JP2003332638A - Thermoelectric conversion material and thermoelectric conversion element - Google Patents

Thermoelectric conversion material and thermoelectric conversion element

Info

Publication number
JP2003332638A
JP2003332638A JP2002137739A JP2002137739A JP2003332638A JP 2003332638 A JP2003332638 A JP 2003332638A JP 2002137739 A JP2002137739 A JP 2002137739A JP 2002137739 A JP2002137739 A JP 2002137739A JP 2003332638 A JP2003332638 A JP 2003332638A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
thermoelectric
conversion material
conductive polymer
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002137739A
Other languages
Japanese (ja)
Inventor
Seiji Take
誠司 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002137739A priority Critical patent/JP2003332638A/en
Publication of JP2003332638A publication Critical patent/JP2003332638A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material that exhibits practical- level thermoelectric conversion performance, can be worked easily, and is durable, and to provide a thermoelectric conversion element using the material. <P>SOLUTION: The thermoelectric conversion material is composed of a conductive polymer obtained by doping poly(3-alkyl thiophene) that has a head-to-tail structure and can have a substituting group other than 3-alkyl and having electric conductivity between 10<SP>4</SP>Ω<SP>-1</SP>m<SP>-1</SP>and 10<SP>7</SP>Ω<SP>-1</SP>m<SP>-1</SP>and exhibits practical-level thermoelectric conversion performance. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ゼーベック効果を
利用して温度差から発電したり、或いは、ペルチェ効果
を利用して電気を流すことで冷却又は加熱することの可
能な熱電変換素子を構成する熱電変換材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a thermoelectric conversion element which can be cooled or heated by utilizing the Seebeck effect to generate electric power from a temperature difference or by utilizing the Peltier effect to flow electricity. The present invention relates to a thermoelectric conversion material.

【0002】[0002]

【従来の技術】熱電変換材料の研究開発は、主にBiTe、
BiPb、FeSi、NaCoO等の無機半導体を中心に進められて
きたが、無機半導体は希少元素を含むことが多いために
資源量が少ない、有害物質を含むことがある、熱電変換
素子に適用するための加工がしにくい等の問題がある。
導電性高分子は、これらの問題を克服できることから、
無機半導体に加えて導電性高分子についても熱電変換材
料への研究開発が進められている。
2. Description of the Related Art Research and development of thermoelectric conversion materials is mainly conducted in BiTe,
Inorganic semiconductors such as BiPb, FeSi, and NaCoO have been the main focus, but since inorganic semiconductors often contain rare elements, they have a small amount of resources, and may contain harmful substances. There is a problem that it is difficult to process.
Since conductive polymers can overcome these problems,
In addition to inorganic semiconductors, research and development of thermoelectric conversion materials are being conducted for conductive polymers.

【0003】特開2000-323758及び特開2001-326393に
は、導電性高分子としてポリアニリンを使用し、積層や
延伸等で熱電変換性能の向上を図ることが記載されてい
るが、熱電変換性能が低く、実用レベルに達していな
い。
JP-A-2000-323758 and JP-A-2001-326393 describe that polyaniline is used as a conductive polymer and the thermoelectric conversion performance is improved by stacking or stretching. Is low and has not reached a practical level.

【0004】米国特許5472519には、導電性高分子とし
てポリ(3−オクチルチオフェン)、ドーピング剤とし
て塩化鉄を、モル比2:1で用いることが記載されてい
るが、導電率が0.74Ω-1・m-1と低く、熱電変換性
能は実用レベルに達していない。
US Pat. No. 5,472,519 discloses that poly (3-octylthiophene) is used as a conductive polymer and iron chloride is used as a doping agent in a molar ratio of 2: 1. The conductivity is 0.74Ω. It is as low as -1 · m -1, and the thermoelectric conversion performance has not reached the practical level.

【0005】米国特許5973050には、導電性高分子にド
ーピングすることなく、金属粒子をナノフェースで分散
させることで高い熱電変換性能を実現しているが、ナノ
フェースの分散加工は容易ではない。
In US Pat. No. 5,973,050, high thermoelectric conversion performance is realized by dispersing metal particles in nanofaces without doping the conductive polymer, but the nanoface dispersion processing is not easy.

【0006】[0006]

【発明が解決しようとする課題】本発明は、熱電変換性
能が実用レベルにあり、加工が容易で、且つ、耐久性が
ある熱電変換材料を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a thermoelectric conversion material having thermoelectric conversion performance at a practical level, easy to process and durable.

【0007】[0007]

【課題を解決するための手段】本発明に係る熱電変換材
料は、ヘッド・トゥ・テイル構造を有し且つ3−アルキ
ル以外の置換基を有していてもよいポリ(3−アルキル
チオフェン)にドーピング処理を施して得られる導電率
が104Ω-1・m-1以上、107Ω-1・m-1以下の導電性
高分子からなることを特徴とする。
The thermoelectric conversion material according to the present invention is a poly (3-alkylthiophene) which has a head-to-tail structure and may have a substituent other than 3-alkyl. It is characterized in that it is made of a conductive polymer having a conductivity of 10 4 Ω −1 · m −1 or more and 10 7 Ω −1 · m −1 or less obtained by performing a doping process.

【0008】ヘッド・トゥ・テイル構造を有する置換又
は無置換のポリ(3−アルキルチオフェン)をドーピン
グ処理して導電率(σ)を104Ω-1・m-1以上で且つ
107Ω-1・m-1以下の範囲内に調節することにより、
物理的内部因子(TPF)及び熱電性能指数(Z)を向
上させることが可能であり、得られる熱電変換材料は実
用レベルの熱電変換性能を発揮するようになる。
[0008] Head-to-tail structure of a substituted or unsubstituted with a poly (3-alkylthiophene) doping treatment to the conductivity (sigma) of 10 4 Ω -1 · m -1 or more and 10 7 Omega - By adjusting within the range of 1 · m −1 or less,
It is possible to improve the physical internal factor (TPF) and the thermoelectric figure of merit (Z), and the obtained thermoelectric conversion material exhibits a practical level of thermoelectric conversion performance.

【0009】本発明によれば、ドーピングにより得られ
る上記導電性高分子の物理的内部因子を10-5W・m-1
・K-2以上とし、或いは熱電性能指数を10-4-1以上
とすることができる。
According to the present invention, the physical intrinsic factor of the conductive polymer obtained by doping is set to 10 −5 W · m −1.
・ K −2 or more, or thermoelectric figure of merit can be 10 −4 K −1 or more.

【0010】また、本発明によれば、上記本発明に係る
熱電変換材料を大気と直接接触しないように封止するこ
とで、長期に渡って実用レベルの熱電変換性能を発揮し
得る熱電変換素子が得られる。
Further, according to the present invention, by sealing the thermoelectric conversion material according to the present invention so as not to come into direct contact with the atmosphere, a thermoelectric conversion element capable of exhibiting a practical level of thermoelectric conversion performance for a long period of time. Is obtained.

【0011】[0011]

【発明の実施の形態】本発明に係る熱電変換材料は、ヘ
ッド・トゥ・テイル(head-to-tail)構造を有し且つ3
−アルキル以外の置換基を有していてもよいポリ(3−
アルキルチオフェン)にドーピング処理を施して得られ
る導電率が104Ω-1・m-1以上、107Ω-1・m-1以下
の導電性高分子からなることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION A thermoelectric conversion material according to the present invention has a head-to-tail structure, and 3
-Poly (3- that may have a substituent other than alkyl
It is characterized in that it is made of a conductive polymer having a conductivity of 10 4 Ω −1 · m −1 or more and 10 7 Ω −1 · m −1 or less, which is obtained by performing a doping treatment on (alkylthiophene).

【0012】ヘッド・トゥ・テイル構造を有する置換又
は無置換のポリ(3−アルキルチオフェン)をドーピン
グ処理して導電率(σ)を104Ω-1・m-1以上で且つ
107Ω-1・m-1以下の範囲内に調節することにより、
物理的内部因子(Thermoelectric power factor、以下
TPFと略す)及び熱電性能指数(Z)を向上させるこ
とが可能であり、得られる熱電変換材料は実用レベルの
熱電変換性能を発揮するようになる。
[0012] Head-to-tail structure of a substituted or unsubstituted with a poly (3-alkylthiophene) doping treatment to the conductivity (sigma) of 10 4 Ω -1 · m -1 or more and 10 7 Omega - By adjusting within the range of 1 · m −1 or less,
It is possible to improve a thermoelectric power factor (hereinafter abbreviated as TPF) and a thermoelectric figure of merit (Z), and the obtained thermoelectric conversion material exhibits a practical level of thermoelectric conversion performance.

【0013】上記導電率σ(単位Ω-1・m-1)は、体積
抵抗率の逆数であり電気の流れ易さに関する指標とな
る。導電性高分子の導電率σが104Ω-1・m-1より低
い場合には、2種類の熱電変換材料を組み合わせた熱電
対を通常は直列に数個〜数十個つなげて熱電変換素子を
構成するために素子としての内部抵抗が増大し、発電用
途では充分な電力を供給できず、冷却加熱用途では供給
される電力に対しての熱効率が低くなってしまう。この
導電率σが107Ω-1・m-1より高い場合には、熱伝導
に関わる電子の寄与が大きくなるため、熱伝導率が増大
して熱電性能指数(Z)が低くなってしまう。
The conductivity σ (unit: Ω -1 · m -1 ) is the reciprocal of the volume resistivity and serves as an index relating to the ease of electricity flow. When the conductivity σ of the conductive polymer is lower than 10 4 Ω −1 · m −1 , thermocouples composed of two or more thermoelectric conversion materials are usually connected in series to perform thermoelectric conversion. Since the element constitutes an element, the internal resistance of the element increases, so that sufficient power cannot be supplied for power generation applications, and thermal efficiency for supplied power decreases for cooling and heating applications. When this conductivity σ is higher than 10 7 Ω -1 m -1 , the contribution of electrons involved in heat conduction becomes large, so that the heat conductivity increases and the thermoelectric figure of merit (Z) becomes low. .

【0014】本発明においては、TPFが10-5W・m
-1・K-2以上、或いは、熱電性能指数(Z)が10-4
-1以上、好ましくはTPFと熱電性能指数(Z)が両方
とも、これらの数値以上である導電性高分子を得ること
が可能である。
In the present invention, the TPF is 10 −5 W · m.
-1 · K -2 or more, or thermoelectric figure of merit (Z) is 10 -4 K
It is possible to obtain a conductive polymer having a value of −1 or more, preferably TPF and a thermoelectric figure of merit (Z) both of which are equal to or more than these values.

【0015】上記TPFは、次式 TPF=S2×σ(単位W・m-1・K-2) (ここで、Sはゼーベック係数(単位V・K-1)、すな
わち絶対温度1K当りの熱起電力、 σは上記導電率(単位Ω-1・m-1)である。) で定義される値であり、熱電変換材料により得られる出
力の指標となる。導電性高分子のTPFが、10-5W・
-1・K-2より低い場合には、熱電変換材料の両端に与
えたある温度差において得られる電力が低く、充分な熱
電変換性能を発揮できない。なお、導電性高分子のTP
Fは10-5W・m-1・K-2以上あれば熱電変換性能とし
ては差し支えなく、特に上限は制限されないが、現状で
得られる導電性高分子のTPFは、10-2W・m-1・K
-2程度が最大である。
The TPF is expressed by the following equation TPF = S 2 × σ (unit W · m −1 · K −2 ) (where S is the Seebeck coefficient (unit V · K −1 ), that is, per 1K of absolute temperature. The thermoelectromotive force, σ, is a value defined by the above-mentioned conductivity (unit: Ω -1 · m -1 ), and serves as an index of the output obtained by the thermoelectric conversion material. Conductive polymer TPF is 10 -5 W
When it is lower than m −1 · K −2 , the electric power obtained at a certain temperature difference applied to both ends of the thermoelectric conversion material is low and sufficient thermoelectric conversion performance cannot be exhibited. The conductive polymer TP
If F is 10 −5 W · m −1 · K −2 or more, there is no problem in thermoelectric conversion performance, and the upper limit is not particularly limited, but the TPF of the conductive polymer obtained at present is 10 −2 W · m. -1・ K
-2 is the maximum.

【0016】また、上記熱電性能指数Zは、次式 Z=S2×σ/κ(単位K-1) (ここで、Sは上記ゼーベック係数(単位V・K-1)、 σは上記導電率(単位Ω-1・m-1)、 κは熱伝導率(単位W・m-1・K-1)である。) で定義される値であり、熱電変換材料の熱電変換性能を
表す指標となる。熱電性能指数Zが10-4-1より低い
場合には、熱電変換材料の両端に与えたある温度差にお
いて得られる電力が低いか、或いは、温度差を保持させ
ることができるほど熱伝導率が低くないか、或いは、そ
の両方であるために、充分な熱電変換性能を発揮できな
い。なお、導電性高分子の熱電性能指数は10-4-1
上あれば熱電変換性能としては差し支えなく、特に上限
は制限されないが、現状で得られる導電性高分子の熱電
性能指数は、10-1-1程度が最大である。
The thermoelectric figure of merit Z is expressed by the following equation: Z = S 2 × σ / κ (unit K −1 ) (where S is the Seebeck coefficient (unit V · K −1 ) and σ is the conductivity. Rate (unit: Ω -1 · m -1 ), κ is a value defined by thermal conductivity (unit: W · m -1 · K -1 ) and represents the thermoelectric conversion performance of the thermoelectric conversion material. It will be an index. When the thermoelectric figure of merit Z is lower than 10 -4 K -1 , the electric power obtained at a certain temperature difference applied to both ends of the thermoelectric conversion material is low, or the thermal conductivity is high enough to maintain the temperature difference. Is not low, or both, so sufficient thermoelectric conversion performance cannot be exhibited. If the thermoelectric figure of merit of the conductive polymer is 10 −4 K −1 or more, the thermoelectric conversion performance may be satisfactory, and the upper limit is not particularly limited, but the thermoelectric figure of merit of the conductive polymer obtained at present is 10 -1 K -1 is the maximum.

【0017】本発明において、上記各熱電特性は、10
〜10-4mAの定電流を流すことのできる定電流発生装
置、温度制御が室温から1000℃まで可能な電気炉、
小型ヒーター2を備える図1に示す精密電位差測定装置
1(0.1μVまで測定可能)を用い、本発明により得
られる熱電変換材料からなる膜3をセットし、温度ごと
の導電率σやゼーベック係数Sを測定することにより求
めることができる。具体的に説明すると、Pt→の部分
は白金線であり、矢印の方向に電流を流す。また、本発
明により得られる熱電変換材料の膜上には、Pt/Pt
−Rh/Ptよりなる熱電対を設け、Pt−Pt間で電
位を測定し、Pt/Pt−Rh熱電対で温度を測定す
る。
In the present invention, each of the thermoelectric characteristics is 10
A constant current generator capable of flowing a constant current of -10 -4 mA, an electric furnace capable of controlling temperature from room temperature to 1000 ° C,
Using the precision potentiometer 1 shown in FIG. 1 equipped with a small heater 2 (measurable up to 0.1 μV), the film 3 made of the thermoelectric conversion material obtained by the present invention is set, and the conductivity σ and Seebeck coefficient for each temperature are set. It can be determined by measuring S. More specifically, the part Pt → is a platinum wire, and a current flows in the direction of the arrow. Further, Pt / Pt is formed on the thermoelectric conversion material film obtained by the present invention.
A thermocouple made of —Rh / Pt is provided, the potential is measured between Pt and Pt, and the temperature is measured by the Pt / Pt—Rh thermocouple.

【0018】ポリ(3−アルキルチオフェン)は、下記
式1で表される構成単位がつながった主鎖骨格又はその
二重結合位置が共役系により変動した主鎖骨格を有して
いる。
The poly (3-alkylthiophene) has a main chain skeleton in which the structural units represented by the following formula 1 are connected or a main chain skeleton in which the double bond position varies depending on the conjugated system.

【0019】[0019]

【化1】 [Chemical 1]

【0020】(式中、Rはアルキル基を示す。)ポリ
(3−アルキルチオフェン)の3−アルキルは、通常、
炭素数が1〜12の分岐又は置換基を有していてもよい
鎖状又は脂環式アルキルであり、その中でもブチル、ペ
ンチル、ヘキシル、ヘプチル、オクチル等の炭素数4〜
8のアルキル基が好ましい。ポリ(3−アルキルチオフ
ェン)は、主鎖骨格の構成単位に3−アルキル以外の置
換基が導入されていてもよい。また、ポリ(3−アルキ
ルチオフェン)は、分子鎖がπ共役系を有するのであれ
ば3−アルキルチオフェン単位以外の構成単位を含む共
重合体であってもよいが、3−アルキルチオフェン単位
を主鎖骨格の50モル%以上の割合で含んでいるものが
好ましい。
(In the formula, R represents an alkyl group.) 3-alkyl of poly (3-alkylthiophene) is usually
It is a chain or alicyclic alkyl having 1 to 12 carbon atoms and optionally having a branched or substituent, and among them, butyl, pentyl, hexyl, heptyl, octyl and the like having 4 to 4 carbon atoms.
An alkyl group of 8 is preferred. Poly (3-alkylthiophene) may have a substituent other than 3-alkyl introduced into the constituent unit of the main chain skeleton. The poly (3-alkylthiophene) may be a copolymer containing a constitutional unit other than the 3-alkylthiophene unit as long as the molecular chain has a π-conjugated system. Those containing 50 mol% or more of the chain skeleton are preferable.

【0021】ポリ(3−アルキルチオフェン)の中でも
ヘッド・トゥ・テイル構造とは、下記式2に示す構造の
ことであり、モノマーの重合方法によっては式3に示す
ヘッド・トゥ・ヘッド構造又は式4に示すテイル・トゥ
・テイル構造をとる場合もある。通常、式2、式3、式
4の構造が一本の分子鎖中に共存するが、例えば、J.A
m. Chem. Soc., 117, 233-244(1995)に記載された合成
方法により、ほとんどがヘッド・トゥ・テイル構造をと
るようにすることができる。
Among the poly (3-alkylthiophenes), the head-to-tail structure is a structure represented by the following formula 2, and the head-to-head structure or the formula represented by the formula 3 may be used depending on the polymerization method of the monomer. In some cases, the tail-to-tail structure shown in FIG. Usually, the structures of Formula 2, Formula 3, and Formula 4 coexist in one molecular chain.
Most of them can have a head-to-tail structure by the synthetic method described in m. Chem. Soc., 117, 233-244 (1995).

【0022】[0022]

【化2】 [Chemical 2]

【0023】[0023]

【化3】 [Chemical 3]

【0024】[0024]

【化4】 [Chemical 4]

【0025】本発明においては、3−アルキルチオフェ
ン単位が繋がったヘッド・トゥ・テイル構造が主鎖骨格
の80モル%以上、特に90モル%以上を占めるポリ
(3−アルキルチオフェン)が好適に用いられる。
In the present invention, poly (3-alkylthiophene) having a head-to-tail structure in which 3-alkylthiophene units are connected occupying 80 mol% or more, particularly 90 mol% or more of the main chain skeleton is preferably used. To be

【0026】上記ヘッド・トゥ・テイル構造のポリ(3
−アルキルチオフェン)は、ドーピングにより導電率を
104Ω-1・m-1以上、好ましくは5×104Ω-1・m-1
以上に上げることが可能であり、高い熱電変換性能が得
られる。
The above head-to-tail structure poly (3
-Alkylthiophene) has a conductivity of 10 4 Ω -1 m -1 or more, preferably 5 × 10 4 Ω -1 m -1 by doping.
It is possible to increase the above, and high thermoelectric conversion performance is obtained.

【0027】また、ヘッド・トゥ・テイル構造のポリ
(3−アルキルチオフェン)は、導電性高分子の中でも
トルエン、キシレン、クロロホルム等の有機溶剤への溶
解性が高く、特にドーピングの前には、上記有機溶剤を
用いて溶解しキャスティング、スプレイ、スピンコーテ
ィング等の塗布によって容易に薄膜とすることが可能で
あり、熱電変換素子を形成するための加工が容易であ
る。
In addition, poly (3-alkylthiophene) having a head-to-tail structure has high solubility in organic solvents such as toluene, xylene, and chloroform among the conductive polymers, and especially before doping, A thin film can be easily formed by dissolving using the above organic solvent and applying casting, spraying, spin coating, or the like, and processing for forming a thermoelectric conversion element is easy.

【0028】また、ポリ(3−アルキルチオフェン)の
薄膜に延伸処理を施すことによって、延伸方向における
導電率を高めることが可能であり、熱電変換性能を向上
させることができる。延伸処理を行なう場合、延伸率
(%)、すなわち延伸前の長さに対する延伸後における
延伸方向の長さの比は、150%以上、特に200%以
上とするのが好ましい。延伸率が高いほど分子配列の程
度が大きくなるので、導電率を高める効果が大きい。
By subjecting the poly (3-alkylthiophene) thin film to a stretching treatment, the electrical conductivity in the stretching direction can be increased and the thermoelectric conversion performance can be improved. When the stretching treatment is performed, the stretching ratio (%), that is, the ratio of the length in the stretching direction after stretching to the length before stretching is preferably 150% or more, and particularly preferably 200% or more. The higher the draw ratio, the greater the degree of molecular alignment, and thus the greater the effect of increasing the conductivity.

【0029】上記ポリ(3−アルキルチオフェン)にド
ーピング処理を施すためのドーピング剤(ドーパント)
としては、成書「導電性高分子」(緒方直哉編、講談社
サイエンティフィック出版、1990年発行)のp83
〜p90に記載の通り、π共役系高分子から電子を受け
取るアクセプタードーパントと、電子を与えるドナード
ーパントがある。アクセプタードーパントとしては、電
子親和力の大きい材料が、ドナードーパントとしてはイ
オン化ポテンシャルの小さい材料が用いられる。
Doping agent (dopant) for doping the above poly (3-alkylthiophene)
, P83 of the book "Conductive Polymer" (edited by Naoya Ogata, published by Kodansha Scientific Publishing, 1990)
~ P90, there are acceptor dopants that accept electrons from π-conjugated polymers and donor dopants that donate electrons. A material having a high electron affinity is used as the acceptor dopant, and a material having a low ionization potential is used as the donor dopant.

【0030】ドーピング剤の具体例としては、アクセプ
タードーパントとして、Cl2、Br2、I2、ICl、
ICl3、IBr、IF等のハロゲン;PF5、As
5、SbF5、BF3、BCl3、BBr3、SO3等のル
イス酸;HF、HCl、HNO3、H2SO4、HCl
4、燐酸等のプロトン酸、2−ナフタレンスルホン
酸、ドデシルベンゼンスルホン酸、カンファースルホン
酸等の有機酸;FeCl3、FeOCl、TiCl4、Z
rCl4、HfCl4、NbF5、NbCl5、TaC
5、MoF5、WF6等の遷移金属化合物等が挙げられ
る。また、ドナードーパントとして、Li、Na、K、
Rb、Cs等のアルカリ金属、Ca、Sr、Ba等のア
ルカリ土類金属、Eu等のランタノイド、その他R
4+、R4+、R4As+、R3+(R:アルキル基)、
アセチルコリン等が挙げられる。
Specific examples of the doping agent include Cl 2 , Br 2 , I 2 , and ICl as acceptor dopants.
Halogen such as ICl 3 , IBr, IF; PF 5 , As
Lewis acids such as F 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 , and SO 3 ; HF, HCl, HNO 3 , H 2 SO 4 , HCl
O 4 , protic acid such as phosphoric acid, organic acid such as 2-naphthalene sulfonic acid, dodecylbenzene sulfonic acid, camphor sulfonic acid; FeCl 3 , FeOCl, TiCl 4 , Z
rCl 4, HfCl 4, NbF 5 , NbCl 5, TaC
Examples include transition metal compounds such as l 5 , MoF 5 and WF 6 . Further, as a donor dopant, Li, Na, K,
Alkali metals such as Rb and Cs, alkaline earth metals such as Ca, Sr and Ba, lanthanoids such as Eu, and other R
4 N + , R 4 P + , R 4 As + , R 3 S + (R: alkyl group),
Acetylcholine and the like can be mentioned.

【0031】これらのアクセプターやドナー等のドーピ
ング剤を、公知の気相法又は液相法でπ共役系高分子と
反応させて化学ドーピングを行うことによって、導電率
σを上記範囲内に調節することができ、高いTPF及び
熱電性能指数Zを有する導電性高分子が得られる。気相
法ではドーピングを行う際の気圧が低いほど、液相法で
はドーピング剤濃度の高い液を用いるほど導電率σは高
くなる傾向があることから、これらのドーピング処理の
条件を変えることで導電率σを所定の値に調節すること
が可能である。
The conductivity σ is adjusted within the above range by reacting a doping agent such as an acceptor or a donor with a π-conjugated polymer by a known vapor phase method or a liquid phase method to perform chemical doping. It is possible to obtain a conductive polymer having a high TPF and a thermoelectric figure of merit Z. Since the conductivity σ tends to increase as the atmospheric pressure during doping in the vapor phase method decreases and that in the liquid phase method where a doping agent concentration is higher, the conductivity can be changed by changing the conditions of these doping treatments. It is possible to adjust the rate σ to a predetermined value.

【0032】本発明の熱電変換材料を製造するには、ヘ
ッド・トゥ・テイル構造を有する上記ポリ(3−アルキ
ルチオフェン)の溶液を調製し、この高分子溶液を用い
て薄膜を形成し、得られた薄膜にドーピング処理を行え
ばよい。具体的な手順の一例としては、ヘッド・トゥ・
テイル構造を有するポリ(3−アルキルチオフェン)を
トルエン、キシレン、クロロホルム等の有機溶剤に溶解
して高分子溶液を調製し、この高分子溶液を熱電対を構
成する際の相手材となる薄膜又は何らかの支持体上に塗
布、乾燥してπ共役系高分子の所定厚さの薄膜を形成
し、この薄膜に適切に選択したドーピング剤を気相法又
は液相法で接触させて化学ドーピングを行い、必要に応
じて余剰のドーピング剤を除去することにより、上記範
囲の導電率σ、TPF及び熱電性能指数Zを有する導電
性高分子の薄膜からなる熱電変換材料が形成される。
In order to produce the thermoelectric conversion material of the present invention, a solution of the above poly (3-alkylthiophene) having a head-to-tail structure is prepared, and a polymer is used to form a thin film. The thin film thus formed may be subjected to doping treatment. As an example of a specific procedure, head-to-
A poly (3-alkylthiophene) having a tail structure is dissolved in an organic solvent such as toluene, xylene, or chloroform to prepare a polymer solution, and the polymer solution is used as a partner material when forming a thermocouple. A thin film of π-conjugated polymer with a predetermined thickness is formed by coating it on a support and drying it, and a doping agent selected appropriately is brought into contact with this film by a vapor phase method or a liquid phase method for chemical doping. By removing the excess doping agent as needed, a thermoelectric conversion material composed of a thin film of a conductive polymer having the conductivity σ, TPF and thermoelectric figure of merit Z in the above ranges is formed.

【0033】また、別の手順としては、上記手順と同様
に調製した高分子溶液を仮の支持体上に塗布、乾燥して
上記ポリ(3−アルキルチオフェン)の所定厚さの薄膜
を形成し、この薄膜を支持体から剥離し、適切に選択し
たドーピング剤を含有する液に浸漬して液相ドーピング
を行い、必要に応じて洗浄することにより、上記範囲の
導電率σ、TPF及び熱電性能指数Zを有する導電性高
分子の薄膜からなる熱電変換材料が形成される。この熱
電変換材料の薄膜を、必要に応じて一軸延伸等の延伸処
理を施してから熱電対を構成する際の相手材となる薄膜
又は何らかの支持体上に積層することにより、熱電変換
素子を形成することができる。
As another procedure, a polymer solution prepared in the same manner as the above procedure is coated on a temporary support and dried to form a thin film of the poly (3-alkylthiophene) having a predetermined thickness. By peeling this thin film from the support, immersing it in a liquid containing an appropriately selected doping agent to perform liquid phase doping, and washing it as necessary, the conductivity σ, TPF and thermoelectric performance in the above range can be obtained. A thermoelectric conversion material including a thin film of a conductive polymer having an index Z is formed. A thermoelectric conversion element is formed by laminating a thin film of this thermoelectric conversion material on a thin film or any support that is a mating material when constructing a thermocouple after subjecting to a stretching treatment such as uniaxial stretching as necessary. can do.

【0034】導電性高分子からなる熱電変換材料の薄膜
は、通常1μm〜10mm程度の厚さとする。この厚み
が薄すぎる場合には膜抵抗が高くなり、取り出すべき電
力のロスを生じる。厚すぎる場合には性能としては問題
無いが、材料の浪費となりコスト面で不利となる。
The thin film of the thermoelectric conversion material made of a conductive polymer is usually about 1 μm to 10 mm thick. If this thickness is too thin, the film resistance will be high, resulting in a loss of power to be taken out. If it is too thick, there is no problem in terms of performance, but the material is wasted, which is disadvantageous in terms of cost.

【0035】このようにして得られる本発明の熱電変換
材料は、エポキシ系封止剤等の公知の封止剤で材料表面
を被覆するなどの方法で大気と直接接触しないように封
止することによって変質を防止することができ、実用レ
ベルの熱電物性を長期にわたり保持し続けることができ
る。
The thermoelectric conversion material of the present invention thus obtained is sealed so as not to come into direct contact with the atmosphere by a method such as coating the surface of the material with a known sealing agent such as an epoxy type sealing agent. By this, deterioration can be prevented, and thermoelectric properties at a practical level can be maintained for a long time.

【0036】上記本発明の熱電変換材料を他の熱電変換
材料と組み合わせて熱電対を形成し、熱電変換素子を組
み立てる場合にも、本発明の熱電変換材料は大気と直接
接触しないように封止して用いることで、長期に渡って
実用レベルの熱電変換性能を発揮させることができる。
Even when the thermoelectric conversion material of the present invention is combined with another thermoelectric conversion material to form a thermocouple and the thermoelectric conversion element is assembled, the thermoelectric conversion material of the present invention is sealed so as not to come into direct contact with the atmosphere. By using it, the thermoelectric conversion performance of a practical level can be exhibited for a long period of time.

【0037】[0037]

【実施例】【Example】

(実施例1)次に示す組成の塗布液を調製した。 <組成> ・ヘッド・トゥ・テイル構造が98%以上のポリ(3−
ヘキシルチオフェン)(Aldrich社製):1重量部 ・クロロホルム:99重量部 この塗布液をスライドガラス上に滴下、キャスト製膜
し、室温(23℃)で減圧乾燥(2mmHg(約266
N・m-2))を2時間行い、厚さ5μmの塗膜を得た。
その後、ヨウ素をドーピング剤として気相ドーピング
(蒸気圧1mmHg(約133N・m-2))を行い、導
電性高分子膜を得た。ドーピング率はモノマーユニット
に対するI3 -のモル比率として50%であった。
Example 1 A coating liquid having the following composition was prepared. <Composition> ・ Poly (3- (head-to-tail) structure with 98% or more
Hexylthiophene) (manufactured by Aldrich): 1 part by weight / chloroform: 99 parts by weight This coating solution was dropped on a slide glass to form a cast film, and dried under reduced pressure at room temperature (23 ° C.) (2 mmHg (about 266).
N · m −2 )) was carried out for 2 hours to obtain a coating film having a thickness of 5 μm.
Then, vapor phase doping (vapor pressure 1 mmHg (about 133 N · m −2 )) was performed using iodine as a doping agent to obtain a conductive polymer film. The doping rate was 50% as the molar ratio of I 3 − to the monomer unit.

【0038】この導電性高分子膜について、室温(23
℃)における面内方向の熱電物性を測定したところ第1
表に示す結果が得られ、高い熱電変換性能を示すことが
明らかとなった。
About this conductive polymer film, at room temperature (23
The thermoelectric properties in the in-plane direction at
The results shown in the table were obtained, and it was revealed that the thermoelectric conversion performance was high.

【0039】表中の熱電物性のうち、導電率σ(単位Ω
-1・m-1)及びゼーベック係数S(単位V/K-1)は、
アルバック理工(株)製の熱電特性評価装置:ZEM−
2を使用し、熱伝導率κ(単位W・m-1・K-1)はアル
バック理工(株)製の光交流法熱定数測定装置:レーザ
−PITを使用して測定した。TPF(単位W・m-1
-2)及び熱電性能指数(単位K-1)は、導電率σ、ゼ
ーベック係数S及び熱伝導率κの測定値から計算した。
Among the thermoelectric properties in the table, the conductivity σ (unit Ω
−1 · m −1 ) and Seebeck coefficient S (unit V / K −1 ) are
Thermoelectric property evaluation device manufactured by ULVAC-RIKO: ZEM-
2 was used, and the thermal conductivity κ (unit: W · m −1 · K −1 ) was measured using an optical alternating current method thermal constant measuring device: laser-PIT manufactured by ULVAC-RIKO, Inc. TPF (Unit: W ・ m -1
K −2 ) and thermoelectric figure of merit (unit K −1 ) were calculated from the measured values of conductivity σ, Seebeck coefficient S and thermal conductivity κ.

【0040】さらに、一液型エポキシ系封止剤(製品名
2200、スリーボンド社製)を上記導電性高分子膜の
表面に塗布、硬化させて大気に直接接触しないように封
止し、40℃90%RHの環境下で4日間保存した後
に、同様に熱電物性を測定したところ、どの物性も保存
前の90%以上の性能を保持していた。一方、封止しな
いで保存した場合は、熱伝導率κを除いて保存前の30
%以下の値へ低下していた。
Further, a one-pack type epoxy sealant (product name 2200, manufactured by ThreeBond Co., Ltd.) is applied to the surface of the conductive polymer film and cured to seal it so as not to come into direct contact with the atmosphere, and the temperature is set to 40 ° C. When the thermoelectric properties were measured in the same manner after storage for 4 days in an environment of 90% RH, all physical properties retained 90% or more of the performance before storage. On the other hand, when the sample is stored without being sealed, it is 30
The value had dropped to below%.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】ヘッド・トゥ・テイル構造を有する置換
又は無置換のポリ(3−アルキルチオフェン)にドーピ
ング処理を施して導電率を104Ω-1・m-1以上、107
Ω-1・m-1以下の範囲に調節することで得られる導電性
高分子は、実用レベルの熱電変換性能を発揮し、有機高
分子系材料であることから加工適性にも優れ、しかも大
気と接触しないように封止すれば耐久性もあり長期間劣
化せずに優れた熱電変換性能を保持し続けるため、熱電
変換材料として好適に用いることができる。
The conductivity of the substituted or unsubstituted poly (3-alkylthiophene) having the head-to-tail structure is 10 4 Ω -1 m -1 or more and 10 7
The conductive polymer obtained by adjusting to within the range of Ω -1 · m -1 or less exhibits thermoelectric conversion performance of a practical level and is excellent in processability because it is an organic polymer material If it is sealed so that it does not come into contact with it, it has durability and does not deteriorate for a long period of time, and continues to maintain excellent thermoelectric conversion performance, so it can be suitably used as a thermoelectric conversion material.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱電特性を測定する装置の構成例を示す図であ
る。
FIG. 1 is a diagram showing a configuration example of an apparatus for measuring thermoelectric characteristics.

【符号の説明】[Explanation of symbols]

1…測定装置 2…小型ヒーター 3…熱電変換材料の膜 1 ... Measuring device 2 ... Small heater 3 ... Film of thermoelectric conversion material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ヘッド・トゥ・テイル構造を有し且つ3
−アルキル以外の置換基を有していてもよいポリ(3−
アルキルチオフェン)にドーピング処理を施して得られ
る導電率が104Ω-1・m-1以上、107Ω-1・m-1以下
の導電性高分子からなる熱電変換材料。
1. A head-to-tail structure and 3
-Poly (3- that may have a substituent other than alkyl
A thermoelectric conversion material comprising a conductive polymer having a conductivity of 10 4 Ω −1 · m −1 or more and 10 7 Ω −1 · m −1 or less, which is obtained by performing a doping treatment on (alkylthiophene).
【請求項2】 前記導電性高分子の物理的内部因子が1
-5W・m-1・K-2以上である、請求項1に記載の熱電
変換材料。
2. The physical intrinsic factor of the conductive polymer is 1.
The thermoelectric conversion material according to claim 1, which is 0 -5 W · m −1 · K −2 or more.
【請求項3】 前記導電性高分子の熱電性能指数が10
-4-1以上である、請求項1又は2に記載の熱電変換材
料。
3. The thermoelectric figure of merit of the conductive polymer is 10.
-4 K -1 or more, The thermoelectric conversion material of Claim 1 or 2.
【請求項4】 前記請求項1乃至3いずれかに記載の熱
電変換材料を大気と直接接触しないように封止した熱電
変換素子。
4. A thermoelectric conversion element in which the thermoelectric conversion material according to claim 1 is sealed so as not to come into direct contact with the atmosphere.
JP2002137739A 2002-05-13 2002-05-13 Thermoelectric conversion material and thermoelectric conversion element Pending JP2003332638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137739A JP2003332638A (en) 2002-05-13 2002-05-13 Thermoelectric conversion material and thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137739A JP2003332638A (en) 2002-05-13 2002-05-13 Thermoelectric conversion material and thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2003332638A true JP2003332638A (en) 2003-11-21

Family

ID=29699409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137739A Pending JP2003332638A (en) 2002-05-13 2002-05-13 Thermoelectric conversion material and thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2003332638A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2006128444A (en) * 2004-10-29 2006-05-18 Toyota Central Res & Dev Lab Inc Thermoelectric material
JP2009209259A (en) * 2008-03-04 2009-09-17 Nec Tokin Corp Electroconductive polymer and solid electrolytic capacitor using it
WO2012121133A1 (en) 2011-03-04 2012-09-13 独立行政法人産業技術総合研究所 Thermoelectric conversion material, and flexible thermoelectric conversion device using same
US8287768B2 (en) 2007-09-14 2012-10-16 3M Innovative Properties Company Polythienylenevinylene thermoelectric conversion material
WO2013047730A1 (en) * 2011-09-28 2013-04-04 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP2016018809A (en) * 2014-07-04 2016-02-01 国立大学法人広島大学 Thermoelectric conversion material and method of manufacturing the same
JP2020072180A (en) * 2018-10-31 2020-05-07 積水化学工業株式会社 Resin film manufacturing method, thermoelectric conversion film manufacturing method, laminated glass manufacturing method, and thermoelectric conversion laminated glass manufacturing method
WO2023063177A1 (en) 2021-10-12 2023-04-20 デンカ株式会社 Thermoelectric conversion element and method for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715157B2 (en) * 2004-10-18 2011-07-06 株式会社豊田中央研究所 Thermoelectric element
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2006128444A (en) * 2004-10-29 2006-05-18 Toyota Central Res & Dev Lab Inc Thermoelectric material
JP4513504B2 (en) * 2004-10-29 2010-07-28 株式会社豊田中央研究所 Thermoelectric material
US8287768B2 (en) 2007-09-14 2012-10-16 3M Innovative Properties Company Polythienylenevinylene thermoelectric conversion material
JP2009209259A (en) * 2008-03-04 2009-09-17 Nec Tokin Corp Electroconductive polymer and solid electrolytic capacitor using it
WO2012121133A1 (en) 2011-03-04 2012-09-13 独立行政法人産業技術総合研究所 Thermoelectric conversion material, and flexible thermoelectric conversion device using same
WO2013047730A1 (en) * 2011-09-28 2013-04-04 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP2013084947A (en) * 2011-09-28 2013-05-09 Fujifilm Corp Thermoelectric conversion material and thermoelectric conversion element
JP2016018809A (en) * 2014-07-04 2016-02-01 国立大学法人広島大学 Thermoelectric conversion material and method of manufacturing the same
JP2020072180A (en) * 2018-10-31 2020-05-07 積水化学工業株式会社 Resin film manufacturing method, thermoelectric conversion film manufacturing method, laminated glass manufacturing method, and thermoelectric conversion laminated glass manufacturing method
JP7252531B2 (en) 2018-10-31 2023-04-05 積水化学工業株式会社 Method for producing resin film, method for producing thermoelectric conversion film, method for producing laminated glass, and method for producing thermoelectric conversion laminated glass
WO2023063177A1 (en) 2021-10-12 2023-04-20 デンカ株式会社 Thermoelectric conversion element and method for producing same

Similar Documents

Publication Publication Date Title
Liu et al. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting
Jiang et al. Improved thermoelectric performance of PEDOT: PSS films prepared by polar-solvent vapor annealing method
Hong et al. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films
Kim et al. Sulfuric acid vapor treatment for enhancing the thermoelectric properties of PEDOT: PSS thin-films
Chen et al. Flexible Thermoelectric generators with ultrahigh output power enabled by magnetic field–aligned metallic nanowires
Lu et al. Bulk interpenetration network of thermoelectric polymer in insulating supporting matrix
JP6795808B2 (en) Thermoelectric conversion material and thermoelectric conversion element
Chen et al. Impedance spectroscopy study of conducting polymer blends of PEDOT: PSS and PVA
JP4282948B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2003332638A (en) Thermoelectric conversion material and thermoelectric conversion element
Reddy et al. Electrical and optical properties of a polyblend electrolyte
Diab et al. Conducting polymers X: Dielectric constant, conduction mechanism and correlation between theoretical parameters and electrical conductivity of poly (N, N′-bis-sulphinyl p-phenylenediamine-2, 6-diaminipyridine) and poly (N, N′-bis-sulphinyl p-phenylenediamine-3, 5-diamine-1, 2, 4-trizole)
Peng et al. Enhancing thermoelectric properties by using a surface polarization effect based on PEDOT: PSS thin films
Lee et al. Acidity-controlled conducting polymer films for organic thermoelectric devices with horizontal and vertical architectures
Wang et al. Enhanced thermoelectric performance of conjugated polymer/single-walled carbon nanotube composites with strong stacking
Su et al. Development of block copolymers with poly (3-hexylthiophene) segments as compatibilizers in non-fullerene organic solar cells
Jiang et al. Effects of cation size on thermoelectricity of PEDOT: PSS/ionic liquid hybrid films for wearable thermoelectric generator application
WO2020058986A1 (en) Thermoelectric materials and a process for the preparation thereof
Oh et al. Electrical property and stability of electrochemically synthesized polypyrrole films
Wang et al. One-step interfacial synthesis and thermoelectric properties of Ag/Cu-poly (3, 4-ethylenedioxythiophene) nanostructured composites
Wu et al. Organic/inorganic thermoelectric composites electrochemical synthesis, properties, and applications
Chatterjee et al. Thermoelectric performance of electrodeposited nanostructured polyaniline doped with sulfo‐salicylic acid
JP2000323758A (en) Organic thermoelectric material and manufacture thereof
JP2010539708A (en) Polythienylene vinylene thermoelectric conversion material
Zhu et al. Thermoelectric properties of PEDOTs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415