JP2010118566A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2010118566A
JP2010118566A JP2008291679A JP2008291679A JP2010118566A JP 2010118566 A JP2010118566 A JP 2010118566A JP 2008291679 A JP2008291679 A JP 2008291679A JP 2008291679 A JP2008291679 A JP 2008291679A JP 2010118566 A JP2010118566 A JP 2010118566A
Authority
JP
Japan
Prior art keywords
channel region
transistor
region
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008291679A
Other languages
English (en)
Inventor
Rie Yamaguchi
理恵 山口
Tomoya Sanuki
朋也 佐貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008291679A priority Critical patent/JP2010118566A/ja
Publication of JP2010118566A publication Critical patent/JP2010118566A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】歪みシリコン技術を用いて効果的に駆動力を向上させた半導体装置を提供する。
【解決手段】本発明の一態様に係る半導体装置は、半導体基板上に形成された半導体層と、前記半導体層内にソース・ドレイン領域およびチャネル領域を有するトランジスタと、前記半導体基板と前記半導体層の間の、前記チャネル領域の下方に形成され、前記チャネル領域に歪みを発生させる応力を内包した絶縁膜と、を備える。
【選択図】図1

Description

本発明は、半導体装置に関する。
従来、MISFET(Metal Insulator Semiconductor Field Effect Transistor)の駆動力を高めるため、チャネル領域に歪みを発生させ、キャリアの移動度を高める技術が知られている。例えば、n型MISFETのチャネル領域に対してチャネル方向の引張歪みを与えることによってキャリアである電子の移動度を高めることができ、また、p型MISFETのチャネル領域に対してチャネル方向の圧縮歪みを与えることによってキャリアである正孔の移動度を高めることができる。
例えば、特許文献1では、Si基板内のチャネル領域の下方に酸素イオンを注入し、熱酸化処理を行うことによって形成される圧縮応力または引張応力を内包する絶縁体を備えた半導体装置が提案されている。この半導体装置によれば、絶縁体の内包する圧縮応力または引張応力に基づいてチャネル領域に圧縮歪みまたは引張歪みを発生させ、キャリアの移動度を高めることができる。
また特許文献2では、ソース・ドレイン領域およびゲート電極上に形成された圧縮応力または引張応力を内包する応力膜を備えた半導体装置が提案されている。この半導体装置によれば、応力膜の内包する圧縮応力または引張応力に基づいてチャネル領域に圧縮歪みまたは引張歪みを発生させ、キャリアの移動度を高めることができる。
特開2007−88158号公報 特開2005−5633号公報
本発明の目的は、歪みシリコン技術を効果的に適用して駆動力を向上させた半導体装置を提供することにある。
本発明の一態様によれば、半導体基板上に形成された半導体層と、前記半導体層内にソース・ドレイン領域およびチャネル領域を有するトランジスタと、前記半導体基板と前記半導体層の間の、前記チャネル領域の下方に形成され、前記チャネル領域に歪みを発生させる応力を内包した絶縁膜と、を備えた半導体装置が提供される。
また、本発明の他の一態様によれば、半導体基板上に形成された第1および第2の半導体層と、前記第1の半導体層内に第1のソース・ドレイン領域および第1のチャネル領域を有するp型トランジスタと、前記第2の半導体層内に第2のソース・ドレイン領域および第2のチャネル領域を有するn型トランジスタと、前記半導体基板と前記第1の半導体層の間の、前記第1のチャネル領域の下方に形成され、前記第1のチャネル領域にチャネル方向の圧縮歪みを発生させる圧縮応力を内包した第1の絶縁膜と、前記半導体基板と前記第2の半導体層の間の、前記第2のチャネル領域の下方に形成され、前記第2のチャネル領域にチャネル方向の引張歪みを発生させる引張応力を内包した第2の絶縁膜と、を備えた半導体装置が提供される。
本発明によれば、歪みシリコン技術を効果的に適用して駆動力を向上させることができる。
[第1の実施の形態]
(半導体装置の構成)
図1は、本発明の第1の実施の形態に係る半導体装置の断面図である。この半導体装置1は、主に、半導体基板2と、トランジスタ4と、素子分離領域5と、を備えて概略構成されている。
半導体基板2は、その上に半導体層20が形成され、半導体基板2と半導体層20の間に絶縁膜としての応力膜3が形成されている。半導体基板2は、Si結晶等のSiを主成分とするSi系結晶からなる。また、半導体基板2は、異なる結晶から構成されても良い。また、トランジスタ4が形成される半導体層20の面方位は、例えば{100}である。なお、{100}は、(100)、および(100)と等価な面方位を表す。
応力膜3は、SiN等の絶縁材料からなり、例えば、トランジスタ4がp型MISFETのとき、圧縮応力を内包するように形成され、チャネル領域41に対して内包する圧縮応力に基づいたチャネル方向の圧縮歪みを与える。また、例えば、応力膜3は、トランジスタ4がn型MISFETのとき、引張応力を内包するように形成され、チャネル領域41に対して内包する引張応力に基づいたチャネル方向の引張歪みを与える。
この応力膜3は、一例として、半導体層20の表面から10〜500nmの範囲内に形成され、その厚みは50〜1000nmであり、圧縮応力を示す符号を負、引張応力を示す符号を正とすると、内包する圧縮応力および引張応力の応力値は±1GPa以上となるように形成される。
また、この応力膜3は、いわゆる埋め込み絶縁層としての働きがあり、この応力膜3上にSi系結晶からなる半導体層20が形成されるので、半導体基板2は、SOI(Silicon on Insulator)基板の一種である。なお、応力膜3は、SiN等からなるとしたが、これに限定されず、SiO等の他の絶縁材料からなるものであっても良い。
トランジスタ4は、一例として、p型またはn型のプレーナー型のMISFETであり、図1に示すように、ソース・ドレイン領域40と、チャネル領域41と、ゲート絶縁膜42と、ゲート電極43と、ゲート側壁44と、を備えて概略構成されている。
例えば、トランジスタ4がp型MISFETのとき、ソース・ドレイン領域40は、B、BF、In等のp型不純物イオンをイオン注入法によって半導体層20の表面近傍に注入することによって形成される。
また例えば、トランジスタ4がn型MISFETのとき、ソース・ドレイン領域40は、As、P等のn型不純物イオンをイオン注入法によって半導体層20の表面近傍に注入することによって形成される。
チャネル領域41のチャネル方向は、例えば、<110>である。なお、<110>は、[110]、および[110]と等価な方向を表す。
ゲート絶縁膜42は、一例として、SiO、SiN、SiON、または高誘電材料(例えば、HfSiON、HfSiO、HfO等のHf系材料、ZrSiON、ZrSiO、ZrO等のZr系材料、Y等のY系材料)からなる。
ゲート電極43は、一例として、導電型不純物を含む多結晶シリコン、または多結晶シリコンゲルマニウムからなり、トランジスタ4がp型MISFETのとき、導電型不純物としてB、BF、In等のp型不純物イオンが注入され、また、トランジスタ4がn型MISFETのとき、As、P等のn型不純物イオンが注入される。なお、ゲート電極43は、W、Ta、Ti、Hf、Zr、Ru、Pt、Ir、Mo、Al等やこれらの化合物からなるメタルゲート電極であっても良い。
ゲート側壁44は、一例として、SiN等の絶縁材料からなる。また、ゲート側壁44は、SiN、SiO、TEOS(Tetraethoxysilane)等の複数種の絶縁材料からなる2層構造、更には3層以上の構造であっても良い。
素子分離領域5は、一例として、SiO等の絶縁材料によって形成され、STI(Shallow Trench Isolation)構造を有する。なお、素子分離領域5は、トランジスタ4の導電型に応じて圧縮応力または引張応力を内包するものであっても良い。
以下に、本実施の形態の半導体装置1の製造方法の一例について説明する。
(半導体装置の製造)
図2(a)〜(c)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。なお、以下においては、主にトランジスタ4を形成する前工程までの製造工程について図面を参照しながら説明する。
まず、図2(a)に示すように、第1の半導体基板200上に予め成膜された応力膜3を貼り合せる。このとき、後に形成するトランジスタ4がp型MISFETのとき、圧縮応力を内包する応力膜3を貼り合せ、後に形成するトランジスタ4がn型MISFETのとき、引張応力を内包する応力膜3を貼り合せる。
続いて、図2(b)に示すように、図2(a)に示す第1の半導体基板200の上下を反転させ、第2の半導体基板201と応力膜3を貼り合わせる。
次に、図2(c)に示すように、第2の半導体基板201と応力膜3との貼り合わせが終了したのち、第1の半導体基板201の厚みをスマートカットまたはCMP(Chemical Mechanical Polishing)等によって調整する。
その後、第1の半導体基板200を半導体層20、第2の半導体基板201を半導体基板2として用いて、素子分離領域5およびトランジスタ4を形成することにより、図1に示した半導体装置1を得る。
なお、上記の製造工程において、応力膜3は、予め成膜された膜として第1の半導体基板200に貼り合わせられたが、これに限定されず、例えば、CVD(Chemical Vapor Deposition)等によって第1の半導体基板200上に直接成膜されても良い。
(第1の実施の形態の効果)
本発明の第1の実施の形態によれば、トランジスタ4の導電型に応じて圧縮応力または引張応力を内包する応力膜3をチャネル領域41の下方に形成することによって、チャネル領域41にチャネル方向の圧縮歪みまたは引張歪みを発生させることができ、トランジスタ4の駆動力を効果的に向上させることができる。
図3は、本発明の第1の実施の形態の変形例に係る半導体装置の断面図である。この変形例に係る半導体装置1Aにおいては、半導体層20およびトランジスタ4上に絶縁材料からなる応力膜6が形成され、ソース・ドレイン領域40Aの一部または全部が、Si結晶と異なる格子定数を有するエピタキシャル結晶層400内に形成されている。図3は、一例として、エピタキシャル結晶層400をソース・ドレイン領域40Aの高濃度領域として用いた場合のソース・ドレイン領域40Aの構成を示す。
応力膜6は、上記の応力膜3と同様に、例えば、トランジスタ4がp型MISFETのとき、圧縮応力を内包するように形成され、チャネル領域41に対して内包する圧縮応力に基づいたチャネル方向の圧縮歪みを与え、トランジスタ4がn型MISFETのとき、引張応力を内包するように形成され、チャネル領域41に対して内包する引張応力に基づいたチャネル方向の引張歪みを与える。また、応力膜6は、応力膜3と同一の材料を用いて形成することができる。
エピタキシャル結晶層400は、トランジスタ4がp型MISFETのとき、SiGe結晶等のSi結晶よりも大きい格子定数を有する結晶から形成され、チャネル領域41にチャネル方向の圧縮歪みを与える。また、トランジスタ4がn型MISFETのとき、SiC結晶等のSi結晶よりも小さい格子定数を有する結晶から形成され、チャネル領域41にチャネル方向の引張歪みを与える。
エクステンション領域401は、半導体装置1のソース・ドレイン領域40と同様にイオン注入法等によって、トランジスタ4の導電型に応じた導電型不純物イオンが注入される。
応力膜3に加えて応力膜6およびエピタキシャル結晶層400を用いることにより、トランジスタ4の駆動力をより向上させることができる。
[第2の実施の形態]
(半導体装置の構成)
本発明の第2の実施の形態における半導体装置は、p型トランジスタおよびn型トランジスタを備えたCMOS(Complementary Metal Oxide Semiconductor)構造を有し、それぞれのトランジスタのチャネル領域の下方にトランジスタの導電型に応じた方向の応力を内包する応力膜を有する。なお、第1の実施の形態と同様の点については、簡単のために説明を省略する。
図4は、本発明の第2の実施の形態に係る半導体装置の断面図である。この半導体装置1Bにおいては、図4に示すように、p型トランジスタ7とn型トランジスタ8が、素子分離領域5を挟んで並んで形成されている。
半導体基板2は、その上に第1の半導体層20Aおよび第2の半導体層20Bが形成され、半導体基板2と第1の半導体層20Aの間に第1の絶縁膜としての圧縮応力膜30が形成され、半導体基板2と第2の半導体層20Bの間に第2の絶縁膜としての引張応力膜31が形成されている。
p型トランジスタ7は、第1のソース・ドレイン領域としてのソース・ドレイン領域70と、第1のチャネル領域としてのチャネル領域71と、ゲート絶縁膜72と、ゲート電極73と、ゲート側壁74と、を備えて概略構成され、チャネル領域71の下方には、圧縮応力膜30が形成されている。
この圧縮応力膜30は、第1の実施の形態における圧縮応力を内包する応力膜3と同様のものであり、圧縮応力を内包するように形成され、チャネル領域71に対して内包する圧縮応力に基づいたチャネル方向の圧縮歪みを与える。
n型トランジスタ8は、第2のソース・ドレイン領域としてのソース・ドレイン領域80と、第2のチャネル領域としてのチャネル領域81と、ゲート絶縁膜82と、ゲート電極83と、ゲート側壁84と、を備えて概略構成され、チャネル領域81の下方には、引張応力膜31が形成されている。
この引張応力膜31は、第1の実施の形態における引張応力を内包する応力膜3と同様のものであり、引張応力を内包するように形成され、チャネル領域81に対して内包する引張応力に基づいたチャネル方向の引張歪みを与える。
以下に、本実施の形態の半導体装置1Bの製造方法の一例について説明する。
(半導体装置の製造)
図5(a)〜(d)は、本発明の第2の実施の形態に係る半導体装置の製造工程を示す断面図である。以下においては、圧縮応力膜30の貼り合わせを行ったのち、引張応力膜31の貼り合わせを行うが、どちらを先に貼り合わせても良い。
まず、図5(a)に示すように、第1の半導体基板200上に圧縮応力を内包するように成膜された圧縮応力膜30を貼り合せる。
次に、フォトリソグラフィ法によって圧縮応力膜30上にレジストパターンを形成し、続いてエッチング加工等の周知の処理を行い、図5(b)に示すように、不要な部分を除去する。このとき、圧縮応力膜30は、p型トランジスタ7のチャネル領域71の下方に位置するように形成される。
次に、引張応力を内包するように成膜された引張応力膜31を圧縮応力膜30が貼り合わせられた第1の半導体基板200に貼り合わせる。この引張応力膜31は、貼り合わせる前に、圧縮応力膜30のパターンに合わせたパターンが形成されているものとする。引張応力膜31を貼り合わせたのち、CMP等によって圧縮応力膜30および引張応力膜31を貼り合せた面を研磨し、圧縮応力膜30と引張応力膜31を平坦化する。
続いて、図5(c)に示すように、第1の半導体基板200の上下を反転させ、第2の半導体基板201と、圧縮応力膜30および引張応力膜31を貼り合わせる。
次に、図5(d)に示すように、第2の半導体基板201と、圧縮応力膜30および引張応力膜31との貼り合わせが終了したのち、第1の半導体基板200の厚みをスマートカットまたはCMP等によって調整する。
その後、第1の半導体基板200を第1の半導体層20Aおよび第2の半導体層20B、第2の半導体基板201を半導体基板2として用いて、素子分離領域5、p型トランジスタ7およびn型トランジスタ8を形成することにより、図4に示した半導体装置1Bを得る。
(第2の実施の形態の効果)
本発明の第2の実施の形態によれば、CMOS型の半導体装置1Bにおいて、p型トランジスタ7のチャネル領域71の下方に圧縮応力膜30を形成し、n型トランジスタ8のチャネル領域81の下方に引張応力膜31を形成することによって、チャネル領域71、81にチャネル方向の圧縮歪みまたは引張歪みを発生させることができるので、p型トランジスタ7およびn型トランジスタ8の駆動力を効果的に向上させることができる。
[第3の実施の形態]
本発明の第3の実施の形態は、圧縮応力膜、および引張応力膜をフィン型トランジスタに用いた点について第2の実施の形態と異なっている。なお、第1または第2の実施の形態と同様の点については、簡単のために説明を省略する。
(半導体装置の構成)
図6は、本発明の第3の実施の形態に係る半導体装置の斜視図であり、図7は、本発明の第3の実施の形態に係る図6のI−I線における断面図である。以下では、ゲート電極203の側面に形成されるゲート側壁の図示を省略している。
この半導体装置1Cには、図6に示すように、p型FINFET(Fin Field Effect Transistor)100Aと、n型FINFET100Bとが形成されている。p型FINFET100Aとn型FINFET100Bは、ゲート電極203による電流の制御性を高めるために、チャネル領域をゲート電極203で挟んだ構造を有するダブルゲート型トランジスタの1つである。
p型FINFET100Aは、圧縮応力膜30上に形成されたフィン101aと、ゲート絶縁膜102aを介してフィン101aの両側面を挟むように形成されたゲート電極203と、を備えて概略構成されている。また、フィン101aは、上部に絶縁膜202aを有し、ゲート電極203は、上部に絶縁膜204を有している。
また、p型FINFET100Aは、図7に示すように、フィン101a内のゲート電極203を挟んだ領域にソース・ドレイン領域103aが形成され、ソース・ドレイン領域103aに挟まれた領域にチャネル領域104aが形成されている。
n型FINFET100Bは、引張応力膜31上に形成されたフィン101bと、ゲート絶縁膜102bを介してフィン101bの両側面を挟むように形成されたゲート電極203と、を備えて概略構成されている。また、フィン101bは、上部に絶縁膜202bを有している。
また、n型FINFET100Bは、図7に示すように、フィン101b内のゲート電極203を挟んだ領域にソース・ドレイン領域103bが形成され、ソース・ドレイン領域103bに挟まれた領域にチャネル領域104bが形成されている。
圧縮応力膜30は、p型FINFET100Aのチャネル領域104aの下に形成されているので、チャネル領域104aに対して内包する圧縮応力に基づいたチャネル方向の圧縮歪みを与えることができ、p型FINFET100Aの駆動力を向上させることができる。
引張応力膜31は、n型FINFET100Bのチャネル領域104bの下に形成されているので、チャネル領域104bに対して内包する引張応力に基づいたチャネル方向の引張歪みを与えることができ、n型FINFET100Bの駆動力を向上させることができる。
また、圧縮応力膜30および引張応力膜31は、絶縁性を有しているので、p型FINFET100Aおよびn型FINFET100Bの素子分離領域としての役割も果たしている。
以下に、本実施の形態の半導体装置1Cの製造方法の一例について説明する。
(半導体装置の製造)
図8A(a)〜(d)および図8B(e)〜(g)は、本発明の第3の実施の形態に係る半導体装置の製造工程を示す断面図である。なお、これらの図が示す断面は、図6のII−II線における断面である。なお、第2の実施の形態と同様に圧縮応力膜30の貼り合わせを行ったのち、引張応力膜31の貼り合わせを行うが、どちらを先に貼り合わせても良い。
まず、図8A(a)に示すように、第1の半導体基板200上に圧縮応力を内包するように成膜された圧縮応力膜30を貼り合せる。
次に、フォトリソグラフィ法によって圧縮応力膜30上にレジストパターンを形成し、続いてエッチング加工等の周知の処理を行い、図8A(b)に示すように、不要な部分を除去する。このとき、圧縮応力膜30は、p型FINFET100Aのチャネル領域104aの下に位置するように形成される。
次に、引張応力を内包するように成膜された引張応力膜31を圧縮応力膜30が貼り合わせられた第1の半導体基板200に貼り合わせる。この引張応力膜31は、貼り合わせる前に、圧縮応力膜30のパターンに合わせたパターンが形成されているものとする。引張応力膜31を貼り合わせたのち、CMP等によって圧縮応力膜30および引張応力膜31を貼り合せた面を研磨し、圧縮応力膜30と引張応力膜31を平坦化する。
続いて、図8A(c)に示すように、第1の半導体基板200の上下を反転させ、第2の半導体基板201と、圧縮応力膜30および引張応力膜31を貼り合わせる。
次に、図8A(d)に示すように、第2の半導体基板201と、圧縮応力膜30および引張応力膜31との貼り合わせが終了したのち、第1の半導体基板200の厚みをスマートカットまたはCMP等によって調整する。こうしてp型FINFET100Aが形成されるp型FINFET領域100aと、n型FINFET100Bが形成されるn型FINFET領域100bが形成される。
次に、図8B(e)に示すように、厚みを調整した第1の半導体基板200上に絶縁膜202を形成する。この絶縁膜202は、SiN等の絶縁材料からなり、CVD法等により形成される。
次に、図8B(f)に示すように、例えば、フォトリソグラフィとRIE(Reactive Ion Etching)により、絶縁膜202、半導体層としての第1の半導体基板200をパターニングし、p型FINFET領域100aに上部に絶縁膜202aが形成されたフィン101a、n型FINFET領域100bに上部に絶縁膜202bが形成されたフィン101bをそれぞれ形成する。
次に、図示は省略するが、n型FINFET領域100bにマスクを形成した後、イオン注入法により、p型FINFET領域100aのフィン101aにAs、P等のn型不純物イオンを注入する。マスクを除去し、p型FINFET領域100aにマスクを形成した後、イオン注入法により、n型FINFET領域100bのフィン101bにB、BF、In等のp型不純物イオンを注入する。
次に、図示は省略するが、フィン101a、101bの側面に酸化処理等によりゲート絶縁膜102a、102bを形成した後、CVD法等によりゲート電極材料膜を圧縮応力膜30、引張応力膜31上に堆積させ、堆積したゲート電極材料膜をCMP等により平坦化し、平坦化したゲート絶縁材料膜上に絶縁膜204を形成する。
次に、図示は省略するが、例えば、フォトリソグラフィとRIEにより、絶縁膜204およびゲート電極材料膜をパターニングし、上部に絶縁膜204が形成されたゲート電極203に加工する。
次に、図8B(g)に示すように、絶縁膜204、ゲート電極203をマスクとして、ゲート絶縁膜102a、102bにエッチングを施し、ゲート絶縁膜102a、102bのゲート電極203に囲まれていない領域を除去する。
次に、図示は省略するが、イオン注入法等により、絶縁膜204およびゲート電極203をマスクとしてフィン101a、101bに導電型不純物を注入し、フィン101a、101b中にそれぞれソース・ドレイン領域103a、103bのエクステンション領域を形成する。ここで、フィン101aにはp型不純物を注入し、p型エクステンション領域を形成する。一方、フィン101bにはn型不純物を注入し、n型エクステンション領域を形成する。その後、熱処理を施してp型およびn型エクステンション領域中の導電型不純物を活性化させる。
次に、図示は省略するが、ゲート電極203の側面に、ゲート側壁を形成する。次に、イオン注入法等により、ゲート電極203およびそれらの側面のゲート側壁をマスクとしてフィン101a、101bに導電型不純物を注入し、フィン101a、101b中にそれぞれソース・ドレイン領域103a、103bを形成する。ここで、導電型不純物は、エクステンション領域の形成に用いたものと同じ導電型のものを用いる。その後、熱処理を施してソース・ドレイン領域103a、103b中の導電型不純物を活性化させる。
(第3の実施の形態の効果)
本発明の第3の実施の形態によれば、p型FINFET100Aのチャネル領域104aの下に圧縮応力膜30を形成し、n型FINFET100Bのチャネル領域104bの下に引張応力膜31を形成することによって、チャネル方向の圧縮歪みまたは引張歪みを発生させることができるので、p型FINFET100Aおよびn型FINFET100Bの駆動力を効果的に向上させることができる。
なお、本発明は、上記した実施の形態に限定されず、本発明の技術思想を逸脱あるいは変更しない範囲内で種々の変形および組み合わせが可能である。
図1は、本発明の第1の実施の形態に係る半導体装置の断面図である。 図2(a)〜(c)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。 図3は、本発明の第1の実施の形態の変形例に係る半導体装置の断面図である。 図4は、本発明の第2の実施の形態に係る半導体装置の断面図である。 図5(a)〜(d)は、本発明の第2の実施の形態に係る半導体装置の製造工程を示す断面図である。 図6は、本発明の第3の実施の形態に係る半導体装置の斜視図である。 図7は、本発明の第3の実施の形態に係る図6のI−I線における断面図である。 図8A(a)〜(d)は、本発明の第3の実施の形態に係る半導体装置の製造工程を示す断面図である。 図8B(e)〜(g)は、本発明の第3の実施の形態に係る半導体装置の製造工程を示す断面図である。
符号の説明
1、1A〜1C…半導体装置、2…半導体基板、3…応力膜、4…トランジスタ、7…p型トランジスタ、8…n型トランジスタ、20、20A、20B…半導体層、30…圧縮応力膜、31…引張応力膜、40、40A、70、80、103a、103b…ソース・ドレイン領域、41、71、81、104a、104b…チャネル領域、100A…p型FINFET、100B…n型FINFET、101a、101b…フィン

Claims (5)

  1. 半導体基板上に形成された半導体層と、
    前記半導体層内にソース・ドレイン領域およびチャネル領域を有するトランジスタと、
    前記半導体基板と前記半導体層の間の、前記チャネル領域の下方に形成され、前記チャネル領域に歪みを発生させる応力を内包した絶縁膜と、
    を備えた半導体装置。
  2. 前記トランジスタは、p型トランジスタであり、
    前記絶縁膜は、圧縮応力を内包し、前記チャネル領域にチャネル方向の圧縮歪みを発生させる請求項1に記載の半導体装置。
  3. 前記トランジスタは、n型トランジスタであり、
    前記絶縁膜は、引張応力を内包し、前記チャネル領域にチャネル方向の引張歪みを発生させる請求項1に記載の半導体装置。
  4. 前記トランジスタは、プレーナー型トランジスタ、またはフィン型トランジスタである請求項1から3のいずれか1項に記載の半導体装置。
  5. 半導体基板上に形成された第1および第2の半導体層と、
    前記第1の半導体層内に第1のソース・ドレイン領域および第1のチャネル領域を有するp型トランジスタと、
    前記第2の半導体層内に第2のソース・ドレイン領域および第2のチャネル領域を有するn型トランジスタと、
    前記半導体基板と前記第1の半導体層の間の、前記第1のチャネル領域の下方に形成され、前記第1のチャネル領域にチャネル方向の圧縮歪みを発生させる圧縮応力を内包した第1の絶縁膜と、
    前記半導体基板と前記第2の半導体層の間の、前記第2のチャネル領域の下方に形成され、前記第2のチャネル領域にチャネル方向の引張歪みを発生させる引張応力を内包した第2の絶縁膜と、
    を備えた半導体装置。
JP2008291679A 2008-11-14 2008-11-14 半導体装置 Withdrawn JP2010118566A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291679A JP2010118566A (ja) 2008-11-14 2008-11-14 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291679A JP2010118566A (ja) 2008-11-14 2008-11-14 半導体装置

Publications (1)

Publication Number Publication Date
JP2010118566A true JP2010118566A (ja) 2010-05-27

Family

ID=42306032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291679A Withdrawn JP2010118566A (ja) 2008-11-14 2008-11-14 半導体装置

Country Status (1)

Country Link
JP (1) JP2010118566A (ja)

Similar Documents

Publication Publication Date Title
US8008751B2 (en) Semiconductor device and manufacturing method thereof
JP5159413B2 (ja) 半導体装置及びその製造方法
JP4271210B2 (ja) 電界効果トランジスタ、集積回路素子、及びそれらの製造方法
US9812530B2 (en) High germanium content silicon germanium fins
US7154118B2 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
JP4575471B2 (ja) 半導体装置および半導体装置の製造方法
JP4239203B2 (ja) 半導体装置とその製造方法
JP5178152B2 (ja) 相補型半導体装置及びその製造方法
US20100207209A1 (en) Semiconductor device and producing method thereof
JP2009054705A (ja) 半導体基板、半導体装置およびその製造方法
US9530871B1 (en) Method for fabricating a semiconductor device
US20170141189A1 (en) Fin field effect transistor and method for fabricating the same
KR20120022552A (ko) 반도체 장치 및 그 제조 방법
JP5032418B2 (ja) 電界効果トランジスタ、集積回路素子、及びそれらの製造方法
US9620503B1 (en) Fin field effect transistor and method for fabricating the same
TWI713642B (zh) 鰭式場效電晶體及其製造方法
JP2011066362A (ja) 半導体装置
WO2014012263A1 (zh) 半导体器件及其制造方法
JP2006049895A (ja) 半導体デバイス、半導体チップ及び半導体デバイス製造方法
US9356025B2 (en) Enhancing MOSFET performance with corner stresses of STI
JP2010118566A (ja) 半導体装置
TWI543268B (zh) 電晶體的結構及其製作方法
JP2010010382A (ja) 半導体装置およびその製造方法
JP6064665B2 (ja) 半導体装置およびその製造方法
JP2009152485A (ja) 半導体装置の製造方法及び半導体装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110627

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110630

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207