JP2010123869A - 窒化物半導体レーザ素子 - Google Patents

窒化物半導体レーザ素子 Download PDF

Info

Publication number
JP2010123869A
JP2010123869A JP2008298269A JP2008298269A JP2010123869A JP 2010123869 A JP2010123869 A JP 2010123869A JP 2008298269 A JP2008298269 A JP 2008298269A JP 2008298269 A JP2008298269 A JP 2008298269A JP 2010123869 A JP2010123869 A JP 2010123869A
Authority
JP
Japan
Prior art keywords
current
layer
type
opening
current blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008298269A
Other languages
English (en)
Inventor
Ryo Kajitani
亮 梶谷
Masahiro Ishida
昌宏 石田
Satoyuki Tamura
聡之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008298269A priority Critical patent/JP2010123869A/ja
Publication of JP2010123869A publication Critical patent/JP2010123869A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】素子分離溝等の凹部による電流リークを防止すると共に、十分に深い凹部を形成した場合においてもレーザ素子の発振しきい値の変動現象を防止できるようにする。
【解決手段】窒化物半導体レーザ素子は、基板101上に形成され、活性層105、p型電子障壁層106、n型電流ブロック層108及びp型光ガイド層107、111を含む積層構造体120を有している。n型電流ブロック層には、第1の開口部である電流注入部108aと第2の開口部である電流遮断部108bとが形成されており、p型光ガイド層111は、電流注入部108a及び電流遮断部108bにも形成されている。積層構造体120は、電流注入部に対して電流遮断部の外側に形成され且つp型電子障壁層を貫通する素子分離溝117と、電流注入部と電流遮断部との間に形成され且つその底面がp型電子障壁層の下面よりも上側に位置する電流ブロック溝116とを有している。
【選択図】図2

Description

本発明は、窒化物半導体レーザ素子に関する。
従来、光ディスクであるCD(Compact Disc)又はDVD(Digital Versatile Disc)の記録用・再生用レーザ素子又は通信用レーザ素子として、ヒ化アルミニウムガリウム(AlGaAs)系赤外色レーザ素子又はリン化インジウムガリウム(InGaP)系赤色レーザ素子が広く用いられている。
一方、近年、CD及びDVDよりもさらに高密度の情報の記録及び再生が可能であるBlu−rayディスクの記録用・再生用光源として窒化物半導体を用いた青紫色レーザ素子の需要が高まっている。今後、さらにBlu−rayディスクの市場は増大し、青紫色レーザ素子の需要はさらに大きくなると考えられる。しかしながら、青紫色レーザ素子に用いられる窒化物半導体は、赤色レーザ素子に用いられるAlGaAs又はInGaPとは材料特性が大きく異なることから、青紫色レーザ素子に対して赤色レーザ素子等に用いられている技術をそのまま転用することができず、歩留まりの向上が困難である。そのため、歩留まり良く青紫色レーザ素子を作製する技術の成熟が望まれている。
青紫色レーザ素子(レーザチップ)は、レーザ光又はダイヤモンドスクライバ等によってウェハに傷をつけ、ブレーキングすることによって劈開される。例えば、レーザスクライブ又はダイヤモンドスクライブのみで劈開を行った場合に、所望の結晶軸である<11−20>方向から劈開ずれが発生して、<11−20>方向に沿った良好な劈開面が得られない場合がある。劈開ずれが発生すると、遠視野像(FFP:Far Field Pattern)の形状が悪化したり、素子端面の端面反射率の低下による素子特性が変動したりして、歩留まりが著しく低下する。
そこで、リッジ型青紫色レーザ素子において、ドライエッチング法により、結晶軸の<11−20>方向に劈開導入溝を形成して、劈開位置の高精度化を図る手法が開示されている(例えば、特許文献1を参照。)。
なお、本明細書においては、結晶軸の指数に付した負符号”−”は該負符号に続く一の指数の反転を便宜的に表している。
特開2008−060478号公報
しかしながら、本願発明者らは、図7及び図8に示す埋め込み型青紫色レーザ素子において、上述したリッジ型青紫色レーザ素子と同様に、ドライエッチングによって素子分離溝又は劈開導入溝等の凹部を形成した場合に、レーザ素子への通電の前後において発振しきい値電流が変動するという現象が発生し、埋め込み型青紫色レーザ素子における動作特性の大きな問題となることを見出した。
まず、埋め込み型青紫色レーザ素子の製造方法を説明する。図8に示すように、有機金属化学気相成長(MOCVD)法により、窒化ガリウム(GaN)からなる基板50の上にn−GaN層51、n−AlGaNクラッド層52、n−GaNガイド層53、InGaN活性層54、p−AlGaN電子障壁層55、p−GaNガイド層56及びn−AlGaN電流ブロック層57を順次成長する。
次に、n−AlGaN電流ブロック層57に対してエッチングを行って、結晶軸の<1−100>方向にストライプ状の溝(開口溝)を形成することにより電流注入部65とする。電流注入部65を形成した後に、結晶成長を再開し、n−AlGaN電流ブロック層57の上に、p−GaNガイド層58、p−AlGaNクラッド層59及びp−GaNコンタクト層60を順次成長する。
次に、電流注入部65の外側に、該電流注入部65と平行な方向、すなわち<1−100>方向に、n−GaNガイド層53に達する素子分離溝61を形成し、形成した素子分離溝61に対するブレーキングによりレーザ素子を容易に個別分離できるようにする。素子分離溝61の内側部分及びp−GaNコンタクト層60におけるp側電極63の形成領域を除く部分には、SiO等からなる絶縁膜62を形成する。
次に、p−GaNコンタクト層60の上にはp側電極63を形成し、基板50の裏面にn側電極64を形成する。青紫色レーザ素子における共振器は、前述したように、基板50を結晶軸の<11−20>方向に劈開することにより形成する。
ところで、素子分離溝61又は劈開導入溝等の凹部の底面がp−AlGaN電子障壁層55の活性層54側の界面に達する場合は、発振しきい値電流が1回目の通電時と2回目以降の通電時とによって変動し、さらにこのしきい値電流の変動現象はレーザ素子の経時変化又は温度変化によって再び発生する。
図9は図7及び図8に示す埋め込み型青紫色レーザ素子における1回目の通電時と2回目の通電時とにおける電流−光出力特性を示している。図9から分かるように、通電前の発振しきい値電流が約70mAであったのに対して通電後は約40mAとなっている。図10は埋め込み型青紫色レーザ素子の1回目の通電時及び2回目の通電時における電流−電圧特性を示している。図10に示すように、発振しきい値電流は1回目の通電時よりも2回目の通電時の方が小さいものの、一方で動作電圧は通電前よりも通電後の方が大きくなっている。このことから、発振しきい値電流の変動現象は、電流リークによって発生している可能性が高い。図11に埋め込み型青紫色レーザ素子における凹部の側面から電流注入部までの距離と発振しきい値電流の変動量との相関を示す。図11からは凹部と電流注入部との距離が短くなるほど発振しきい値の変動量が大きくなっていることが分かる。
また、図12に埋め込み型青紫色レーザ素子における発振しきい値電流の変動量と凹部の底面の位置との相関を示す。図12からは凹部の底面の位置がp型電子障壁層55を越えた途端に、すなわち凹部がp型電子障壁層55を貫通して該p型電子障壁層55よりも深く形成されると、発振しきい値電流の変動量が増大し、さらに凹部の底面が基板に近づくにつれて発振しきい値電流の変動量が大きくなっていることが分かる。
発振しきい値電流の変動現象はレーザチップの内部に電流ブロック層を有する埋め込み型青紫色レーザ素子に特有の課題であり、リッジ型レーザ素子においては発生しないため、発振しきい値電流の変動現象は、電流注入時におけるp型層からn型電流ブロック層及び凹部を経路とした基板側への電流リーク、より具体的には正孔のリークによって発生している可能性がある。青紫色レーザ素子において、p−AlGaNからなる電子障壁層は、活性層及びp−GaNガイド層よりもバンドギャップが大きい材料を用いることにより、n型層からp型層への電子の流入とp型層からn型層への正孔の流入を防止する目的で設けられている。ここでは、凹部の底面がp型電子障壁層の活性層側の界面を越えることによって、pn接合及びバンドギャップの差による電位障壁がなくなることが、電流リークの主たる原因と考えられる。この電流リークがn型電流ブロック層及び凹部を経路として発生するのは、凹部に形成された何らかの準位が起因していると考えられる。
一般に、青紫色レーザ素子の凹部は、塩素系ガスを用いたドライエッチングによって形成されることから、ドライエッチングに伴って凹部の表面に欠陥が形成され、形成された欠陥に起因する準位が形成されていると考えられる。従って、この欠陥に起因した準位が電流リークの経路となっている可能性が高い。埋め込み型青紫色レーザ素子の発振しきい値電流は、2回以上の通電を行った後においても、該レーザ素子を長時間大気中に放置したり加熱を行うことによって上昇し、再び発振しきい値電流の変動現象が発生しており、酸化又は加熱に伴って欠陥に起因した準位にキャリアが流れやすい状態となると考えられる。
従って、発振しきい値電流の変動現象を抑制するには、エッチングに伴う欠陥の生成が起きにくいウェットエッチングにより凹部を形成するか、素子構造的に電流リークを抑制する必要がある。しかし現状では、p型層を歩留まり良くウェットエッチングする技術が確立していないため、凹部をウェットエッチングのみで形成することは困難である。素子分離溝又は劈開導入溝等の凹部は、その深さが深いほど有効に機能するため、凹部の深さを深く形成できない場合は、素子分離溝又は劈開導入溝としての効果を十分に得られず、歩留まりが低下してしまう。
本発明は、前記従来の問題を解決し、素子分離溝等の凹部による電流リークを防止すると共に、深さが十分に深い凹部を形成した場合においてもレーザ素子の発振しきい値の変動現象を防止できるようにすることを目的とする。
前記の目的を達成するため、本発明は、窒化物半導体レーザ素子を、電流ブロック層に電流を注入する第1の開口部と電流を注入しない第2の開口部とを設けると共に、レーザチップに、素子分離溝等となる第1凹部の他に、電流ブロック層における第1の開口部と第2の開口部との間に電子障壁層よりも浅い第2凹部を設ける構成とする。
具体的に、本発明に係る窒化物半導体レーザ素子は、基板上に順次形成され、n型クラッド層、n型光ガイド層、活性層、電子障壁層、電流ブロック層、p型光ガイド層及びp型クラッド層を含む窒化物半導体からなる積層構造体を備え、電流ブロック層は、電流注入部となる第1の開口部と電流非注入部となる第2の開口部とを有し、p型光ガイド層は、第1の開口部及び第2の開口部の内部にも形成されており、積層構造体は、第1の開口部に対して第2の開口部の外側の領域に形成され、電子障壁層を貫通する第1凹部と、第1の開口部と第2の開口部との間の領域に形成され、その底面が電子障壁層の下面よりも上側に位置する第2凹部とを有していることを特徴とする。
本発明の窒化物半導体レーザ素子によると、電流ブロック層は電流注入部となる第1の開口部と電流非注入部となる第2の開口部とを有し、p型光ガイド層は第1の開口部及び第2の開口部の内部にも形成されているため、p型光ガイド層における電流ブロック層の第2の開口部の内部に形成された部分と電流ブロック層とは電位障壁を形成する。また、積層構造体には、電流ブロック層の第1の開口部と第2の開口部との間の領域に、その底面が電子障壁層の下面よりも上側に位置する第2凹部が形成されているため、電流ブロック層の第2の開口部には電流は注入されることがない。これにより、第2凹部と電流ブロック層とを経路とした第1凹部への正孔による電流リークが防止される。
本発明の窒化物半導体レーザ素子において、電流ブロック層にはn型半導体層を用いることができる。
このようにすると、電流ブロック層とp型光ガイド層における電流ブロック層の第2の開口部の内部に形成された部分とはpn接合による電位障壁を形成するので正孔による電流リークを確実に抑えることができる。
本発明の窒化物半導体レーザ素子において、第2凹部の底面は電流ブロック層に達していることが好ましい。
このようにすると、電流ブロック層の第2の開口部に注入される電流を確実に防止することができる。
本発明の窒化物半導体レーザ素子において、第1凹部は第2の開口部を貫通していてもよい。
すなわち、第1凹部が、電流ブロック層が除去された第2の開口部に形成されていても、正孔による電流リークを防止することができる。
本発明の窒化物半導体レーザ素子において、第1凹部及び第2凹部の少なくとも壁面には、絶縁膜が形成されていてもよい。
このようにすると、積層構造体における第1凹部及び第2の凹部の少なくとも壁面から露出する部分を保護することができる。
本発明に係る窒化物半導体レーザ素子によると、素子分離溝等の凹部による電流リークを防止できると共に、深さが十分に深い凹部を形成した場合においてもレーザ素子の発振しきい値の変動現象を防止できるようにする。
(第1の実施形態)
本発明の第1の実施形態について図面を参照しながら説明する。
図1は第1の実施形態に係る半導体レーザ素子の平面構成を示し、図2は図1のII−II線における断面構成を示している。
以下、第1の実施形態に係る半導体レーザ素子を製造方法と共に説明する。図2に示すように、まず、有機金属化学気相成長(MOCVD)法により、窒化ガリウム(GaN)又は窒化アルミニウムガリウム(AlGaN)からなる基板101の主面上に、膜厚が2μmのn型GaN層102、膜厚が1.6μmの例えばn型Al0.05Ga0.95Nからなるn型クラッド層103、膜厚が150nmの例えばn型GaNからなるn型光ガイド層104、例えば膜厚が3nmでIn0.10Ga0.90Nからなる井戸層と膜厚が7.5nmでIn0.02Ga0.98Nからなる障壁層とからなる量子井戸活性層105、膜厚が10nmの例えばp型Al0.16Ga0.84Nからなるp型電子障壁層106、膜厚が10nmの例えばp型GaNからなる第1のp型ガイド層107及び膜厚が140nmの例えばn型Al0.12Ga0.88Nからなるn型電流ブロック層108を順次成長する。
次に、n型電流ブロック層108の上に、リソグラフィ法により、結晶軸の<1−100>方向に延びる第1の開口部と該第1の開口部の両側にそれぞれ<1−100>方向に平行に延びる第2の開口部とを有するレジストパターン(図示せず)を形成する。続いて、形成されたレジストパターンをマスクとして、n型電流ブロック層108に対して、例えば水酸化カリウム(KOH)溶液によりウェットエッチングを行うことにより、図1及び図2に示すように、レジストパターンの第1の開口部が転写された電流注入部108aと、レジストパターンの第2の開口部がそれぞれ転写された2つの電流遮断部108bを形成する。なお、電流遮断部108bは、電流注入部108aと必ずしも同時に形成する必要はなく、別々に形成してもよい。また、n型電流ブロック層108に対するエッチング方法は、ウェットエッチングに限られず、ドライエッチングを用いてもよい。但し、半導体結晶に余分な結晶欠陥が生成されないためにも、ウェットエッチングを用いるのが望ましい。
次に、n型電流ブロック層108に電流注入部108a及び電流遮断部108bを形成した後、再度MOCVD法により、電流注入部108a及び電流遮断部108bを含むn型電流ブロック層108の上に、膜厚が10nmの例えばp型GaNからなる第2のp型光ガイド層111と、膜厚が480nmの例えばp型Al0.10Ga0.90Nからなるp型クラッド層112及び膜厚が40nmのp型GaNからなるp型コンタクト層113を順次成長する。これにより、n型GaN層102からp型コンタクト層113の各窒化物半導体層により、半導体レーザ素子を構成する積層構造体120が形成される。
次に、p型コンタクト層113の上に、例えばニッケル(Ni)/金(Au)の積層膜からなるp側電極114を形成する。また、基板101がn型である場合には、基板101におけるn型GaN層102と反対側の面上に、例えばチタン(Ti)/アルミニウム(Al)の積層膜からなるn側電極115を形成する。なお、n側電極115は、基板101の裏面に限られず、積層構造体120の上側からn型半導体層を露出し、露出したn型半導体層に形成してもよい。
次に、積層構造体120におけるn型電流ブロック層108の電流注入部108aと電流遮断部108bとの間に、電流ブロック溝(第2凹部)116を形成する。ここで、電流ブロック溝116の底面は、p型電子障壁層106の活性層105側の界面よりも第1のp型クラッド層107側(上側)に位置させる。すなわち、電流ブロック溝116はp型電子障壁層106を貫通することはない。さらに、電流ブロック溝116の底面は、n型電流ブロック層108と第2のp型光ガイド層111との界面に位置するか、または該界面よりも基板101側(下側)に位置することが好ましい。電流ブロック溝116をこのように形成すると、電流注入時に電流遮断部108bへの電流を防止できるため、活性層105における電流注入部108aの下側の領域以外で生じるレーザ発振を防止することができる。
次に、図1、図2及び図3に示すように、積層構造体120におけるn型電流ブロック層108の電流遮断部108bの外側の領域に素子分離溝(第1凹部)117をそれぞれ結晶軸の<1−100>方向に形成する。これにより、スクライビングによってレーザチップを個別に分離することが容易となる。ここで、図3は分離前の2つ分のレーザ素子(レーザチップ)の平面構成を示している。なお、素子分離溝117の底面は、p型電子障壁層106における活性層105側の界面よりも基板101側に位置するように形成する。なお、素子分離溝117は基板101に達していてもよく、さらには基板101の内部に及んでいてもよいが、基板101を貫通することはない。
次に、図4に示すように、劈開導入溝119を素子分離溝117と交差し且つ電流ブロック溝116と交差しないように、結晶軸の<11−20>方向に形成する。その後、積層構造体120におけるp側電極114で覆われていない表面、すなわち、p型コンタクト層113、電流ブロック溝116及び素子分離溝117の露出面上に、酸化シリコン(SiO)又は窒化シリコン(SiN)等からなる絶縁膜118を形成してこれを保護膜とする。なお、n型電流ブロック層108に設ける電流遮断部108bは、1チップ当たり2本に限られず、2本より多くてもよい。ここで、図4は劈開前の4つ分のレーザ素子(レーザチップ)の平面構成を示している。
ところで、電流ブロック溝116をドライエッチングによって形成した場合は、ドライエッチングに伴う半導体結晶へのエッチングダメージによって、積層構造体120における電流ブロック溝116の表面付近に深い準位が形成される。このため、注入された正孔が電流ブロック溝116の表面付近に形成された深い準位を通してn型電流ブロック層108を伝播する可能性がある。すなわち、注入された正孔はn型電流ブロック層108を伝播し、電流遮断部108b付近にまで流れていく可能性がある。しかしながら、第1の実施形態においては、電流遮断部108bはp型GaN層(p型窒化物半導体)により形成されているため、電流遮断部108bとn型電流ブロック層108との間には電位障壁が形成されるので、正孔はn型電流ブロック層108から電流遮断部108bへと流れることはない。すなわち、n型電流ブロック層108から第2のp型光ガイド層111へ正孔が流れることはない。従って、p側電極114から注入された正孔(電流)は、積層構造体120の上部で且つ電流注入部108aの外側に形成された電流ブロック溝116及びn型電流ブロック層108における電流ブロック溝116の外側に形成された開口部である電流遮断部108bによって、素子分離溝117に流れることはない。
従って、注入電流が増加するにつれて、素子分離溝117に形成された深い準位は注入キャリアによって埋まるため(バンドフィリング)、電流ブロック溝116に形成された深い準位を経路とした電流リークは大きく抑制される。
このように、第1の実施形態に係る埋め込み型青紫色レーザ素子は、電流リークに伴う発振しきい値電流の変動が発生せず、良好な素子特性を示す。
なお、本実施形態においては、電流ブロック溝116の底面がn型電流ブロック層108と第2のp型光ガイド層111との界面よりも上側に位置する場合であっても、リーク電流の抑制効果を得ることは可能である。
(参考例)
以下、本発明の参考例を説明する。
本願発明者らは、素子分離溝等117の凹部を介した電流リークの抑制を目的として、図13及び図14に示すような埋め込み型青紫色レーザ素子を参考例として作製した。ここで、図1及び図2に付した構成要素と同一の構成要素には、同一の符号を付すことにより説明を省略する。
図14に示すように、本参考例に係る埋め込み型青紫色レーザ素子は、第1の実施形態に係る埋め込み型青紫色レーザ素子とは、n型電流ブロック層108における電流注入部108aの両側に電流遮断部108bを設けていない点が異なる。
図15に本参考例に係る青紫色レーザ素子における光出力−電流特性を示す。図15からは、図7及び図8に示す構造と比べて若干の改善が見られるものの、通電の1回目における発振しきい値電流よりも通電の2回目における発振しきい値電流の方が小さいという現象が依然として発生していることが分かる。
従って、図14に示すように、底面がn型電流ブロック層108に達する電流ブロック溝116を設けるだけでは、発振しきい値電流の変動現象を抑制できない。なお、図14に示す構造において、発振しきい値電流の変動現象が発生する理由として、電流ブロック溝116及びn型電流ブロック層108を経路とした素子分離溝117への電流リークがある。
本発明は、上記の参考例から、n型電流ブロック層108における電流ブロック溝116の外側に該n型電流ブロック層108を除去してなる電流遮断部108bを設ける構成を採ることにより、電流ブロック溝116及びn型電流ブロック層108を経路とした電流リークの発生を防止することができる。
(第2の実施形態)
以下、本発明の第2の実施形態について図面を参照しながら説明する。
図5は第2の実施形態に係る半導体レーザ素子の平面構成を示し、図6は図5のVI−VI線における断面構成を示している。ここでも、図1及び図2に付した構成要素と同一の構成要素には、同一の符号を付すことにより説明を省略する。
図6に示すように、第2の実施形態においては、n型電流ブロック層108に設ける電流遮断部108bを、n型電流ブロック層108における電流ブロック溝116の外側から両側端部までを全て除去することにより形成している。これにより、素子分離溝117はn型電流ブロック層108と接することはなく、第2のp型光ガイド層111及び第1のp型光ガイド層107を連続して貫通している。
第2の実施形態のような構成であっても、第1の実施形態と同様に、n型電流ブロック層108と第2のp型光ガイド層111とにより生じる電位障壁により、電流リークに伴う発振しきい値電流の変動が抑制される。
本発明に係る窒化物半導体レーザ素子は、素子分離溝等の凹部による電流リークを防止できると共に、十分に深い凹部を形成した場合においてもレーザ素子の発振しきい値の変動現象を防止でき、特に青紫色レーザ素子等に有用である。
本発明の第1の実施形態に係る窒化物半導体レーザ素子を示す平面図である。 図1のII−II線における断面図である。 本発明の第1の実施形態に係る窒化物半導体レーザ素子における素子分離前の状態を模式的に示す平面図である。 本発明の第1の実施形態に係る窒化物半導体レーザ素子における劈開前の状態を模式的に示す平面図である。 本発明の第2の実施形態に係る窒化物半導体レーザ素子を示す平面図である。 図5のVI−VI線における断面図である。 課題を説明するための埋め込み型青紫色レーザ素子を示す平面図である。 図7のVIII−VIII線における断面図である。 課題を説明するための埋め込み型青紫色レーザ素子における光出力−電流特性図である。 課題を説明するための埋め込み型青紫色レーザ素子における電圧−電流特性図である。 課題を説明するための埋め込み型青紫色レーザ素子における発振しきい値電流の変動量と、電流注入部から凹部までの距離との関係を示すグラフである。 課題を説明するための埋め込み型青紫色レーザ素子における発振しきい値電流の変動量と凹部底面の深さとの関係を示すグラフである。 本発明の参考例に係る埋め込み型青紫色レーザ素子を示す平面図である。 図13のXIV−XIV線における断面図である。 本発明の参考例に係る埋め込み型青紫色レーザ素子における光出力−電流特性図である。
符号の説明
101 基板
102 n型GaN層
103 n型クラッド層
104 n型光ガイド層
105 量子井戸活性層
106 p型電子障壁層
107 第1のp型光ガイド層
108 n型ブロック層
108a 電流注入部(第1の開口部)
118b 電流遮断部(第2の開口部)
111 第2のp型光ガイド層
112 p型クラッド層
113 p型コンタクト層
114 p側電極
115 n側電極
116 電流ブロック溝(第2凹部)
117 素子分離溝(第1凹部)
118 絶縁膜
119 劈開導入溝
120 積層構造体

Claims (5)

  1. 基板上に順次形成され、n型クラッド層、n型光ガイド層、活性層、電子障壁層、電流ブロック層、p型光ガイド層及びp型クラッド層を含む窒化物半導体からなる積層構造体を備え、
    前記電流ブロック層は、電流注入部となる第1の開口部と電流非注入部となる第2の開口部とを有し、
    前記p型光ガイド層は、前記第1の開口部及び第2の開口部の内部にも形成されており、
    前記積層構造体は、前記第1の開口部に対して前記第2の開口部の外側の領域に形成され、前記電子障壁層を貫通する第1凹部と、
    前記第1の開口部と前記第2の開口部との間の領域に形成され、その底面が前記電子障壁層の下面よりも上側に位置する第2凹部とを有していることを特徴とする窒化物半導体レーザ素子。
  2. 前記電流ブロック層は、n型半導体層であることを特徴とする請求項1に記載の窒化物半導体レーザ素子。
  3. 前記第2凹部の底面は、前記電流ブロック層に達していることを特徴とする請求項1又は2に記載の窒化物半導体レーザ素子。
  4. 前記第1凹部は、前記第2の開口部を貫通していることを特徴とする請求項1〜3のいずれか1項に記載の窒化物半導体レーザ素子。
  5. 前記第1凹部及び第2凹部の少なくとも壁面には、絶縁膜が形成されていることを特徴とする請求項1〜4のいずれか1項に記載の窒化物半導体レーザ素子。
JP2008298269A 2008-11-21 2008-11-21 窒化物半導体レーザ素子 Pending JP2010123869A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298269A JP2010123869A (ja) 2008-11-21 2008-11-21 窒化物半導体レーザ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298269A JP2010123869A (ja) 2008-11-21 2008-11-21 窒化物半導体レーザ素子

Publications (1)

Publication Number Publication Date
JP2010123869A true JP2010123869A (ja) 2010-06-03

Family

ID=42324925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298269A Pending JP2010123869A (ja) 2008-11-21 2008-11-21 窒化物半導体レーザ素子

Country Status (1)

Country Link
JP (1) JP2010123869A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686432B2 (en) 2011-06-30 2014-04-01 Renesas Electronics Corporation Semiconductor light emitting device with laser scribed end faces
WO2016083246A1 (de) * 2014-11-28 2016-06-02 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelementes
DE102016113071A1 (de) * 2016-07-15 2018-01-18 Osram Opto Semiconductors Gmbh Halbleiterlaserdiode
WO2018180952A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 窒化物半導体発光素子、窒化物半導体発光素子の製造方法及び窒化物半導体発光装置
JP2019057671A (ja) * 2017-09-22 2019-04-11 日本オクラロ株式会社 半導体光素子及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686432B2 (en) 2011-06-30 2014-04-01 Renesas Electronics Corporation Semiconductor light emitting device with laser scribed end faces
WO2016083246A1 (de) * 2014-11-28 2016-06-02 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelementes
US10553746B2 (en) 2014-11-28 2020-02-04 Osram Opto Semiconductors Gmbh Optoelectronic component having a layer with lateral offset inclined side surfaces
US11031524B2 (en) 2014-11-28 2021-06-08 Osram Oled Gmbh Optoelectronic component having a layer with lateral offset inclined side surfaces
DE102016113071A1 (de) * 2016-07-15 2018-01-18 Osram Opto Semiconductors Gmbh Halbleiterlaserdiode
US10985529B2 (en) 2016-07-15 2021-04-20 Osram Oled Gmbh Semiconductor laser diode
WO2018180952A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 窒化物半導体発光素子、窒化物半導体発光素子の製造方法及び窒化物半導体発光装置
JPWO2018180952A1 (ja) * 2017-03-29 2020-02-06 パナソニックIpマネジメント株式会社 窒化物半導体発光素子、窒化物半導体発光素子の製造方法及び窒化物半導体発光装置
JP7146736B2 (ja) 2017-03-29 2022-10-04 ヌヴォトンテクノロジージャパン株式会社 窒化物半導体発光素子の製造方法
JP2022176237A (ja) * 2017-03-29 2022-11-25 ヌヴォトンテクノロジージャパン株式会社 窒化物半導体発光素子、窒化物半導体発光素子の製造方法及び窒化物半導体発光装置
JP7362864B2 (ja) 2017-03-29 2023-10-17 ヌヴォトンテクノロジージャパン株式会社 窒化物半導体発光素子、窒化物半導体発光素子の製造方法及び窒化物半導体発光装置
JP2019057671A (ja) * 2017-09-22 2019-04-11 日本オクラロ株式会社 半導体光素子及びその製造方法

Similar Documents

Publication Publication Date Title
JP4272239B2 (ja) 半導体光素子の製造方法
JP2006229171A (ja) 窒化物半導体レーザ装置及びその製造方法
JP2008311434A (ja) 半導体光素子の製造方法
JP2007235107A (ja) 半導体発光素子
JP2008091713A (ja) 二波長半導体レーザ装置
JP2009064886A (ja) 半導体レーザ装置
JP4040192B2 (ja) 半導体発光素子の製造方法
JP2006228892A (ja) 半導体発光素子及びその製造方法
JP2010123869A (ja) 窒化物半導体レーザ素子
JP2011029224A (ja) 半導体レーザ装置
JP2009212386A (ja) 半導体光素子の製造方法
JP5347236B2 (ja) 半導体光素子の製造方法
JP3813472B2 (ja) 窒化物系半導体発光素子
WO2004032296A1 (ja) 半導体レーザ装置及びその製造方法
JP2008300802A (ja) 半導体レーザ素子およびその製造方法
JP2006093682A (ja) 半導体レーザおよびその製造方法
JP2008066447A (ja) 半導体発光素子およびその製造方法
JP4118065B2 (ja) 窒化物系半導体レーザ素子
JP2011029261A (ja) 窒化物半導体レーザ素子
KR20050082251A (ko) 반도체 레이저 디바이스
JP2005191547A (ja) 半導体レーザ素子及びその製造方法
JP5150666B2 (ja) 半導体レーザ装置
JP4883536B2 (ja) 半導体レーザ素子および半導体レーザ装置
JP2004193232A (ja) 半導体レーザ素子および半導体レーザ素子の製造方法
JP2005322786A (ja) 窒化物半導体素子及びその製造方法