れないようにする役目、及び第2縦方向磁石412b2と第2縦方向コイル32a2、及び第2縦方向磁石412b2と第2縦方向ホール素子hv2との間の磁束密度を高める役目を果たす。
なお、横方向ヨーク431b、第1、第2縦方向ヨーク432b1、432b2は、別体構成でも一体構成であってもよい。
ホール素子部44aは、ホール効果を利用した磁電変換素子であるホール素子を3つ有し、可動部30aの第1方向x、第2方向yの現在位置P(横方向検出位置信号px、第1、第2縦方向検出位置信号pyl、pyr)を検出する1軸ホール素子である。3つのホール素子のうち第1方向xの位置検出用のホール素子を横方向ホール素子hh10、第2方向yの位置検出用のホール素子を第1、第2縦方向ホール素子hv1、hv2とする。
横方向ホール素子hh10は、第3方向zから見て可動部30a上であって、固定部30bの横方向磁石411bと対向し、且つ横方向駆動点DPxに近い位置に取り付けられる。
横方向ホール素子hh10は、横方向コイル31aと、第2方向yに並べて配置されてもよいが、横方向コイル31aの巻線内に配置され、特に巻線内の第1方向xの中心近傍に配置されるのが望ましい(図12参照)。横方向ホール素子hh10は、横方向コイル31aと第3方向zに積層される。巻線内配置、及び積層により、位置検出のための磁界発生領域と、可動部30aの駆動のための磁界発生領域を共用できるので、横方向磁石411b、横方向ヨーク431bの第2方向yの長さを短くすることができる。
また、横方向コイル31aによって可動部30aを第1方向xに移動させる力を加える位置(横方向駆動点DPx)と、横方向ホール素子hh10による位置検出ポイントとが近接するため、精度の高い駆動制御を行うことが可能になる。
第1縦方向ホール素子hv1は、第3方向zから見て可動部30a上であって、固定部30bの第1縦方向磁石412b1と対向し、且つ第1縦方向駆動点DPylに近い位置に取り付けられる。第2縦方向ホール素子hv2は、第3方向zから見て可動部30a上であって、固定部30bの第2縦方向磁石412b2と対向し、且つ第2縦方向駆動点DPyrに近い位置に取り付けられる。
第1縦方向ホール素子hv1は、第1縦方向コイル32a1と、第1方向xに並べて配置されてもよいが、第1縦方向コイル32a1の巻線内に配置され特に巻線内の第2方向yの中心近傍に配置されるのが望ましい。第1縦方向ホール素子hv1は、第1縦方向コイル32a1と第3方向zに積層される。巻線内配置、及び積層により、位置検出のための磁界発生領域と、可動部30aの駆動のための磁界発生領域を共用できるので、第1縦方向磁石412b1、第1縦方向ヨーク432b1の第1方向xの長さを短くすることができる。
第2縦方向ホール素子hv2は、第2縦方向コイル32a2と、第1方向xに並べて配置されてもよいが、第2縦方向コイル32a2の巻線内に配置され特に巻線内の第2方向yの中心近傍に配置されるのが望ましい。第2縦方向ホール素子hv2は、第2縦方向コイル31a2と第3方向zに積層される。巻線内配置、及び積層により、位置検出のための磁界発生領域と、可動部30aの駆動のための磁界発生領域を共用できるので、第2縦方向磁石412b2、第2縦方向ヨーク432b2の第1方向xの長さを短くすることができる。
また、第1縦方向コイル32a1によって可動部30aを第2方向yに移動させる力を加える位置(第1縦方向駆動点DPyl)と、第1縦方向ホール素子hv1による位置検出ポイントとが近接し、第2縦方向コイル32a2によって可動部30aを第2方向yに移動させる力を加える位置(第2縦方向駆動点DPyr)と、第2縦方向ホール素子hv2による位置検出ポイントとが近接するため、精度の高い駆動制御を行うことが可能になる。
直線的な変化量を使って精度の高い位置検出が行える範囲を最大限活用して位置検出を行うため、横方向ホール素子hh10の第1方向xの位置は、初期状態において、撮像素子39a1の中心(回転中心O)近傍が光軸LLを通る位置関係にある時に、横方向磁石411bのN極、S極と等距離近傍にあるのが望ましい。同様に、第1縦方向ホール素子hv1の第2方向yの位置は、初期状態において、撮像素子39a1の中心(回転中心O)近傍が光軸LLを通る位置関係にある時に、第1縦方向磁石412b1のN極、S極と等距離近傍にあるのが望ましい。第2縦方向ホール素子hv2の第2方向yの位置は、初期状態において、撮像素子39a1の中心(回転中心O)近傍が光軸LLを通る位置関係にある時に、第2縦方向磁石412b2のN極、S極と等距離近傍にあるのが望ましい。
ホール素子信号処理回路45は、第1、第2、第3ホール素子信号処理回路450、460、470を有する。
第1ホール素子信号処理回路450は、横方向ホール素子hh10の出力信号から横方向ホール素子hh10における出力端子間の電位差を検出し、これから可動部30aの横方向ホール素子hh10がある部分の第1方向xの位置を特定する横方向検出位置信号pxをCPU21のA/D3に出力する。第1ホール素子信号処理回路450は、フレキシブル基板(不図示)を介して、横方向ホール素子hh10と接続される。
第2ホール素子信号処理回路460は、第1縦方向ホール素子hv1の出力信号から第1縦方向ホール素子hv1における出力端子間の電位差を検出し、これから可動部30aの第1縦方向ホール素子hv1がある部分の第2方向yの位置を特定する第1縦方向検出位置信号pylをCPU21のA/D4に出力する。第2ホール素子信号処理回路460は、フレキシブル基板(不図示)を介して、第1縦方向ホール素子hv1と接続される。
第3ホール素子信号処理回路470は、第2縦方向ホール素子hv2の出力信号から第2縦方向ホール素子hv2における出力端子間の電位差を検出し、これから可動部30aの第2縦方向ホール素子hv2がある部分の第2方向yの位置を特定する第2縦方向検出位置信号pyrをCPU21のA/D5に出力する。第3ホール素子信号処理回路470は、フレキシブル基板(不図示)を介して、第2縦方向ホール素子hv2と接続される。
本実施形態では、回転角度を含めた可動部30aの位置を特定するために、3つのホール素子を使う。3つのホール素子のうち、2つのホール素子を使って、可動部30a上の2つの点(第1縦方向駆動点DPyl、第2縦方向駆動点DPyrに近い点)における第2方向yの位置を、残る1つのホール素子を使って、可動部30a上の1つの点(横方向駆動点DPxに近い点)における第1方向xの位置を特定する。これら2つの点における第2方向yの位置情報、1つの点における第1方向xの位置情報に基づいて、可動部30aの回転角度(傾き)を含む位置を特定することが可能である。
現在位置P(横方向検出位置信号px、第1、第2縦方向検出位置信号pyl、pyr)の算出は、撮像装置1がスリープモードにされた時も、継続して行われる。すなわち、横方向ホール素子hh10、第1縦方向ホール素子hv1、第2縦方向ホール素子hv2、及びホール素子信号処理回路45への電力供給は、スリープモードにされている間も継続して行われる。このため、撮像装置1の電源がオン状態にされている間は、常時、現在位置Pの特定が行われるため、スリープモードが解除された直後から正確に傾き補正処理のための移動制御を行うことが出来る。
次に、撮像装置1のメイン動作について図14のフローチャートで説明する。Ponスイッチ11aがオン状態にされ撮像装置1の電源がオンにされると、ステップS11で、傾き検出部25に電力が供給され、電源オン状態にされる。ステップS12で、CPU21は、回転量αなどを初期化する。具体的には、CPU21は、回転量α、経過時間パラメータTT、スリープモードパラメータSLP、及び不使用経過時間パラメータNSWを0に設定する。また、CPU21と撮影レンズ67との間で通信が行われ、撮影レンズ67からレンズ情報が、CPU21に出力される。
ステップS13で、一定時間(1ms)間隔で割り込み処理が開始される。割り込み処理の詳細については、図15、図16のフローチャートを使って後述する。
ステップS14で、CPU21は、傾き補正スイッチ14aがオン状態にされたか否かを判断する。傾き補正スイッチ14aがオン状態にされていない場合は、ステップS16に進められる。傾き補正スイッチ14aがオン状態にされている場合は、ステップS15で、CPU21は、経過時間パラメータTTが第2時間Twaitより小さいか否かを判断する。小さい場合は、ステップS16に進められ、小さくない場合は、ステップS17に進められる。ステップS16で、CPU21は、傾き補正パラメータCPの値を0に設定する。ステップS17で、CPU21は、傾き補正パラメータCPの値を1に設定する。
従って、傾き補正スイッチ14aがオン状態にされていても、撮像装置1の電源がオン状態にされてから、第2時間Twaitが経過するまでは、傾き補正パラメータCPの値は0にされ、この間に行われる割り込み処理により、初期状態として、可動部30aが移動可能範囲の中心に位置し、且つ撮像素子39a1の撮像面の外形を構成する長方形(または正方形)の4辺のそれぞれが、第1方向x、第2方向yのいずれかに平行な状態にあるように、可動部30aが移動せしめられる。
ステップS18で、CCDの電荷蓄積すなわち露光が行われる。露光時間終了後、ステップS19で、CCD入力、すなわち露光時間内の間CCDに蓄積された電荷が移動せしめられる。ステップS20で、CPU21とDSP19との間で通信が行われ、移動された電荷に基づいて画像処理が行われ、画像処理された画像が表示部17によって表示される(スルー画像表示)。
ステップS21で、AE部23により測光が行われ、絞り値や露光時間が演算される。ステップS22で、AF部24により測距が行われ、AF部24のレンズ制御回路駆動により合焦動作が行われる。
ステップS23で、CPU21は、レリーズスイッチ13aがオン状態にされたか否かを判断する。レリーズスイッチ13aがオン状態にされていない場合には、ステップS14に戻される(ステップS14〜22を繰り返す)。レリーズスイッチ13aがオン状態にされている場合は、ステップS24に進められる。
ステップS24で、CCDの電荷蓄積すなわち露光が行われる。露光時間終了後、ステップS25で、CCD入力、すなわち露光時間内の間CCDに蓄積された電荷が移動せしめられる。ステップS26で、CPU21とDSP19との間で通信が行われ、移動された電荷に基づいて画像処理が行われ、画像処理された画像が撮像装置1内の映像メモリに記憶される。ステップS27で、記憶された画像信号は、表示部17によって表示される。その後、ステップS14に戻される(次の撮像動作が可能な状態にされる)。
次に、図14のステップS13で開始され、一定時間(1ms)間隔で行われる割り込み処理について図15のフローチャートを用いて説明する。割り込み処理が開始されると、ステップS51で、傾き検出部25から出力された第1、第2加速度ah、avが、CPU21のA/D1、A/D2を介しA/D変換され入力される(第1、第2デジタル加速度信号Dah、Dav、加速度検出処理)。第1、第2デジタル加速度信号Dah、Davは、ノイズ除去のために高周波成分がカットされる(第1、第2デジタル加速度Aah、Aav、デジタルローパスフィルタ処理)。
ステップS52で、ホール素子部44aで位置検出され、ホール素子信号処理回路45で演算された横方向検出位置信号px、第1、第2縦方向検出位置信号pyl、pyrがCPU21のA/D3、A/D4、A/D5を介しA/D変換され入力され、現在位置P(pdx、pdyl、pdyr)が求められる(図7の(4)参照)。
ステップS53で、CPU21は、第1、第2デジタル加速度Aah、Aavに基づいて、カメラ傾き角度Kθを算出する(図7の(1)参照)。カメラ傾き角度Kθを求める演算の詳細については、図16のフローチャートを使って後述する。
ステップS54で、CPU21は、レリーズボタン13など、撮像装置1の操作ボタンのいずれかが操作されたか否かを判断する。操作されていない場合は、ステップS55に進められ、操作された場合は、ステップS60に進められる。ステップS55で、CPU21は、スリープモードパラメータSLPが1に設定されているか否かを判断する。1に設定されている場合は、ステップS59に進められ、1に設定されていない場合は、ステップS56に進められる。
ステップS56で、CPU21は、不使用経過時間パラメータNSWを1だけ増加させる。ステップS57で、CPU21は、不使用経過時間パラメータNSWが、第1時間OTMよりも長いか否かを判断する。長い場合は、ステップS58に進められ、長くない場合はステップS62に進められる。
ステップS58で、CPU21は、スリープモードパラメータSLPを1に設定する。ステップS59で、CPU21は、可動部30aの駆動がオフ状態、すなわちコイル(横方向コイル31a、第1縦方向コイル32a1、第2縦方向コイル32a2)への給電を停止して、可動部30aへの駆動制御が行われない状態(ディセーブル(disable)状態)にする。
ステップS60で、CPU21は、不使用経過時間パラメータNSWを0に設定し、ステップS61で、CPU21は、スリープモードパラメータSLPを0に設定し、可動部30aの駆動がオン状態、すなわちコイル(横方向コイル31a、第1縦方向コイル32a1、第2縦方向コイル32a2)への給電を許可して、可動部30aを駆動可能な状態(イネーブル(enable)状態)にする。
ステップS62で、CPU21は、傾き補正パラメータCPの値が0か否かを判断する。CP=0すなわち傾き補正モードでない場合は、ステップS63に進められ、CP=1すなわち傾き補正モードの場合は、ステップS64に進められる。
ステップS63で、CPU21は、可動部30aの移動すべき位置S(Sx、Syl、Syr)を、可動部30aの移動中心位置で且つ撮像素子39a1の撮像面の外形を構成する4辺が第1方向xまたは第2方向yに平行な状態になるように設定する(図7の(6)参照)。
ステップS64で、CPU21は、カメラ傾き角度Kθに基づいて、回転量αの値を決定する(α=−Kθ)。ステップS65で、CPU21は、回転量αに基づいて、可動部30aの移動すべき位置Sの横方向成分Sx、第1縦方向成分Syl、第2縦方向成分Syrを算出する(図7の(2)参照)。
ステップS66で、ステップS63、S65のいずれかで設定した位置S(Sx、Syl、Syr)と現在位置P(pdx、pdyl、pdyr)に基づいて、CPU21は、可動部30aの移動に必要な駆動力D、すなわち横方向コイル31aを駆動するのに必要な横方向駆動力Dx(横方向PWMデューティdx)と、第1縦方向コイル32a1を駆動するのに必要な第1縦方向駆動力Dyl(第1縦方向PWMデューティdyl)と、第2縦方向コイル32a2を駆動するのに必要な第2縦方向駆動力Dyr(第2縦方向PWMデューティdyr)を算出する(図7の(5)参照)。
ステップS67で横方向PWMデューティdxにより駆動用ドライバ回路29を介し横方向コイル31aが駆動され、第1縦方向PWMデューティdylにより駆動用ドライバ回路29を介し第1縦方向コイル32a1が駆動され、第2縦方向PWMデューティdyrにより駆動用ドライバ回路29を介し第2縦方向コイル32a2が駆動され、可動部30aが移動せしめられる(図7の(3)参照)。ステップS66、S67の動作は、一般的な比例、積分、微分演算を行うPID自動制御で用いられる自動制御演算である。
次に、図15のステップS53で行われるカメラ傾き角度Kθの演算処理について図16のフローチャートを用いて説明する。演算処理が開始されると、ステップS71で、CPU21は、第2デジタル加速度Aavの絶対値が、第1デジタル加速度Aahの絶対値以上に大きいか否かを判断する。大きくない場合には、ステップS72に進められ、大きい場合には、ステップS75に進められる。
ステップS72で、CPU21は、第1デジタル加速度Aahが0以上であるか否かを判断する。0以上でない場合には、撮像装置1が第1縦位置姿勢状態に近い状態で保持されているとして、ステップS73で、CPU21は、カメラ傾き角度Kθを、第2デジタル加速度Aavについてアークサイン変換したものに、負符号を付した値に設定する。0以上である場合には、撮像装置1が第2縦位置姿勢状態に近い状態で保持されているとして、ステップS74で、CPU21は、カメラ傾き角度Kθを、第2デジタル加速度Aavについてアークサイン変換した値に設定する。
ステップS75で、CPU21は、第2デジタル加速度Aavが0以上であるか否かを判断する。0以上でない場合には、撮像装置1が倒立横位置姿勢状態に近い状態で保持されているとして、ステップS76で、CPU21は、カメラ傾き角度Kθを、第1デジタル加速度Aahについてアークサイン変換した値に設定する。0以上である場合には、撮像装置1が正立横位置姿勢状態に近い状態で保持されているとして、ステップS77で、CPU21は、カメラ傾き角度Kθを、第1デジタル加速度Aahについてアークサイン変換したものに、負符号を付した値に設定する。
本実施形態では、撮像装置1がスリープモードにされると、CPU21は、可動部30aの移動すべき位置S(Sx、Syl、Syr)への移動制御や撮像動作を停止する。ただし、撮像装置1がスリープモードにされた場合であっても、傾き検出部25とCPU21によるカメラ傾き角度Kθの算出、及び横方向ホール素子hh10などとCPU21による可動部30aの現在位置P(pdx、pdyl、pdyr)の算出が行われる。このため、スリープモードが解除された時点で、カメラ傾き角度Kθや、現在位置Pが算出されているため、スリープモードが解除されてすぐに正確に傾き補正処理を行うことが可能になる。
なお、撮像装置1は、磁界変化検出素子としてホール素子を利用したホール素子部44aによる位置検出を説明したが、磁界変化検出素子として別の検出素子を利用してもよい。具体的には、磁界の変化を検出することにより可動部の位置検出情報を求めることが可能なMIセンサ(高周波キャリア型磁界センサ)、または磁気共鳴型磁界検出素子、MR素子(磁気抵抗効果素子)であり、ホール素子を利用した本実施形態と同様の効果が得られる。
1 撮像装置
11 Ponボタン
13 レリーズボタン
13a レリーズスイッチ
14 傾き補正オンオフボタン
14a 傾き補正スイッチ
17 表示部
18 光学ファインダ
19 DSP
21 CPU
23 AE部
24 AF部
25 傾き検出部
26 加速度センサ
28a、28b 第1、第2アンプ
29 駆動用ドライバ回路
30 傾き補正部
30a 可動部
30b 固定部
31a 横方向コイル
32a1、32a2 第1、第2縦方向コイル
39a 撮像部
39a1 撮像素子
411b 横方向磁石
412b1、412b2 第1、第2縦方向磁石
431b 横方向ヨーク
432b1、432b2 第1、第2縦方向ヨーク
44a ホール素子部
45 ホール素子信号処理回路
67 撮影レンズ
ah、av 第1、第2加速度
Aah、Aav 第1、第2デジタル加速度
Kθ カメラ傾き角度
CP 傾き補正パラメータ
Dah、Dav 第1、第2デジタル加速度信号
dx 横方向PWMデューティ
dy1、dy2 第1、第2縦方向PWMデューティ
Dx 横方向駆動力
Dyl、Dyr 第1、第2縦方向駆動力
hh10 横方向ホール素子
hv1、hv2 第1、第2縦方向ホール素子
I10 傾き情報
IC1 カメラアイコン
IC2 可動部アイコン
LL 撮影レンズの光軸
NSW 不使用経過時間パラメータ
OTM 第1時間
pdx A/D変換後の位置Pの横方向成分
pdyl A/D変換後の位置Pの第1縦方向成分
pdyr A/D変換後の位置Pの第2縦方向成分
px 横方向検出位置信号
pyl、pyr 第1、第2縦方向検出位置信号
SLP スリープモードパラメータ
Sx 位置Sの横方向成分
Syl、Syr 位置Sの第1、第2縦方向成分
TT 経過時間パラメータ
Twait 第2時間

Claims (2)

  1. レンズを介して入射した光学像を撮像する撮像素子を有し、前記レンズの光軸に垂直な平面上で回転を含めた移動が可能な可動部と、
    前記撮像素子を含む撮像装置の重力方向と垂直な水平面に対する前記光軸周りの傾き角度を算出し、傾き補正処理のために、前記傾き角度に基づいて、前記可動部の移動制御を行う制御部とを備える撮像装置であって、
    前記撮像装置がスリープモードにされている間、前記制御部は、前記傾き角度の算出を行い、前記移動制御を停止することを特徴とする撮像装置。
  2. 前記撮像装置が前記スリープモードにされている間、前記制御部は、前記可動部の位置検出を行うことを特徴とする請求項1に記載の撮像装置。
JP2009272254A 2008-12-25 2009-11-30 撮像装置 Active JP5509817B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272254A JP5509817B2 (ja) 2008-12-25 2009-11-30 撮像装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008330255 2008-12-25
JP2008330255 2008-12-25
JP2009272254A JP5509817B2 (ja) 2008-12-25 2009-11-30 撮像装置

Publications (2)

Publication Number Publication Date
JP2010170103A true JP2010170103A (ja) 2010-08-05
JP5509817B2 JP5509817B2 (ja) 2014-06-04

Family

ID=42284448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272254A Active JP5509817B2 (ja) 2008-12-25 2009-11-30 撮像装置

Country Status (3)

Country Link
US (1) US8355052B2 (ja)
JP (1) JP5509817B2 (ja)
CN (1) CN101762944B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195641A (ja) * 2012-03-19 2013-09-30 Canon Inc 像振れ補正装置およびそれを備えた光学機器、撮像装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643617B1 (ko) * 2010-07-28 2016-08-10 삼성전자주식회사 디지털 촬영 장치 및 그의 슬립 모드 제어 방법
JP5722265B2 (ja) 2012-03-28 2015-05-20 オリンパス株式会社 可動部材制御装置及びそれを備えた撮像装置
CN103870290B (zh) * 2012-12-10 2017-11-28 联想(北京)有限公司 一种切换方法和设备
CN109598764B (zh) * 2018-11-30 2021-07-09 Oppo广东移动通信有限公司 摄像头标定方法和装置、电子设备、计算机可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244324A (ja) * 1994-03-03 1995-09-19 Olympus Optical Co Ltd ブレ補正可能なカメラ
JPH10150597A (ja) * 1996-11-18 1998-06-02 Sony Corp ビデオカメラ
JP2001311975A (ja) * 2000-04-28 2001-11-09 Fuji Photo Optical Co Ltd 像ブレ防止装置
JP2002244186A (ja) * 2001-02-19 2002-08-28 Asahi Optical Co Ltd レンズ交換式カメラシステムの電源制御装置
JP2006080969A (ja) * 2004-09-10 2006-03-23 Canon Inc カメラ
JP2006319895A (ja) * 2005-05-16 2006-11-24 Sony Corp 撮像装置及びその起動方法
JP2006325060A (ja) * 2005-05-20 2006-11-30 Pentax Corp 手ぶれ検出装置および撮影装置
JP2008151822A (ja) * 2006-12-14 2008-07-03 Pentax Corp 像ブレ補正装置
JP2008299216A (ja) * 2007-06-01 2008-12-11 Nikon Corp 手振れ補正機能付撮像装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530677B2 (ja) * 1996-05-24 2004-05-24 キヤノン株式会社 画像入力装置
US6556783B1 (en) * 1997-01-16 2003-04-29 Janet L. Gelphman Method and apparatus for three dimensional modeling of an object
JP3421599B2 (ja) * 1998-11-25 2003-06-30 ペンタックス株式会社 フィルム巻上げ装置を備えたカメラ
DE10017353A1 (de) * 1999-04-12 2000-11-02 Asahi Optical Co Ltd Einrichtung zur Korrektion des Zitterns eines fokussierten Bildes und mit dieser versehene Kamera
EP1102107B1 (en) * 1999-11-16 2008-01-09 Fujinon Corporation Vibration isolator
JP4346988B2 (ja) * 2003-07-28 2009-10-21 キヤノン株式会社 撮影装置および撮影装置の光学調整方法
JP2006071743A (ja) 2004-08-31 2006-03-16 Olympus Corp ブレ補正機能を有するカメラシステム及びその補正方法
JP2006324948A (ja) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd 撮像装置
JP2007025616A (ja) * 2005-06-15 2007-02-01 Pentax Corp ステージ装置及びこのステージ装置を利用したカメラの像振れ補正装置
JP2007094320A (ja) * 2005-09-30 2007-04-12 Ricoh Co Ltd 手ぶれ補正機能付き撮像装置
JP4280760B2 (ja) * 2006-07-31 2009-06-17 キヤノン株式会社 撮像装置
JP5262378B2 (ja) * 2007-08-09 2013-08-14 ペンタックスリコーイメージング株式会社 撮像装置
JP5262377B2 (ja) * 2007-08-09 2013-08-14 ペンタックスリコーイメージング株式会社 撮像装置
JP5315751B2 (ja) * 2008-03-31 2013-10-16 ペンタックスリコーイメージング株式会社 撮像装置
JP5439733B2 (ja) * 2008-03-31 2014-03-12 リコーイメージング株式会社 撮像装置
JP5439732B2 (ja) * 2008-03-31 2014-03-12 リコーイメージング株式会社 撮像装置
JP2009244492A (ja) * 2008-03-31 2009-10-22 Hoya Corp 撮像装置
JP5260115B2 (ja) * 2008-03-31 2013-08-14 ペンタックスリコーイメージング株式会社 撮像装置
JP5129638B2 (ja) * 2008-04-02 2013-01-30 ペンタックスリコーイメージング株式会社 撮像装置
JP5337975B2 (ja) * 2008-12-25 2013-11-06 リコーイメージング株式会社 撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244324A (ja) * 1994-03-03 1995-09-19 Olympus Optical Co Ltd ブレ補正可能なカメラ
JPH10150597A (ja) * 1996-11-18 1998-06-02 Sony Corp ビデオカメラ
JP2001311975A (ja) * 2000-04-28 2001-11-09 Fuji Photo Optical Co Ltd 像ブレ防止装置
JP2002244186A (ja) * 2001-02-19 2002-08-28 Asahi Optical Co Ltd レンズ交換式カメラシステムの電源制御装置
JP2006080969A (ja) * 2004-09-10 2006-03-23 Canon Inc カメラ
JP2006319895A (ja) * 2005-05-16 2006-11-24 Sony Corp 撮像装置及びその起動方法
JP2006325060A (ja) * 2005-05-20 2006-11-30 Pentax Corp 手ぶれ検出装置および撮影装置
JP2008151822A (ja) * 2006-12-14 2008-07-03 Pentax Corp 像ブレ補正装置
JP2008299216A (ja) * 2007-06-01 2008-12-11 Nikon Corp 手振れ補正機能付撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195641A (ja) * 2012-03-19 2013-09-30 Canon Inc 像振れ補正装置およびそれを備えた光学機器、撮像装置

Also Published As

Publication number Publication date
US20100165125A1 (en) 2010-07-01
CN101762944B (zh) 2014-06-25
US8355052B2 (en) 2013-01-15
CN101762944A (zh) 2010-06-30
JP5509817B2 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5244579B2 (ja) 撮像装置
JP5315751B2 (ja) 撮像装置
JP5129638B2 (ja) 撮像装置
JP5439733B2 (ja) 撮像装置
JP5439732B2 (ja) 撮像装置
JP5260115B2 (ja) 撮像装置
JP2009244492A (ja) 撮像装置
JP5439734B2 (ja) 撮像装置
JP5262693B2 (ja) 撮像装置
JP2008257209A (ja) 像ブレ補正装置
JP5150308B2 (ja) 像ブレ補正装置
JP2008257211A (ja) 像ブレ補正装置
JP5287226B2 (ja) 撮像装置
JP5191879B2 (ja) 撮像装置
JP5509817B2 (ja) 撮像装置
JP5337975B2 (ja) 撮像装置
JP5499658B2 (ja) 撮像装置
JP5423353B2 (ja) 撮像装置
JP5544842B2 (ja) 撮像装置
JP5499659B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5509817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250