JP3981738B2 - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP3981738B2
JP3981738B2 JP2004380904A JP2004380904A JP3981738B2 JP 3981738 B2 JP3981738 B2 JP 3981738B2 JP 2004380904 A JP2004380904 A JP 2004380904A JP 2004380904 A JP2004380904 A JP 2004380904A JP 3981738 B2 JP3981738 B2 JP 3981738B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
thermal conductivity
materials
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004380904A
Other languages
Japanese (ja)
Other versions
JP2006186255A (en
Inventor
雅敏 武田
直之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2004380904A priority Critical patent/JP3981738B2/en
Publication of JP2006186255A publication Critical patent/JP2006186255A/en
Application granted granted Critical
Publication of JP3981738B2 publication Critical patent/JP3981738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、温度差を利用して熱を電気に変換する熱電変換素子に関するものである。   The present invention relates to a thermoelectric conversion element that converts heat into electricity using a temperature difference.

従来、温度差を利用して熱を電気に変換する熱電変換素子として、例えばBi−Te系の半導体を利用したものが知られている。この半導体を利用した熱電変換素子は、例えば図3に示すように、P型半導体10とN型半導体20を接合して電気的に接続し、接合側を高温にさらすとともに分岐側を低温にさらすことにより、その温度差を利用して発電することができるものである。また、従来より時計等に用いられている熱電変換素子の構造は、例えば図4に示すように、P型半導体10やN型半導体20である溶製材または焼結材をブロック状に切り出し、セラミックス等の基板40上に電極30を介して配列したものが知られている。(特許文献1、2、3参照)
しかしながら、前記従来例の熱電変換素子は、機械的強度が低く加工性が悪い。従って、自動化が困難で大量生産が困難である。また、基板に高硬度のものを使用するため、柔軟性が悪く曲面箇所等への設置が困難であり、設置箇所が制限される。(特許文献2、3参照)
また、前記問題点を解決するために、図5に示すように、基板40に柔軟性を有するポリイミド製のフィルムを使用したものがある。(特許文献1参照)しかしながら、この場合においては、発電効率が悪いという問題がある。
特開2003−133600号公報 特許第3573448号公報 特開平11−251648号公報
2. Description of the Related Art Conventionally, as a thermoelectric conversion element that converts heat into electricity using a temperature difference, for example, a device that uses a Bi-Te based semiconductor is known. In the thermoelectric conversion element using this semiconductor, for example, as shown in FIG. 3, a P-type semiconductor 10 and an N-type semiconductor 20 are joined and electrically connected, and the junction side is exposed to a high temperature and the branch side is exposed to a low temperature. Therefore, it is possible to generate power using the temperature difference. In addition, the structure of a thermoelectric conversion element conventionally used in a watch or the like is formed by cutting a melted material or a sintered material, which is a P-type semiconductor 10 or an N-type semiconductor 20, into a block shape, for example, as shown in FIG. And the like arranged on the substrate 40 via the electrode 30 is known. (See Patent Documents 1, 2, and 3)
However, the thermoelectric conversion element of the conventional example has low mechanical strength and poor workability. Therefore, automation is difficult and mass production is difficult. In addition, since a substrate having a high hardness is used, the flexibility is poor and it is difficult to install on a curved surface or the like, and the installation location is limited. (See Patent Documents 2 and 3)
Moreover, in order to solve the said problem, as shown in FIG. However, in this case, there is a problem that power generation efficiency is poor.
JP 2003-133600 A Japanese Patent No. 3573448 Japanese Patent Laid-Open No. 11-251648

解決しようとする課題は、機械的強度が高く、加工性に優れ、従って自動化が容易で大量生産が容易、しかも曲面等への設置も可能で設置場所が制限されることのない、発電効率の高い熱電変換素子を提供するという点である。   The problems to be solved are high mechanical strength, excellent workability, easy automation, easy mass production, installation on curved surfaces, etc. This is to provide a high thermoelectric conversion element.

本発明は、前記課題を解決するために、温度差を利用して熱を電気に変換する熱電変換素子であって、P型材料からなる薄膜のP型熱電素子とN型材料からなる薄膜のN型熱電素子とで構成された熱電変換モジュールの両面に、2種類以上の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板を設け、熱伝導率の高い材料が前記基板の外面の一部分に位置するように構成したことを特徴とするものである。   In order to solve the above-mentioned problems, the present invention is a thermoelectric conversion element that converts heat into electricity using a temperature difference, and includes a thin P-type thermoelectric element made of P-type material and a thin-film made of N-type material. Provided on both sides of a thermoelectric conversion module composed of an N-type thermoelectric element is a flexible film-like substrate composed of two or more materials having different thermal conductivities, and a material having a high thermal conductivity is provided on the substrate. It is configured to be located on a part of the outer surface.

また、請求項1に記載の熱電変換素子において、前記熱伝導率の異なる材料のうち熱伝導率の低い方は少なくとも絶縁体であることを特徴とするものである。   Further, in the thermoelectric conversion element according to claim 1, the one having a lower thermal conductivity among the materials having different thermal conductivities is at least an insulator.

また、請求項1に記載の熱電変換素子において、前記熱伝導率の低い材料が前記熱電変換モジュール側に位置するように構成したことを特徴とするものである。   The thermoelectric conversion element according to claim 1, wherein the material having the low thermal conductivity is positioned on the thermoelectric conversion module side.

また、請求項1〜請求項3に記載の熱電変換素子において、前記熱伝導率の低い材料がポリイミドなどの樹脂であり、前記熱伝導率の高い材料が銅などの金属であることを特徴とする熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the low thermal conductivity material is a resin such as polyimide, and the high thermal conductivity material is a metal such as copper. Thermoelectric conversion element.

本発明の熱電変換素子は、P型材料からなる薄膜のP型熱電素子とN型材料からなる薄膜のN型熱電素子とで構成された熱電変換モジュールの両面に、2種類以上の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板を設け、熱伝導率の高い材料が前記基板の外面の一部分に位置するように構成したので、機械的強度が高く、加工性に優れ、従って自動化が容易で大量生産が容易、しかも曲面等への設置も可能で設置場所が制限されることのない、発電効率の高い熱電変換素子を提供することができる。   The thermoelectric conversion element of the present invention has two or more kinds of thermal conductivity on both sides of a thermoelectric conversion module composed of a thin P-type thermoelectric element made of P-type material and a thin-film N-type thermoelectric element made of N-type material. Since a flexible film-like substrate composed of different materials is provided and a material having high thermal conductivity is located on a part of the outer surface of the substrate, the mechanical strength is high, and the workability is excellent. Accordingly, it is possible to provide a thermoelectric conversion element with high power generation efficiency that can be easily automated, mass-produced, can be installed on a curved surface, and does not limit the installation location.

本発明の熱電変換素子は、温度差を利用して熱を電気に変換する熱電変換素子であって、P型材料からなる薄膜のP型熱電素子とN型材料からなる薄膜のN型熱電素子とで構成された熱電変換モジュールの両面に、2種類以上の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板を設け、熱伝導率の高い材料が前記基板の外面の一部分に位置するように構成したものである。このように構成することにより、機械的強度が高く、加工性に優れ、従って自動化が容易で大量生産が容易、しかも曲面等への設置も可能で設置場所が制限されることのない、発電効率の高い熱電変換素子を提供することができる。   The thermoelectric conversion element of the present invention is a thermoelectric conversion element that converts heat into electricity using a temperature difference, and is a thin P-type thermoelectric element made of P-type material and a thin-film N-type thermoelectric element made of N-type material A flexible film-like substrate composed of two or more types of materials having different thermal conductivities is provided on both sides of the thermoelectric conversion module composed of the above, and a material having a high thermal conductivity is provided on a part of the outer surface of the substrate. It is comprised so that it may be located. With this configuration, the mechanical strength is high, the workability is excellent, the automation is easy, the mass production is easy, the installation on a curved surface is possible, and the installation location is not limited. A high thermoelectric conversion element can be provided.

本発明の一実施例について、図1に基づき説明する。図1に示した熱電変換素子は、温度差を利用して熱を電気に変換する熱電変換素子であり、P型材料からなる薄膜のP型熱電素子1とN型材料からなる薄膜のN型熱電素子2とを直列接続となるように成膜し、その両側に電極3を成膜して熱電変換モジュール6を構成し、この熱電変換モジュール6の両面に2種類の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板4、5を設けたものである。   An embodiment of the present invention will be described with reference to FIG. The thermoelectric conversion element shown in FIG. 1 is a thermoelectric conversion element that converts heat into electricity using a temperature difference, and is a thin P-type thermoelectric element 1 made of P-type material and a thin-film N-type made of N-type material. The thermoelectric element 2 is formed into a film so as to be connected in series, and electrodes 3 are formed on both sides thereof to form a thermoelectric conversion module 6. Two types of materials having different thermal conductivities are formed on both surfaces of the thermoelectric conversion module 6. Are provided with film-like substrates 4 and 5 having flexibility.

フィルム状基板4、5は、熱電変換モジュール6側に熱伝導率の低い材料41、51を設け、この熱伝導率の低い材料41、51として絶縁体であるポリイミドなどの樹脂を用いた。   For the film-like substrates 4 and 5, materials 41 and 51 having low thermal conductivity are provided on the thermoelectric conversion module 6 side, and a resin such as polyimide as an insulator is used as the materials 41 and 51 having low thermal conductivity.

また、フィルム状基板4、5は、熱電変換モジュール6の接合面と反対側に、熱伝導率の高い材料42、52が基板4、5の外面の一部分に位置するように設け、この熱伝導率の高い材料42、52として銅などの金属を用いた。   Further, the film-like substrates 4 and 5 are provided on the opposite side of the joining surface of the thermoelectric conversion module 6 so that the materials 42 and 52 having high thermal conductivity are located on a part of the outer surfaces of the substrates 4 and 5. Metals such as copper were used as the high-rate materials 42 and 52.

フィルム状基板4、5の材料選定においては、材料が安価で入手が容易であること、柔軟性が高いこと、加工が容易であることなどから、熱伝導率の低い材料41、51として絶縁体であるポリイミドを選定し、熱伝導率の高い材料42、52として銅を選定した。   In selecting materials for the film-like substrates 4 and 5, since the materials are inexpensive and readily available, have high flexibility, and are easy to process, the materials 41 and 51 having low thermal conductivity are insulators. Was selected, and copper was selected as the materials 42 and 52 having high thermal conductivity.

以上のように、熱電変換モジュール6の両面に熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板4、5を設けたが、これは基板4、5の上下面に温度差を加えた時の各層の熱流束の違いから基板4、5内部に温度差を生じさせるためである。   As described above, the flexible film-like substrates 4 and 5 made of materials having different thermal conductivities are provided on both surfaces of the thermoelectric conversion module 6, and this causes a temperature difference between the upper and lower surfaces of the substrates 4 and 5. This is because a temperature difference is caused inside the substrates 4 and 5 due to the difference in heat flux of each layer when added.

そして、フィルム状基板4、5は、熱電変換モジュール6側に熱伝導率の低い材料41、51を設け、熱電変換モジュール6の接合面と反対側に、熱伝導率の高い材料42、52が基板4、5の外面の一部分に位置するように設けることで、基板4、5の厚さ方向の温度勾配を、基板4、5の面内方向の温度勾配に効率よく変換することができる。この温度勾配を利用して、熱電変換モジュール6で効率良く発電を行うことができる。   The film-like substrates 4 and 5 are provided with materials 41 and 51 having low thermal conductivity on the thermoelectric conversion module 6 side, and materials 42 and 52 having high thermal conductivity are provided on the side opposite to the joint surface of the thermoelectric conversion module 6. By providing so as to be located on a part of the outer surface of the substrates 4 and 5, the temperature gradient in the thickness direction of the substrates 4 and 5 can be efficiently converted into the temperature gradient in the in-plane direction of the substrates 4 and 5. Using this temperature gradient, the thermoelectric conversion module 6 can efficiently generate power.

次に、熱電変換素子の下面に熱を加えた際の、熱電変換素子の上下面温度差と熱電変換モジュール6の内面温度差についてシミュレーション及び実測した結果を図2に示す。実測値(図中*印)とシミュレーション値(図中実線)はほぼ一致した。上下面温度差54℃で内面温度差16.3℃が発生した。この際の熱電変換モジュール6の膜厚は4μm、ポリイミド41、51の膜厚は25μm、銅42、52の膜厚は12μmである。なお、銅42、52は、基板4、5の外面の面積の約半分に設定した。   Next, FIG. 2 shows the results of simulation and actual measurement on the temperature difference between the upper and lower surfaces of the thermoelectric conversion element and the inner surface temperature of the thermoelectric conversion module 6 when heat is applied to the lower surface of the thermoelectric conversion element. The measured values (marked with * in the figure) and the simulated values (solid line in the figure) almost coincided. An inner surface temperature difference of 16.3 ° C. occurred with an upper / lower surface temperature difference of 54 ° C. At this time, the thermoelectric conversion module 6 has a thickness of 4 μm, the polyimides 41 and 51 have a thickness of 25 μm, and the coppers 42 and 52 have a thickness of 12 μm. The copper 42 and 52 were set to about half the area of the outer surface of the substrates 4 and 5.

本発明の熱電変換素子を、例えば5140個集積した場合の発電は、電力7.46mWと想定される。この場合、熱電材料(熱電素子)に希土類材料CePd3−YbPdを使用した。   For example, power generation when 5140 thermoelectric conversion elements of the present invention are integrated is assumed to have an electric power of 7.46 mW. In this case, the rare earth material CePd3-YbPd was used for the thermoelectric material (thermoelectric element).

以上の説明では、熱電変換モジュール6の両面に2種類の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板4、5について説明したが、基板4、5には、種々の条件によっては、3種類以上の熱伝導率の異なる材料を使用した方が、基板4、5の厚さ方向の温度勾配を、基板4、5の面内方向の温度勾配に、より効率よく変換することができる場合がある。これにより熱電変換モジュール6でより効率良く発電を行うことができる。   In the above description, the flexible film-like substrates 4 and 5 made of two kinds of materials having different thermal conductivities on both surfaces of the thermoelectric conversion module 6 have been described. Depending on the type, materials using three or more kinds of materials having different thermal conductivities can more efficiently convert the temperature gradient in the thickness direction of the substrates 4 and 5 into the temperature gradient in the in-plane direction of the substrates 4 and 5. There are cases where it is possible. As a result, the thermoelectric conversion module 6 can generate power more efficiently.

以上のように本発明の熱電変換素子は、柔軟なフィルム状基板4、5を用いるので、熱電変換モジュール6への熱ショック等を緩和でき、機械的強度を高めることができ、薄膜プロセス、印刷プロセスを利用して製造プロセスの自動化、簡略化が可能となり、大面積化が可能となるなどの利点を有することができる。また、パイプなど曲面への設置が可能となり、従来の熱電変換素子では設置が困難であった箇所への設置も可能である。さらに、フィルム状基板4、5は、熱電変換モジュール6側に熱伝導率の低い材料41、51を設け、熱電変換モジュール6の接合面と反対側に、熱伝導率の高い材料42、52が基板4、5の外面の一部分に位置するように設けることで、基板4、5の厚さ方向の温度勾配を、基板4、5の面内方向の温度勾配に効率よく変換することができる。この温度勾配を利用して、熱電変換モジュール6で効率良く発電を行うことができる。つまり、本発明の熱電変換素子は、P型材料からなる薄膜のP型熱電素子1とN型材料からなる薄膜のN型熱電素子2とで構成された熱電変換モジュール6の両面に、2種類以上の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板4、5を設け、熱伝導率の高い材料42、52が前記基板4、5の外面の一部分に位置するように構成したので、機械的強度が高く、加工性に優れ、従って自動化が容易で大量生産が容易、しかも曲面等への設置も可能で設置場所が制限されることのない、発電効率の高い熱電変換素子を提供することができる。   As described above, since the thermoelectric conversion element of the present invention uses the flexible film-like substrates 4 and 5, the heat shock to the thermoelectric conversion module 6 can be alleviated, the mechanical strength can be increased, the thin film process, the printing The manufacturing process can be automated and simplified by using the process, and an advantage that the area can be increased can be obtained. In addition, it can be installed on a curved surface such as a pipe, and can be installed in a place where it was difficult to install with a conventional thermoelectric conversion element. Further, the film-like substrates 4 and 5 are provided with materials 41 and 51 having low thermal conductivity on the thermoelectric conversion module 6 side, and materials 42 and 52 having high thermal conductivity are provided on the side opposite to the joining surface of the thermoelectric conversion module 6. By providing so as to be located on a part of the outer surface of the substrates 4 and 5, the temperature gradient in the thickness direction of the substrates 4 and 5 can be efficiently converted into the temperature gradient in the in-plane direction of the substrates 4 and 5. Using this temperature gradient, the thermoelectric conversion module 6 can efficiently generate power. That is, two types of thermoelectric conversion elements of the present invention are provided on both sides of a thermoelectric conversion module 6 composed of a thin P-type thermoelectric element 1 made of P-type material and a thin-film N-type thermoelectric element 2 made of N-type material. The flexible film-like substrates 4 and 5 made of materials having different thermal conductivities are provided, and the materials 42 and 52 having high thermal conductivities are located on a part of the outer surfaces of the substrates 4 and 5. Therefore, it has high mechanical strength, excellent workability, and therefore is easy to automate and mass production, and can be installed on curved surfaces, etc. Can be provided.

本発明の一実施例の主要部概要構成を示す断面図である。It is sectional drawing which shows the principal part outline structure of one Example of this invention. 本発明の一実施例の実験結果を示すグラフである。It is a graph which shows the experimental result of one Example of this invention. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example. 従来例を示す断面図である。It is sectional drawing which shows a prior art example. 他の従来例を示す断面図である。It is sectional drawing which shows another prior art example.

符号の説明Explanation of symbols

1 P型熱電素子
2 N型熱電素子
4 基板
5 基板
6 熱電変換モジュール
42 熱伝導率の高い材料
52 熱伝導率の高い材料

DESCRIPTION OF SYMBOLS 1 P type thermoelectric element 2 N type thermoelectric element 4 Board | substrate 5 Board | substrate 6 Thermoelectric conversion module 42 Material with high heat conductivity 52 Material with high heat conductivity

Claims (4)

温度差を利用して熱を電気に変換する熱電変換素子であって、P型材料からなる薄膜のP型熱電素子とN型材料からなる薄膜のN型熱電素子とで構成された熱電変換モジュールの両面に、2種類以上の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板を設け、熱伝導率の高い材料が前記基板の外面の一部分に位置するように構成したことを特徴とする熱電変換素子。   A thermoelectric conversion element that converts heat into electricity using a temperature difference, and includes a thin P-type thermoelectric element made of P-type material and a thin-film N-type thermoelectric element made of N-type material A flexible film-like substrate composed of two or more types of materials having different thermal conductivities is provided on both sides of the substrate, and the material having a high thermal conductivity is located on a part of the outer surface of the substrate. A characteristic thermoelectric conversion element. 請求項1に記載の熱電変換素子において、前記熱伝導率の異なる材料のうち熱伝導率の低い方は少なくとも絶縁体であることを特徴とする熱電変換素子。   2. The thermoelectric conversion element according to claim 1, wherein the one having a lower thermal conductivity among the materials having different thermal conductivities is at least an insulator. 3. 請求項1に記載の熱電変換素子において、前記熱伝導率の低い材料が前記熱電変換モジュール側に位置するように構成したことを特徴とする熱電変換素子。   2. The thermoelectric conversion element according to claim 1, wherein the material having a low thermal conductivity is positioned on the thermoelectric conversion module side. 3. 請求項1〜請求項3のいずれかに記載の熱電変換素子において、前記熱伝導率の低い材料がポリイミドなどの樹脂であり、前記熱伝導率の高い材料が銅などの金属であることを特徴とする熱電変換素子。

The thermoelectric conversion element according to any one of claims 1 to 3, wherein the material having a low thermal conductivity is a resin such as polyimide, and the material having a high thermal conductivity is a metal such as copper. A thermoelectric conversion element.

JP2004380904A 2004-12-28 2004-12-28 Thermoelectric conversion element Active JP3981738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380904A JP3981738B2 (en) 2004-12-28 2004-12-28 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380904A JP3981738B2 (en) 2004-12-28 2004-12-28 Thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2006186255A JP2006186255A (en) 2006-07-13
JP3981738B2 true JP3981738B2 (en) 2007-09-26

Family

ID=36739123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380904A Active JP3981738B2 (en) 2004-12-28 2004-12-28 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3981738B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148494A1 (en) 2013-03-21 2014-09-25 国立大学法人長岡技術科学大学 Thermoelectric conversion element
WO2015046254A1 (en) 2013-09-25 2015-04-02 リンテック株式会社 Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
WO2015046253A1 (en) 2013-09-25 2015-04-02 リンテック株式会社 Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
KR20170100515A (en) 2014-12-26 2017-09-04 린텍 가부시키가이샤 Thermally conductive adhesive sheet, production method therefor, and electronic device using same
WO2017188438A1 (en) * 2016-04-28 2017-11-02 国立大学法人東京工業大学 Terahertz wave detection device and array sensor
US10115882B2 (en) 2015-02-24 2018-10-30 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
US10236431B2 (en) 2015-11-17 2019-03-19 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
US10243128B2 (en) 2014-09-08 2019-03-26 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
US10580953B2 (en) 2014-09-05 2020-03-03 Fujifilm Corporation Thermoelectric conversion element, thermoelectric conversion module, method for manufacturing thermoelectric conversion element, and method for manufacturing thermoelectric conversion module

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087757B2 (en) * 2007-06-08 2012-12-05 住友金属鉱山株式会社 Thermoelectric conversion module and power generator using the same
JP5298532B2 (en) 2007-12-27 2013-09-25 ダイキン工業株式会社 Thermoelectric element
JP5243181B2 (en) 2008-10-20 2013-07-24 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric element using conductive polymer composite and conductive polymer material
KR101308422B1 (en) 2012-03-23 2013-09-16 연세대학교 산학협력단 A planar thermoelectric element using waste heat, methods of its fabrication, and thermoelectric generator having the same
JP6181206B2 (en) * 2013-12-27 2017-08-16 富士フイルム株式会社 Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
WO2015163105A1 (en) * 2014-04-24 2015-10-29 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion element manufacturing method
WO2015163178A1 (en) * 2014-04-25 2015-10-29 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion element manufacturing method
WO2015166783A1 (en) * 2014-04-30 2015-11-05 富士フイルム株式会社 Thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion element
WO2016068054A1 (en) * 2014-10-31 2016-05-06 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JP7245652B2 (en) * 2017-01-27 2023-03-24 リンテック株式会社 Flexible thermoelectric conversion element and manufacturing method thereof
WO2018143178A1 (en) * 2017-01-31 2018-08-09 日本ゼオン株式会社 Thermoelectric conversion module
CN110431676A (en) 2017-03-16 2019-11-08 琳得科株式会社 Thermo-electric conversion module electrode material and the thermo-electric conversion module for using it
JP7451361B2 (en) 2020-09-10 2024-03-18 株式会社日立製作所 thermoelectric conversion element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148494A1 (en) 2013-03-21 2014-09-25 国立大学法人長岡技術科学大学 Thermoelectric conversion element
KR20150134335A (en) 2013-03-21 2015-12-01 고쿠리츠다이가쿠호진 나가오카기쥬츠가가쿠다이가쿠 Thermoelectric conversion element
US9780283B2 (en) 2013-03-21 2017-10-03 National University Corporation Nagaoka University Of Technology Thermoelectric conversion element
WO2015046254A1 (en) 2013-09-25 2015-04-02 リンテック株式会社 Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
WO2015046253A1 (en) 2013-09-25 2015-04-02 リンテック株式会社 Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
KR20160061992A (en) 2013-09-25 2016-06-01 린텍 가부시키가이샤 Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
KR20160061993A (en) 2013-09-25 2016-06-01 린텍 가부시키가이샤 Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
US9944831B2 (en) 2013-09-25 2018-04-17 Lintec Corporation Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
US10580953B2 (en) 2014-09-05 2020-03-03 Fujifilm Corporation Thermoelectric conversion element, thermoelectric conversion module, method for manufacturing thermoelectric conversion element, and method for manufacturing thermoelectric conversion module
US10243128B2 (en) 2014-09-08 2019-03-26 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
KR20170100515A (en) 2014-12-26 2017-09-04 린텍 가부시키가이샤 Thermally conductive adhesive sheet, production method therefor, and electronic device using same
US10115882B2 (en) 2015-02-24 2018-10-30 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
US10236431B2 (en) 2015-11-17 2019-03-19 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
JPWO2017188438A1 (en) * 2016-04-28 2019-03-14 国立大学法人東京工業大学 Terahertz wave detection device and array sensor
WO2017188438A1 (en) * 2016-04-28 2017-11-02 国立大学法人東京工業大学 Terahertz wave detection device and array sensor
US10969335B2 (en) 2016-04-28 2021-04-06 Tokyo Institute Of Technology Terahertz wave detection device and array sensor

Also Published As

Publication number Publication date
JP2006186255A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP3981738B2 (en) Thermoelectric conversion element
JP5336373B2 (en) Thermoelectric conversion module
KR100697166B1 (en) Thermoelectric device and method of manufacturing the same
KR100630997B1 (en) Thermoelectric device and method of manufacturing the same
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
JP2009267316A (en) Thermoelectric conversion module, manufacturing method thereof, and thermoelectric generation system
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
JP6390546B2 (en) Thermoelectric conversion module and manufacturing method thereof
EP3098864B1 (en) Thermoelectric conversion module
US20220181533A1 (en) Thermoelectric conversion module
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP5776700B2 (en) Thermoelectric conversion module
JP2007184416A (en) Thermoelectric conversion module
JP2015233063A (en) Thermoelectric conversion system
JP2006086210A (en) Thermoelectric conversion system
JP3147096U (en) Solid temperature difference power generation plate and solid temperature difference power generation device
US10236430B2 (en) Thermoelectric module
JP2017045970A (en) Thermoelectric module
JP2018093152A (en) Thermoelectric power generation device
EP3098863B1 (en) Thermoelectric conversion module
JP2006080326A (en) Thermoelectric apparatus
KR102021664B1 (en) Multi-multi-array themoeletric generator and its manufacturing method
JP2017041620A (en) Thermoelectric converter and thermoelectric conversion system
JP5533026B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP6595320B2 (en) Thermoelectric module assembly

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150