JP2010097959A - スパークプラグ用絶縁体及びスパークプラグの製造方法 - Google Patents

スパークプラグ用絶縁体及びスパークプラグの製造方法 Download PDF

Info

Publication number
JP2010097959A
JP2010097959A JP2010023068A JP2010023068A JP2010097959A JP 2010097959 A JP2010097959 A JP 2010097959A JP 2010023068 A JP2010023068 A JP 2010023068A JP 2010023068 A JP2010023068 A JP 2010023068A JP 2010097959 A JP2010097959 A JP 2010097959A
Authority
JP
Japan
Prior art keywords
press pin
cavity
insulator
manufacturing
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010023068A
Other languages
English (en)
Other versions
JP4934208B2 (ja
Inventor
Toshitaka Honda
稔貴 本田
Takamitsu Mizuno
貴光 水野
Shinichi Sakurai
真一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010023068A priority Critical patent/JP4934208B2/ja
Publication of JP2010097959A publication Critical patent/JP2010097959A/ja
Application granted granted Critical
Publication of JP4934208B2 publication Critical patent/JP4934208B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/44Producing shaped prefabricated articles from the material by forcing cores into filled moulds for forming hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/003Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spark Plugs (AREA)

Abstract

【課題】細径化しても高い歩留まりを確保可能であり、ひいては製造コストの低廉化を実現可能なスパークプラグ用絶縁体の製造方法を提供する。
【解決手段】スパークプラグ用絶縁体2の製造方法は、用意工程と、プレスピン配置工程と、粉末充填工程と、キャビティ閉塞工程と、加圧成形工程と、脱型工程と、プレスピン除去工程とを備える。閉塞部材286は軸線方向に形成された挿通孔286dを有し、プレスピン250は挿通孔286d内を移動可能である。プレスピン配置工程では、軸線方向先端側の最終位置までプレスピン250を移動させる。キャビティ閉塞工程では、閉塞部材286を軸線方向先端側に移動させる。
【選択図】図11

Description

本発明はスパークプラグ用絶縁体及びスパークプラグの製造方法に関する。
特許文献1の図2〜図6に従来のスパークプラグ用絶縁体の製造方法が開示されている。この製造方法は、中心電極及び端子電極を挿入するための貫通孔が軸線方向に形成されたスパークプラグ用絶縁体の製造方法である。
この製造方法では、まず用意工程として、貫通孔を形成するために用いられるプレスピンと、軸線方向後端側に開口が形成されたキャビティを有する成形型とを用意する。プレスピンの後端には、自己の外周面を螺旋状に回るリブ状のピン側螺旋部が形成されている。
そして、粉末充填工程として、キャビティ内に原料粉末を開口から投入して充填する。次いで、粉末充填工程後、プレスピン配置工程として、プレスピンを開口から軸線方向先端側に移動させることによって、プレスピンをキャビティ内に配置する。プレスピン配置工程後、キャビティ閉塞工程として、開口を閉塞部材により塞ぐ。この後、加圧成形工程として、キャビティ内の原料粉末をプレスピンとともに加圧し、成形体を得る。
加圧成形工程後、脱型工程として、プレスピンとともに成形体をキャビティから脱型する。脱型工程後、プレスピン除去工程として、成形体に対してプレスピンを抜き取る。こうして得られた成形体はスパークプラグ用絶縁体に対応した外形状をなす。この成形体に研削が行われて、未焼成絶縁体が形成される。
その後、未焼成絶縁体は温度1400〜1650°C程度で焼成される。これにより、プレスピンによって形成されたピン孔が貫通孔となる。その後、その焼成体の表面に釉薬が施釉され、仕上焼成されてスパークプラグ用絶縁体となる。このスパークプラグ用絶縁体は、中心電極、端子電極、主体金具、抵抗体等と組み付けられてスパークプラグとされる。このスパークプラグは、主体金具のねじ部によってエンジンに取り付けられ、エンジンの燃焼室に供給される混合気への着火源として使用される。
特開2000−315563号公報
ところで、スパークプラグは、省スペース化のために細径化される傾向にあり、スパークプラグ用絶縁体にも一層の細径化が求められている。このため、スパークプラグ用絶縁体の貫通孔を細径化する必要が生じ、細径化したプレスピンを用いてスパークプラグ用絶縁体を製造しなければならなくなる。しかしながら、上記従来の製造方法において、細径化されたプレスピンを用いてスパークプラグ用絶縁体を製造すると、粉末充填工程後のプレスピン配置工程において、プレスピンがキャビティ内の原料粉末から受ける抵抗により曲がってしまうことがある。この場合、成形体のピン孔が軸線方向に真っ直ぐに延びず、スパークプラグ用絶縁体の貫通孔も軸線方向に真っ直ぐに延びないこととなる。このため、スパークプラグ用絶縁体が不良品となったり、プレスピンの交換を頻繁に行ったりしなければならず、製造コストの上昇を招いてしまう。
本発明は、上記従来の実情に鑑みてなされたものであって、細径化しても高い歩留まりを確保可能であり、ひいては製造コストの低廉化を実現可能なスパークプラグ用絶縁体の製造方法を提供することを解決すべき課題としている。
本発明のスパークプラグ用絶縁体の製造方法は、中心電極及び端子電極を挿入するための貫通孔が軸線方向に形成されたスパークプラグ用絶縁体の製造方法であって、
前記貫通孔を形成するために用いられるプレスピンと、前記軸線方向後端側に開口が形成されたキャビティを有する成形型とを用意する用意工程と、
前記プレスピンを前記開口から前記軸線方向先端側に移動させることによって、前記キャビティ内に前記プレスピンを配置するプレスピン配置工程と、
前記プレスピン配置工程後、前記キャビティ内に原料粉末を前記開口から投入して充填する粉末充填工程と、
前記粉末充填工程後、前記開口を閉塞部材により塞ぐキャビティ閉塞工程と、
前記キャビティ閉塞工程後、前記キャビティ内の前記原料粉末を前記プレスピンとともに加圧し、成形体を得る加圧成形工程と、
前記加圧成形工程後、前記プレスピンとともに前記成形体を前記キャビティから脱型する脱型工程と、
前記脱型工程後、前記成形体から前記プレスピンを抜き取るプレスピン除去工程とを備え、
前記閉塞部材は前記軸線方向に形成された挿通孔を有し、前記プレスピンは前記挿通孔内を移動可能であり、
前記プレスピン配置工程では、前記軸線方向先端側の最終位置まで前記プレスピンを移動させ、
前記キャビティ閉塞工程では、前記閉塞部材を前記軸線方向先端側に移動させることを特徴とする(請求項1)。
本発明の製造方法では、粉末充填工程の前にプレスピン配置工程を実施する。このため、プレスピンは曲がり難い。このため、成形体のピン孔は軸線方向に真っ直ぐに延び、スパークプラグ用絶縁体の貫通孔も軸線方向に真っ直ぐに延びることとなる。
したがって、本発明の製造方法によれば、スパークプラグ用絶縁体を細径化しても不良品の発生を少なくすることができ、かつプレスピンの交換頻度を低減することができるため、高い歩留まりを確保可能であり、ひいては製造コストの低廉化を実現可能である。
本発明の製造方法において、閉塞部材とプレスピンとは一体をなし、プレスピン配置工程では、軸線方向先端側の最終位置の手前でプレスピンを停止させて、キャビティ内に原料粉末を投入可能な隙間を閉塞部材と開口との間に確保し、キャビティ閉塞工程では、最終位置までプレスピンを移動させて、開口を閉塞部材により塞ぐようにし得る。
この場合、閉塞部材とプレスピンとは一体に移動する。そして、プレスピン配置工程において、プレスピンはキャビティ内の最終位置の手前で停止するので、閉塞部材と成形型の開口との隙間が確保される。ここで、「プレスピンの軸線方向先端側の最終位置」とは、加圧成形工程を行う際に、キャビティ内においてプレスピンが配置されているべき位置のことである。このため、粉末充填工程において、閉塞部材と成形型の開口との隙間からキャビティ内に原料粉末を投入して充填することが可能である。そして、キャビティ閉塞工程において、軸線方向先端側の最終位置までプレスピンを移動させると、閉塞部材もプレスピンと一体に移動して成形型の開口を塞ぐ。この間、プレスピンは、粉末充填工程の前に大部分がキャビティ内に配置されているので、キャビティ内の原料粉末からの抵抗が小さく、曲がり難い。この製造方法によれば、簡易な構成で本発明の作用効果を実現できる。
「最終位置の手前で停止させる」とは、具体的には、閉塞部材と成形型の開口との間に確保される隙間からキャビティ内に原料粉末を投入可能な範囲で、可能な限りプレスピンを最終位置に近い位置で停止させることをいい、好ましくは、5mm〜20mm程度(プレスピンの外径の4倍〜16倍程度)手前で停止させることが好ましい。
なお、閉塞部材とプレスピンとが一体をなすとは、両者が一体品である場合の他、両者が分離可能な別部材であるが、一体に移動する場合を含む。
本発明の製造方法において、プレスピンは、軸線方向先端側に形成された第一軸部と、第一軸部より軸線方向後端側に形成され、第一軸部より大径である第二軸部と、第一軸部と第二軸部との間に形成された段部とを有し得る。そして、プレスピン配置工程では、軸線方向先端側の最終位置の手前であって、第一軸部の軸線方向長さより短いストロークを最終位置まで残す位置でプレスピンを停止し、キャビティ閉塞工程では、最終位置までプレスピンを移動させ、同時に又はその後で開口を閉塞部材により塞ぐようにし得る。
この場合、プレスピン配置工程において、プレスピンは、キャビティ内の最終位置の手前であって、第一軸部の軸線方向長さより短いストロークを最終位置まで残す位置で停止する。この際、閉塞部材は、プレスピンと一体に移動する構成であってもよいし、プレスピンとは独立して移動する構成であってもよい。
閉塞部材がプレスピンと一体に移動する構成である場合、プレスピンは最終位置の手前で停止するので、閉塞部材と成形型の開口との隙間が確保され、その隙間からキャビティ内に原料粉末を投入して充填することが可能である。そして、キャビティ閉塞工程において、軸線方向先端側の最終位置までプレスピンを移動させると、同時に閉塞部材もプレスピンと一体に移動して成形型の開口を塞ぐ。
一方、閉塞部材がプレスピンとは独立して移動する構成である場合、粉末充填工程において、開口からキャビティ内に原料粉末を投入して充填することが可能である。そして、キャビティ閉塞工程において、軸線方向先端側の最終位置までプレスピンを移動させた後、閉塞部材をプレスピンとは独立して移動させて成形型の開口を塞ぐ。
そして、キャビティ閉塞工程において、軸線方向先端側の最終位置までプレスピンを移動させる。プレスピンは第一軸部と段部と第二軸部とを有し、段部は第一軸部の軸線方向長さより短いストロークだけ原料粉末を圧縮しながら軸線方向先端側に移動する。
ここで、上記従来の製造方法では、粉末充填工程後のプレスピン配置工程において、プレスピンを開口から軸線方向先端側に移動させることによって、キャビティ内にプレスピンを配置する。このため、プレスピンが原料粉末を圧縮しながら軸線方向先端側に移動するストロークは、第一軸部の軸線方向長さよりかなり長くなってしまう。発明者らの確認によれば、これによって段部よりも先端側の原料粉末は過度に圧縮され、圧密された凝集体が生じる場合がある。そうすると、その凝集体は、キャビティ内において第一軸部、段部及び第二軸部の周囲に散在する状態となり、凝集体周辺で原料粉末の充填密度の大きな斑が生じ易い。その結果、加圧成形工程等を経て得られるスパークプラグ用絶縁体には、ピンホール等の欠陥が発生して絶縁性が低下する不具合が生じ得る。より詳細に言えば、第一軸部はスパークプラグ用絶縁体のいわゆる先端小径部内の貫通孔になるピン孔を形成し、第二軸部はスパークプラグ用絶縁体の先端側中径部内及び大径部内並びにこれらより後方側の貫通孔になるピン孔を形成することから、欠陥が先端小径部や先端小径部と先端側中径部との間に生じやすい。スパークプラグ用絶縁体は、先端小径部が薄肉であり、かつ先端小径部と先端側中径部との間も薄肉であることから、これらに生じる欠陥によって絶縁性が損なわれる懸念がある。
この点、上記構成である本発明の製造方法では、段部が原料粉末を圧縮しながら軸線方向先端側に移動するストロークが第一軸部の軸線方向長さより短い。発明者らの確認によれば、これによって段部よりも先端側の原料粉末は過度に圧縮され難く、圧密された凝集体も生じ難い。このため、キャビティ内の第一軸部、段部及び第二軸部の周囲で原料粉末の充填密度の大きな斑が生じ難い。その結果、加圧成形工程等を経て得られるスパークプラグ用絶縁体には、ピンホール等の欠陥が発生し難く、絶縁性が低下する不具合が生じ難い。逆に、本発明の製造方法では、段部が上記ストロークだけ移動する際、第一軸部の周囲の原料粉末が段部により軸線方向に適度に圧縮されて緻密化されるため、スパークプラグ用絶縁体の先端小径部や先端小径部と先端側中径部との間に欠陥が一層生じ難い。
上記の場合において、段部はテーパ形状であることが好ましい。この場合、軸方向先端側に移動する段部が原料粉末から受ける抵抗を緩和できるとともに、第一軸部の周囲にある原料粉末の圧縮の程度を調整し易い。
さらに、上記の場合において、閉塞部材は軸線方向に形成された挿通孔を有し、プレスピンは挿通孔内を移動可能であり、キャビティ閉塞工程では、最終位置までプレスピンを移動させた後、閉塞部材を軸線方向先端側に移動させ得る。これにより、閉塞部材がプレスピンとは独立して移動する構成を容易に実現できる。すなわち、それぞれ別体として構成された閉塞部材とプレスピンとがそれぞれ独立して移動することが可能であり、プレスピンが最終位置に到達した後に閉塞部材は前記キャビティを閉塞し得る位置へ到達するのである。
本発明の製造方法において、閉塞部材は軸線方向に形成された挿通孔を有し、プレスピンは挿通孔内を移動可能であり、プレスピン配置工程では、軸線方向先端側の最終位置までプレスピンを移動させ、キャビティ閉塞工程では、閉塞部材を軸線方向先端側に移動させる(請求項1)。
この構成により、プレスピンが閉塞部材とは独立して移動し、プレスピン配置工程において、プレスピンは、キャビティ内の最終位置に配置される。「最終位置」とは、上述した通りである。このため、粉末充填工程において、開口からキャビティ内に原料粉末を投入して充填することが可能である。そして、キャビティ閉塞工程において、閉塞部材がプレスピンとは独立して移動し、閉塞部材により成形型の開口を塞ぐ。この間、プレスピンは、原料粉末の抵抗を受けず、確実に曲がり難い。この製造方法によれば、本発明の作用効果を確実に実現できる。
プレスピンが挿通孔内を移動可能に設けられる具体的構成としては、本発明の作用効果を奏するものであればどのようなものを採用してもかまわない。例えば、閉塞部材は、複数の分割体がプレスピンを囲むように組み付けられてなるものであり、少なくともキャビティ閉塞工程では各分割体が一体的な環状体を構成するものであり得る(請求項2)。この場合、プレスピンを囲む各分割体がプレスピンの径外方向に離れることにより、挿通孔が拡がる。このため、プレスピンの外周面の一部が挿通孔より太くなっている場合であっても、プレスピンが問題なく挿通孔内を移動できる。また、キャビティ閉塞工程では、各分割体が一体的な環状体を構成して開口を塞ぐので、キャビティの密封性を高くできる。
上記の閉塞部材の構成は、プレスピンの後端側にピン側螺旋部が形成されている場合に特に有効である。この場合、加圧成形工程により、成形体にピン側螺旋部が転写された成形体側螺旋部が形成される。このため、脱型工程後、プレスピン除去工程として、成形体に対してプレスピンを軸線回りに回転させながら後退させ、成形体からプレスピンを抜き取ることができる。この際、プレスピンのピン側螺旋部は、拡径された挿通孔内を問題なく移動できるので、製造装置の小型化を図ることができる。
本発明の製造方法において、キャビティの開口と反対側の底部には、プレスピンの先端の径方向位置を位置決めする位置決め部が形成されていることが好ましい(請求項3)。位置決め部は、例えば、プレスピンの先端が嵌り込む凹部である。この場合、プレスピンの先端が径方向に変位しないように拘束されるので、プレスピンがより一層曲がり難い。
本発明のスパークプラグの製造方法は、上述のスパークプラグ用絶縁体の製造方法によりスパークプラグ用絶縁体を製造する工程と、製造されたスパークプラグ用絶縁体と他の構成部材とを組み付ける工程とを備え得る(請求項4)。この製造方法により得られるスパークプラグは、本発明のスパークプラグ用絶縁体の製造方法の作用効果を享受できるので、高い歩留まりを確保可能であり、ひいては製造コストの低廉化を実現できる。
参考例1のスパークプラグ用絶縁体の製造方法に係り、絶縁体が適用されるスパークプラグの正面図(部分断面図)である。 参考例1のスパークプラグ用絶縁体の製造方法に係り、プレスピンの正面図である。 参考例1のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 参考例1のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 参考例1のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 参考例1のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 参考例1のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 参考例1のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 実施例のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 実施例のスパークプラグ用絶縁体の製造方法に係り、(a)及び(b)は、図9のXーX断面を示す断面図である。 実施例のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 実施例のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 実施例のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 参考例2のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 参考例2のスパークプラグ用絶縁体の製造方法に係り、絶縁体の製造工程を示す説明図である。 参考例2のスパークプラグ用絶縁体の製造方法に係り、試験例を説明するグラフである。
以下、参考例1を先に説明した上で、本発明を具体化した実施例を図面を参照しつつ説明する。なお、各図(図10を除く。)において、上下方向を軸線方向と規定し、スパークプラグ100、プレスピン50、250、キャビティ83及びスパークプラグ用絶縁体2のそれぞれの下方を先端側と規定し、同様にそれぞれの上方を後端側と規定する。
(参考例1)
参考例1の製造方法は、スパークプラグ用絶縁体の具体的態様である絶縁体2を製造する方法である。絶縁体2は、スパークプラグ100を構成するものであるので、まずスパークプラグ100の全体構成について説明する。
スパークプラグ100は、筒状の主体金具1、先端が突出するようにその主体金具1の内側に嵌め込まれた絶縁体2、先端を突出させた状態で絶縁体2の内側に設けられた中心電極3、及び主体金具1に一端が溶接等により結合されるとともに他端側が側方に曲げ返されて、その側面が中心電極3の先端部と対向するように配置された接地電極4等を備えている。
接地電極4と中心電極3との間には火花放電ギャップgが形成されている。主体金具1は、低炭素鋼等の金属により円筒状に形成されており、スパークプラグ100のハウジングを構成するとともに、その外周面には、ねじ部7と工具係合部1eとが形成されている。ねじ部7は、スパークプラグ100を図示しないエンジンに取り付けるためのものである。工具係合部1eは、六角状の軸断面形状を有しており、主体金具1を取り付ける際に、スパナやレンチ等の工具が係合される。また、中心電極3及び接地電極4はNi合金等で構成され、必要に応じて放熱促進のためのCuあるいはCu合金等の芯材3aが埋設される。
絶縁体2は、アルミナ等を主体とする絶縁材料により構成されるものであり、中心電極3及び端子電極13を挿入するための貫通孔6が軸線方向に形成されている。貫通孔6の先端側には、中心電極3が挿入・固定され、貫通孔6の後端側には、端子電極13が挿入・固定されている。また、貫通孔6内において、端子電極13と中心電極3との間には、抵抗体15が配置されている。この抵抗体15の両端部は、導電性ガラスシール層16、17を介して中心電極3と端子電極13とにそれぞれ電気的に接続されている。なお、抵抗体15は、ガラス粉末と導電材料粉末(及び必要に応じてガラス以外のセラミック粉末)とを混合して、ホットプレス等により焼結して得られる抵抗体組成物として形成される。
中心電極3の軸断面径は、抵抗体15の軸断面径よりも小さく設定されている。そして、貫通孔6は、中心電極3を挿通させる円断面孔状の第一部分6aと、その第一部分6aの後方側(図面上方側)においてこれよりも大径に形成される円断面孔状の第二部分6bとを有している。端子電極13と抵抗体15とは第二部分6b内に収容され、中心電極3は第一部分6a内に挿通されている。中心電極3の後端部には、その外周面から外向きに突出する電極固定用凸部3bが形成されている。そして、上記貫通孔6の第一部分6aと第二部分6bとの接続位置には、中心電極3の電極固定用凸部3bを受けるための凸部受け面6cがテーパ面あるいはアール面状に形成されている。
貫通孔6の第二部分6bの内周面は、後述するプレスピン50を抜き取りやすくするため、軸線方向において後方側に向かうほど大径となる抜きテーパ(例えば5/1000〜5/100程度)が付与されている。他方、第一部分6aの内周面は、第二部分6bよりは小角度の抜きテーパが付与されているか、あるいは抜きテーパが実質的に付与されない形となっている。
なお、絶縁体2の外形状の具体的寸法を例示するとすれば、絶縁体2の全長は例えば、30〜75mm程度であり、貫通孔6の第二部分6bの平均内径は例えば、2〜5mm程度であり、同じく第一部分6aの平均内径は例えば、1〜3.5mm程度である。そして、絶縁体2は、スパークプラグ100の省スペース化や発熱特性等の性能向上のため、一層の細径化が図られている。
次に、絶縁体2の製造方法について説明する。上述の絶縁体2は、用意工程と、プレスピン配置工程と、粉末充填工程と、キャビティ閉塞工程と、加圧成形工程と、脱型工程と、プレスピン除去工程とをこの順番で実施する本発明の製造方法により製造される。以下、各工程毎に説明する。
<用意工程>
用意工程では、プレスピン50と、成形型80とを用意する。
プレスピン50は、図2に示すように、貫通孔6を形成するために用いられる金属製の軸体である。より詳しくは、プレスピン50には、先端側に図1の貫通孔6の第一部分6aを形成するための第一軸部51と、その第一軸部51の後方側に続く形で、貫通孔6の第二部分6bを形成するための第二軸部52とが形成されている。また、第一軸部51と第二軸部52との間には、図1の貫通孔6の凸部受け面6cに対応する段部53が形成されている。
第二軸部52の外周面は、軸線方向において後方側に向かうほど大径となる抜きテーパ(第二部分6bの抜きテーパに対応する。例えば、5/1000〜5/100程度)が付与されている。他方、第一軸部51の外周面は、第二軸部52よりは小角度の抜きテーパ(第一部分6aの抜きテーパに対応する。)が付与されているか、あるいは抜きテーパが実質的に付与されない形となっている。なお、第一軸部51の平均外径は第一部分6aの平均内径に対応し、第二軸部52の平均外径は貫通孔6の第二部分6bの平均内径に対応している。プレスピン50の寸法は、作成する絶縁体の種類に応じて選択すればよいが、特に細いものでは第二軸部52の寸法で、2.5mm〜3.6mm程度の細径のものが使用され得る。
プレスピン50は、このように非常に細い軸体であるため、例えば、加圧成形工程等の際に折れ曲がり等の不具合を生じないように、全体が剛性の高い材質、例えば超硬合金や合金工具鋼等で構成されている。
プレスピン50の第二軸部52の後端側には、後述する成形体PCの後端側端面を形成するフランジ状の端面形成部55が一体に形成され、そのさらに後方側には、軸線方向に雌ねじ部57が形成された頭部56が一体に形成されている。図3等に示すように、この頭部56の外側に上ホルダ部86が回転可能に嵌め込まれている。
図2に示すように、第二軸部52の後端側外周面には、リブ状のピン側螺旋部54が形成されている。なお、ピン側螺旋部54の螺旋巻方向は、雌ねじ部57の螺旋巻方向と逆になっている。
成形型80は、図3〜図6に示すように、一般に「ラバープレス」と呼ばれる成形を行う装置である。「ラバープレス」とは、ゴム型内にセラミックス材料等の粉体を充填し、その外周から高い液圧を加えて均質な成形体を製造する成形方法のことである。
より詳しくは、成形型80は、成形型本体80a内に配置された円筒状の外ゴム型81内に、内部に軸線方向に貫通するキャビティ83を有する円筒状の内ゴム型82が略同心的に配置された構成である。キャビティ83の下方(軸線方向先端側)の開口部は底蓋84及び下ホルダ部85により塞がれている。他方、キャビティ83の上方(軸線方向後端側)には、開口89が形成されている。この開口89は、後述するキャビティ閉塞工程において、図5に示すように、上ホルダ部86が一体化されたプレスピン50の後端側が嵌め込まれることによって塞がれ、その結果として、キャビティ83内が密封状態とされるようになっている。
<プレスピン配置工程>
プレスピン配置工程では、図3に示すように、雌ねじ部57に回転軸87の先端が螺合されるとともに、頭部56の外側に上ホルダ部86が嵌め込まれた状態のプレスピン50を、開口89から軸線方向先端側に移動させることによってキャビティ83内に配置する。ここで、図5に示す加圧成形工程を行う際に、キャビティ83内においてプレスピン50が配置されているべき位置を「最終位置」と規定する。また、図3〜6には、プレスピン50が最終位置に配置された状態における軸線方向先端の位置を最終位置Eとして表示する。参考例1では、プレスピン配置工程において、プレスピン50を軸線方向先端側の最終位置Eの手前(例えば、5mm〜20mm程度)で停止させて、上ホルダ部86とキャビティ83の開口89との間に、上下方向の隙間S1を形成する。この状態では、プレスピン50の先端は、プレスピン50が最終位置Eに配置された場合より、隙間S1に対応する長さ分だけ上方に持ち上がっている。
<粉末充填工程>
粉末充填工程では、図4に示すように、上ホルダ部86とキャビティ83の開口89との隙間S1から、キャビティ83内に原料粉末GPを投入して充填する。
ここで、原料粉末GPは、具体的には下記のようにして準備される。まず、アルミナ粉末(平均粒径1〜5μm)と、焼結助剤となるSi成分、Ca成分、Mg成分、Ba成分あるいはB成分等の添加元素系原料を所定の比率で配合し、親水性結合剤(例えばPVAやアクリルアミド系結合剤)と水とを添加・混合して成形用素地スラリーを作る。なお、各添加元素系原料は、例えばSi成分はSiO2粉末、Ca成分はCaCO3粉末、Mg成分はMgO粉末、Ba成分がBaCO3粉末、B成分がH3BO3粉末(あるいは水溶液でもよい)の形で配合できる。そして、成形用素地スラリーをスプレードライ法等により噴霧乾燥することにより、成形用素地造粒物としての原料粉末GPが製造される。
こうして製造される原料粉末GPは、噴霧乾燥時の条件調整(例えば乾燥温度や噴霧速度等)により、1.5重量%以下の範囲内にて水分を含有するものとなるように調整される。水分配合により、造粒粒子中の粉末粒子の結合力を弛め、プレス時における造粒粒子の解砕を促進することと、成形用素地に配合されている親水性バインダを膨潤させて粘結性を有効に引き出し、成形体PCの強度を高めることが、その主な目的である。
原料粉末GPの水分含有量の下限値は、原料粉末GPの粒度分布等に応じて異なるが、上記効果が不足しない程度に適宜設定される。なお、水分量が1.5重量%を超えると、造粒物の流動性が悪化して扱い難くなる場合がある。この水分量は、より望ましくは1.3重量%以下の範囲で調整するのがよい。
また、原料粉末GP中の親水性バインダの配合量は0.5〜3.0重量%の範囲で調整するのがよい。親水性バインダの配合量が0.5重量%未満になると、成形体PCの強度が不足して取り扱いが困難となり、割れや欠け等が発生しやすくなる場合がある。また、3.0重量%を超えると、焼成時の脱バインダ処理時間が長くなり、絶縁体の製造能率の低下につながるほか、絶縁体中のバインダに由来する不純物成分(例えば炭素)の残留量が増え、性能(例えば絶縁耐電圧)の低下につながる場合がある。
上記の状態に調整された原料粉末GPは、図4に示すように、キャビティ83内に配置されたプレスピン50を避けるようにして、上ホルダ部86とキャビティ83の開口89との隙間S1からキャビティ83内に投入されて、キャビティ83内の下方から上方に向けて堆積していく。そして、所定量の原料粉末GPがキャビティ83内に充填されると、次の工程に移行する。
<キャビティ閉塞工程>
キャビティ閉塞工程では、図5に示すように、キャビティ83内において最終位置Eの手間で停止された状態のプレスピン50を最終位置Eまで挿入する。そうすると、開口89は、上ホルダ部86が一体化されたプレスピン50の後端側が嵌め込まれることによって塞がれ、その結果として、キャビティ83内が密封状態とされる。ここで、原料粉末GPは上述の通り、水分含有量が所定の範囲となるように調整されているので、乾燥したサラサラな状態ではない。このため、原料粉末GP内でプレスピン50を軸線方向先端側に移動させると、プレスピン50は、原料粉末GPから有る程度の大きさの抵抗を受けることとなる。しかしながら、参考例1では、キャビティ閉塞工程の際のプレスピン50の挿入距離は、隙間S1に対応する非常に短い距離となっている。このため、キャビティ閉塞工程の際にプレスピン50が原料粉末GPから受ける抵抗を大幅に小さくすることができる。ここでは、上ホルダ部86が、開口89を塞ぐ閉塞部材に相当する。
<加圧成形工程>
加圧成形工程では、図5に示すように、キャビティ83内の原料粉末GPをプレスピン50とともに加圧し、成形体PCを得る。
より詳しくは、成形型本体80aに形成された加圧液体通路80bを介して、液圧FPを外ゴム型81の外周面に対し半径方向内向きに作用させる。そうすると、外ゴム型81及び内ゴム型82が縮径するように弾性変形し、キャビティ83も縮小する。このため、キャビティ83内に充填された原料粉末GPは、外ゴム型81及び内ゴム型82を介して、間接的に液圧FPが付与されることにより加圧・圧縮される。その結果、キャビティ83の原料粉末GPはプレスピン50と一体化された形で固化し、成形体PCが得られる。
この際、液圧FPは、30〜150MPaの範囲で調整するのがよい。液圧FPが30MPa未満になると、成形体PCの強度が不足して取り扱いが困難となり、割れや欠け等が発生しやすくなる場合がある。他方、150MPaを超えると、外ゴム型81及び内ゴム型82の寿命が短くなり、コストアップにつながる場合がある。
<脱型工程>
脱型工程では、図6に示すように、プレスピン50とともに成形体PCをキャビティ83から脱型する。より詳しくは、液圧FPの付与を解除すると、外ゴム型81及び内ゴム型82が弾性復帰して原形状に戻り、縮小していたキャビティ83も原形状に戻る。これにより、圧縮成形された成形体PCの外周面とキャビティ83の内周面とが離反して、双方の間に空間が形成される。そして、回転軸87及び上ホルダ部86と一体とされたプレスピン50を外ゴム型81及び内ゴム型82に対し軸線方向後端側に引き上げることにより、成形体PCは、プレスピン50についた状態でキャビティ83から引き抜かれる。
<プレスピン除去工程>
プレスピン除去工程では、図7に示すように、成形体PCからプレスピン50を抜き取る。より詳しくは、ピン側螺旋部54が形成されたプレスピン50を用いて成形を行うと、プレスピン50の第二軸部52に対面する成形体PCの内筒面の後端側には、ピン側螺旋部54を反転した形状の(すなわち溝状の)成形体側螺旋部20aが形成される。なお、この成形体側螺旋部20aは切削等により除去されることが多いが、もし除去しなければ、図1に示すように、焼成後の絶縁体2において、螺旋部20として残留する。
図7に示すように、キャビティ83から引き上げられた成形体PCを図示しないエアチャックで保持した状態で、プレスピン50の雌ねじ孔57に螺合させた回転軸87を、図示しないモータ等の駆動源により雌ねじ孔57に締め込む向きに回転させる。そうすると、プレスピン50は成形体PCに対して軸線周りに回転し、ピン側螺旋部54と成形体側螺旋部20aとのかみ合いによるねじ作用に基づき、プレスピン50が螺進して抜き取り方向に上昇する。
すなわち、ねじの螺進作用により、プレスピン50が回転しながらゆっくりと上昇するので、プレスピン50と、プレスピン50の外周面に対面する成形体PCの内筒面との間に無理な摩擦力が生じ難くなり、ひいては成形体PCを痛めることなくスムーズにプレスピン50を抜き取ることができる。また、プレスピン50の第二軸部52には抜きテーパが施されているので、プレスピン50を少し上昇させるだけで、成形体PCの内筒面に対して隙間を確保でき、容易にプレスピン50を離型させることができる。なお、プレスピン50の外周面に硬質炭素系離型被膜等の離型層を形成することにより、プレスピン50の抜き取りがさらに容易になるようにしてもよい。
上記の各工程を終了し、プレスピン50が抜き取られた成形体PCは、図8に示すように、外面がグラインダ切削等により加工されて、絶縁体2に対応した外形状に仕上げられ、次いで温度1400〜1650℃で焼成される。これにより、プレスピン50の外周面に対面していた成形体PCの内筒面は、貫通孔6となる。その後、さらに釉薬をかけて仕上焼成され、図1に示す絶縁体2が完成する。こうして得られた絶縁体2が主体金具1等の他の構成部材と組み付けられることにより、スパークプラグ100が完成する。このスパークプラグ100は、そのねじ部7においてエンジンに取り付けられ、燃焼室に供給される混合気への着火源として使用される。
ここで、参考例1のスパークプラグ用絶縁体の製造方法は、上述した通り、粉末充填工程の前にプレスピン配置工程を実施して、隙間S1を確保しつつプレスピン50をキャビティ83内に配置する。次に、粉末充填工程において、キャビティ83内に配置されたプレスピン50を避けるようにして、隙間S1からキャビティ83内に原料粉末GPを投入して、キャビティ83内に充填する。このため、その後のキャビティ閉塞工程において、プレスピン50を最終位置Eまで挿入する距離は、隙間S1に対応する非常に短い距離となり、キャビティ閉塞工程の際にプレスピン50が原料粉末GPから受ける抵抗を大幅に小さくすることができる。このため、プレスピン50は曲がり難くなり、プレスピン50の外周面に対面する成形体PCの内筒面は軸線方向に真っ直ぐに延びるように成形される。その結果として、絶縁体2の貫通孔6も軸線方向に真っ直ぐに延びることとなる。
したがって、参考例1の製造方法によれば、細径化した絶縁体2の製造において、不良品の発生を少なくし、かつプレスピン50の交換頻度を低減することができる。その結果、この製造方法は、絶縁体2について高い歩留まりを確保でき、ひいてはスパークプラグ100の製造コストの低廉化を実現できる。
なお、参考例1の製造方法において、閉塞部材としての上ホルダ部86とプレスピン50とは一体をなしている。そして、プレスピン配置工程では、プレスピン50を最終位置Eの手前で停止させて、キャビティ83内に原料粉末GPを投入可能な隙間S1を上ホルダ部86と開口89との間に確保し、その隙間S1からキャビティ83内に原料粉末GPを投入して充填する。さらに、キャビティ閉塞工程では、プレスピン50を最終位置Eまで移動させると、上ホルダ部86もプレスピン50と一体に移動して開口89を塞ぐ。このように簡易な構成であるこの製造方法は、本発明の作用効果を容易に得ることができる。
(実施例)
実施例の製造方法は、参考例1と同様に、絶縁体2を製造する方法であるが、参考例1のプレスピン50及び上ホルダ部86の代わりに、プレスピン250及び上ホルダ部286を採用している。このため、それらの部材の構成の相違に起因して、上述の各工程も相違点を有する。以下、参考例1の製造方法との相違点を重点的に説明し、参考例1の各工程と同様な工程については、説明を省略又は簡略する。また、参考例1と同一の構成についても、同一の符号を付して説明を省略する。
以下、実施例の絶縁体2の製造方法について、図9〜図13を参照しつつ、説明する。
<用意工程>
用意工程では、図9に示すように、プレスピン250と、成形型80とを用意する。成形型80は、参考例1と同様であるので説明を省く。
プレスピン250には、参考例1のプレスピン50と同様に、第一軸部51、段部53、第二軸部52及びピン側螺旋部54が形成されている。但し、プレスピン250には、参考例1のプレスピン50における端面形成部55及び頭部56が形成されていない。その代わり、プレスピン250には、第二軸部52の後端から軸線方向後側に長く延在する円柱軸状の回転軸部287が一体に形成されている。回転軸部287は、参考例1の回転軸87に相当するものであり、図示しないモータ等の駆動源により回転するようになっている。
回転軸部287の外周側には、図9等に示すように、上ホルダ部286が配設されている。上ホルダ部286は、図10に示すように、扇型断面を有する3つの分割体286a、286b、286cにより構成され、回転軸部287の外周面を囲むように配設されている。分割体286a、286b、286cで囲まれた中心の空間は、回転軸部287を挿通させる挿通孔286dとなっている。
そして、図10(a)に示すように、各分割体286a、286b、286cが回転軸部287から径外方向に離反すれば、挿通孔286dは拡径される。このため、回転軸部287は、挿通孔286d内において軸線方向に相対的に移動可能となる。
他方、図10(b)に示すように、各分割体286a、286b、286cが回転軸部287に接近すれば、挿通孔286dは回転軸部287と密着し、分割体286a、286b、286cが一体的に組み合わさって環状体を構成する。このような状態となって各分割体286a、286b、286cは、後述するキャビティ閉塞工程において開口89を塞ぎ、キャビティ83内を密封状態とするようになっている。
また、プレスピン250には、図9に示すように、第一軸部51から軸線方向先端側に略円錐状に突出する突出部251aが形成されている。そして、突出部251aに対応して、底蓋84の上面中央には、突出部251aの先端が嵌り込む凹部284aが形成されている。
<プレスピン配置工程>
プレスピン配置工程では、図9に示すように、まず、プレスピン250と上ホルダ部286とを成形型80の開口89の上方に配置する。そして、上ホルダ部286の各分割体286a、286b、286cを回転軸部287から径外方向に離反させて、挿通孔286dを拡径した状態とする。この際、上ホルダ部286と開口89との間に上下方向の隙間S2が形成されるようにする。実施例では、プレスピン250と上ホルダ部286とが各々独立して軸線方向に移動可能となっているので、参考例1における隙間S1より大きな隙間S2を形成することが可能となっている。
次に、挿通孔286d内において、回転軸部287を軸線方向先端側に移動させることにより、プレスピン250を開口89からキャビティ83内に挿入し、軸線方向先端側の最終位置まで移動させる。ここで、図12に示す加圧成形工程を行う際に、キャビティ83内においてプレスピン250が配置されているべき位置を「最終位置」と規定する。参考例1と異なり、実施例では、図11に示すように、プレスピン配置工程の段階で、プレスピン250が最終位置に配置される。この際、突出部251aの先端は、底蓋84の凹部284aに嵌り込む。このため、プレスピン250の先端は拘束されて、軸線に直交する方向(径方向)に変位し難くなる。この凹部284aがプレスピン250の先端の径方向位置を位置決めする位置決め部に相当する。
<粉末充填工程>
粉末充填工程では、図11に示すように、上ホルダ部286とキャビティ83の開口89との隙間S2から、プレスピン250を避けるようにして、キャビティ83内に原料粉末GPを投入して充填する。
<キャビティ閉塞工程>
キャビティ閉塞工程では、図11に示すように、挿通孔286dが拡径された状態の上ホルダ部286を軸線方向先端側に移動させる。そして、図12に示すように、上ホルダ部286の先端側をキャビティ83の開口89に嵌め込んで開口89を塞ぐ。この際、各分割体286a、286b、286cは、図10(b)に示すように、互いに密着して一体的な環状体を構成して開口89を塞ぐので、キャビティ83内を確実に密封状態とする。ここで、参考例1のキャビティ閉塞工程と異なり、実施例のキャビティ閉塞工程では、プレスピン250が移動しないので、プレスピン250が原料粉末GPから抵抗を受けない。ここでは、上ホルダ部286が開口89を塞ぐ閉塞部材に相当する。
<加圧成形工程>
加圧成形工程では、図12に示すように、キャビティ83内の原料粉末GPをプレスピン250とともに加圧し、成形体PCを得る。詳細は、参考例1と同様であるので説明は省く。
<脱型工程>
脱型工程では、図12に示す状態で液圧FPの付与を解除することにより、縮小していたキャビティ83を原形状に復帰させ、圧縮成形された成形体PCの外周面とキャビティ83の内周面とを離反させる。そして、上ホルダ部286の各分割体286a、286b、286cが密着した状態のプレスピン250を外ゴム型81及び内ゴム型82に対し軸線方向上側に引き上げる。これにより、成形体PCは、プレスピン250についた状態でキャビティ83から引き抜かれる。
<プレスピン除去工程>
プレスピン除去工程では、図13に示すように、成形体PCからプレスピン250を抜き取る。より詳しくは、図10(a)に示すように、上ホルダ部286の各分割体286a、286b、286cを回転軸部287から径外方向に離反させて、挿通孔286dを拡径した状態とする。そして、図13に示すように、キャビティ83から引き上げられた成形体PCを図示しないエアチャックで保持した状態で、プレスピン250の回転軸部287を、図示しないモータ等の駆動源により、反時計回りに回転させる。そうすると、プレスピン250は成形体PCに対して軸線周りに回転し、上述の通り、ピン側螺旋部54と成形体側螺旋部20aとのかみ合いによるねじ作用に基づき、成形体PCから抜き取られる。この際、プレスピン250のピン側螺旋部54は、拡径された挿通孔286d内を問題なく移動できるので、絶縁体2の製造装置の小型化を図ることが可能となっている。
上記の各工程を終了し、プレスピン250が抜き取られた成形体PCは、参考例1の場合と同様に、切削加工・焼成されて絶縁体2となり、スパークプラグ100に組み付けられる。
ここで、実施例のスパークプラグ用絶縁体の製造方法では、閉塞部材としての上ホルダ部286の挿通孔286dを拡径することにより、プレスピン250を挿通孔286d内で移動させることができる。このため、この製造方法は、上述した通り、粉末充填工程の前に実施するプレスピン配置工程において、プレスピン250を上ホルダ部286とは独立してキャビティ83内の最終位置まで移動させて、上ホルダ部286と開口89との間に隙間S2を確保することを容易に実施できる。
そして、この製造方法は、粉末充填工程において、キャビティ83内の最終位置に配置されたプレスピン250を避けるようにして、隙間S2からキャビティ83内に原料粉末GPを投入して、キャビティ83内に充填する。その後、キャビティ閉塞工程において、上ホルダ部286がプレスピン250とは独立して移動し、上ホルダ部286により開口89を塞ぐ。このため、キャビティ閉塞工程において、プレスピン250は移動せず、原料粉末GPから抵抗を受けることがない。このため、プレスピン250は一層曲がり難くなる。
したがって、実施例の製造方法は、参考例1の製造方法と同様の作用効果を、参考例1の製造方法よりも確実に奏することができる。
また、この製造方法では、成形型80の底蓋84に形成された位置決め部としての凹部284aにより、プレスピン250の先端がキャビティ83内で拘束される。このため、加圧成形工程において、キャビティ83が縮小する際にプレスピン250に軸直角方向の圧縮力が作用しても、プレスピン250の先端の径方向位置は変位し難い。このため、プレスピン250は、一層曲がり難くなっている。
(参考例2)
参考例2の製造方法は、参考例1と同様に、絶縁体2を製造する方法であるが、参考例1のプレスピン配置工程(図3に示す)及び粉末充填工程(図4に示す)を図14及び図15に示すように変更している。以下、参考例1の製造方法との相違点を重点的に説明し、参考例1の各工程と同様な工程については、説明を省略又は簡略する。また、参考例1と同一の構成についても、同一の符号を付して説明を省略する。
<用意工程>
用意工程では、参考例1と同様に、プレスピン50と、成形型80とを用意する。参考例1の用意工程で説明した通り、プレスピン50は、軸線方向先端側に形成された第一軸部51と、第一軸部51より軸線方向後端側に形成され、第一軸部51より大径である第二軸部52と、第一軸部51と第二軸部52との間に形成された段部53とを有している。図2に示すように、段部53は、外径の異なる第一軸部51と第二軸部52とを連結するようにテーパ形状とされている。
<プレスピン配置工程>
プレスピン配置工程では、図14に示すように、雌ねじ部57に回転軸87の先端が螺合されるとともに、頭部56の外側に上ホルダ部86が嵌め込まれた状態のプレスピン50を、開口89から軸線方向先端側に移動させることによってキャビティ83内に配置する。ここで、参考例1と同様に、図5に示す加圧成形工程を行う際に、キャビティ83内においてプレスピン50が配置されているべき位置を「最終位置」と規定する。また、図14及び図15には、プレスピン50が最終位置に配置された状態における軸線方向先端の位置を最終位置Eとして表示する。参考例2では、プレスピン配置工程において、軸線方向先端側の最終位置Eの手前であって、第一軸部51の軸線方向長さTより短いストロークFを最終位置Eまで残す位置でプレスピン50を停止させる。これにより、上ホルダ部86とキャビティ83の開口89との間に、上下方向の隙間S3を形成する。この状態では、プレスピン50の先端は、プレスピン50が最終位置Eに配置された場合より、ストロークFだけ上方に持ち上がっている。
<粉末充填工程>
粉末充填工程では、図15に示すように、キャビティ83内に配置されたプレスピン50を避けるようにして、上ホルダ部86とキャビティ83の開口89との隙間S3から原料粉末GPをキャビティ83内に投入する。
参考例1の粉末充填工程で説明した通り、原料粉末GPは、成形用素地スラリーをスプレードライ法等により噴霧乾燥することにより製造されるので、噴霧乾燥時の条件調整(例えば乾燥温度や噴霧速度等)により、1.5重量%以下の範囲内にて水分を含有するものとなるように調整されている。このため、原料粉末GPが過度に圧縮されれば、圧密された凝集体が生じ易い。
投入された原料粉末GPがキャビティ83内の下方から上方に向けて堆積していき、所定量の原料粉末GPがキャビティ83内に充填されると、次の工程に移行する。
<キャビティ閉塞工程>
キャビティ閉塞工程では、参考例1と同様、図5に示すように、プレスピン50を最終位置Eまで挿入する。そうすると、開口89は、上ホルダ部86が一体化されたプレスピン50の後端側が嵌め込まれることによって塞がれ、その結果として、キャビティ83内が密封状態とされる。ここで、原料粉末GPは上述の通り、水分含有量が所定の範囲となるように調整されているので、乾燥したサラサラな状態ではない。このため、原料粉末GP内でプレスピン50を軸線方向先端側に移動させると、プレスピン50は、原料粉末GPから有る程度の大きさの抵抗を受けることとなる。この際、段部53はストロークFだけ原料粉末GPを圧縮しながら軸線方向先端側に移動する。
<加圧成形工程>
加圧成形工程では、参考例1と同様、図5に示すように、キャビティ83内の原料粉末GPをプレスピン50とともに加圧し、成形体PCを得る。
<脱型工程>
脱型工程では、参考例1と同様、図6に示すように、プレスピン50とともに成形体PCをキャビティ83から脱型する。
<プレスピン除去工程>
プレスピン除去工程では、参考例1と同様、図7に示すように、成形体PCからプレスピン50を抜き取る。
上記の各工程を終了し、プレスピン50が抜き取られた成形体PCは、参考例1の場合と同様に、切削加工・焼成されて絶縁体2となり、スパークプラグ100に組み付けられる。
ここで、参考例2のスパークプラグ用絶縁体の製造方法において、プレスピン50は、上述した構成である第一軸部51と、第二軸部52と、段部53とを有している。そして、上述した通り、粉末充填工程の前にプレスピン配置工程を実施して、隙間S3を確保しつつプレスピン50をキャビティ83内に配置する。次に、粉末充填工程において、キャビティ83内に配置されたプレスピン50を避けるようにして、隙間S3からキャビティ83内に原料粉末GPを投入して、キャビティ83内に充填する。このため、その後のキャビティ閉塞工程において、プレスピン50を最終位置Eまで挿入する距離は、非常に短いストロークFとなり、キャビティ閉塞工程の際にプレスピン50が原料粉末GPから受ける抵抗を大幅に小さくすることができる。
したがって、参考例2の製造方法も、参考例1の製造方法と同様の作用効果を奏することができる。
また、この製造方法では、段部53が原料粉末GPを圧縮しながら軸線方向先端側に移動するストロークFが第一軸部51の軸線方向長さTより短い。これによって、段部53よりも先端側の原料粉末GPは過度に圧縮され難く、圧密された凝集体も生じ難い。このため、キャビティ83内の第一軸部51、段部53及び第二軸部52の周囲で原料粉末GPの充填密度の大きな斑が生じ難い。その結果、加圧成形工程等を経て得られる絶縁体2には、ピンホール等の欠陥が発生し難く、絶縁性が低下する不具合が生じ難い。逆に、参考例2の製造方法では、段部53がストロークFだけ移動する際、第一軸部51の周囲の原料粉末GPが段部53により軸線方向に適度に圧縮されて緻密化されるため、絶縁体2の先端小径部2a(図1に示す。)や、先端小径部2aと先端側中径部2b(図1に示す。)との間に欠陥が一層生じ難い。先端小径部2aは、絶縁体2の軸方向先端側に位置し、テーパー付き薄肉円筒形状とされている。先端小径部2aの内周側には、中心電極3が配置される。先端側中径部2bは、絶縁体2において先端小径部2aより軸線方向後端側に位置し、先端小径部2aより大径である厚肉円筒形状とされている。先端側中径部2bの内周側には、中心電極3の軸線方向後端と抵抗体15とが配置される。先端小径部2aと先端側中径部2bとの間は屈曲しており、肉厚が局所的に大きく変化している。このような構成である絶縁体2の先端小径部2aや先端小径部2aと先端側中径部2bとの間に欠陥が一層生じ難くなることにより、絶縁体2の絶縁性を一層向上させることができる。
また、この製造方法では、テーパ形状とされた段部53のテーパ角度を適宜調整することにより、キャビティ閉塞工程において、軸方向先端側に移動する段部53が原料粉末GPから受ける抵抗を緩和できるとともに、第一軸部51の周囲にある原料粉末GPの圧縮の程度を調整し易くなっている。段部53のテーパ角度は、具体的には、20°〜70°程度であることがより好ましい。
ここで、参考例2の作用効果を確認する試験例を下記の通り実施した。
(試験例)
試験例では、原料粉末GPが圧密されてなる凝集体を用意した。原料粉末GPの粒径が約50〜160μmであるのに対して、用意した凝集体の粒径は約2〜5mmである。そして、粉末充填工程において、キャビティ83内に充填する原料粉末GPに意図的に凝集体を混入させた。その後、上記の各工程を実施して、絶縁体2としての試験品1−1、1−2をそれぞれ5本づつ得た。この際、試験品1−1では、絶縁体2の先端側中径部2bに対応するキャビティ83内の領域に凝集体を混入させた。試験品1−2では、絶縁体2の大径部2c(図1に示す。)に対応するキャビティ83内の領域に凝集体を混入させた。大径部2cは、絶縁体2において先端側中径部2bより軸線方向後端側に位置し、先端側中径部2bより大径であるフランジ形状とされている。また、粉末充填工程において原料粉末GPに凝集体を混入させない標準品である試験品1−3も10本用意した。
次に、上記の試験品1−1〜1−3について、先端小径部2aにおける貫通電圧を測定した。具体的には、中心電極3や端子電極13を組み付けず、また、表面には釉薬層を形成していない絶縁体2に対し、その貫通孔6へ試験用の棒状の電極を挿入するとともに、先端小径部2aの外周側に円環状の電極(金属板に先端小径部2aが挿通される程度の孔を穿設したもの)を配置して双方の間に高電圧を印加して電圧を低電圧側から高電圧側へ変更し、先端小径部2aによる絶縁が破壊される電圧(すなわち絶縁体の貫通電圧)を測定した。測定して得た電圧値は、試験品1−1の5本及び試験品1−2の5本の合計10本について図16に「凝集体有り」(左側)としてその平均の電圧値と振れ幅を示し、試験品1−3の10本については同図に「標準(凝集体なし)」(右側)として、同様にその平均の電圧値と振れ幅を示した。
その結果、図16に示すように、標準品である試験品1−3は10本の貫通電圧の平均値を基準としたときに、貫通電圧の振れ幅は±5%程度に収まっていた。これに対して、凝集体が混入された試験品1−1、1−2では、貫通電圧の平均値が標準品の平均値に対して4%程度低いものであり、また、貫通電圧の低い方への振れ幅も標準品の平均値を基準としたときに約−10%であり、かなり低かった(なお、貫通電圧の最も高いものは標準品と同等であった)。
この試験例の結果からも明らかであるが、絶縁体2の製造過程において凝集体が混入したものでは、絶縁体2としての貫通電圧が低いものが製造され得る。これに対して、参考例2の製造方法であればその原因たる凝集体が混入され難く、結果として貫通孔6が真っ直ぐに形成されつつも絶縁性が低くなることを回避した絶縁体が形成されることに加え、プレスピンの曲がりが生じ難く、ひいては高い歩留まりを確保することができるのである。
以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。
例えば、参考例2の製造方法において、プレスピン50及び上ホルダ部86の代わりに、実施例のプレスピン250及び上ホルダ部286を採用してもよい。図示は省略するが、この場合、プレスピン配置工程において、軸線方向先端側の最終位置Eの手前であって、第一軸部51の軸線方向長さTより短いストロークFを最終位置Eまで残す位置でプレスピン250を停止させる。この際、上ホルダ部286と開口89との間に上下方向の隙間S2が形成されるようにする。キャビティ閉塞工程では、プレスピン250を最終位置Eまで挿入し、その後、上ホルダ部286により開口89を塞ぐ。このような製造方法も、参考例2の製造方法と同様の作用効果を奏することができる。
本発明はスパークプラグに利用可能である。
3…中心電極
6…貫通孔
13…端子電極
2…スパークプラグ用絶縁体(絶縁体)
50、250…プレスピン
51…第一軸部
52…第二軸部
53…段部
80…成形型
83…キャビティ
86、286…閉塞部材(上ホルダ部)
89…開口
100…スパークプラグ
284a…位置決め部(凹部)
286a、286b、286c…分割体
286d…挿通孔
GP…原料粉末
PC…成形体
S1、S2、S3…キャビティ内に原料粉末を投入可能な隙間
E…最終位置
F…第一軸部の軸線方向長さより短いストローク
T…第一軸部の軸線方向長さ

Claims (4)

  1. 中心電極及び端子電極を挿入するための貫通孔が軸線方向に形成されたスパークプラグ用絶縁体の製造方法であって、
    前記貫通孔を形成するために用いられるプレスピンと、前記軸線方向後端側に開口が形成されたキャビティを有する成形型とを用意する用意工程と、
    前記プレスピンを前記開口から前記軸線方向先端側に移動させることによって、前記キャビティ内に前記プレスピンを配置するプレスピン配置工程と、
    前記プレスピン配置工程後、前記キャビティ内に原料粉末を前記開口から投入して充填する粉末充填工程と、
    前記粉末充填工程後、前記開口を閉塞部材により塞ぐキャビティ閉塞工程と、
    前記キャビティ閉塞工程後、前記キャビティ内の前記原料粉末を前記プレスピンとともに加圧し、成形体を得る加圧成形工程と、
    前記加圧成形工程後、前記プレスピンとともに前記成形体を前記キャビティから脱型する脱型工程と、
    前記脱型工程後、前記成形体から前記プレスピンを抜き取るプレスピン除去工程とを備え、
    前記閉塞部材は前記軸線方向に形成された挿通孔を有し、前記プレスピンは前記挿通孔内を移動可能であり、
    前記プレスピン配置工程では、前記軸線方向先端側の最終位置まで前記プレスピンを移動させ、
    前記キャビティ閉塞工程では、前記閉塞部材を前記軸線方向先端側に移動させることを特徴とするスパークプラグ用絶縁体の製造方法。
  2. 前記閉塞部材は、複数の分割体が前記プレスピンを囲むように組み付けられてなるものであり、
    少なくとも前記キャビティ閉塞工程では各前記分割体が一体的な環状体を構成する請求項1記載のスパークプラグ用絶縁体の製造方法。
  3. 前記キャビティの前記開口と反対側の底部には、前記プレスピンの先端の径方向位置を位置決めする位置決め部が形成されている請求項1又は2記載のスパークプラグ用絶縁体の製造方法。
  4. 請求項1乃至3のいずれか1項記載のスパークプラグ用絶縁体の製造方法によりスパークプラグ用絶縁体を製造する工程と、
    製造された前記スパークプラグ用絶縁体と他の構成部材とを組み付ける工程とを備えるスパークプラグの製造方法。
JP2010023068A 2008-03-19 2010-02-04 スパークプラグ用絶縁体及びスパークプラグの製造方法 Active JP4934208B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023068A JP4934208B2 (ja) 2008-03-19 2010-02-04 スパークプラグ用絶縁体及びスパークプラグの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008072000 2008-03-19
JP2008072000 2008-03-19
JP2010023068A JP4934208B2 (ja) 2008-03-19 2010-02-04 スパークプラグ用絶縁体及びスパークプラグの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008329107A Division JP2009259775A (ja) 2008-03-19 2008-12-25 スパークプラグ用絶縁体及びスパークプラグの製造方法

Publications (2)

Publication Number Publication Date
JP2010097959A true JP2010097959A (ja) 2010-04-30
JP4934208B2 JP4934208B2 (ja) 2012-05-16

Family

ID=41123524

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010023068A Active JP4934208B2 (ja) 2008-03-19 2010-02-04 スパークプラグ用絶縁体及びスパークプラグの製造方法
JP2010023067A Active JP5016691B2 (ja) 2008-03-19 2010-02-04 スパークプラグ用絶縁体及びスパークプラグの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010023067A Active JP5016691B2 (ja) 2008-03-19 2010-02-04 スパークプラグ用絶縁体及びスパークプラグの製造方法

Country Status (2)

Country Link
JP (2) JP4934208B2 (ja)
CN (1) CN101540478B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715212B2 (ja) * 2012-10-01 2015-05-07 日本特殊陶業株式会社 点火プラグ
CN104492896B (zh) * 2015-01-08 2017-01-11 中船重工特种设备有限责任公司 一种粉末衬底包边的压片装置及其使用方法
CN112582888B (zh) * 2021-02-22 2021-05-04 浙江万里学院 一种陶瓷火花塞成型设备及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262375A (ja) * 1984-06-11 1985-12-25 日本特殊陶業株式会社 点火プラグの発火電極封着方法
JPH0492384A (ja) * 1990-08-03 1992-03-25 Ngk Spark Plug Co Ltd 点火プラグ基体の製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665110B2 (ja) * 1990-08-03 1994-08-22 日本特殊陶業株式会社 点火プラグ基体の一発自動成形装置
JPH06325854A (ja) * 1993-05-10 1994-11-25 Ngk Spark Plug Co Ltd セラミック製品用プレス成形体の製造方法
CN1800624A (zh) * 2004-10-28 2006-07-12 白天海 多功能火花塞

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262375A (ja) * 1984-06-11 1985-12-25 日本特殊陶業株式会社 点火プラグの発火電極封着方法
JPH0492384A (ja) * 1990-08-03 1992-03-25 Ngk Spark Plug Co Ltd 点火プラグ基体の製造装置

Also Published As

Publication number Publication date
JP2010097958A (ja) 2010-04-30
JP5016691B2 (ja) 2012-09-05
CN101540478A (zh) 2009-09-23
CN101540478B (zh) 2012-07-18
JP4934208B2 (ja) 2012-05-16

Similar Documents

Publication Publication Date Title
US8469758B2 (en) Insulator for spark plug, and method for manufacturing spark plug
JP2009259775A (ja) スパークプラグ用絶縁体及びスパークプラグの製造方法
JP4934208B2 (ja) スパークプラグ用絶縁体及びスパークプラグの製造方法
JP4465290B2 (ja) スパークプラグ
JP4578025B2 (ja) スパークプラグ
JP6909254B2 (ja) 点火プラグ用絶縁体のための合成物、および、点火プラグ用絶縁体を製造する方法
JP2002305069A (ja) スパークプラグ用絶縁体の製造方法並びにスパークプラグ用絶縁体及びそれを備えるスパークプラグ
WO2009119544A1 (ja) スパークプラグ用絶縁体及びその製造方法、並びに、スパークプラグ及びその製造方法
JP4897898B2 (ja) スパークプラグ用絶縁体及びスパークプラグの製造方法
JPH0969387A (ja) イグナイタプラグおよびその製造方法
JP4508439B2 (ja) スパークプラグ
JP2011154908A (ja) スパークプラグ、スパークプラグ用絶縁体及びその製造方法
JP2001176637A (ja) スパークプラグ用絶縁碍子の製造方法及びそれに使用する研削部材
JP7259630B2 (ja) スパークプラグ用の絶縁碍子の製造方法
JP2000315563A (ja) スパークプラグ用絶縁体の製造方法
WO2016096257A1 (de) Glühstiftkerze
JP7347092B2 (ja) スパークプラグ用の絶縁碍子の製造方法
JP2000095557A (ja) スパ―クプラグ用アルミナ系絶縁体、その製造方法及びそれを用いたスパ―クプラグ
JP2003128474A (ja) 電気絶縁構造体とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Ref document number: 4934208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250