JP2010145660A - 光学走査装置及びそれを用いた画像形成装置 - Google Patents

光学走査装置及びそれを用いた画像形成装置 Download PDF

Info

Publication number
JP2010145660A
JP2010145660A JP2008321641A JP2008321641A JP2010145660A JP 2010145660 A JP2010145660 A JP 2010145660A JP 2008321641 A JP2008321641 A JP 2008321641A JP 2008321641 A JP2008321641 A JP 2008321641A JP 2010145660 A JP2010145660 A JP 2010145660A
Authority
JP
Japan
Prior art keywords
light source
optical
lens
mirror
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008321641A
Other languages
English (en)
Other versions
JP2010145660A5 (ja
JP5279474B2 (ja
Inventor
Yoshihiko Tanaka
嘉彦 田中
Manabu Kato
加藤  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008321641A priority Critical patent/JP5279474B2/ja
Publication of JP2010145660A publication Critical patent/JP2010145660A/ja
Publication of JP2010145660A5 publication Critical patent/JP2010145660A5/ja
Application granted granted Critical
Publication of JP5279474B2 publication Critical patent/JP5279474B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】 半導体レーザから回転多面鏡までの間の光路上の入射系反射ミラーを廃止することによって部品点数の削減と煩雑な組立作業を減らしつつ、入射系反射ミラーを廃止しながらも半導体レーザから出射する光束の光軸方向において光学走査装置の大型化を抑制し、レイアウトを最適化する。
【解決手段】 光源ユニット1と偏向器6と走査レンズ4が一直線上に配置され、半導体レーザ1cから出射するレーザ光束Lが偏向器6の偏向面に対して副走査方向に関して斜めに入射するものであり、偏向器6によって偏向走査され走査レンズ4を通過した後に折り返しミラー7によって反射されたレーザ光束は、半導体レーザ1cから出射するレーザ光束Lの光軸方向における光源ユニット1とコリメータレンズ2との間を通過する光学走査装置。
【選択図】 図2

Description

本発明は、シート等の記録材上に画像を形成する機能を備えた、例えば、複写機、プリンタ、あるいは、ファクシミリ装置などの画像形成装置に用いられる光学走査装置に関するものである。
従来、レーザプリンタ等の画像形成装置に用いられる光学走査装置は、画像信号に応じて光源手段から光変調され出射した光束を偏向手段により偏向走査し、得られた走査光を感光ドラム上に結像させて静電潜像を形成する。次いで、感光ドラム上の静電潜像を現像装置によってトナー像として顕像化し、このトナー像を記録材に転写して定着装置へ送り、記録材上のトナーを加熱定着させることで印刷(プリント)が行われる。
光学走査装置の具体的な構成としては、半導体レーザなどの光源手段から出射したレーザ光束を、その光軸上に反射ミラーを配置して回転多面鏡などの偏向手段の偏向面に対して正面から入射させる形態がある(例えば、特許文献1参照)。レーザ光束を回転多面鏡の反射面(偏向面)に対して正面から入射させる形態には、回転多面鏡の反射面を主走査方向にて小型化できるため回転多面鏡を小型化することができるというメリットがある。また、走査レンズに対しても正面からレーザ光束が入射するので、光学性能の左右対称性が確保されるというメリットもある。
特開平09−096773号公報
しかしながら上記従来技術によれば、光学走査装置に関して次のような未解決の課題がある。
半導体レーザから出射した光束を、回転多面鏡の反射面に対して正面から入射させるために半導体レーザから回転多面鏡までの間の光路上に反射ミラーを配置している。この構成の場合、レーザ光束を回転多面鏡の反射面の規定の位置に入射させるために、反射ミラーの高精度な位置決めが必要である。ここで、通常、反射ミラーの固定方法としては組立工具で反射ミラーの姿勢を調整して、その姿勢で紫外線硬化樹脂などの接着剤で固定する手段が用いられる。また反射ミラーを組立工具で保持するために、反射面以外にも保持領域が必要となりある程度の大きさも必要となる。したがって、反射ミラーを調整位置決めして固定するまでに多大な組立工数がかかる。また、反射ミラーは通常は硝子でできているため大きな反射ミラーは高価格であり、光学走査装置のコスト低減の妨げとなる。
また、反射ミラーの固定手段として紫外線硬化樹脂などの接着剤を用いているため、光学走査装置の周囲の温度や湿度の環境変動により接着剤の微小な変形が生じ、反射ミラーの姿勢が変化する恐れもある。
したがって、半導体レーザから回転多面鏡までの間の光路上には反射ミラーを設けなくて良い構成としたいが、反射ミラーをなくすと光源ユニットや入射光学系(コリメータレンズやシリンドリカルレンズなど)を回転多面鏡に対して正面に配置しなければならない。この場合、半導体レーザを有する光源ユニットや入射光学系を、回転多面鏡の反射面で反射された後のレーザ光束との干渉を回避する必要がある。そのため、半導体レーザの光軸方向において回転多面鏡から遠ざけた位置に配置すると、光学走査装置が大型化してしまう。また、走査レンズと入射光学系との間に折り返しミラーを配置してレーザ光束を感光ドラムへ導光する形態としても、折り返しミラーとレーザ光束との干渉を回避する必要がある。そのために折り返しミラーは回転多面鏡から遠ざけた位置に配置しなければならない。その上、光源ユニットと入射光学系を折り返しミラーと干渉しないように更に回転多面鏡から遠ざけて配置しなければならず、上記と同様に光学走査装置が半導体レーザから出射する光束の光軸方向において大型化してしまう。
本発明の目的は、上記従来技術の有する問題点に鑑みてなされたものであり、半導体レーザから回転多面鏡までの間の光路上の入射系反射ミラーを廃止することによって部品点数の削減と煩雑な組立作業を減らしつつ、入射系反射ミラーを廃止しながらも半導体レーザから出射する光束の光軸方向において光学走査装置の大型化を抑制し、レイアウトを最適化することにある。
上記目的を達成するために、本発明は、以下のように光学走査装置を構成する。光源及び前記光源を駆動する駆動回路基板を有する光源ユニットと、前記光源から出射する光束を平行化するコリメータレンズと、前記コリメータレンズによって平行化された光束を主走査方向に偏向走査する偏向装置と、前記偏向装置によって該主走査方向に偏向走査された光束を被走査面上に結像する走査レンズと、前記走査レンズを通過した後の光束を前記被走査面に向けて反射するミラーと、を有し、前記光源ユニットと前記偏向装置と前記走査レンズが一直線上に配置され、前記光源から出射する光束が前記偏向装置の偏向面に対して副走査方向に関して斜めに入射する光学走査装置において、前記偏向装置によって偏向走査され前記走査レンズを通過した後に前記ミラーによって反射された光束は、前記光源から出射する光束の光軸方向における前記光源ユニットと前記コリメータレンズとの間を通過することを特徴とする光学走査装置。
以上説明したように、本発明によれば、偏向装置によって偏向走査された後の光束が折り返しミラーで反射されて光源ユニットとコリメータレンズとの間を通過する構成としたため、光源ユニットを偏向装置の偏向面に対して正面に配置した構成でも光学走査装置の大型化を抑制することができる。また、光源ユニットから偏向装置までの光路上に入射系反射ミラーを設ける必要がないため、入射系反射ミラーを高精度に固定するための煩雑な調整組付けが不要となる。
したがって、部品点数の削減と煩雑な組立作業を減らしつつ、入射系反射ミラーを廃止しながらも半導体レーザから出射する光束の光軸方向において光学走査装置の大型化を抑制し、レイアウトを最適化した光学走査装置を実現することができる。
以下に図面を参照して、本発明を実施するための最良の形態を実施例に基づいて詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。
(第1実施形態)
本発明を適用可能な第1実施形態に係る光学走査装置を備えた画像形成装置について説明する。なお、以下の説明では、まず本発明の実施の形態に係る光学走査装置を備えた画像形成装置を例示して説明し、次いで画像形成装置に用いられる光学走査装置について詳しく説明する。
[画像形成装置の概略構成]
まず、図8を用いて第1実施形態に係る光学走査装置を備えた画像形成装置を例示して説明する。図8は第1実施形態に係る画像形成装置を示す模式断面図である。
本実施形態に係る画像形成装置は、後述する光学走査装置を具備し、該光学走査装置からの光束が像担持体を走査し、この走査された画像に基づいてシート等の記録材に画像形成を行う画像形成手段を備える画像形成装置である。ここでは、画像形成装置としてプリンタを例示して説明する。
図8に示すように、画像形成装置(プリンタ)は、得られた画像情報に基づいたレーザ光を、光学走査装置101から出射し、プロセスカートリッジ102に内蔵された像担持体としての感光ドラム103の被走査面上に照射する。すると、感光ドラム103の被走査面上に潜像が形成され、プロセスカートリッジ102によってこの潜像が現像剤としてのトナーによりトナー像として顕像化される。なお、プロセスカートリッジ102とは、感光ドラム103と、感光ドラム103に作用するプロセス手段として、帯電手段や現像手段等を一体的に有するものである。
一方、記録材積載板104上に積載された記録材Pは、給送ローラ105、及び分離パッド106によって1枚ずつ分離されながら給送され、次に中間ローラ107と搬送ローラ108によって、さらに下流側に搬送される。搬送された記録材P上には、感光ドラム103の面上に形成されたトナー像が転写ローラ109によって転写される。トナー像が転写された記録材Pは、さらに下流側に搬送され、内部に加熱体を有する定着器110により、トナー像が記録材Pに定着される。その後、記録材Pは、排出ローラ111によって機外に排出される。
なお、本実施形態では感光ドラム103に作用するプロセス手段としての前記帯電手段及び前記現像手段をプロセスカートリッジ102中に感光ドラム103と一体的に有することとしたが、各プロセス手段を感光ドラム103と別体に構成することとしてもよい。
[光学走査装置の構成]
次に図1、図2を用いて画像形成装置における光学走査装置について説明する。図1は本実施形態に係る光学走査装置の斜視図であり、図2は該光学走査装置の模式断面図である。これらの図において、光源ユニット1からはレーザ光束Lを発生させ、前方の光路上には、入射系光学素子(第1の光学素子)群であるコリメータレンズ2及びシリンドリカルレンズ3、出射系光学素子(第2の光学素子)である走査レンズ4、回転多面鏡5、該回転多面鏡5を回転駆動する駆動回路基板を有する偏向器(偏向装置)6が順次に配列されている。ここで、光源ユニット1と偏向器(偏向装置)6と走査レンズ4とは、一直線上に配置されている。レーザ光束Lは回転多面鏡5の反射面(偏向面)に対して副走査方向(主走査方向と直交する方向)に関して角度αで正面から斜めに入射する。回転多面鏡5の反射面で主走査方向に偏向走査された後のレーザ光束Lの光路上には走査レンズ4、折り返しミラー7、感光ドラム8が配列されている。すなわち、レーザ光束Lは回転多面鏡の反射面に入射する前と後の2回、走査レンズ4を通過している。このような光学系をダブルパス光学系と称する。斜入射角度αは、感光ドラム8上でのレーザ光束のスポット径不均一や走査線の歪等を抑制するために、なるべく小さく設定するのが良く、本実施形態では約3°に設定している。
また、感光ドラム8の有効画像領域外に偏向走査されるレーザ光束Lの一部を反射する信号検知前ミラー9が配置され、信号検知前ミラー9によって反射された後の光路上には結像レンズ10と信号検知センサ11が設けられている。12は前述した光源ユニット1、コリメータレンズ2、走査レンズ4、偏向器6などの光学部材を収容する光学箱であり、これらの光学部材は光学箱12と蓋(不図示)等により実質的に密閉された空間に収容されている。
光源ユニット1から発せられたレーザ光束Lは、コリメータレンズ2によって平行化され、シリンドリカルレンズ3と走査レンズ4とによって回転多面鏡5上に焦線を結像する。ここで、コリメータレンズ2によるレーザ光束Lの平行化とは、光源ユニット1から発せられた発散光であるレーザ光束をコリメータレンズ2によって平行化すること、又は、概ね平行である範囲内で規定の収束率のレーザ光束に変換することを称する。光源ユニット1から回転多面鏡5までの入射光路上において、走査レンズ4はほとんどパワーを持たない面で形成されている。そして、レーザ光束Lは偏向器6により回転される回転多面鏡5の反射面によって偏向走査され、走査レンズ4を通過して、折り返しミラー7で反射された後、感光ドラム8上に結像走査される。走査レンズ4は、回転多面鏡5において反射された後の出射光路上においては、感光ドラム8上にスポット光を形成するようにレーザ光束Lを集光し、またスポット光の走査速度が等速に保たれるように光学設計されている。このような走査レンズ4の特性を得るために、走査レンズ4は非球面レンズで形成されている。また、本実施形態では走査レンズ4は1枚で構成しているが、2枚のレンズで構成してもよい。
また、偏向器6によって偏向走査されたレーザ光束Lの一部は画像領域外の部分を利用して信号検知前ミラー9によって反射され、結像レンズ10を介して、信号検知センサ11に導かれて検知され、レーザ光束Lの感光ドラム8上での書き出し位置調整が行われる。
回転多面鏡5の回転によって、感光ドラム8の被走査面上においてはレーザ光束Lによる主走査が行われ、また感光ドラム8がその円筒ドラムの軸線まわりに回転駆動することによって副走査が行われる。このようにして感光ドラム8の表面には静電潜像が形成される。
更に本実施形態に係る光学走査装置の主要部について図3を用いて説明する。図3は本実施形態に係る光学走査装置の主要部を示す模式断面図である。光源ユニット1は、レーザ光束Lを出射する光源としての半導体レーザ1cと、半導体レーザ1cを保持するレーザホルダ1aと、半導体レーザ1cを発光駆動する駆動回路基板1bとを有している。コリメータレンズ2とシリンドリカルレンズ3は、光学箱12の所定の位置に接着または他の固定手段によって固定されている。光源ユニット1はコリメータレンズ2との光軸合わせとピント合わせを行い、レーザホルダ1aを介して光学箱12の側壁に接着固定されている。折り返しミラー7で反射されたレーザ光束は、半導体レーザ1cから出射するレーザ光束Lの光軸方向における光源ユニット1とコリメータレンズ2との間を通過して、光学箱12に設けられた主走査方向に長尺な開口部12aから感光ドラム8の面上へ結像する。
ここで、図4を用いて折り返しミラー13で反射されたレーザ光束の方向とコリメータレンズ2との位置関係について述べる。仮に折り返しミラー13で反射されたレーザ光束が上側に出射されるとすると、折り返しミラー13は図4のように配置する必要がある。この場合、斜線部13aが半導体レーザ1cから出射するレーザ光束Lと干渉するため斜線部13aは削除しなければならない。したがって、半導体レーザから出射するレーザ光束Lの光軸方向において本実施例の光学走査装置と同等の大きさにするためには、折り返しミラー13の切削工程が増え、折り返しミラー13のコストアップとなる。つまり、折り返しミラー13で反射されるレーザ光束はコリメータレンズ2が配置される側に出射される構成とするのがよい。
次に図3を用いて各部品の配置関係について述べる。光源ユニット1の発光点から第1の光学素子群の光源ユニット1に近い方の光学素子(ここではコリメータレンズ2)の光学面までの距離をD1(mm)、光源ユニット1の発光点から折り返しミラー7のレーザ光束反射点までの距離をD2(mm)とする。距離D1は、感光ドラム8の被走査面上での必要光量や光学走査装置の小型化の点からはなるべく短くするのが良いものの、入射系光学素子の環境変動に対する敏感度を下げるためには長くするのが良い。したがって、約15mmから25mmに設定するのが好適である。
また、折り返しミラー7の位置は、画像形成装置の大きさやプロセスカートリッジの位置と姿勢によって、画像形成装置内でほぼ所定の位置に決まる。したがって、距離D2は、光学走査装置の小型化のためになるべく短くするのが良い。距離D2の具体的距離について以下に述べる。本実施形態では、半導体レーザ1cはレーザホルダ1aによって保持されており、レーザホルダ1aは開口絞り1dを有している。開口絞り1dを形成するためにレーザホルダ1aは半導体レーザ1cから出射するレーザ光束Lの光軸方向において、ある程度の大きさが必要である。また、折り返しミラー7もレーザ光束を有効反射面で確実に反射させる必要があるため、反射位置から折り返しミラー7の角部までの距離(折り返しミラーの反射面の副走査方向における幅)がある程度必要である。これらを考慮して距離D2をなるべく短く設定すると約10mmとなる。
以上より、距離D1と距離D2を関係式で表すと、0.4×D1≦D2≦D1となる。光源ユニット1は、距離D2がこの条件式を満足するように配置されている。
また、図5を用いて本実施形態の更に好ましい構成について述べる。図5(a)、(b)は本実施形態に係る光学走査装置の部分拡大斜視図と断面図である。
光学箱12の底面には、半導体レーザ1cから出射するレーザ光束Lの光軸方向における光源ユニット1とコリメータレンズ2との間に、折り返しミラー7によって反射されたレーザ光束が出射するための主走査方向に長尺な開口部12aが設けられている。この開口部12aは光学走査装置の外部に連通しているため、開口部12aを通って塵埃などが光学走査装置の内部に進入してくる懸念がある。この場合、開口部12aの近傍であって、光学箱12の底面に設けられた保持台に保持されたコリメータレンズ2の表面に塵埃が付着し、光学走査装置の光量低下を招く恐れがある。そこで、コリメータレンズ2の手前(半導体レーザ1cから出射するレーザ光束Lの光軸方向における開口部12aとコリメータレンズ2との間)に、光学箱12と一体に形成された開口絞り12bを有する壁12cを設けている。この壁12cによって、開口部12aから塵埃が進入してきても、コリメータレンズ2への直接的な進入経路を遮蔽することができるためコリメータレンズ2の汚れを抑制することができる。
なお、壁12cにはレーザ光束Lが通過する通過口としての開口絞り12bは必ず必要となる。コリメータレンズ2や他の光学素子の汚れを抑制するためには、開口絞り12bの大きさはなるべく小さい方が好ましい。ここで、光源ユニット1から出射するレーザ光束Lは発散光としてコリメータレンズ2によって平行化される前までは広がりながら出射している。よって、開口絞り12bを光源ユニット1とコリメータレンズ2との間であって、なるべく光源ユニット1よりに設けることによって、開口絞り12bの大きさを極力小さくすることができる。つまり、折り返しミラー7によって反射されたレーザ光束Lが光源ユニット1とコリメータレンズ2との間を通過する構成にすることにより、極力小さな開口の開口絞り12bを備え、防塵として効果的な壁12cを設けることができる。
また、更に防塵効果を上げるため、図6に示すように、コリメータレンズ2とシリンドリカルレンズ3とをまとめて四方を囲む壁12dを設けても良い。壁12dには半導体レーザ1cから出射するレーザ光束Lが通過する開口絞り12e、12fが設けられているが、それ以外は周囲を壁で囲っているためコリメータレンズ2とシリンドリカルレンズ3への塵埃の付着を更に抑制することができる。加えて壁12dの上部も弾性体などの別部品で密閉すれば防塵効果は更に上がる。
このように、光源ユニットを回転多面鏡の反射面(偏向面)の正面となるように回転多面鏡を有する偏向器と同一直線上に配置しても、折り返しミラーで反射した後のレーザ光束を光源ユニットとコリメータレンズの間を通すことにより、半導体レーザから出射するレーザ光束の光軸方向における光学走査装置の大型化を極力抑制し、レイアウトを最適化することができる。また、光源ユニットを回転多面鏡の正面に配置できることにより、光源ユニットから回転多面鏡の反射面までの光路上にレーザ光束を反射する入射系反射ミラーを必要としない。したがって、入射系反射ミラーを高精度に固定するための煩雑な調整組付けが不要となる。また、入射系反射ミラーがないと、環境変動によるレーザ光束の振れを抑制することができて、回転多面鏡の反射面でのレーザ光束の反射点位置変動を極力低減することができる。
さらに、コリメータレンズの手前または周囲に壁を設けていることにより、コリメータレンズへの塵埃の付着も低減することができる。したがって、感光ドラムへ照射するレーザ光束の光量低下の発生を極力抑制することができるため、画像の濃度が薄くなるなどの画像品質劣化を抑制することができる。
(第2実施形態)
図7は第2実施形態に係る光学走査装置の模式断面図である。この図において、14は第1実施形態においてコリメータレンズとシリンドリカルレンズとによって構成されていた入射系光学素子(第1の光学素子)群を、主走査方向と副走査方向とで異なるパワーを有する単一のレンズで構成したアナモコリメータレンズである。その他の構成は第1実施形態と同様であり説明は省略する。
上述の構成において、折り返しミラー7で反射された後のレーザ光束は、半導体レーザ1cから出射するレーザ光束Lの光軸方向における光源ユニット1とアナモコリメータレンズ14との間を通過する。
このように、アナモコリメータレンズ14を用いることにより、第1の光学素子群を小型化できる。半導体レーザ1cから出射するレーザ光束Lの光軸方向における光源ユニット1とアナモコリメータレンズ14との距離は、第1実施形態による光源ユニット1とコリメータレンズ2との距離とほぼ同等にできるため、半導体レーザ1cから出射するレーザ光束Lの光軸方向において光学走査装置の大きさを第1実施形態よりも更に小型化することが可能である。また、入射光学系において入射系反射ミラーが必要ないため、第1実施形態と同様の作用効果を得ることができる。
また、アナモコリメータレンズは更に走査レンズと一体となってもよい。
このように、コリメータレンズとシリンドリカルレンズを複合レンズとすることにより、第1の光学素子群を更に小型化できるため、半導体レーザ1cから出射するレーザ光束Lの光軸方向において光学走査装置をより小型化することが可能である。
なお、各実施形態においてはレーザ光束を偏向走査する偏向装置として、回転多面鏡を有する偏向器について説明したが、これに限るものではない。例えば回動軸と偏向面を備え回動軸周りに偏向面を往復回動運動することにより、レーザ光束を被走査面へ向け偏向走査する往復回動型の偏向素子(特開2008−040460号参照)であってもよい。往復回動型の偏向素子は、往復回動運動を所望の角速度で駆動させるために、なるべく偏向面を小さくする方が良い。そのためには、レーザ光束を偏向素子の偏向面に対して正面から入射させることが好ましいため、本発明を適用可能な各実施形態に係る光学走査装置は偏向手段に往復型の偏向素子を用いることにも適している。
また、半導体レーザの発光部については、シングルビームまたは複数の発光部を有するマルチビームのどちらで構成してもよい。加えて、マルチビーム光源を用いた場合は、マルチビーム光源から発する複数のレーザ光束が副走査方向に所定の間隔を有しているため、これらの複数のレーザ光束に対応する各種光学部品(コリメータレンズ、シリンドリカルレンズ、走査レンズ、折り返しミラー)は、副走査方向に大きくなってしまう。特に、レーザ光束の光路上の下流側(感光ドラムに近い側)にある折り返しミラーは、その影響が大きい。そこで、マルチビーム光源を有する光学走査装置に本発明を適用してレイアウトを最適化すれば、光学走査装置の副走査方向における小型化にも繋がる。
以上、本発明を適用可能な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の技術思想内であらゆる変形が可能である。
第1実施形態に係る光学走査装置の斜視図である。 第1実施形態に係る光学走査装置の模式断面図である。 第1実施形態に係る光学走査装置の主要部を示す模式断面図である。 第1実施形態を補足説明するための光学走査装置の模式断面図である。 第1実施形態に係る光学走査装置の部分拡大斜視図である。 第1実施形態に係る光学走査装置の部分拡大斜視図である。 第2実施形態に係る光学走査装置の模式断面図である。 第1実施形態に係る画像形成装置を示す模式断面図である。
符号の説明
1 光源ユニット
2 コリメータレンズ
4 走査レンズ
5 回転多面鏡
6 偏向器(偏向装置)
7、13 折り返しミラー
12 光学箱
12a 開口部
12b、12e、12f 開口絞り
12c、12d 壁
14 アナモコリメータレンズ

Claims (6)

  1. 光源及び前記光源を駆動する駆動回路基板を有する光源ユニットと、
    前記光源から出射する光束を平行化するコリメータレンズと、
    前記コリメータレンズによって平行化された光束を主走査方向に偏向走査する偏向装置と、
    前記偏向装置によって該主走査方向に偏向走査された光束を被走査面上に結像する走査レンズと、
    前記走査レンズを通過した後の光束を前記被走査面に向けて反射するミラーと、を有し、
    前記光源ユニットと前記偏向装置と前記走査レンズが一直線上に配置され、前記光源から出射する光束が前記偏向装置の偏向面に対して副走査方向に関して斜めに入射する光学走査装置において、
    前記偏向装置によって偏向走査され前記走査レンズを通過した後に前記ミラーによって反射された光束は、前記光源から出射する光束の光軸方向における前記光源ユニットと前記コリメータレンズとの間を通過することを特徴とする光学走査装置。
  2. 前記光源ユニット、前記コリメータレンズ、前記偏向装置、前記走査レンズ、及び、前記ミラーを収容する光学箱を有し、
    前記ミラーは、前記偏向装置によって該主走査方向に偏向走査された光束を反射できるように該主走査方向に長尺な形状であり、
    前記光学箱は、前記光源から出射する光束の光軸方向における前記光源ユニットと前記コリメータレンズとの間に、前記ミラーによって反射された光束が前記光学箱から出射するための該主走査方向に長尺な開口部を有することを特徴とする請求項1に記載の光学走査装置。
  3. 前記光学箱は、前記光源ユニットを前記光学箱の側壁で、前記コリメータレンズを前記長尺な開口部を有する前記光学箱の底面で、それぞれ保持していることを特徴とする請求項2に記載の光学走査装置。
  4. 前記光源から出射する光束の光軸方向において、前記開口部と前記コリメータレンズとの間に、前記光源から出射する光束が通過する開口絞りを有する壁が設けられていることを特徴とする請求項3に記載の光学走査装置。
  5. 前記偏向装置は、回動軸と偏向面とを備え前記回動軸周りに前記偏向面が往復回動運動する偏向素子を有していることを特徴とする請求項1乃至4のいずれか1項に記載の光学走査装置。
  6. 請求項1乃至5のいずれか1項に記載の光学走査装置と、前記光学走査装置からの光束が走査することによって潜像が形成される像担持体と、前記像担持体の被走査面上に形成された潜像に基づいて記録材に画像形成を行う画像形成手段と、を備えることを特徴とする画像形成装置。
JP2008321641A 2008-12-17 2008-12-17 光学走査装置及びそれを用いた画像形成装置 Expired - Fee Related JP5279474B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321641A JP5279474B2 (ja) 2008-12-17 2008-12-17 光学走査装置及びそれを用いた画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321641A JP5279474B2 (ja) 2008-12-17 2008-12-17 光学走査装置及びそれを用いた画像形成装置

Publications (3)

Publication Number Publication Date
JP2010145660A true JP2010145660A (ja) 2010-07-01
JP2010145660A5 JP2010145660A5 (ja) 2012-02-09
JP5279474B2 JP5279474B2 (ja) 2013-09-04

Family

ID=42566170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321641A Expired - Fee Related JP5279474B2 (ja) 2008-12-17 2008-12-17 光学走査装置及びそれを用いた画像形成装置

Country Status (1)

Country Link
JP (1) JP5279474B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09197314A (ja) * 1996-01-17 1997-07-31 Fuji Xerox Co Ltd 光学走査装置
JPH1114923A (ja) * 1997-06-25 1999-01-22 Fuji Xerox Co Ltd 光学走査装置
JP2000241732A (ja) * 1998-12-25 2000-09-08 Canon Inc 光走査装置及びそれを用いた画像形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09197314A (ja) * 1996-01-17 1997-07-31 Fuji Xerox Co Ltd 光学走査装置
JPH1114923A (ja) * 1997-06-25 1999-01-22 Fuji Xerox Co Ltd 光学走査装置
JP2000241732A (ja) * 1998-12-25 2000-09-08 Canon Inc 光走査装置及びそれを用いた画像形成装置

Also Published As

Publication number Publication date
JP5279474B2 (ja) 2013-09-04

Similar Documents

Publication Publication Date Title
US8223418B2 (en) Optical scanning device and image forming apparatus
JP5317409B2 (ja) 光学走査装置
US10389897B2 (en) Light scanning apparatus with overlapped holders for light sources, and image forming apparatus therewith
US6914620B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
JP4136729B2 (ja) 画像形成装置
US7123396B2 (en) Optical scanning apparatus and image forming apparatus
US11803050B2 (en) Optical scanning device and electronic imaging apparatus
US7116457B2 (en) Optical scanning apparatus and image forming apparatus
JP2005284270A (ja) マルチビーム光走査装置及び画像形成装置
JP2004184657A (ja) 走査光学装置及びそれを用いた画像形成装置
JPH09179048A (ja) マルチビーム走査光学装置およびレーザ光源装置
WO2007129771A1 (ja) 光学走査装置
US6567201B1 (en) Optical scanner
US6507427B1 (en) Scanning optical device and method of regulating imaging position thereof
JP5163694B2 (ja) 光源装置および光走査装置
JP2010169782A (ja) 光走査装置の照射位置調整方法
JP5279474B2 (ja) 光学走査装置及びそれを用いた画像形成装置
JP7349893B2 (ja) 光走査装置及びそれを備えた画像形成装置
US6927883B1 (en) Light-scanning optical apparatus and image forming apparatus
JP4715418B2 (ja) 光走査装置及び画像形成装置
JP4579260B2 (ja) 光走査装置および画像形成装置
JP2009053325A (ja) 走査光学装置及びその調整方法
JP2003182153A (ja) 光源装置
US7158165B2 (en) Laser beam scanner
JP4794717B2 (ja) 光走査光学装置及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

LAPS Cancellation because of no payment of annual fees