JP2010095688A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2010095688A5 JP2010095688A5 JP2008270161A JP2008270161A JP2010095688A5 JP 2010095688 A5 JP2010095688 A5 JP 2010095688A5 JP 2008270161 A JP2008270161 A JP 2008270161A JP 2008270161 A JP2008270161 A JP 2008270161A JP 2010095688 A5 JP2010095688 A5 JP 2010095688A5
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric material
- thermoelectric
- conductive polymer
- conductive
- protective agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
このように、例4の金属ナノ粒子−導電性高分子複合体を例18の積層型熱電素子に用いると、出力電流が約1.6倍(=3.3μA/2.1μA)になることが予測できる。本発明の実施態様の一部を以下に列記する。
[1]
導電性高分子、及び
保護剤で被覆された金属ナノ粒子を含む、導電性高分子複合体であって、
前記保護剤が、前記導電性高分子の骨格構造の少なくとも一部分及び前記金属ナノ粒子と相互作用する部分を分子内に有する化合物である、導電性高分子複合体。
[2]
前記導電性高分子が、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、及びこれらの誘導体からなる群から選択される、[1]に記載の導電性高分子複合体。
[3]
前記保護剤が、前記導電性高分子がポリアニリンを含む場合、4−アミノチオフェノール、2−アミノチオフェノール、3−アミノチオフェノール、2−アミノベンゼンスルホン酸、2−アミノ安息香酸、3−アミノ安息香酸、4−アミノ安息香酸、2−アミノベンゾニトリル、3−アミノベンゾニトリル、4−アミノベンゾニトリル、2−アミノベンジルシアニド、3−アミノベンジルシアニド、4−アミノベンジルシアニド、N−フェニル−1,2−フェニレンジアミン、又はN−フェニル−1,4−フェニレンジアミンか、あるいはN−ビニルピロリドンとN−フェニル−N’−(3−メタクリロイルオキシ−2−ヒドロキシプロピル)−p−フェニレンジアミンとの共重合体から選択され;前記導電性高分子がポリチオフェン又はポリチエニレンビニレンを含む場合、3−(2−チエニル)−DL−アラニン、4−(2−チエニル)酪酸、2−(2−チエニル)エタノール、2−(3−チエニル)エタノール、2−チオフェン酢酸、3−チオフェン酢酸、2−チオフェンアセトニトリル、2−チオフェンカルボニトリル、2−チオフェンカルボキサミド、2−チオフェンカルボン酸、3−チオフェンカルボン酸、2−チオフェンカルボン酸ヒドラジド、2,5−チオフェンジカルボン酸、2−チオフェンエチルアミン、2−チオフェングリオキシル酸、2−チオフェンマロン酸、2−チオフェンメタノール、又は3−チオフェンメタノールから選択され;前記導電性高分子がポリピロールを含む場合、ピロール−2−カルボン酸、又は1−(2−シアノエチル)ピロールから選択され;前記導電性高分子がポリフェニレンビニレンを含む場合、安息香酸、ベンゼンチオール、ベンゼンスルホン酸、3−ビニル安息香酸、又は4−ビニル安息香酸から選択される、[2]に記載の導電性高分子複合体。
[4]
前記金属ナノ粒子が、金、白金、パラジウム、銀、ロジウム、ニッケル、銅、及びスズ、並びにそれらの合金からなる群から選択される材料で作られる、[1]〜[3]のいずれか1つに記載の導電性高分子複合体。
[5]
前記保護剤のモル数が、前記金属ナノ粒子1モルあたり0.1〜50である、[1]〜[4]のいずれか1つに記載の導電性高分子複合体。
[6]
前記金属ナノ粒子の含有量が、前記導電性高分子の質量を基準として、0.01質量%以上である、[1]〜[5]のいずれか1つに記載の導電性高分子複合体。
[7]
(a)耐熱性を有する基材と、
(b)薄膜形状で前記基材上に配設されている、導電性高分子を含む少なくとも1つの第1の熱電材料と、
(c)薄膜形状又はワイヤ形状で前記基材上に前記第1の熱電材料から間隔を空けて隣り合わせに配設されて、その隣り合う第1の熱電材料と一緒に単位熱電対を構成する、n型半導体又は金属を含む少なくとも1つの第2の熱電材料と、
(d)前記第1の熱電材料と前記第2の熱電材料が交互して電気的に直列に接続されかつ両末端が開放された回路を形成するように、前記第1の熱電材料の端部と前記第2の熱電材料の端部とを電気的に接続する導電性材料と
を備える、熱電素子。
[8]
前記導電性高分子がポリアニリンである、[7]に記載の熱電素子。
[9]
前記第1の熱電材料が、保護剤で被覆された金属ナノ粒子をさらに含み、前記保護剤が、前記導電性高分子の骨格構造の少なくとも一部分及び前記金属ナノ粒子と相互作用する部分を分子内に有する化合物である、[7]又は[8]のいずれかに記載の熱電素子。
[10]
前記基材が可撓性である、[7]〜[9]のいずれか1つに記載の熱電素子。
Thus, when the metal nanoparticle-conductive polymer composite of Example 4 is used for the laminated thermoelectric element of Example 18, the output current is about 1.6 times (= 3.3 μA / 2.1 μA). Can be predicted. Some of the embodiments of the present invention are listed below.
[1]
Conductive polymers, and
A conductive polymer composite comprising metal nanoparticles coated with a protective agent,
A conductive polymer composite, wherein the protective agent is a compound having in its molecule at least a part of the skeleton structure of the conductive polymer and a part that interacts with the metal nanoparticles.
[2]
The conductive polymer composite according to [1], wherein the conductive polymer is selected from the group consisting of polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, and derivatives thereof.
[3]
In the case where the protective agent is such that the conductive polymer contains polyaniline, 4-aminothiophenol, 2-aminothiophenol, 3-aminothiophenol, 2-aminobenzenesulfonic acid, 2-aminobenzoic acid, 3-amino Benzoic acid, 4-aminobenzoic acid, 2-aminobenzonitrile, 3-aminobenzonitrile, 4-aminobenzonitrile, 2-aminobenzyl cyanide, 3-aminobenzyl cyanide, 4-aminobenzyl cyanide, N- Phenyl-1,2-phenylenediamine, N-phenyl-1,4-phenylenediamine, or N-vinylpyrrolidone and N-phenyl-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylene Selected from copolymers with diamines; the conductive polymer is polythiophene or polythiophene When thienylene vinylene is included, 3- (2-thienyl) -DL-alanine, 4- (2-thienyl) butyric acid, 2- (2-thienyl) ethanol, 2- (3-thienyl) ethanol, 2-thiopheneacetic acid 3-thiopheneacetic acid, 2-thiopheneacetonitrile, 2-thiophenecarbonitrile, 2-thiophenecarboxamide, 2-thiophenecarboxylic acid, 3-thiophenecarboxylic acid, 2-thiophenecarboxylic acid hydrazide, 2,5-thiophenedicarboxylic acid, 2 -Selected from thiophenethylamine, 2-thiophene glyoxylic acid, 2-thiophenmalonic acid, 2-thiophenmethanol, or 3-thiophenmethanol; when the conductive polymer comprises polypyrrole, pyrrole-2-carboxylic acid, or 1 -From (2-cyanoethyl) pyrrole The conductive polymer according to [2], wherein when the conductive polymer comprises polyphenylene vinylene, it is selected from benzoic acid, benzenethiol, benzenesulfonic acid, 3-vinylbenzoic acid, or 4-vinylbenzoic acid. Polymer composite.
[4]
Any one of [1] to [3], wherein the metal nanoparticles are made of a material selected from the group consisting of gold, platinum, palladium, silver, rhodium, nickel, copper, and tin, and alloys thereof. The conductive polymer composite described in 1.
[5]
The conductive polymer composite according to any one of [1] to [4], wherein the number of moles of the protective agent is 0.1 to 50 per mole of the metal nanoparticles.
[6]
The conductive polymer composite according to any one of [1] to [5], wherein the content of the metal nanoparticles is 0.01% by mass or more based on the mass of the conductive polymer. .
[7]
(A) a base material having heat resistance;
(B) at least one first thermoelectric material including a conductive polymer disposed in the form of a thin film on the substrate;
(C) A thin film shape or a wire shape is disposed on the substrate adjacent to each other with a space from the first thermoelectric material, and constitutes a unit thermocouple together with the adjacent first thermoelectric material. at least one second thermoelectric material comprising an n-type semiconductor or metal;
(D) an end portion of the first thermoelectric material so as to form a circuit in which the first thermoelectric material and the second thermoelectric material are alternately electrically connected in series and open at both ends; And a conductive material that electrically connects the end of the second thermoelectric material;
A thermoelectric device.
[8]
The thermoelectric element according to [7], wherein the conductive polymer is polyaniline.
[9]
The first thermoelectric material further includes metal nanoparticles coated with a protective agent, and the protective agent contains at least a part of the skeleton structure of the conductive polymer and a part that interacts with the metal nanoparticles in a molecule. The thermoelectric element according to any one of [7] or [8], which is a compound having
[10]
The thermoelectric element according to any one of [7] to [9], wherein the base material is flexible.
Claims (3)
保護剤で被覆された少なくとも1つの金属ナノ粒子を含む、導電性複合材料であって、
前記保護剤が、前記導電性高分子の骨格構造の少なくとも一部分を有する第1の部分及び前記少なくとも1つの金属ナノ粒子と相互作用する第2の部分を有する化合物である、導電性複合材料。 Conductive polymer, and at least one metal nanoparticles coated with a protective agent, a conductive double coupling material,
The protective agent, the first portion and the compounds which have a second portion that interacts with at least one metal nanoparticle, a conductive double if material having at least a portion of the skeletal structure of the conductive polymer .
(b)薄膜形状で前記基材上に配設されている、導電性複合材料を含む第1の熱電材料であって、前記導電性複合材料が、導電性高分子、及び保護剤で被覆された少なくとも1つの金属ナノ粒子を含み、前記保護剤が、前記導電性高分子の骨格構造の少なくとも一部分を有する第1の部分及び前記少なくとも1つの金属ナノ粒子と相互作用する第2の部分を有する化合物である、第1の熱電材料と、(B) A first thermoelectric material including a conductive composite material disposed on the substrate in a thin film shape, wherein the conductive composite material is coated with a conductive polymer and a protective agent. At least one metal nanoparticle, and the protective agent has a first part having at least a part of the skeleton structure of the conductive polymer and a second part interacting with the at least one metal nanoparticle. A first thermoelectric material that is a compound;
(c)薄膜形状又はワイヤ形状で前記基材上に前記第1の熱電材料から間隔を空けて隣り合わせに配設されて、その隣り合う第1の熱電材料と一緒に単位熱電対を構成する、n型半導体又は金属を含む第2の熱電材料と、(C) A thin film shape or a wire shape is disposed on the base material adjacent to each other at a distance from the first thermoelectric material, and constitutes a unit thermocouple together with the adjacent first thermoelectric material. a second thermoelectric material comprising an n-type semiconductor or metal;
(d)前記第1の熱電材料の端部と前記第2の熱電材料の端部とを電気的に接続し、それによって前記第1の熱電材料と前記第2の熱電材料が交互して電気的に直列に接続されかつ両末端が開放された回路を形成する、導電性材料と(D) electrically connecting an end portion of the first thermoelectric material and an end portion of the second thermoelectric material, whereby the first thermoelectric material and the second thermoelectric material are alternately electrically connected; Electrically conductive materials that form a circuit that is connected in series and open at both ends, and
を備える、熱電素子。A thermoelectric device.
(b)薄膜形状で前記基材上に配設されている、導電性高分子を含む第1の熱電材料と、
(c)薄膜形状又はワイヤ形状で前記基材上に前記第1の熱電材料から間隔を空けて隣り合わせに配設されて、その隣り合う第1の熱電材料と一緒に単位熱電対を構成する、n型半導体又は金属を含む第2の熱電材料と、
(d)前記第1の熱電材料の端部と前記第2の熱電材料の端部とを電気的に接続し、それによって前記第1の熱電材料と前記第2の熱電材料が交互して電気的に直列に接続されかつ両末端が開放された回路を形成する、導電性材料と
を備える、熱電素子。 (A) a base material having heat resistance;
(B) and are disposed on the substrate with a thin film shape, a conductive polymer including a first thermoelectric material,
(C) A thin film shape or a wire shape is disposed on the substrate adjacent to each other with a space from the first thermoelectric material, and constitutes a unit thermocouple together with the adjacent first thermoelectric material. and including a second thermoelectric material n-type semiconductor or a metal,
(D) electrically connecting an end portion of the first thermoelectric material and an end portion of the second thermoelectric material, whereby the first thermoelectric material and the second thermoelectric material are alternately electrically connected; to that form a circuit connected in series and both ends are opened, and a conductive material, the thermoelectric element.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008270161A JP5243181B2 (en) | 2008-10-20 | 2008-10-20 | Thermoelectric element using conductive polymer composite and conductive polymer material |
CN200980150035.0A CN102245688B (en) | 2008-10-20 | 2009-10-19 | Electrically conductive composite material and thermoelectric device using electrically conductive polymer material |
EP09743998.8A EP2350181B1 (en) | 2008-10-20 | 2009-10-19 | Electrically conductive composite material and thermoelectric device comprising the material |
KR1020177000046A KR20170005183A (en) | 2008-10-20 | 2009-10-19 | Electrically conductive nanocomposite material and thermoelectric device comprising the material |
KR1020117011053A KR20110086047A (en) | 2008-10-20 | 2009-10-19 | Electrically conductive nanocomposite material and thermoelectric device comprising the material |
US13/122,488 US8519505B2 (en) | 2008-10-20 | 2009-10-19 | Electrically conductive polymer composite and thermoelectric device using electrically conductive polymer material |
PCT/US2009/061121 WO2010048066A2 (en) | 2008-10-20 | 2009-10-19 | Electrically conductive composite material and thermoelectric device using electrically conductive polymer material |
US13/947,211 US8669635B2 (en) | 2008-10-20 | 2013-07-22 | Electrically conductive nanocomposite material and thermoelectric device comprising the material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008270161A JP5243181B2 (en) | 2008-10-20 | 2008-10-20 | Thermoelectric element using conductive polymer composite and conductive polymer material |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2010095688A JP2010095688A (en) | 2010-04-30 |
JP2010095688A5 true JP2010095688A5 (en) | 2011-11-24 |
JP5243181B2 JP5243181B2 (en) | 2013-07-24 |
Family
ID=41572404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008270161A Active JP5243181B2 (en) | 2008-10-20 | 2008-10-20 | Thermoelectric element using conductive polymer composite and conductive polymer material |
Country Status (6)
Country | Link |
---|---|
US (2) | US8519505B2 (en) |
EP (1) | EP2350181B1 (en) |
JP (1) | JP5243181B2 (en) |
KR (2) | KR20170005183A (en) |
CN (1) | CN102245688B (en) |
WO (1) | WO2010048066A2 (en) |
Families Citing this family (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101580318B1 (en) * | 2008-05-14 | 2015-12-28 | 삼성전자주식회사 | Monomer for Binding Nano-metal Conducting Polymer Composite and Preparation Method thereof |
US7952174B2 (en) * | 2009-05-28 | 2011-05-31 | Micron Technology, Inc. | Method and apparatus providing air-gap insulation between adjacent conductors using nanoparticles |
JP2011084814A (en) | 2009-09-18 | 2011-04-28 | Sumitomo Chemical Co Ltd | Silver-(conjugated compound) complex |
WO2011034177A1 (en) * | 2009-09-18 | 2011-03-24 | 住友化学株式会社 | Silver-(conjugated compound) complex |
KR20120071254A (en) * | 2010-12-22 | 2012-07-02 | 한국전자통신연구원 | Thermoelectric device and manufacturing method thereof |
JP6249592B2 (en) | 2011-03-17 | 2017-12-20 | 住友化学株式会社 | Silver-conjugated compound composite composition |
US9120898B2 (en) | 2011-07-08 | 2015-09-01 | Baker Hughes Incorporated | Method of curing thermoplastic polymer for shape memory material |
EP2740751A4 (en) * | 2011-08-01 | 2015-01-21 | Nat Inst For Materials Science | Precipitation method for conductive polymer-metal complex, and conductive polymer-metal complex |
US8939222B2 (en) | 2011-09-12 | 2015-01-27 | Baker Hughes Incorporated | Shaped memory polyphenylene sulfide (PPS) for downhole packer applications |
KR101378949B1 (en) * | 2011-09-23 | 2014-04-18 | 한국과학기술원 | Template polymer and conducting polymer composite including nano particle functionized by copolymer |
US8829119B2 (en) | 2011-09-27 | 2014-09-09 | Baker Hughes Incorporated | Polyarylene compositions for downhole applications, methods of manufacture, and uses thereof |
JP2013072096A (en) * | 2011-09-27 | 2013-04-22 | Hitachi Ltd | Organic-inorganic composite and method for manufacturing the same |
US20140251407A1 (en) | 2011-09-28 | 2014-09-11 | Fujifilm Corporation | Thermoelectric conversion material and a thermoelectric conversion element |
US9144925B2 (en) | 2012-01-04 | 2015-09-29 | Baker Hughes Incorporated | Shape memory polyphenylene sulfide manufacturing, process, and composition |
WO2013114854A1 (en) * | 2012-02-03 | 2013-08-08 | 日本電気株式会社 | Organic thermoelectric power generating element and production method therefor |
WO2013141065A1 (en) * | 2012-03-21 | 2013-09-26 | リンテック株式会社 | Thermoelectric conversion material and method for manufacturing same |
US10062825B2 (en) | 2012-06-28 | 2018-08-28 | City University Of Hong Kong | Thermo-electric generator module |
WO2014006932A1 (en) * | 2012-07-03 | 2014-01-09 | 学校法人東京理科大学 | Thermoelectric conversion material and thermoelectric conversion element |
US9758688B2 (en) | 2012-09-21 | 2017-09-12 | Sumitomo Chemical Company, Limited | Composition for forming conductive film |
WO2014065242A1 (en) * | 2012-10-24 | 2014-05-01 | 独立行政法人物質・材料研究機構 | Adhesive body between conductive polymer-metal complex and substrate and method for forming adhesive body, conductive polymer-metal complex dispersion liquid, method for manufacturing and applying same, and method for filling hole using conductive material |
US9707642B2 (en) * | 2012-12-07 | 2017-07-18 | Baker Hughes Incorporated | Toughened solder for downhole applications, methods of manufacture thereof and articles comprising the same |
KR101602726B1 (en) | 2013-01-24 | 2016-03-11 | 연세대학교 산학협력단 | Method for preparing electroconductive polymer and thermoelectric device comprising electroconductive polymer film prepared using the same |
US9484516B2 (en) | 2013-01-24 | 2016-11-01 | Industry-Academic Cooperation Foundation Yonsei University | Method for preparing electroconductive polymer and thermoelectric device comprising electroconductive polymer film prepared using the same |
JP2014146681A (en) * | 2013-01-29 | 2014-08-14 | Fujifilm Corp | Thermoelectric conversion material, thermoelectric conversion device and article for thermoelectric power generation and power source for sensor using the same |
EP2790474B1 (en) * | 2013-04-09 | 2016-03-16 | Harman Becker Automotive Systems GmbH | Thermoelectric cooler/heater integrated in printed circuit board |
US9595654B2 (en) | 2013-05-21 | 2017-03-14 | Baker Hughes Incorporated | Thermoelectric polymer composite, method of making and use of same |
JP6265323B2 (en) * | 2013-06-12 | 2018-01-24 | 国立大学法人 奈良先端科学技術大学院大学 | Thermoelectric conversion material |
DE102013108791B3 (en) * | 2013-08-14 | 2014-12-11 | O-Flexx Technologies Gmbh | Method for depositing thermoelectric material |
JP6355492B2 (en) | 2013-10-03 | 2018-07-11 | アルパッド株式会社 | Composite resin and electronic device |
CN103579487B (en) * | 2013-11-13 | 2017-02-15 | 东华大学 | Low-dimensional nano-silver/polyaniline-based thermoelectric material and preparation method thereof |
EP3078064B1 (en) * | 2013-12-05 | 2019-02-20 | Robert Bosch GmbH | Materials for thermoelectric energy conversion |
US10367131B2 (en) | 2013-12-06 | 2019-07-30 | Sridhar Kasichainula | Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device |
US10141492B2 (en) | 2015-05-14 | 2018-11-27 | Nimbus Materials Inc. | Energy harvesting for wearable technology through a thin flexible thermoelectric device |
US20190198744A1 (en) * | 2013-12-06 | 2019-06-27 | Sridhar Kasichainula | Hybrid solar and solar thermal device with embedded flexible thin-film based thermoelectric module |
US10290794B2 (en) | 2016-12-05 | 2019-05-14 | Sridhar Kasichainula | Pin coupling based thermoelectric device |
US11024789B2 (en) | 2013-12-06 | 2021-06-01 | Sridhar Kasichainula | Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs |
US20190103540A1 (en) * | 2013-12-06 | 2019-04-04 | Sridhar Kasichainula | Double-sided metal clad laminate based flexible thermoelectric device and module |
US20180090660A1 (en) * | 2013-12-06 | 2018-03-29 | Sridhar Kasichainula | Flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs |
US10566515B2 (en) | 2013-12-06 | 2020-02-18 | Sridhar Kasichainula | Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device |
JP6340825B2 (en) * | 2014-02-26 | 2018-06-13 | トヨタ紡織株式会社 | Organic-inorganic hybrid membrane manufacturing method, organic-inorganic hybrid membrane |
WO2015129877A1 (en) | 2014-02-28 | 2015-09-03 | 国立大学法人 奈良先端科学技術大学院大学 | Thermoelectric conversion material and thermoelectric conversion element |
ES2549828B1 (en) * | 2014-04-30 | 2016-07-14 | Universitat De València | Organic thermoelectric device, thermoelectric system, method for manufacturing the device, cladding for enclosure, enclosure and thermoelectric solar hybrid system |
KR101636908B1 (en) | 2014-05-30 | 2016-07-06 | 삼성전자주식회사 | Stretchable thermoelectric material and thermoelectric device including the same |
CN105374926B (en) * | 2014-08-06 | 2018-04-06 | 中国科学院化学研究所 | A kind of flexible multi-functional sensor and preparation method and application |
CN104176701B (en) * | 2014-08-18 | 2016-08-24 | 中国科学院上海应用物理研究所 | The gold nanoparticle film of organic ligand parcel and Field Electron Emission device thereof |
US10072126B2 (en) | 2014-09-23 | 2018-09-11 | The Boeing Company | Soluble nanoparticles for composite performance enhancement |
US10662302B2 (en) | 2014-09-23 | 2020-05-26 | The Boeing Company | Polymer nanoparticles for improved distortion capability in composites |
US9862828B2 (en) | 2014-09-23 | 2018-01-09 | The Boeing Company | Polymer nanoparticle additions for resin modification |
US10160840B2 (en) | 2014-09-23 | 2018-12-25 | The Boeing Company | Polymer nanoparticles for controlling permeability and fiber volume fraction in composites |
US10808123B2 (en) | 2014-09-23 | 2020-10-20 | The Boeing Company | Nanoparticles for improving the dimensional stability of resins |
US10472472B2 (en) | 2014-09-23 | 2019-11-12 | The Boeing Company | Placement of modifier material in resin-rich pockets to mitigate microcracking in a composite structure |
US9845556B2 (en) | 2014-09-23 | 2017-12-19 | The Boeing Company | Printing patterns onto composite laminates |
US9587076B2 (en) | 2014-09-23 | 2017-03-07 | The Boeing Company | Polymer nanoparticles for controlling resin reaction rates |
JP6448980B2 (en) * | 2014-10-20 | 2019-01-09 | 国立研究開発法人産業技術総合研究所 | Thermoelectric conversion element and thermoelectric conversion module |
WO2016068054A1 (en) * | 2014-10-31 | 2016-05-06 | 富士フイルム株式会社 | Thermoelectric conversion element and thermoelectric conversion module |
US11283000B2 (en) | 2015-05-14 | 2022-03-22 | Nimbus Materials Inc. | Method of producing a flexible thermoelectric device to harvest energy for wearable applications |
US11276810B2 (en) | 2015-05-14 | 2022-03-15 | Nimbus Materials Inc. | Method of producing a flexible thermoelectric device to harvest energy for wearable applications |
US9584061B1 (en) * | 2015-09-17 | 2017-02-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electric drive systems including smoothing capacitor cooling devices and systems |
US10139287B2 (en) * | 2015-10-15 | 2018-11-27 | Raytheon Company | In-situ thin film based temperature sensing for high temperature uniformity and high rate of temperature change thermal reference sources |
JP6804931B2 (en) * | 2016-02-22 | 2020-12-23 | オリンパス株式会社 | Anti-adhesion membrane for medical devices and medical devices |
KR20170111840A (en) * | 2016-03-30 | 2017-10-12 | 현대자동차주식회사 | Thermoelectric module and method for manufacturing the same |
CN106090808A (en) * | 2016-06-03 | 2016-11-09 | 西安理工大学 | A kind of high efficiency thermoelectric conversion LED lamp |
JP2018125498A (en) * | 2017-02-03 | 2018-08-09 | Tdk株式会社 | Thermoelectric conversion device |
EP3373347A1 (en) | 2017-03-09 | 2018-09-12 | Riccardo Raccis | Conversion material |
US10468574B2 (en) | 2017-05-04 | 2019-11-05 | Baker Hughes, A Ge Company, Llc | Thermoelectric materials and related compositions and methods |
US11152556B2 (en) | 2017-07-29 | 2021-10-19 | Nanohmics, Inc. | Flexible and conformable thermoelectric compositions |
CN110003496B (en) * | 2018-09-29 | 2022-04-15 | 深圳新宙邦科技股份有限公司 | Preparation method of polymer dispersion and polymer dispersion |
CN110010353B (en) * | 2018-09-29 | 2021-01-01 | 深圳新宙邦科技股份有限公司 | Polymer dispersion and solid electrolytic capacitor |
WO2020063794A1 (en) * | 2018-09-29 | 2020-04-02 | 深圳新宙邦科技股份有限公司 | Polymer dispersion and preparation method therefor, and solid electrolytic capacitor |
US11024788B2 (en) * | 2018-10-26 | 2021-06-01 | Nano And Advanced Materials Institute Limited | Flexible thermoelectric generator and method for fabricating the same |
KR102168167B1 (en) | 2019-05-29 | 2020-10-21 | 중앙대학교 산학협력단 | Method and apparatus for manufacturing conductive fiber for wearable devices using heat process |
WO2020247915A1 (en) * | 2019-06-07 | 2020-12-10 | University Of Notre Dame Du Lac | Aerosol jet printing and sintering of thermoelectric devices |
CN110400867B (en) * | 2019-07-31 | 2022-12-06 | 太仓碧奇新材料研发有限公司 | Preparation method of paper-based thermoelectric film |
KR102314950B1 (en) * | 2019-11-19 | 2021-10-21 | 울산과학기술원 | Method for manufacturing tin-selenide thin film, tin-selenide thin film manufactured using the same and thermoelectric material comprising the same |
CN110882712A (en) * | 2019-12-09 | 2020-03-17 | 大连理工大学 | Method for preparing silicide catalyst by pyrolyzing metal organic polymer |
KR102564964B1 (en) * | 2021-01-22 | 2023-08-07 | 한남대학교 산학협력단 | Electrode catalyst for fuel cell and manufacturing method thereof |
KR102539290B1 (en) * | 2021-04-14 | 2023-06-05 | 한양대학교 산학협력단 | Composition for Forming Active Layer of Electronic Synaptic Device Comprising Metal-Organic Framework, Method for Forming Active Layer Using Same and Electronic Synaptic Device Comprising Active Layer |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2973050A (en) * | 1959-07-16 | 1961-02-28 | Lucius L Bennett | Motor vehicle throttle lock |
JP3056522B2 (en) * | 1990-11-30 | 2000-06-26 | 三菱レイヨン株式会社 | Metal-conductive polymer composite fine particles and method for producing the same |
JPH06188464A (en) | 1992-12-17 | 1994-07-08 | Matsushita Electric Ind Co Ltd | Thin film thermoelectric element and manufacture thereof |
US5973050A (en) * | 1996-07-01 | 1999-10-26 | Integrated Cryoelectronic Inc. | Composite thermoelectric material |
JP3168318B2 (en) | 1996-08-29 | 2001-05-21 | 日本航空電子工業株式会社 | Thin film thermoelectric converter |
JP2002305330A (en) | 2001-04-06 | 2002-10-18 | Chemiprokasei Kaisha Ltd | Element for thermoelectromotive force amplification |
JP3927784B2 (en) | 2001-10-24 | 2007-06-13 | 北川工業株式会社 | Method for manufacturing thermoelectric conversion member |
JP2003155355A (en) * | 2001-11-21 | 2003-05-27 | Mitsubishi Chemicals Corp | Resin composition molding containing ultrafine particle |
AU2003235181A1 (en) * | 2002-04-22 | 2003-11-03 | Konica Minolta Holdings, Inc. | Organic semiconductor composition, organic semiconductor element, and process for producing the same |
US7800194B2 (en) * | 2002-04-23 | 2010-09-21 | Freedman Philip D | Thin film photodetector, method and system |
KR101021749B1 (en) * | 2002-09-24 | 2011-03-15 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Electrically conducting organic polymer/nanoparticle composites and methods for use thereof |
US20060102871A1 (en) * | 2003-04-08 | 2006-05-18 | Xingwu Wang | Novel composition |
JP3743801B2 (en) | 2003-06-02 | 2006-02-08 | 国立大学法人神戸大学 | Method for producing noble metal catalyst-supported conductive polymer composite |
US7195721B2 (en) * | 2003-08-18 | 2007-03-27 | Gurin Michael H | Quantum lilypads and amplifiers and methods of use |
JP3981738B2 (en) | 2004-12-28 | 2007-09-26 | 国立大学法人長岡技術科学大学 | Thermoelectric conversion element |
JP4568820B2 (en) | 2005-03-10 | 2010-10-27 | 国立大学法人大阪大学 | Method for producing π-conjugated molecular compound-metal nanocluster |
EP1899986B1 (en) * | 2005-07-01 | 2014-05-07 | National University of Singapore | An electrically conductive composite |
JP2007138112A (en) * | 2005-11-22 | 2007-06-07 | Tokai Rubber Ind Ltd | Electroconductive polymer composition and electroconductive member for electrophotographic equipment using the same |
-
2008
- 2008-10-20 JP JP2008270161A patent/JP5243181B2/en active Active
-
2009
- 2009-10-19 CN CN200980150035.0A patent/CN102245688B/en not_active Expired - Fee Related
- 2009-10-19 US US13/122,488 patent/US8519505B2/en active Active
- 2009-10-19 EP EP09743998.8A patent/EP2350181B1/en not_active Not-in-force
- 2009-10-19 KR KR1020177000046A patent/KR20170005183A/en not_active Application Discontinuation
- 2009-10-19 KR KR1020117011053A patent/KR20110086047A/en active Application Filing
- 2009-10-19 WO PCT/US2009/061121 patent/WO2010048066A2/en active Application Filing
-
2013
- 2013-07-22 US US13/947,211 patent/US8669635B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010095688A5 (en) | ||
US8669635B2 (en) | Electrically conductive nanocomposite material and thermoelectric device comprising the material | |
Goel et al. | Polymer thermoelectrics: Opportunities and challenges | |
Bharti et al. | Conductive polymers for thermoelectric power generation | |
Lee et al. | Enhanced thermoelectric performance of bar-coated SWCNT/P3HT thin films | |
Yu et al. | Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors | |
Wang et al. | Facile fabrication and thermoelectric properties of PbTe-modified poly (3, 4-ethylenedioxythiophene) nanotubes | |
Zhao et al. | A new method to improve poly (3-hexyl thiophene)(P3HT) crystalline behavior: decreasing chains entanglement to promote order− disorder transformation in solution | |
Jadoun et al. | A review on the chemical and electrochemical copolymerization of conducting monomers: recent advancements and future prospects | |
KR101167737B1 (en) | Resistive organic memory device and preparation method thereof | |
Gill et al. | Synthesis and crystal structure of a cyano-substituted oligo (p-phenylenevinylene) | |
Schultheiss et al. | Insight into the degradation mechanisms of highly conductive poly (3, 4-ethylenedioxythiophene) thin films | |
Dlamini et al. | Resistive switching memory based on chitosan/polyvinylpyrrolidone blend as active layers | |
KR101458204B1 (en) | Dendrimer having metallocene core, organic memory device using the same and preparation method thereof | |
Seifi et al. | Fabrication of a high-sensitive wearable temperature sensor with an improved response time based on PEDOT: PSS/rGO on a flexible kapton substrate | |
JP2005272846A5 (en) | ||
Darabi et al. | Polymer‐Based n‐Type Yarn for Organic Thermoelectric Textiles | |
Ai et al. | Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies | |
JP6838622B2 (en) | Thermoelectric conversion material and thermoelectric conversion element using it | |
JP7409038B2 (en) | Thermoelectric conversion materials and thermoelectric conversion elements | |
Kim et al. | Robust and Highly Conductive PEDOT: PSS: Ag Nanowires/Polyethyleneimine Multilayers Based on Ionic Layer-by-Layer Assembly for E-Textiles and 3D Electronics | |
JP2003332638A (en) | Thermoelectric conversion material and thermoelectric conversion element | |
JP2008120994A (en) | Ferrocene-containing conductive polymer, organic memory element using the same and method for producing thereof | |
KR101249117B1 (en) | Metallocenyl dendrimer, organic memory device using the same and preparation method thereof | |
JP7540244B2 (en) | Thermoelectric conversion materials and thermoelectric conversion elements |