JP2010148764A - 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ - Google Patents

光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ Download PDF

Info

Publication number
JP2010148764A
JP2010148764A JP2008331814A JP2008331814A JP2010148764A JP 2010148764 A JP2010148764 A JP 2010148764A JP 2008331814 A JP2008331814 A JP 2008331814A JP 2008331814 A JP2008331814 A JP 2008331814A JP 2010148764 A JP2010148764 A JP 2010148764A
Authority
JP
Japan
Prior art keywords
light
band
optical
emission end
scanning endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008331814A
Other languages
English (en)
Other versions
JP5235650B2 (ja
Inventor
Hideo Sugimoto
秀夫 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008331814A priority Critical patent/JP5235650B2/ja
Priority to US12/647,083 priority patent/US8348829B2/en
Priority to DE102009060621.1A priority patent/DE102009060621B4/de
Publication of JP2010148764A publication Critical patent/JP2010148764A/ja
Application granted granted Critical
Publication of JP5235650B2 publication Critical patent/JP5235650B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

【課題】光走査型内視鏡における光を出射する光ファイバの変位した位置を検出する。
【解決手段】光走査型内視鏡装置は光源ユニット、光供給ファイバ53、ファイバ駆動部、ビームスプリッタ62、位置検出フィルタ63、位置検出ファイバ56、位置検出受光ユニットを有する。ファイバ駆動部は光供給ファイバ53の先端を屈曲させることにより変位させる。光源ユニットは光供給ファイバ53の入射端に第1、第2の帯域の赤外光を供給する。光供給ファイバ53の先端から出射される光の光路上にビームスプリッタ62を配置する。ビームスプリッタ62は赤外光を反射し、他の帯域の光を透過する。赤外光の反射方向に位置検出フィルタ63を配置する。位置検出フィルタ63は赤外光の入射する位置に応じて異なる透過率で赤外光を透過させる。位置検出ファイバ56は位置検出フィルタ63を透過した赤外光を位置検出受光ユニットに伝達する。
【選択図】図5

Description

本発明は、光走査型内視鏡において照明光を走査するために変位させる光伝達路の実際の変位位置を検出可能な光走査型内視鏡装置に関する。
光走査型内視鏡が提案されている(特許文献1参照)。光走査型内視鏡では、照明光を伝達する光ファイバの先端を変位可能に支持し、光ファイバの先端を連続的に変位することにより照明光の走査が行なわれる。
光ファイバの先端が支持される挿入管の先端は細径化が求められるため、位置検出センサを設けることが難しい。それゆえ、変位する光ファイバの先端の位置を正確に検出することは出来ず、光ファイバの先端を変位するための駆動信号に基づいて、位置が推定されていた。
しかし、推定精度が低い場合に光の走査に基づいて作成する画像に歪みが生じることが問題であった。また、光ファイバの先端には所定の変位経路に沿って正確に変位させることにより再現性の高い画像を作成することが可能である。しかし、光ファイバの先端が変位経路からずれていることを検知することが出来ないため、変位経路からずれている場合であっても修正することが困難であった。
特許第3943927号公報
したがって、本発明では、照明光の走査するために変位させる光ファイバの先端の変位位置を検出することが可能な光走査型内視鏡装置の提供を目的とする。
本発明の光走査型内視鏡装置は、入射する光を第1の入射端から第1の出射端に伝達し、伝達した光を第1の出射端からビーム状に出射する供給光伝達路と、第1の出射端を伝達した光の出射方向に対して垂直な方向に変位させる駆動部と、第1の入射端に第1の帯域の光を出射する検出光光源と、第1の出射端から出射される光の光路上に設けられ第1の帯域の光を反射し第1の帯域の域外の第2の帯域の光を透過する第1の光学フィルタと、第1の光学フィルタにより反射される第1の帯域の光の光路上に設けられ第1の帯域の光の入射位置に応じた透過率で第1の帯域の光を透過させる第2の光学フィルタと、第2の光学フィルタにより透過された第1の帯域の光を第2の入射端から第2の出射端まで伝達する検出光伝達路と、第2の出射端から出射する第1の帯域の光の光量を検出する第1の受光部と、第1の受光部による第1の帯域の光の受光量に基づいて第1の出射端の位置を検出する位置検出部とを備えることを特徴としている。
なお、検出光光源は、第1の帯域に含まれ互いに異なる帯域である第3、第4の帯域の光を出射し、第2の光学フィルタ上の第1の方向に沿って第3の帯域の光の透過率が変化し第2の光学フィルタ上の第1の方向と異なる第2の方向に沿って第4の帯域の光の透過率が変化し、第1の受光部は第3の帯域の光の光量を検出する第1の受光器と第4の帯域の光の光量を検出する第2の受光器とを有し、位置検出部は第1の受光器による第3の帯域の光の受光量に基づいて第1の方向に対応する第3の方向に沿った第1の出射端の位置を検出し第2の受光器による第4の帯域の光の受光量に基づいて第2の方向に対応する第4の方向に沿った第1の出射端の位置を検出することが好ましい。
また、検出光光源は、第3、第4の帯域の光をそれぞれ出射する第1、第2の光源を有することが好ましい。
また、第1の入射端に観察対象領域に照射する第2の帯域の光を出射する照射光光源と、照射光光源から第1の入射端に入射し第1の出射端から出射され第2の光学フィルタを透過して観察対象領域に照射される第2の帯域の光の観察対象領域における反射光または発する光を第3の入射端に入射させ入射した光を第3の入射端から第3の出射端まで伝達する撮像伝達路と、第3の出射端から出射する光の光量に応じた画素信号を生成する第2の受光部と、第1の出射端の位置に対応したアドレスを有し画素信号を格納する画像メモリと、第2の受光部が画素信号を生成したときの位置検出部により検出された第1の出射端の位置に対応する画像メモリのアドレスに画素信号を格納させる画像作成部とを備えることが好ましい。
また、第1の出射端を所定の変位経路に沿って変位させるように駆動部を制御するスキャン制御部を備え、画像作成部は所定の変位経路上の複数の位置において第2の帯域の光が照射される観察対象領域上の複数の狭小領域における反射光または発する光に応じた複数の画素信号を複数の位置に対応する画像メモリのアドレスに格納することにより1フレームの画像信号を作成し第1のフレームの画像信号の作成後の次の第2のフレームの画像信号を作成時に第1の出射端の変位した位置が所定の変位経路上の位置である場合に対応するアドレスの画素信号を更新し画素信号が更新されなかったアドレスの画素信号と更新されたアドレスの画素信号により第2のフレームの画像信号を形成することが好ましい。
また、第1の出射端を所定の変位経路に沿って変位させるように駆動部を制御するスキャン制御部と、位置検出部により検出された第1の出射端の位置が所定の変位経路から外れている場合に第1の出射端の変位位置を所定の変位経路上に戻すように補正する補正部とを備えることが好ましい。
また、第2の光学フィルタに透過された第1の帯域の光を集光して第2の入射端に向けて出射する集光レンズを備えることが好ましい。
また、第1の帯域は可視領域の域外であることが好ましい。
本発明の光走査型内視鏡は、入射する光を第1の入射端から第1の出射端に伝達し伝達した光を第1の出射端からビーム状に出射する供給光伝達路と、第1の出射端を伝達した光の出射方向に対して垂直な方向に変位させる駆動部と、第1の出射端から出射される光の光路上に設けられ第1の帯域の光を反射し第1の帯域の域外の第2の帯域の光を透過する第1の光学フィルタと、第1の光学フィルタにより反射される第1の帯域の光の光路上に設けられ第1の帯域の光の入射位置に応じた透過率で第1の帯域の光を透過させる第2の光学フィルタと、第2の光学フィルタにより透過された第1の帯域の光を第2の入射端から第2の出射端まで伝達する検出光伝達路とを備えることを特徴としている。
本発明の光走査型内視鏡プロセッサは、入射する光を第1の入射端から第1の出射端に伝達し伝達した光を第1の出射端からビーム状に出射する供給光伝達路と、第1の出射端を伝達した光の出射方向に対して垂直な方向に変位させる駆動部と第1の出射端から出射される光の光路上に設けられ第1の帯域の光を反射し第1の帯域の域外の第2の帯域の光を透過する第1の光学フィルタと第1の光学フィルタにより反射される第1の帯域の光の光路上に設けられ第1の帯域の光の入射位置に応じた透過率で第1の帯域の光を透過させる第2の光学フィルタと第2の光学フィルタにより透過された第1の帯域の光を第2の入射端から第2の出射端まで伝達する検出光伝達路とを有する光走査型内視鏡における第1の入射端に第1の帯域の光を出射する検出光光源と、第2の出射端から出射する第1の帯域の光の光量を検出する第1の受光部と、第1の受光部による第1の帯域の光の受光量に基づいて第1の出射端の位置を検出する位置検出部とを備えることを特徴としている。
本発明によれば、光走査型内視鏡において照明光を走査するための光供給伝達路の変位位置の検出が可能である。
以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の一実施形態を適用した光走査型内視鏡装置の外観を概略的に示す外観図である。
光走査型内視鏡装置10は、光走査型内視鏡プロセッサ20、光走査型内視鏡50、およびモニタ11によって構成される。光走査型内視鏡プロセッサ20は、光走査型内視鏡50、およびモニタ11に接続される。
なお、以下の説明において光供給ファイバ(図1において図示せず)の出射端(第1の出射端)、反射光ファイバ(図1において図示せず)の入射端(第2の入射端)、および位置検出ファイバ(図1において図示せず)の入射端(第3の入射端)は光走査型内視鏡50の挿入管51の遠位端側に配置される端部であり、光供給ファイバの入射端(第1の入射端)、反射光ファイバの出射端(第2の出射端)、および位置検出ファイバの出射端(第3の出射端)は光走査型内視鏡プロセッサ20と接続されるコネクタ52に配置される端部である。
光走査型内視鏡プロセッサ20から観察対象領域OAに照射する光が供給される。供給された光は光供給ファイバ(供給光伝達路)により挿入管51の遠位端に伝達され、観察対象領域内の一点に向かって照射される。光が照射された観察対象領域上の一点における反射光が、光走査型内視鏡50の挿入管51の先端から光走査型内視鏡プロセッサ20に伝達される。
光供給ファイバの出射端の向く方向が、ファイバ駆動部(図1において図示せず)により変えられる。先端の方向を変えることにより、光供給ファイバから照射される光が観察対象領域上に走査される。ファイバ駆動部は、光走査型内視鏡プロセッサ20により制御される。
光走査型内視鏡プロセッサ20は光の照射位置において散乱する反射光を受光し、受光量に応じた画素信号を生成する。走査する領域全体の画素信号を生成することにより、1フレームの画像信号を生成する。生成した画像信号がモニタ11に送信され、画像信号に相当する画像がモニタ11に表示される。
図2に示すように、光走査型内視鏡プロセッサ20には、光源ユニット30、位置検出受光ユニット40(第1の受光部)、画像受光ユニット21(第2の受光部)、スキャン駆動回路22(スキャン制御部、補正部)、画像信号処理回路23(位置検出部、画像作成部)、タイミングコントローラ24、およびシステムコントローラ25などが設けられる。
後述するように、光源ユニット30から観察対象領域に照射する光および光供給ファイバ53の変位位置の検出用の光が光供給ファイバ53に供給される。スキャン駆動回路22は、ファイバ駆動部54(駆動部)に光供給ファイバ53を駆動させる。
光が照射された観察対象領域の反射光が、光走査型内視鏡50により光走査型内視鏡プロセッサ20に伝達される。また、光供給ファイバ53の位置に応じた検出用の光も光走査型内視鏡50により光走査型内視鏡プロセッサ20に伝達される。光走査型内視鏡プロセッサ20に伝達された反射光および検出用の光は、画像受光ユニット21および位置検出受光ユニット40に受光される。
画像受光ユニット21により、受光量に応じた画素信号が生成される。また、位置検出受光ユニット40により、光供給ファイバ53の変位位置に応じた位置信号が生成される。画素信号および位置信号は、画像信号処理回路23に送信される。
画像信号処理回路23は、位置信号に応じた画像メモリ26上のアドレスに画素信号を格納する。観察対象領域全体に対応する画素信号を格納すると、画像信号処理回路23は画素信号に所定の信号処理を施し、1フレームの画像信号としてエンコーダ27を介してモニタ11に送信する。
光走査型内視鏡プロセッサ20と光走査型内視鏡50とを接続すると、光源ユニット30と光走査型内視鏡50に設けられる光供給ファイバ53とが、画像受光ユニット21と反射光ファイバ55(撮像伝達路)とが、および位置検出受光ユニット40と位置検出ファイバ56とが光学的に接続される。
また、光走査型内視鏡プロセッサ20と光走査型内視鏡50とを接続すると、スキャン駆動回路22と光走査型内視鏡50に設けられるファイバ駆動部54とが電気的に接続される。
なお、光源ユニット30、位置検出受光ユニット40、画像受光ユニット21、スキャン駆動回路22、画像信号処理回路23、およびエンコーダ27は、タイミングコントローラ24により各部位の動作の時期が制御される。また、タイミングコントローラ24および光走査型内視鏡装置10の各部位の動作はシステムコントローラ25により制御される。また、フロントパネル(図示せず)などにより構成される入力部28により、使用者によるコマンド入力が可能である。
図3に示すように、光源ユニット30は、赤色光レーザ31r(照明光光源)、緑色光レーザ31g(照明光光源)、青色光レーザ31b(照明光光源)、第1、第2の赤外光レーザ31i1、31i2(検出光光源、第1、第2の光源)、第1〜第5のフィルタ32a〜32e、集光レンズ33、およびレーザ駆動回路34などによって構成される。
赤色光レーザ31r、緑色光レーザ31g、青色光レーザ31bは、それぞれ、赤色光レーザービーム、緑色光レーザービーム、青色光レーザービームを発する。第1、第2の赤外光レーザ31i1、31i2は、赤外波長帯域(第1の帯域)すなわち可視領域(第2の帯域)の域外であって、互いに異なる第3、第4の帯域の赤外光レーザービームを発する。
第1のフィルタ32aは緑色光レーザ31gが発する帯域の緑色光を反射し、他の帯域の光を透過する光学フィルタである。第2のフィルタ32bは青色光レーザ31bが発する帯域の青色光を反射し、他の帯域の光を透過する光学フィルタである。
第3のフィルタ32cは第3、第4の帯域の赤外光を反射し、他の帯域の光を透過する光学フィルタである。第4のフィルタ32dは第3の帯域の赤外光を反射し、他の帯域の赤外光を透過する光学フィルタである。第5のフィルタ32eは第4の帯域の赤外光を反射するミラーである。
光供給ファイバ53と光源ユニット30とが接続された状態において、赤色光レーザ31rから出射される赤色光レーザービームを光供給ファイバ53の入射端に導くための光路中に、第1〜第3のフィルタ32a〜32c、および集光レンズ33が配置される。なお、第1〜第3のフィルタ32a〜32cは赤色光レーザービームの光路に対して45°傾斜させた状態で固定される。
緑色光レーザ31gが発する緑色光レーザービームが第1のフィルタ32aにより反射され第2、第3のフィルタ32b、32cを透過して光供給ファイバ53の入射端に入射するように、緑色光レーザ31gが配置される。
青色光レーザ31bが発する青色光レーザービームが第2のフィルタ32bにより反射され第3のフィルタ32cを透過して光供給ファイバ53の入射端に入射するように、青色光レーザ31bが配置される。
第1の赤外光レーザ31i1が発する第3の帯域の赤外光レーザービームが第4、第3のフィルタ32d、32cにより反射され光供給ファイバ53の入射端に入射するように、第4のフィルタ32dおよび第1の赤外光レーザ31i1が配置される。
第2の赤外光レーザ31i2が発する第4の帯域の赤外光レーザービームが第5のフィルタ32eにより反射され第4のフィルタ32dを透過しさらに第3のフィルタ32cにより反射され光供給ファイバ53の入射端に入射するように、第5のフィルタ32eおよび第2の赤外光レーザ31i2が配置される。
第1、第2の赤外光レーザービーム、青色光レーザービーム、緑色光レーザービーム、および赤色光レーザービームは集光レンズ33により集光されて、光供給ファイバ53の入射端に入射する。
挿入管51の遠位端付近のリアルタイム画像の観察時に、赤色光レーザービーム、緑色光レーザービーム、および青色光レーザービームが混合されたビーム状の白色光と第3、第4の帯域の赤外光が光供給ファイバ53に供給される。
赤色光レーザ31r、緑色光レーザ31g、青色光レーザ31b、および第1、第2の赤外光レーザ31i1、31i2はレーザ駆動回路34により駆動される。なお、レーザ駆動回路34は、タイミングコントローラ24により発光と消灯の時期を制御する。
次に、光走査型内視鏡50の構成について詳細に説明する。図4に示すように、光走査型内視鏡50には、光供給ファイバ53、反射光ファイバ55、位置検出ファイバ56、および先端ユニット60などが設けられる。
挿入管51の遠位端に先端ユニット60が配置される。光供給ファイバ53、反射光ファイバ55、および位置検出ファイバ56(検出光伝達路)は、コネクタ52から先端ユニット60まで延設される。
図5に示すように、先端ユニット60は、中空管61、ファイバ駆動部54、ビームスプリッタ62(第1の光学フィルタ)、位置検出フィルタ63(第2の光学フィルタ)、集光レンズ64、ミラー65、出射レンズ66により構成される。中空管61は硬質部材により円筒形に形成され、遠位端における挿入管51の軸方向と中空管61の軸方向とが平行となるように、中空管61の取付け姿勢が調整される。
なお、以下の説明において、光供給ファイバ53の出射端の軸方向が中空管61の軸方向と平行な状態における出射端からの光の出射方向を第1の方向とする。また、第1の方向に垂直な任意の方向を第2の方向(第2、第4の方向)とする。
光供給ファイバ53は、中空管61内にファイバ駆動部54を介して支持される。なお、光供給ファイバ53がファイバ駆動部54により変位される前の状態において光供給ファイバ53の軸方向が第1の方向と平行となるように光供給ファイバ53の取付け姿勢が調整される。
図6に示すように、ファイバ駆動部54は、ファイバ支持部54sおよび屈曲部54bにより形成される。屈曲部54bは円筒形状であり、円筒内部に光供給ファイバ53が挿通されている。ファイバ支持部54sにより光供給ファイバ53は屈曲部54bの挿入管51の遠位端側の端部において支持される。
図7に示すように、屈曲部54bには第1、第2の屈曲源54b1、54b2が設けられる。第1、第2の屈曲源54b1、54b2はそれぞれ2組の圧電素子であり、スキャン駆動回路22から送信されるファイバ駆動信号に基づいて屈曲部54bの円筒軸方向に伸縮する。
第1の屈曲源54b1を構成する2つの圧電素子が、第2の方向に沿って並びながら屈曲部54bの円筒の中心を挟むように屈曲部54bの円筒外周面に固定される。また、第2の屈曲源54b2を構成する2つの圧電素子が、第1、第2の方向に垂直な第3の方向に沿って並びながら屈曲部54bの円筒の中心を挟むように屈曲部54bの円筒外周面に固定される。
図8に示すように、第1の屈曲源54b1を構成する2つの圧電素子を同時に逆方向に伸縮させることにより、第2の方向に沿って屈曲部54は屈曲する。また、第2の屈曲源54b2を構成する2つの圧電素子を同時に逆方向に伸縮させることにより、第3の方向に沿って屈曲部54は屈曲する。
光供給ファイバ53はファイバ支持部54sを介して屈曲部54bに付勢され、第2、第3の方向、すなわち光供給ファイバ53の出射端からの光の出射方向に垂直な2方向に屈曲する。光供給ファイバ53が屈曲することにより、光供給ファイバ53の出射端は変位する。
なお、図9に示すように、光供給ファイバ53の出射端は第2、第3の方向に沿って振幅の増加と減少を繰返しながら振動するように駆動される。なお、振動の周波数は第2、第3の方向において同一となるように調整される。また、振幅の増加時期と減少時期も第1、第2の方向において一致するように調整される。
第2、第3の方向に沿ってこのような振動をさせることにより、図10に示すような渦巻き型の変位経路を通るように光供給ファイバ53の先端は変位し、光が観察対象領域上で走査される。
なお、光供給ファイバ53を屈曲させない状態における光供給ファイバ53の出射端の位置が基準点spに定められる。基準点spから振幅を増加させながら振動させる期間(図9走査期間)に、観察対象領域への白色光の照射および画素信号の採取が実行される。
また、最大振幅になるまで変位させると一画像を作成するための走査を終了し、振幅を減少させながら振動させて光供給ファイバ53の出射端を基準点spにまで戻し(図9制動期間参照)、再び次の画像を作成するための走査が実行される。
光供給ファイバ53の出射端が基準点spに位置するときの光の出射方向に、ビームスプリッタ62および出射レンズ66が配置される(図5参照)。ビームスプリッタ62は板状に形成され、入射面および出射面が第1の方向に対して45°傾斜した状態で中空管61に固定される。また出射レンズ66は、光軸が第1の方向と平行な状態で中空管61に固定される。
ビームスプリッタ62は、赤外波長帯域の光を反射し、可視領域の光を透過させる。したがって、光供給ファイバ53の出射端から出射する光の中で白色光成分はビームスプリッタ62を透過する。また、第3、第4の帯域の赤外光成分がビームスプリッタ62により第3の方向に反射される。
ビームスプリッタ62による赤外光の反射方向において、中空管61には孔部61hが形成される。孔部61hには、位置検出フィルタ63および集光レンズ64が固定される。位置検出フィルタ63は板状に形成され、表面が第1、第2の方向に平行となるように固定される。また、集光レンズ64は光軸が第3の方向に平行になるように固定される。
位置検出フィルタ63は入射する位置に応じた透過率で第3、第4の帯域の赤外光を透過する。図11に示すように、位置検出フィルタ63への光の照射位置が第1の方向に変位するほど第3の帯域の赤外光の透過率が大きくなるように、位置検出フィルタ63は形成される。また、位置検出フィルタ63への光の照射位置が第2の方向に変位するほど第4の帯域の赤外光の透過率が大きくなるように、位置検出フィルタ63は形成される。
ビームスプリッタ62により反射された赤外光は位置検出フィルタ63を透過して、集光レンズ64により集光される。集光された赤外光を中空管61の外側において中空管61の軸方向に反射するように、ミラー65が設けられる。
ミラー65による赤外光の反射方向に、位置検出ファイバ56の入射端が配置される。位置検出ファイバ56に入射した赤外光は位置検出ファイバ56により位置検出受光ユニット40に伝達される。
なお、前述のように、光供給ファイバ53の出射端からは白色光成分も出射する。出射される白色光は、ビームスプリッタ62および出射レンズ66を透過して、観察対象領域の一点に向けて出射する(図12参照)。白色光が照射された観察対象領域OAの一点における反射光が散乱し、散乱した反射光が反射光ファイバ55の先端に入射する。
光走査型内視鏡50には複数の反射光ファイバ55が設けられる。反射光ファイバ55の入射端は、出射レンズ66の周囲を囲むように配置される。観察対象領域OA上の一点における散乱光は、各反射光ファイバ55に入射する。
反射光ファイバ55に入射した反射光は、反射光ファイバ55の出射端まで伝達される。前述のように、反射光ファイバ55は出射端において画像受光ユニット21に接続される。反射光ファイバ55に伝達された反射光は、画像受光ユニット21に向かって出射する。
位置検出受光ユニット40は、図13に示すように、コリメートレンズ41、ビームスプリッタ42、第1、第2の赤外受光器43a、43b(第1、第2の受光器)、第1、第2のA/Dコンバータ44a、44bによって構成される。
位置検出ファイバ56と位置検出受光ユニット40とが接続された状態において、位置検出ファイバ56の出射端からの光の出射方向にコリメートレンズ41、ビームスプリッタ42、および第1の赤外受光器43aが配置される。
ビームスプリッタ42は位置検出ファイバ56の出射端からの光の出射方向に対して45°傾斜させた状態で固定される。ビームスプリッタ42は第3の帯域の赤外光を透過して、第4の帯域の赤外光を反射する。ビームスプリッタ42による光の反射方向に第2の赤外受光器43bが配置される。
位置検出ファイバ56の出射端から出射される第3、第4の帯域の赤外光は、コリメートレンズ41を介してビームスプリッタ42に到達する。第3の帯域の赤外光はビームスプリッタ42を透過して、第1の赤外受光器43aに入射する。第4の帯域の赤外光はビームスプリッタ42に反射され、第2の赤外受光器43bに入射する。
第1の赤外受光器43aでは、受光する第3の帯域の赤外光の受光量に応じた信号強度である第1の方向位置信号が生成される。第2の赤外受光器43bでは、受光する第4の帯域の赤外光の受光量に応じた信号強度である第2の方向位置信号が生成される。第1、第2の方向位置信号は画像信号処理回路23に送信される。
画像受光ユニット21は、反射光ファイバ55から反射光を受光する。画像受光ユニット55では、反射光の赤色光成分、緑色光成分、および青色光成分毎の受光量を検出し、それぞれの受光量に応じた画素信号が生成される。画素信号は画像信号処理回路23に送信される。
画像信号処理回路23では、第1、第2の位置信号に基づいて、瞬間における光の照射位置が判別される。画像信号処理回路23は判別した位置に対応する画像メモリ26のアドレスに、受信した画像信号を格納する。
前述のように、照射する光が観察対象領域上に走査され、それぞれの位置における反射光に基づいて画素信号が生成され、対応する画像メモリ26のアドレスに格納される。走査始点から走査終点までの間に格納した各位置における画素信号により、観察対象領域の像に対応するフレームの画像信号が形成される。画像信号は前述のように所定の信号処理が施されてから、モニタ11に送信される。
なお、再現性の高い画像を作成するためには、光供給ファイバ53の出射端が前述の渦巻き型変位経路に沿って変位することが必要である。しかし、ファイバ駆動部54周囲の温度や振動などの外部要因の影響を受け、所定の渦巻き型変位経路からずれることがある。例えば、図14に示すように、第3の方向に十分に変位せず、所定の渦巻き型変位経路(2点鎖線参照)から第3の方向にずれた第1の変位経路(実線参照)を通ることがある。
1フレームの画像信号の生成後、次のフレームの画像信号を生成するときに、画像信号処理回路23では、第1、第2の変位信号に基づく変位位置が所定の渦巻き型変位経路上にある場合に、対応するアドレスに受信した画素信号を格納することにより画素信号が更新される。すなわち、図14において、所定の渦巻き型変位経路と第1の変位経路とが重なる位置における画素の画素信号が更新される。
一方、第1、第2の変位信号に基づく変位位置が所定の渦巻き型変位経路上に無い場合には、受信した画素信号は削除される。すなわち、図14において、所定の渦巻き型変位経路と第1の変位経路とが重ならない位置における画素の画素信号は更新されずに削除される。
このように、光供給ファイバ53の出射端が所定の渦巻き型変位経路からずれる場合には、一部のアドレスの画素信号は更新されない。更新されなかった画素信号、すなわち前のフレームにおける画素信号と更新された画素信号により次のフレームの画像信号が作成される。
なお、光供給ファイバ53の出射端が第1の変位経路上を変位し続けると、一部の画素において画素信号が更新されない状態が続き、正確なリアルタイム画像を表示することが出来なくなる。
そこで、第1、第2の方向位置信号はスキャン駆動回路22にも送信される。スキャン駆動回路22では、連続的に受信する複数の第1、第2の方向位置信号に基づいて光供給ファイバ53の出射端が所定の渦巻き型変位経路からずれているかが判別される。渦巻き型変位経路からずれている場合は、スキャン駆動回路22はズレを補正するように調整したファイバ駆動信号を生成し、ファイバ駆動部に送信する。
以上のように、本実施形態の光走査型内視鏡装置によれば、光供給ファイバ53の出射端の位置を検出可能である。検出した位置に基づいて画素信号を対応するアドレスに格納して画像を作成するので、画像に生じる歪みの影響を減じることが可能である。
また、本実施形態の光走査型内視鏡装置によれば、光供給ファイバ53の出射端の変位経路が所定の渦巻き型変位経路からずれた場合であっても、画素信号を生成した位置に対応するアドレスの画素信号のみ直前のフレームの画像信号から更新することにより、画像の歪みを防ぐことが可能である。
また、本実施形態の光走査型内視鏡装置によれば、光供給ファイバ53の出射端の変位経路が所定の渦巻き型変位経路からずれた場合に、ズレに基づいて所定の変位経路に沿って変位するように修正することにより、画像の再現性の低下を防ぐことが可能である。
なお、本実施形態において、位置検出フィルタ63により透過率の変化する方向である第1、第2の方向は互いに垂直であるが、交差する関係であればよい。ただし、第1、第2の屈曲部59b1、59b2による屈曲方向に出射端を変位させるときのビームスプリッタ62による反射光の変位方向に対して透過率が変化することが、光供給ファイバ53を駆動するために好ましい。
また、本実施形態において、位置検出フィルタ63において異なる2方向に沿って透過率が変化する構成であるが、何方向であってもよいし、1方向であってもよい。1方向である場合には、その方向に対応する方向への変位量しか検出できない。ただし、従来の光走査型内視鏡装置では光供給ファイバ53を駆動するためのファイバ駆動信号のみに基づいて光供給ファイバ53の出射端の位置を推定していた。そこで、1方向における正確な位置を用いることにより、従来の光走査型内視鏡装置に比べて位置の推定精度が向上する。
また、本実施形態において、第1、第2の赤外光レーザ31i1、31i2を用いて互いに重複しない第3、第4の帯域の赤外光レーザービームを出射させる構成であるが、第3、第4の帯域を含む広帯域の赤外光を出射可能なレーザを用いてもよい。
また、本実施形態において、赤外光を用いて光供給ファイバ53の変位位置を検出する構成であるが、紫外光を用いてもよいし、可視領域の光を用いてもよい。ただし、本実施形態の赤外光のように変位位置を検出するための光の帯域を反射し、それ以外の帯域の光を透過するビームスプリッタを用いる必要がある。
また、本実施形態において、連続する2フレームの画像信号における2番目のフレームの画像信号の作成時に所定の渦巻き型変位経路上の位置に対応する画素信号が生成されなかった場合に、生成されなかった画素信号は直前のフレームの画素信号を用いる構成であるが、このような構成に限られない。
光供給ファイバ53の出射端の変位位置に関わらず、すべての画素信号が更新されてもよい。すべての画素信号を更新することにより画像信号を作成しても、対応する画像の観察は可能である。あるいは、第1、第2の位置信号に基づいて変位位置を判別可能であり、画像処理により歪みを低減化させることは可能である。
また、本実施形態において、光供給ファイバ53の出射端の変位経路が所定の渦巻き型変位経路からずれる場合に所定の渦巻き型変位経路に戻すように修正する構成であるが、修正しなくてもよい。前述のように、画像の観察は可能であるし、また、第1、第2の位置信号を用いて適当な画像処理を施すにより歪みを除去することができる。
また、本実施形態において、光供給ファイバ53の出射端を渦巻き型変位経路に沿って変位させる構成であるが、変位経路は渦巻き型に限られない。他の変位経路に沿って変位させても本実施形態と同じ効果を得ることは可能である。
また、本実施形態において、光源ユニット30から白色光が出射される構成であるが、生体組織に蛍光を励起させる励起光を出射する構成であってもよい。反射光ファイバ55の入射端に入射する自家蛍光が画像受光ユニット21に伝達され、自家蛍光に基づく画像が形成されてもよい。
また、第1、第2の実施形態の光走査型内視鏡装置では、赤色光、緑色光、青色光、および赤外光を出射する光源にレーザを用いる構成であるが、他の種類の光源を用いてもよい。ただし、光走査型内視鏡では、観察対象領域内の極小の一点に対して光が照射されることが好ましく、強い指向性を有する光を出射するためにレーザを用いることが好ましい。
本発明の一実施形態を適用した光走査型内視鏡装置の外観を概略的に示す外観図である。 光走査型内視鏡プロセッサの内部構成を概略的に示すブロック図である。 光源ユニットの内部構成を概略的に示すブロック図である。 光走査型内視鏡の内部構成を概略的に示すブロック図である。 先端ユニットの内部構成を概略的に示す構造図である。 ファイバ駆動部の構造を示す光供給ファイバの軸方向に沿った断面図である。 ファイバ駆動部を光供給ファイバの出射端側から見た外観図である。 ファイバ駆動部の斜視図である。 光供給ファイバの出射端の第2、第3の方向に沿った変位量を示すグラフである。 ファイバ駆動部により駆動される光供給ファイバの変位経路である。 位置検出フィルタの光学特性を示すグラフである。 出射レンズから光が出射する状態を説明するための図である。 位置検出受光ユニットの内部構成を概略的に示すブロック図である。 渦巻き型変位経路からずれた第1の変位経路の例を示す図である。
符号の説明
10 光走査型内視鏡装置
20 光走査型内視鏡プロセッサ
22 スキャン駆動回路
23 画像信号処理回路
26 画像メモリ
30 光源ユニット
31r、31g、31b、31i1、31i2 赤色光レーザ、緑色光レーザ、青色光レーザ、第1の赤外光レーザ、第2の赤外光レーザ
40 位置検出受光ユニット
42 ビームスプリッタ
43a、43b 第1、第2の赤外受光器
50 光走査型内視鏡
51 挿入管
53 光供給ファイバ
54 ファイバ駆動部
55 反射光ファイバ
56 位置検出ファイバ
60 先端ユニット
62 ビームスプリッタ
63 位置検出フィルタ
65 ミラー

Claims (10)

  1. 入射する光を第1の入射端から第1の出射端に伝達し、伝達した光を前記第1の出射端からビーム状に出射する供給光伝達路と、
    前記第1の出射端を、伝達した光の出射方向に対して垂直な方向に変位させる駆動部と、
    前記第1の入射端に、第1の帯域の光を出射する検出光光源と、
    前記第1の出射端から出射される光の光路上に設けられ、前記第1の帯域の光を反射し、前記第1の帯域の域外の第2の帯域の光を透過する第1の光学フィルタと、
    前記第1の光学フィルタにより反射される前記第1の帯域の光の光路上に設けられ、前記第1の帯域の光の入射位置に応じた透過率で前記第1の帯域の光を透過させる第2の光学フィルタと、
    前記第2の光学フィルタにより透過された前記第1の帯域の光を第2の入射端から第2の出射端まで伝達する検出光伝達路と、
    前記第2の出射端から出射する前記第1の帯域の光の光量を検出する第1の受光部と、
    前記第1の受光部による前記第1の帯域の光の受光量に基づいて、前記第1の出射端の位置を検出する位置検出部とを備える
    ことを特徴とする光走査型内視鏡装置。
  2. 前記検出光光源は、前記第1の帯域に含まれ、互いに異なる帯域である第3、第4の帯域の光を出射し、
    前記第2の光学フィルタ上の第1の方向に沿って前記第3の帯域の光の透過率が変化し、前記第2の光学フィルタ上の前記第1の方向と異なる第2の方向に沿って前記第4の帯域の光の透過率が変化し、
    前記第1の受光部は、前記第3の帯域の光の光量を検出する第1の受光器と、前記第4の帯域の光の光量を検出する第2の受光器とを有し、
    前記位置検出部は、前記第1の受光器による前記第3の帯域の光の受光量に基づいて前記第1の方向に対応する第3の方向に沿った前記第1の出射端の位置を検出し、前記第2の受光器による前記第4の帯域の光の受光量に基づいて前記第2の方向に対応する第4の方向に沿った前記第1の出射端の位置を検出する
    ことを特徴とする請求項1に記載の光走査型内視鏡装置。
  3. 前記検出光光源は、前記第3、第4の帯域の光をそれぞれ出射する第1、第2の光源を有することを特徴とする請求項2に記載の光走査型内視鏡装置。
  4. 前記第1の入射端に、観察対象領域に照射する前記第2の帯域の光を出射する照射光光源と、
    前記照射光光源から前記第1の入射端に入射し前記第1の出射端から出射され前記第2の光学フィルタを透過して前記観察対象領域に照射される前記第2の帯域の光の前記観察対象領域における反射光または発する光を第3の入射端に入射させ、入射した光を前記第3の入射端から第3の出射端まで伝達する撮像伝達路と、
    前記第3の出射端から出射する光の光量に応じた画素信号を生成する第2の受光部と、
    前記第1の出射端の位置に対応したアドレスを有し、前記画素信号を格納する画像メモリと、
    前記第2の受光部が前記画素信号を生成したときの前記位置検出部により検出された前記第1の出射端の位置に対応する前記画像メモリのアドレスに、前記画素信号を格納させる画像作成部とを備える
    ことを特徴とする請求項1〜請求項3のいずれか1項に記載の光走査型内視鏡装置。
  5. 前記第1の出射端を所定の変位経路に沿って変位させるように前記駆動部を制御するスキャン制御部を備え、
    前記画像作成部は、前記所定の変位経路上の複数の位置において前記第2の帯域の光が照射される前記観察対象領域上の複数の狭小領域における反射光または発する光に応じた複数の前記画素信号を前記複数の位置に対応する前記画像メモリのアドレスに格納することにより1フレームの画像信号を作成し、第1のフレームの画像信号の作成後の次の第2のフレームの画像信号を作成時に前記第1の出射端の変位した位置が前記所定の変位経路上の位置である場合に対応するアドレスの前記画素信号を更新し前記画素信号が更新されなかったアドレスの前記画素信号と更新されたアドレスの前記画素信号により前記第2のフレームの画像信号を形成する
    ことを特徴とする請求項4に記載の光走査型内視鏡装置。
  6. 前記第1の出射端を所定の変位経路に沿って変位させるように前記駆動部を制御するスキャン制御部と、
    前記位置検出部により検出された前記第1の出射端の位置が前記所定の変位経路から外れている場合に、前記第1の出射端の変位位置を前記所定の変位経路上に戻すように補正する補正部とを備える
    ことを特徴とする請求項1〜請求項4のいずれか1項に記載の光走査型内視鏡装置。
  7. 前記第2の光学フィルタに透過された前記第1の帯域の光を集光して、前記第2の入射端に向けて出射する集光レンズを備えることを特徴とする請求項1〜請求項6のいずれか1項に記載の光走査型内視鏡装置。
  8. 前記第1の帯域は可視領域の域外であることを特徴とする請求項1〜請求項7のいずれか1項に記載の光走査型内視鏡装置。
  9. 入射する光を第1の入射端から第1の出射端に伝達し、伝達した光を前記第1の出射端からビーム状に出射する供給光伝達路と、
    前記第1の出射端を、伝達した光の出射方向に対して垂直な方向に変位させる駆動部と、
    前記第1の出射端から出射される光の光路上に設けられ、第1の帯域の光を反射し、第1の帯域の域外の第2の帯域の光を透過する第1の光学フィルタと、
    前記第1の光学フィルタにより反射される前記第1の帯域の光の光路上に設けられ、前記第1の帯域の光の入射位置に応じた透過率で前記第1の帯域の光を透過させる第2の光学フィルタと、
    前記第2の光学フィルタにより透過された前記第1の帯域の光を第2の入射端から第2の出射端まで伝達する検出光伝達路とを備える
    ことを特徴とする光走査型内視鏡。
  10. 請求項9に記載の光走査型内視鏡における前記第1の入射端に、前記第1の帯域の光を出射する検出光光源と、
    前記第2の出射端から出射する前記第1の帯域の光の光量を検出する第1の受光部と、
    前記第1の受光部による前記第1の帯域の光の受光量に基づいて、前記第1の出射端の位置を検出する位置検出部とを備える
    ことを特徴とする光走査型内視鏡プロセッサ。
JP2008331814A 2008-12-26 2008-12-26 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ Expired - Fee Related JP5235650B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008331814A JP5235650B2 (ja) 2008-12-26 2008-12-26 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ
US12/647,083 US8348829B2 (en) 2008-12-26 2009-12-24 Scanning endoscope apparatus, scanning endoscope, and scanning endoscope processor
DE102009060621.1A DE102009060621B4 (de) 2008-12-26 2009-12-28 Abtastendoskopeinrichtung und Abtastendoskop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331814A JP5235650B2 (ja) 2008-12-26 2008-12-26 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ

Publications (2)

Publication Number Publication Date
JP2010148764A true JP2010148764A (ja) 2010-07-08
JP5235650B2 JP5235650B2 (ja) 2013-07-10

Family

ID=42568530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331814A Expired - Fee Related JP5235650B2 (ja) 2008-12-26 2008-12-26 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ

Country Status (1)

Country Link
JP (1) JP5235650B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454964C1 (ru) * 2011-01-11 2012-07-10 Александр Ливиевич Ураков Эндоскопический зонд
WO2014020943A1 (ja) * 2012-07-30 2014-02-06 オリンパスメディカルシステムズ株式会社 内視鏡システム
WO2014065025A1 (ja) * 2012-10-22 2014-05-01 オリンパスメディカルシステムズ株式会社 走査型内視鏡システム
CN103876701A (zh) * 2012-12-19 2014-06-25 中国医药大学 光纤式穿透影像撷取方法及其装置
JP2014124213A (ja) * 2012-12-25 2014-07-07 Olympus Corp レーザ治療装置
WO2015159573A1 (ja) * 2014-04-17 2015-10-22 オリンパス株式会社 スキャナユニット、光ファイバスキャナ、照明装置および観察装置
KR20160071254A (ko) * 2014-12-11 2016-06-21 주식회사 지에스엠코리아 내시경용 카테터
JP2020095114A (ja) * 2018-12-11 2020-06-18 株式会社日立製作所 光走査装置及び光走査方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063611A (ja) * 1991-06-26 1994-01-14 Asahi Optical Co Ltd 走査式光学装置
JP2003535659A (ja) * 2000-06-19 2003-12-02 ユニヴァーシティ オブ ワシントン 走査型単一光ファイバシステムを用いる医療用画像化、診断および治療
JP2007175429A (ja) * 2005-12-28 2007-07-12 Olympus Corp 内視鏡装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063611A (ja) * 1991-06-26 1994-01-14 Asahi Optical Co Ltd 走査式光学装置
JP2003535659A (ja) * 2000-06-19 2003-12-02 ユニヴァーシティ オブ ワシントン 走査型単一光ファイバシステムを用いる医療用画像化、診断および治療
JP2007175429A (ja) * 2005-12-28 2007-07-12 Olympus Corp 内視鏡装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454964C1 (ru) * 2011-01-11 2012-07-10 Александр Ливиевич Ураков Эндоскопический зонд
WO2014020943A1 (ja) * 2012-07-30 2014-02-06 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP5639310B2 (ja) * 2012-10-22 2014-12-10 オリンパスメディカルシステムズ株式会社 走査型内視鏡システム
WO2014065025A1 (ja) * 2012-10-22 2014-05-01 オリンパスメディカルシステムズ株式会社 走査型内視鏡システム
US9629517B2 (en) 2012-10-22 2017-04-25 Olympus Corporation Scanning endoscope system
TWI481853B (zh) * 2012-12-19 2015-04-21 Univ China Medical 光纖式穿透影像擷取方法及其裝置
CN103876701A (zh) * 2012-12-19 2014-06-25 中国医药大学 光纤式穿透影像撷取方法及其装置
JP2014124213A (ja) * 2012-12-25 2014-07-07 Olympus Corp レーザ治療装置
WO2015159573A1 (ja) * 2014-04-17 2015-10-22 オリンパス株式会社 スキャナユニット、光ファイバスキャナ、照明装置および観察装置
JP2015206824A (ja) * 2014-04-17 2015-11-19 オリンパス株式会社 スキャナユニット、光ファイバスキャナ、照明装置および観察装置
US10197797B2 (en) 2014-04-17 2019-02-05 Olympus Corporation Scanner unit, optical fiber scanner, illumination apparatus, and observation apparatus
KR20160071254A (ko) * 2014-12-11 2016-06-21 주식회사 지에스엠코리아 내시경용 카테터
KR101698574B1 (ko) * 2014-12-11 2017-02-01 주식회사 지에스엠코리아 내시경용 카테터
JP2020095114A (ja) * 2018-12-11 2020-06-18 株式会社日立製作所 光走査装置及び光走査方法
JP7084293B2 (ja) 2018-12-11 2022-06-14 株式会社日立製作所 光走査装置及び光走査方法

Also Published As

Publication number Publication date
JP5235650B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5235650B2 (ja) 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ
US8348829B2 (en) Scanning endoscope apparatus, scanning endoscope, and scanning endoscope processor
JP2010117442A (ja) 光走査型内視鏡、光走査型内視鏡プロセッサ、および光走査型内視鏡装置
US8466956B2 (en) Scanning endoscope processor and scanning endoscope apparatus
JP5225038B2 (ja) 光走査型内視鏡、光走査型内視鏡プロセッサ、および光走査型内視鏡装置
US8348836B2 (en) Scanning endoscope, scanning endoscope processor, and scanning endoscope apparatus
JP2010125270A (ja) 内視鏡装置
JP6226730B2 (ja) 光走査装置および光走査型観察装置
US10488647B2 (en) Method for measuring scanning pattern of optical scanning apparatus, apparatus for measuring scanning pattern, and method for calibrating image
JP2011045461A (ja) 光走査型内視鏡プロセッサ
JP5235651B2 (ja) 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ
JP2011050667A (ja) 光走査型内視鏡
JP5244623B2 (ja) 光走査型内視鏡プロセッサおよび光走査型内視鏡装置
JP6238751B2 (ja) 走査型観察装置
US10025087B2 (en) Optical scanning observation apparatus
JP6416277B2 (ja) 光走査型内視鏡装置
JP2010063497A (ja) 光走査型内視鏡プロセッサおよび光走査型内視鏡システム
JP6465436B2 (ja) 走査型内視鏡システム
JP2009254464A (ja) 光走査型内視鏡、光走査型内視鏡プロセッサ、および光走査型内視鏡装置
JPH10118004A (ja) 蛍光撮像装置
JP2011041754A (ja) 光走査型内視鏡
JP6081678B1 (ja) 走査型内視鏡
WO2016017199A1 (ja) 光走査型観察システム
US9753281B2 (en) Scanning endoscope with longitudinal vibration absorption
JP2010113309A (ja) 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees