WO2015166783A1 - Thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion element - Google Patents

Thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion element Download PDF

Info

Publication number
WO2015166783A1
WO2015166783A1 PCT/JP2015/061210 JP2015061210W WO2015166783A1 WO 2015166783 A1 WO2015166783 A1 WO 2015166783A1 JP 2015061210 W JP2015061210 W JP 2015061210W WO 2015166783 A1 WO2015166783 A1 WO 2015166783A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
substrate
layer
adhesion layer
conversion element
Prior art date
Application number
PCT/JP2015/061210
Other languages
French (fr)
Japanese (ja)
Inventor
修 米倉
林 直之
加納 丈嘉
青合 利明
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016515916A priority Critical patent/JP6174246B2/en
Publication of WO2015166783A1 publication Critical patent/WO2015166783A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals

Definitions

  • the present invention relates to a thermoelectric conversion element. Specifically, the present invention relates to a thermoelectric conversion element capable of obtaining a high power generation amount and having good flexibility, a thermoelectric conversion module using the thermoelectric conversion element, and a method for manufacturing the thermoelectric conversion element.
  • thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used in thermoelectric conversion elements such as power generation elements and Peltier elements that generate electricity by heat.
  • the thermoelectric conversion element can convert heat energy directly into electric power, and has an advantage that a movable part is not required. For this reason, a power generation device that uses a thermoelectric conversion element can be easily obtained without incurring operating costs by providing it at a site where heat is exhausted, such as an incinerator or various facilities in a factory.
  • thermoelectric conversion element generally has an electrode on a plate-like substrate, a block-like thermoelectric conversion layer (power generation layer) on the electrode, and a plate-like electrode on the thermoelectric conversion layer. It has the structure which has.
  • This thermoelectric conversion element is also called a uni leg type. That is, in a normal thermoelectric conversion element, a thermoelectric conversion layer is sandwiched between electrodes in the thickness direction, a temperature difference is generated in the thickness direction of the thermoelectric conversion layer, and heat energy is converted into electric energy.
  • Patent Document 1 and Patent Document 2 by using a substrate having a high heat conduction portion, a temperature difference is generated not in the thickness direction of the thermoelectric conversion layer but in the surface direction of the thermoelectric conversion layer, A thermoelectric conversion element that converts energy into electrical energy is described.
  • a flexible film substrate composed of two types of materials having different thermal conductivities is provided on both surfaces of a thermoelectric conversion layer formed of a P-type material and an N-type material.
  • a thermoelectric conversion element is described in which materials having different thermal conductivities are arranged on the outer surface of the substrate and at positions opposite to the energizing direction.
  • Patent Document 2 discloses a sheet-like first insulating portion, a sheet-like second insulating portion, a first end portion for taking out a thermoelectromotive force accommodated between both insulating portions, and A plate-like thermoelectric conversion layer having a second end, and a first insulating portion that is disposed between the thermoelectric conversion layer and the first insulating portion and covers the first insulating portion side of the first end. Covering the second insulating portion side of the second end portion of the plate-like member, which is disposed between the first high thermal conductivity portion having a higher thermal conductivity than the plate-like member and the second insulating portion, An element having a second high thermal conductivity portion having a higher thermal conductivity than the second insulating portion is described.
  • thermoelectric conversion element generates power by generating a temperature difference in the separation direction of the electrodes connected to the thermoelectric conversion layer, that is, the energization direction.
  • the larger the temperature difference the higher the power generation amount. Therefore, in a general thermoelectric conversion element having a configuration in which a thermoelectric conversion layer is sandwiched between electrodes, in order to cause a large temperature difference in the thermoelectric conversion layer, it is necessary to increase the thickness of the thermoelectric conversion layer in the electrode sandwiching direction. There is.
  • thermoelectric conversion elements described in Patent Document 1 and Patent Document 2 generate a temperature difference in the surface direction of the thermoelectric conversion layer by the high heat conduction portion provided on the substrate, and convert the heat energy into electric energy. To do. Therefore, even in a thin sheet-like thermoelectric conversion layer, a long temperature difference can be generated by making the thermoelectric conversion layer long, and a high power generation amount can be obtained. Furthermore, since the thermoelectric conversion layer can be formed into a sheet shape, a power generator that is excellent in flexibility and easy to install on a curved surface or the like can be obtained.
  • Patent Document 1 and Patent Document 2 an alloy containing a rare metal is used for the thermoelectric conversion layer, which is difficult in terms of versatility of the material.
  • CePd 3 —YbPd is used for the thermoelectric conversion layer.
  • Patent Document 2 (Bi 2 Te 3 ) 1-x (Sb 2 Te 3 ) x and (Bi 2 Te are used for the thermoelectric conversion layer. 3 ) 1-x (Sb 2 Te 3 ) x is used.
  • An object of the present invention is to use a thermoelectric conversion layer made of a highly versatile material, to obtain a high power generation amount, and to have good flexibility, a thermoelectric conversion module using the thermoelectric conversion element, and It is in providing the manufacturing method of this thermoelectric conversion element.
  • the thermoelectric conversion element of the present invention includes a first substrate having a high thermal conductivity portion having a thermal conductivity higher than that of other regions in at least a part of the surface direction, A first adhesion layer formed on the first substrate; A thermoelectric conversion layer made of nickel or a nickel alloy formed on the first adhesion layer; A second adhesion layer formed on the thermoelectric conversion layer; The high adhesion portion formed on the second adhesion layer and having a thermal conductivity higher than that of other regions is provided in at least a part of the surface direction, and the high heat conduction portion of the first substrate is formed in the surface direction.
  • a thermoelectric conversion element comprising a pair of electrodes connected to a thermoelectric conversion layer so as to sandwich the thermoelectric conversion layer in a plane direction is provided.
  • the nickel content of the thermoelectric conversion layer is preferably 90 atomic% or more.
  • a thermoelectric conversion layer is formed with nickel.
  • the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate are provided at different positions in the plane direction in the electrode separation direction.
  • substrate are located in an outer surface with respect to the lamination direction.
  • the surface of the first substrate on the first adhesion layer side has been subjected to a roughening treatment. Further, the arithmetic average roughness Ra of the surface of the first substrate on the first adhesion layer side is preferably 0.9 ⁇ m or more.
  • thermoelectric conversion module of the present invention provides a thermoelectric conversion module formed by connecting a plurality of thermoelectric conversion elements of the present invention in series.
  • thermoelectric conversion module of the present invention it is preferable to have a radiating fin in contact with either one of the first substrate and the second substrate and the high thermal conduction portion. Moreover, it is preferable that the radiation fin and the high thermal conductive portion are bonded with a thermal conductive adhesive sheet or a thermoconductive adhesive.
  • the method for manufacturing a thermoelectric conversion element of the present invention includes a step of forming a first adhesion layer on a first substrate having a high thermal conductivity portion having a higher thermal conductivity than at other regions in at least a part of a plane direction.
  • Forming a thermoelectric conversion layer made of nickel or a nickel alloy on the first adhesion layer Connecting the electrode pair to the thermoelectric conversion layer so as to be sandwiched in the surface direction, Forming a second adhesion layer on the thermoelectric conversion layer; And on the 2nd adhesion layer, it has a high heat conduction part whose heat conductivity is higher than other fields in at least a part of the surface direction, and its own high heat conduction part is the first substrate in the surface direction.
  • a step of laminating the second substrate so as not to completely overlap with the high thermal conductivity portion.
  • thermoelectric conversion layer is preferably formed by a vapor deposition method.
  • a roughening treatment is performed on the surface of the first substrate on which the first adhesion layer is formed. Further, it is preferable that the roughening treatment is performed so that the arithmetic average roughness Ra of the surface of the first substrate on which the first adhesion layer is formed is 0.9 ⁇ m or more.
  • thermoelectric conversion element and thermoelectric conversion module has a thin sheet-like thermoelectric conversion element made of nickel or a nickel alloy having high versatility, so that a high power generation amount can be obtained and a good potential can be obtained. It has flexibility. Moreover, according to the manufacturing method of the thermoelectric conversion element of this invention, such a thermoelectric conversion element of this invention can be manufactured suitably.
  • FIG. 1A is a top view conceptually showing an example of the thermoelectric conversion element of the present invention
  • FIG. 1B is a front view thereof
  • FIG. 1C is a bottom view thereof.
  • 2A to 2D are conceptual diagrams for explaining an example of the thermoelectric conversion module of the present invention using the thermoelectric conversion element of the present invention.
  • FIG. 3A and FIG. 3B are front views conceptually showing another example of a substrate that can be used in the thermoelectric conversion element of the present invention.
  • thermoelectric conversion element the thermoelectric conversion module, and the method for manufacturing the thermoelectric conversion element of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.
  • FIG. 1 conceptually shows an example of the thermoelectric conversion element of the present invention.
  • 1A is a top view (a view of FIG. 1B viewed from above),
  • FIG. 1B is a front view (a view of a substrate or the like described later),
  • FIG. C is a bottom view (a view of FIG. 1B viewed from the lower side of the drawing).
  • the thermoelectric conversion element 10 basically includes a first substrate 12, a first adhesion layer 14, a thermoelectric conversion layer 16, and a second adhesion layer 18. And the second substrate 20, the electrode 26 and the electrode 28.
  • the first adhesion layer 14 is provided on the first substrate 12
  • the thermoelectric conversion layer 16 is provided on the first adhesion layer 14
  • the second adhesion layer 18 is provided on the thermoelectric conversion layer 16.
  • the thermoelectric conversion layer 16 is sandwiched between the first substrate 12 and the second substrate 20 (the first adhesion layer 14 and the second adhesion layer 18) in the substrate surface direction of the first substrate 12 and the second substrate 20.
  • the electrode 26 and the electrode 28 are connected to the thermoelectric conversion layer 16. That is, the electrode 26 and the electrode 28 constitute an electrode pair.
  • the substrate surface directions of the first substrate 12 and the second substrate 20 are also simply referred to as “surface directions”.
  • substrate 12 has the low heat conduction part 12a and the high heat conduction part 12b.
  • substrate 20 also has the low heat conduction part 20a and the high heat conduction part 20b.
  • the two substrates are arranged such that their high thermal conductivity portions are at different positions in the direction in which the electrode 26 and the electrode 28 are separated from each other.
  • the separation direction of the electrode 26 and the electrode 28 is the energization direction.
  • both boards differ only in the arrangement position and the orientation of the front and back sides and the surface direction, and the configuration is the same, unless it is necessary to distinguish between the first board 12 and the second board 20, The description will be made using the first substrate 12 as a representative example.
  • the first substrate 12 covers a region on one half of one surface of the plate-like material that becomes the low thermal conduction portion 12 a (low thermal conduction portion 20 a). It has a configuration in which the high heat conduction part 12b (high heat conduction part 20b) is laminated. Therefore, on one surface (one surface) of the first substrate 12, a half region in the plane direction is the low heat conduction portion 12a, and the other half region is the high heat conduction portion 12b. In addition, the other surface of the first substrate 12 is the low thermal conductive portion 12a.
  • thermoelectric conversion element of this invention various structures can be utilized for the 1st board
  • the first substrate is formed with a recess in a half region of one surface of the plate-like material that becomes the low heat conducting portion 12a, The structure which incorporates the high heat conductive part 12b so that may become uniform may be sufficient.
  • the first substrate is a laminated body shown in FIG. 1A
  • the second substrate is a first substrate and a second substrate, such as a configuration in which a high heat conduction portion is incorporated in the concave portion shown in FIG.
  • the method for forming the high thermal conductivity portion may be different.
  • the low heat conduction part 12a is made of various materials as long as it has insulating properties and sufficient heat resistance to the formation of the thermoelectric conversion layer 16 and the electrode 26, such as a glass plate, a ceramic plate, and a plastic film. A thing consisting of can be used.
  • a plastic film is used for the low thermal conductive portion 12a. By using a plastic film for the low heat conducting portion 12a, it is possible to reduce the weight and cost, and to form the thermoelectric conversion element 10 having flexibility (flexibility), which is preferable.
  • the film (sheet-like material / plate-like material) consisting of is exemplified.
  • a film made of polyimide, polyethylene terephthalate, polyethylene naphthalate, or the like is suitably used in terms of thermal conductivity, heat resistance, solvent resistance, availability, economy, and the like.
  • the film and metal foil which consist of various materials are illustrated.
  • various metals such as gold, silver, copper, and aluminum are exemplified in terms of thermal conductivity and the like.
  • copper and aluminum are preferably used in terms of thermal conductivity, economy, and the like.
  • the thickness of the first substrate 12, the thickness of the low thermal conductive portion 12 a, and the like are appropriately determined according to the forming material of the high thermal conductive portion 12 b and the low thermal conductive portion 12 a, the size of the thermoelectric conversion element 10, and the like. , You can set.
  • substrate 12 is the thickness of the low heat conductive part 12a of the area
  • the size in the surface direction of the first substrate 12, the area ratio in the surface direction of the high heat conducting portion 12 b in the substrate 12, the forming material of the low heat conducting portion 12 a and the high heat conducting portion 12 b, the size of the thermoelectric conversion element 10, etc. It may be set appropriately according to the above.
  • the size in the surface direction of the first substrate 12 is a size when the first substrate 12 is viewed from a direction orthogonal to the substrate surface.
  • the position of the first substrate 12 in the surface direction of the high thermal conductive portion 12b is not limited to the illustrated example, and various positions can be used.
  • the high heat conductive part 12b may be included in the low heat conductive part 12a in the surface direction.
  • a part of the high heat conduction unit 12b may be located at the end of the first substrate 12 in the plane direction, and the other region may be included in the low heat conduction unit 12a.
  • the first substrate 12 may have a plurality of high heat conducting portions 12b in the surface direction.
  • thermoelectric conversion element 10 shown in FIG. 1 is a preferable mode in which a temperature difference between the first substrate 12 and the second substrate 20 is likely to occur, and both the first substrate 12 and the second substrate 20 have high thermal conductivity.
  • the part 12b and the high heat conduction part 20b are located outside in the stacking direction.
  • the present invention may have a configuration in which the first substrate 12 and the second substrate 20 both have the high heat conduction portion 12b and the high heat conduction portion 20b located inside in the stacking direction.
  • the first substrate 12 may be configured such that the high heat conductive portion 12b is positioned outside in the stacking direction, and the second substrate 20 is positioned such that the high heat conductive portion 20b is positioned inside in the stacking direction.
  • the high thermal conductivity portion is formed of a material having conductivity such as metal and disposed inside the stacking direction, and the first adhesion layer 14 and / or the second adhesion layer 18 are electrically conductive. May have.
  • an insulating layer or the like may be formed between the high heat conduction portion and the electrode 26 and the electrode 28 in order to ensure insulation.
  • thermoelectric conversion layer 16 is provided on the first substrate 12 via the first adhesion layer 14.
  • a second substrate 20 is provided on the thermoelectric conversion layer 16 with a second adhesion layer 18 interposed therebetween. That is, in the thermoelectric conversion element 10, the first adhesion layer 14 is provided between the first substrate 12 and the thermoelectric conversion layer 16. In the thermoelectric conversion element 10, a second adhesion layer 18 is provided between the second substrate 20 and the thermoelectric conversion layer 16.
  • the formation surface of the first adhesion layer 14 of the first substrate 12 is preferably subjected to a roughening treatment. That is, in the illustrated example, it is preferable that the surface of the first substrate 12 on the side where the high thermal conductive portion 12b is not formed is a surface roughened.
  • the surface of the first substrate 12 on which the first adhesion layer 14 is formed preferably has an arithmetic average roughness Ra of 0.9 ⁇ m or more.
  • the formation surface of the first adhesion layer 14 of the first substrate 12 is more preferably 1.5 ⁇ m or more.
  • the formation surface of the first adhesion layer 14 of the first substrate 12 is subjected to a roughening treatment, so that an anchor effect occurs due to the unevenness of the surface, and the first substrate 12 and the thermoelectric conversion Adhesion with the layer 16, the electrode 26, and the electrode 28 can be improved.
  • arithmetic mean roughness Ra based on JISB0601 (2001).
  • the roughening treatment may be performed by a known method.
  • thermoelectric conversion layer 16 of the thermoelectric conversion element 10 of the present invention is made of nickel or a nickel alloy.
  • nickel is referred to as “Ni”.
  • the first adhesion layer 14 and the second adhesion layer 18 are for ensuring sufficient adhesion between the thermoelectric conversion layer 16 and the first substrate 12 and the second substrate 20.
  • the first adhesion layer 14 and the second adhesion layer 18 will be described in detail later.
  • thermoelectric conversion layer 16 is provided on the first substrate 12 via the first adhesion layer 14.
  • the thermoelectric conversion layer 16 is a power generation layer.
  • a second substrate 20 is provided on the thermoelectric conversion layer 16 with a second adhesion layer 18 interposed therebetween. Note that, as described above, both the substrates have the high thermal conductivity portion located outside in the stacking direction. Therefore, one surface of the thermoelectric conversion layer 16 faces the surface where the entire surface of the first substrate 12 becomes the low heat conduction portion 12a, and the other surface faces the surface where the entire surface of the second substrate 20 becomes the low heat conduction portion 20a. To do.
  • thermoelectric conversion layer 16 is provided in such a manner that the center in the plane direction coincides with the boundary between the low thermal conductivity portion and the high thermal conductivity portion of both substrates.
  • the thermoelectric conversion layer 16 is connected to an electrode pair including the electrode 26 and the electrode 28 so as to be sandwiched in the surface direction.
  • thermoelectric conversion element generates a temperature difference between the heated part and the other part due to, for example, heating by contact with a heat source, etc.
  • a difference occurs in the carrier density in the direction of the temperature difference, and electric power is generated.
  • a heat source is provided on the first substrate 12 side, and a temperature difference is generated between the high heat conduction portion 12b of the first substrate 12 and the high heat conduction portion 20b of the second substrate 20, thereby generating power.
  • electric power (electric energy) generated by heating or the like is taken out.
  • thermoelectric conversion layer 16 is made of Ni or a Ni alloy.
  • the thermoelectric conversion element 10 of the present invention uses two substrates having a high heat conduction portion and a low heat conduction portion, and places the high heat conduction portions of both substrates in different positions in the plane direction, and sandwiches the thermoelectric conversion layer between the two substrates.
  • the thermoelectric conversion has a structure and is formed of Ni or Ni alloy so that a high power generation amount can be obtained using a highly versatile material and the flexibility is excellent. The device is realized.
  • thermoelectric conversion layer is sandwiched between the two substrates, “in Also called “plane type”.
  • Ni and Ni alloys are known to have high power generation due to temperature differences. That is, Ni and Ni alloys are known to have a large Seebeck coefficient. Ni and Ni alloys are also known to have high electrical conductivity. In the thermoelectric conversion layer, the higher the Seebeck coefficient and the higher the electrical conductivity, the higher the amount of power generated. Therefore, it is conceivable that a thermoelectric conversion element capable of obtaining a high power generation amount can be obtained by using Ni or a Ni alloy for the thermoelectric conversion layer. However, Ni and Ni alloys have high thermal conductivity.
  • thermoelectric conversion element has a configuration in which a block-shaped thermoelectric conversion layer is sandwiched between electrodes.
  • thermoelectric conversion element by increasing the thickness of the thermoelectric conversion layer, the temperature difference generated in the thermoelectric conversion layer in the direction of separation between the electrodes can be increased.
  • the separation direction between the electrodes is the separation direction of the electrode pair.
  • the separation direction between the electrodes is also referred to as “inter-electrode direction”.
  • Ni and Ni alloys have high thermal conductivity.
  • thermoelectric conversion layer in which Ni or a Ni alloy is used for the thermoelectric conversion layer, even if the thermoelectric conversion layer is made thick, it causes a temperature difference in the thermoelectric conversion layer. It is difficult to. Therefore, in a normal thermoelectric conversion element in which a block-shaped thermoelectric conversion layer is sandwiched between electrodes, Ni or Ni alloy having high thermal conductivity cannot be used for the thermoelectric conversion layer, and a material having as low thermal conductivity as possible is used. It is used to form a thermoelectric conversion layer.
  • the first substrate 12 has a high heat conduction part 12b
  • the second substrate 20 has a high heat conduction part 20b
  • the high heat conduction part 12b and the high heat conduction part 12b are arranged at a different position in the plane direction without overlapping. Therefore, for example, when a heat source is provided on the first substrate 12 side, a temperature difference is generated in the surface direction of the thermoelectric conversion layer 16 between the high thermal conductivity portion 12b and the high thermal conductivity portion 20b.
  • thermoelectric conversion element 10 of the present invention that is an in-plane type
  • the heat is applied in the surface direction of the sheet-like thermoelectric conversion layer 16 as conceptually shown by the arrow x in FIGS. Flows. Therefore, the thermoelectric conversion element 10 of the present invention can cause a large temperature difference in the thermoelectric conversion layer 16 between the electrodes by the sheet-like thermoelectric conversion layer 16 without increasing the thickness of the thermoelectric conversion layer 16. Further, by making the thermoelectric conversion layer 16 longer in the inter-electrode direction, a higher power generation amount can be obtained due to a temperature difference over a long distance in the surface direction.
  • thermoelectric conversion layer 16 is not a block shape but a thin sheet shape.
  • thermoelectric conversion element 10 since the heat flow path in the thermoelectric conversion layer 16 is narrow and it is difficult for heat to flow, a temperature difference is easily generated in the thermoelectric conversion layer 16.
  • the in-plane type thermoelectric conversion element 10 is one of the advantages that good flexibility is obtained.
  • the thermoelectric conversion layer is used. 16 is advantageously thinner. That is, by making the thermoelectric conversion layer 16 thinner, a temperature difference can be easily generated, and flexibility can be improved.
  • the thermoelectric conversion layer 16 between the electrodes is long. Temperature differences are likely to occur.
  • thermoelectric conversion element 10 of the present invention is an in-plane type, so that even if Ni or Ni alloy having high thermal conductivity is used, a temperature difference can be generated in the thermoelectric conversion layer 16 and a high power generation amount can be obtained. Can be obtained.
  • the in-plane type thermoelectric conversion element 10 has a configuration in which the thermoelectric conversion layer 16 is sandwiched between a first substrate 12 and a second substrate 20 having a high heat conduction portion and a low heat conduction portion.
  • the low thermal conductive portion 12a and the low thermal conductive portion 20a of the first substrate 12 and the second substrate 20 are formed of a glass plate, a ceramic plate, a plastic film, or the like.
  • Ni and Ni alloys have low adhesion to these materials. Therefore, when the thermoelectric conversion layer 16 is formed in direct contact with the first substrate 12 and the second substrate 20, the thermoelectric conversion layer 16 is peeled off during the formation, and an appropriate thermoelectric conversion layer cannot be formed. Is peeled off by bending or bending, and the thermoelectric conversion element is broken.
  • thermoelectric conversion element 10 of the present invention has the first adhesion layer 14 between the thermoelectric conversion layer 16 and the first substrate 12, and further between the thermoelectric conversion layer 16 and the second substrate 20. 2 has a second adhesion layer 18. Therefore, the thermoelectric conversion layer 16 and the first substrate 12 and the second substrate 20 can be stacked with sufficient adhesion. As a result, an appropriate thermoelectric conversion layer 16 made of Ni or Ni alloy can be formed, and even if bending and the like are repeated, peeling of the thermoelectric conversion layer 16 from the first substrate 12 and the second substrate 20 occurs.
  • the thermoelectric conversion element 10 excellent in flexibility can be obtained.
  • thermoelectric conversion element 10 of the present invention adopts an in-plane type, forms the thermoelectric conversion layer 16 with Ni or Ni alloy, and further, between the thermoelectric conversion layer 16 and the first substrate 12 and the second substrate 20.
  • the first adhesion layer 14 and the second adhesion layer 18 have a large temperature difference in the thermoelectric conversion layer 16 which is a general-purpose material and has a high thermal conductivity but a high power generation amount and a high conductivity. This produces a high power generation amount, and also realizes good flexibility, which is one of the features of the in-plane type.
  • the thermoelectric conversion layer 16 is made of Ni or Ni alloy.
  • Ni alloy various Ni alloys that generate electric power by generating a temperature difference can be used. Specifically, examples include one component such as V, Cr, Si, Al, Ti, Mo, Mn, Zn, Sn, Cu, Co, Fe, Mg, and Zr, or a Ni alloy mixed with two or more components. Is done.
  • the thermoelectric conversion layer 16 preferably has a Ni content of 90 atomic% or more, more preferably a Ni content of 95 atomic% or more, and is made of Ni. Is particularly preferred.
  • what consists of Ni includes what consists of Ni and an unavoidable impurity.
  • the thermoelectric conversion layer 16 preferably has a Seebeck coefficient S of ⁇ 15 ⁇ V / K or less and a conductivity ⁇ of 10,000 S / cm or more.
  • the thermoelectric conversion layer 16 having such characteristics is preferable in that a high power generation amount can be obtained by reducing the internal resistance of the thermoelectric conversion layer 16 by utilizing the high conductivity of Ni.
  • the thermoelectric conversion element 16 can be made thin while maintaining a small internal resistance by utilizing the high conductivity of Ni, and thus the thermoelectric conversion element 10 can be made thin.
  • the thermoelectric conversion module using this is also preferable in that it can be made thin, light, and flexible.
  • thermoelectric conversion element 10 of the present invention the thickness of the thermoelectric conversion layer 16, the length in the direction between the electrodes, the length in the direction orthogonal to this length, the size in the surface direction, the area ratio in the surface direction with respect to the substrate, etc. What is necessary is just to set suitably according to the magnitude
  • FIG. 1 the thickness of the thermoelectric conversion layer 16, the length in the direction between the electrodes, the length in the direction orthogonal to this length, the size in the surface direction, the area ratio in the surface direction with respect to the substrate, etc.
  • thermoelectric conversion element 10 of the present invention when the length of the thermoelectric conversion layer 16 in the inter-electrode direction is L and the thickness of the thermoelectric conversion layer 16 is T, as shown in FIG.
  • the aspect ratio of L / T is preferably 100 to 2000, the aspect ratio of L / T is more preferably 200 to 1000, and the aspect ratio of L / T is particularly preferably 200 to 500.
  • the thickness of the thermoelectric conversion layer 16 is the size of the thermoelectric conversion layer 16 in the stacking direction of the first substrate 12, the thermoelectric conversion layer 16, and the second substrate 20.
  • thermoelectric conversion layer 16 is thin, and it is advantageous that the thermoelectric conversion layer 16 is long between the electrodes. is there. Therefore, it is preferable that the L / T aspect ratio in the thermoelectric conversion layer 16 is within the above range in that a large temperature difference is generated in the thermoelectric conversion layer 16 and a higher power generation amount can be obtained.
  • the thickness T of the thermoelectric conversion layer 16 is preferably 0.05 to 4 ⁇ m, more preferably 1 to 2 ⁇ m. By setting the thickness T of the thermoelectric conversion layer 16 within this range, it is preferable in that a higher power generation amount can be obtained, and the thermoelectric conversion element 10 having good flexibility can be obtained.
  • the first adhesion layer 14 and the second adhesion layer 18 have sufficient adhesion strength between the first substrate 12 and the second substrate 20 and the thermoelectric conversion layer 16 according to the forming materials of the first substrate 12 and the second substrate 20.
  • materials that can be obtained. Specifically, examples include various metal oxides such as silicon oxide, aluminum oxide, tantalum oxide, and zirconium oxide, and layers made of various metals such as chromium, copper, and titanium.
  • an adhesion layer using a liquid adhesive or an adhesion layer using a film-like adhesive or an adhesive sheet can be suitably used as the first adhesion layer 14 and the second adhesion layer 18. These adhesives may use commercially available products.
  • the first adhesion layer 14 and the second adhesion layer 18 are preferably a layer made of silicon oxide and a layer made of chromium, and a layer made of silicon oxide is particularly preferable. Note that the materials for forming the first adhesion layer 14 and the second adhesion layer 18 may be the same or different.
  • the thickness of the first adhesion layer 14 and the second adhesion layer 18 depends on the forming material of the first adhesion layer 14 and the second adhesion layer 18, the forming material and the size of the first substrate 12 and the second substrate 20, and the like.
  • the thickness capable of obtaining sufficient adhesion may be set as appropriate. According to the study by the present inventors, it is preferable that the adhesion layer be thin if a sufficient adhesion amount is obtained. Specifically, 50 to 500 nm is preferable, and 100 to 200 nm is more preferable.
  • the thickness of the first adhesion layer 14 and the second adhesion layer 18 in this range, it is preferable in that sufficient adhesion can be obtained, and the thermoelectric conversion element 10 having good flexibility can be obtained.
  • the interface between the first substrate 12 and the first adhesion layer 14, the interface between the first adhesion layer 14 and the thermoelectric conversion layer 16, the interface between the thermoelectric conversion layer 16 and the second adhesion layer 18, and the second adhesion layer 18 In order to improve the adhesion at one or more of the interfaces with the second substrate 20, a known surface treatment such as plasma treatment, UV ozone treatment, electron beam irradiation treatment is applied to the surface of the substrate and / or the surface of the adhesion layer. The surface may be modified or cleaned.
  • the first adhesion layer 14 and / or the second adhesion layer 18 may be formed corresponding to the entire surface of the first substrate 12 and the second substrate 20 as in the illustrated example.
  • the two substrates 20 may be formed only in a region corresponding to the thermoelectric conversion layer 16.
  • thermoelectric conversion layer 16 An electrode 26 and an electrode 28 are connected to the thermoelectric conversion layer 16 so as to sandwich the thermoelectric conversion layer 16 in the surface direction.
  • the electrode 26 and the electrode 28 can be formed of various materials as long as they have a necessary conductivity.
  • materials used as transparent electrodes in various devices such as metal materials such as copper, silver, gold, platinum, nickel, chromium, and copper alloys, and indium tin oxide (ITO) and zinc oxide (ZnO). Etc. are exemplified.
  • metal materials such as copper, silver, gold, platinum, nickel, chromium, and copper alloys, and indium tin oxide (ITO) and zinc oxide (ZnO).
  • ITO indium tin oxide
  • Etc. are exemplified.
  • money, platinum, nickel, a copper alloy etc. are illustrated preferably, and copper, gold
  • copper is particularly preferably exemplified in that a high power generation amount is obtained.
  • the thickness and size of the electrode 26 and the electrode 28 may be appropriately set according to the thickness of the thermoelectric conversion layer 16 and the size of the thermoelectric conversion element 10.
  • thermoelectric conversion element 10 faces the abutting direction between the electrodes, and the high heat conduction portion 12b of the first substrate 12 and the high heat conduction portion 20b of the second substrate 20 face each other in the interelectrode direction. Located in different positions.
  • the thermoelectric conversion element of the present invention can be used in various configurations as long as the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap in the plane direction. .
  • the high heat conduction part of the first substrate and the high heat conduction part of the second substrate do not completely overlap when viewed from the surface direction, that is, the direction orthogonal to the substrate surface.
  • the high heat conduction part may be placed on the low heat conduction part as shown in FIG. 1 (B), or the low heat conduction part as shown in FIG. 3 (A). You may incorporate in the formed recessed part.
  • the high heat conduction portion 12 b of the first substrate 12 is moved to the right side in the drawing
  • the high heat conduction portion 20 b of the second substrate 20 is moved to the left side in the drawing
  • the conductive portion may be separated in the direction between the electrodes.
  • the high heat conduction part 12b of the first substrate 12 and the high heat conduction part 20b of the second substrate 20 are in the plane direction with respect to the size of the thermoelectric conversion layer 16 in the direction in which the electrode 26 and the electrode 28 are separated from each other.
  • it is preferably 10 to 90% apart in the direction between the electrodes, and more preferably 10 to 50% apart.
  • the high heat conductive portion 12b and / or the high heat conductive portion 20b are provided with a convex portion directed to the other, so that the high heat conductive portions of both the substrates partially overlap in the surface direction. It may be.
  • the high heat conduction portion 12b of the first substrate 12 is moved to the left side in the drawing, and the high heat conduction portion 20b of the second substrate 20 is moved to the right side in the drawing, A part of the conductive portion may overlap in the surface direction.
  • various configurations can be used as long as the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap in the plane direction.
  • a circular high thermal conductivity portion is formed on the first substrate
  • a square high thermal conductivity portion of the same size is formed on the second substrate
  • the two substrates are mounted so that the centers of both high thermal conductivity portions coincide in the plane direction. You may arrange.
  • Even in this configuration although the distance is short, since the end (periphery) positions of the two high heat conducting portions are different in the surface direction, a temperature difference in the surface direction is generated in the thermoelectric conversion layer, and a temperature difference is generated in the thickness direction. Efficient power generation is possible compared to thermoelectric conversion elements.
  • the circle and square of the same size are a circle and a square with the same diameter and the length of one side.
  • thermoelectric conversion element of the present invention has a gas barrier layer, an antioxidant layer, a protective layer (passivation film) and the like for preventing deterioration of the thermoelectric conversion layer 16, the electrode 26, the electrode 28, and the like, if necessary. May be.
  • These layers are, for example, between the thermoelectric conversion layer 16 and the first adhesion layer 14 and the second adhesion layer 18, between the first adhesion layer 14 and the first substrate 12, and between the second adhesion layer 18 and the second adhesion layer 18. What is necessary is just to provide in the outer surface side of the 1st board
  • these layers include a silicon oxide layer, an aluminum oxide layer, a silicon nitride layer, and a zirconium oxide layer. Therefore, for example, when the first adhesion layer 14 and / or the second adhesion layer 18 is formed of silicon oxide or aluminum oxide, the adhesion layer also functions as a gas barrier layer.
  • FIGS. 2A to 2D show an example of the thermoelectric conversion module of the present invention in which a plurality of such thermoelectric conversion elements 10 of the present invention are connected in series.
  • 2A to 2C are top views and FIG. 2D is a front view.
  • the first substrate 12A and the second substrate 20A have a rectangular plate-like low thermal conductive material on the surface of a long rectangular pillar-shaped high thermal conductive portion and a length of one side in contact with the low thermal conductive portion of the rectangular pillar. It has a configuration that is arranged at equal intervals in a direction orthogonal to the longitudinal direction of the quadrangular prism.
  • the entire surface of one surface is a low heat conductive portion, and the other surface is a direction in which a long low heat conductive portion and a high heat conductive portion are orthogonal to the longitudinal direction.
  • the structure is alternately formed at equal intervals (see FIGS. 2A, 2C, and 2D).
  • the first substrate (second substrate) can use various configurations other than the configuration in which the high thermal conductivity portion is placed on the surface of the low thermal conductivity portion.
  • the first substrate is a rectangular plate-like low heat conductive material in one direction (a direction perpendicular to the paper surface of FIG. 3B).
  • a configuration in which long grooves are formed at equal intervals with the width of the grooves in a direction orthogonal to the longitudinal direction, and a high heat conductive material is incorporated in the grooves may be employed.
  • the thermoelectric conversion layer 16 has a rectangular surface shape, and the entire surface of the first substrate 12A is on the surface on the side that is the low thermal conductive portion 12a.
  • the boundary and the center of the low heat conduction part 12a and the high heat conduction part 12b are made to correspond in the surface direction.
  • the surface on the side where the entire surface of the first substrate 12A is the low thermal conductive portion 12a is the upper surface in a state where FIG.
  • the horizontal size of the thermoelectric conversion layer 16 in FIG. 2B is the same as the width of the high thermal conductive portion 12b.
  • the horizontal direction in FIG. 2B is also simply referred to as “lateral direction”.
  • the horizontal direction is an alternately arranged direction of the low heat conducting portions 12a and the high heat conducting portions 12b.
  • the thermoelectric conversion layer 16 is formed at equal intervals every other boundary with respect to the boundary between the low thermal conductivity portion 12a and the high thermal conductivity portion 12b in the lateral direction.
  • the thermoelectric conversion layers 16 are formed at equal intervals in the horizontal direction at the same interval as the width of the high thermal conduction portion 12b.
  • the width of the high heat conducting portion 12b and the lateral size of the thermoelectric conversion layer 16 are equal.
  • the thermoelectric conversion layers 16 are two-dimensionally formed so that the rows of the thermoelectric conversion layers 16 arranged at equal intervals in the horizontal direction are arranged at equal intervals in the vertical direction in FIG. .
  • the vertical direction in FIG. 2B is also simply referred to as “vertical direction”.
  • the up and down direction is the longitudinal direction of the low heat conduction portion 12a and the high heat conduction portion 12b.
  • the horizontal arrangement of the thermoelectric conversion layers 16 is shifted in the horizontal direction by the width of the high thermal conductive portion 12b in the columns adjacent in the vertical direction. That is, in the columns adjacent in the vertical direction, the thermoelectric conversion layers 16 are alternately formed by the width of the high heat conduction portion 12b.
  • a first adhesion layer 14 is formed on the entire surface of the first substrate 12A on which the thermoelectric conversion layer 16 is formed.
  • thermoelectric conversion layer 16 is connected in series by an electrode 26 (electrode 28).
  • electrode 26 electrode 28
  • the electrodes 26 are provided so as to sandwich the thermoelectric conversion layers 16 in the horizontal direction.
  • the thermoelectric conversion layers 16 arranged in the lateral direction are connected in series by the electrode 26.
  • the electrode 26 is shaded in order to clarify the configuration.
  • the thermoelectric conversion layers 16 in the rows adjacent in the vertical direction are connected by the electrodes 26 at the lateral ends of the thermoelectric conversion layers 16.
  • thermoelectric conversion layer 16 at one end is connected to the thermoelectric conversion layer 16 at the same end of the upper row.
  • thermoelectric conversion layer 16 at the other end is connected to the thermoelectric conversion layer 16 at the same end in the lower row. Thereby, all the thermoelectric conversion layers 16 are connected in series like the one line
  • thermoelectric conversion layer 16 and the electrode 26 on the thermoelectric conversion layer 16 and the electrode 26, the side of the second substrate 20A where the entire surface is the low heat conduction portion 20a is directed downward, and the low heat conduction portion.
  • the second substrate 20A is laminated such that the boundary between 12a and the high thermal conductivity portion 12b coincides with the first substrate 12A. This stacking is performed so that the high thermal conductive portion 12b of the first substrate 12A and the high thermal conductive portion 20b of the second substrate 20A are alternated.
  • the second adhesion layer 18 is formed on the thermoelectric conversion layer 16 and the electrode 26 so as to cover the entire first substrate 12A.
  • thermoelectric conversion module formed by connecting many thermoelectric conversion elements 10 of this invention in series is comprised.
  • thermoelectric conversion layers 16 in the horizontal direction is shifted in the horizontal direction by the width of the high heat conduction portion 12b (that is, the high heat conduction portion 20b) in the columns adjacent in the vertical direction. Is done. That is, in the columns adjacent in the vertical direction, the thermoelectric conversion layers 16 are alternately formed by the width of the high heat conduction portion 12b. For this reason, the thermoelectric conversion layers 16 connected in series as a single folded line have all the thermoelectric conversion layers 16 in the flow in one direction of the connection direction, and one half of the thermoelectric conversion layers 16 is the high thermal conductivity of the first substrate 12A.
  • the portion 12b faces the region of the second substrate 20A only of the low heat conduction portion 20a, and the other half faces the region of only the low heat conduction portion 12a of the first substrate 12A and the high heat conduction portion 20b of the second substrate 20A.
  • all the thermoelectric conversion layers 16 are upstream.
  • Half of the first substrate 12A faces the region of only the high thermal conductivity portion 12b and the second substrate 20A of the low thermal conductivity portion 20a, and the half of the downstream side of the first substrate 12A of the region of only the low thermal conductivity portion 12a and the second substrate 20A.
  • thermoelectric conversion module can generate electricity properly.
  • thermoelectric conversion module thermoelectric conversion element
  • a heat conductive adhesive sheet or a heat conductive adhesive may be used.
  • the heat conductive adhesive sheet and heat conductive adhesive which are stuck and used for the heating side or cooling side of a thermoelectric conversion module. Therefore, a commercially available heat conductive adhesive sheet or heat conductive adhesive can be used.
  • the heat conductive adhesive sheet for example, TC-50TXS2 manufactured by Shin-Etsu Silicone Co., Ltd., Hypersoft heat dissipation material 5580H manufactured by Sumitomo 3M Co., Ltd., BFG20A manufactured by Denki Kagaku Kogyo Co., Ltd., TR5912F manufactured by Nitto Denko Corporation and the like can be used.
  • the heat conductive adhesive sheet which consists of silicone type adhesives from a heat resistant viewpoint is preferable.
  • thermally conductive adhesive examples include Scotch Weld EW 2070 manufactured by 3M, TA-01 manufactured by Inex, TCA-4105, TCA-4210, HY-910 manufactured by Cima Electronics, and SST2 manufactured by Satsuma Research Institute. -RSMZ, SST2-RSCSZ, R3CSZ, R3MZ, etc. can be used.
  • a heat conductive adhesive sheet or a heat conductive adhesive By using a heat conductive adhesive sheet or a heat conductive adhesive, the adhesion to the heat source is improved and the surface temperature on the heating side of the thermoelectric conversion module is increased, the cooling efficiency is improved and the cooling side of the thermoelectric conversion module is improved. Due to the effect of reducing the surface temperature, the amount of power generation can be increased.
  • thermoelectric conversion module a heat radiation fin (heat sink) or a heat radiation sheet made of a known material such as stainless steel, copper, or aluminum may be provided on the cooling side surface of the thermoelectric conversion module, preferably in contact with the high heat conduction portion.
  • a radiation fin or the like the low temperature side of the thermoelectric conversion module can be more suitably cooled, and the temperature difference between the heat source side and the cooling side becomes large, which is preferable in terms of further improving thermoelectric efficiency.
  • the heat radiating fins and the heat radiating sheet are preferably bonded to the thermoelectric conversion module using the above-described heat conductive adhesive sheet or heat conductive adhesive.
  • heat radiating fins known fins such as T-Wing manufactured by Taiyo Wire Mesh Co., Ltd., FLEXCOOL manufactured by the Business Creation Laboratory, and various fins such as corrugated fins, offset fins, waving fins, slit fins, and folding fins may be used. it can. In particular, it is preferable to use a folding fin having a fin height.
  • the fin height of the heat dissipating fin is preferably 10 to 56 mm, the fin pitch is 2 to 10 mm, and the plate thickness is preferably 0.1 to 0.5 mm.
  • the heat dissipating characteristics are high, the module can be cooled, and the power generation amount is high. And it is more preferable that fin height is 25 mm or more.
  • heat dissipation sheet a known heat dissipation sheet such as a PSG graphite sheet manufactured by Panasonic Corporation, a cool staff manufactured by Oki Electric Cable Co., or a shellac ⁇ manufactured by Ceramission Corporation can be used.
  • thermoelectric conversion element 10 the manufacturing method of the thermoelectric conversion element of the present invention will be described in detail by explaining an example of the manufacturing method of the thermoelectric conversion element 10 shown in FIG.
  • First substrate 12 (12A) having low heat conduction part 12a and high heat conduction part 12b, and second substrate 20 (20A) having low heat conduction part 20a and high heat conduction part 20b are prepared.
  • the first substrate 12 and the second substrate 20 may be manufactured by a known method using photolithography, etching, film formation technology, or the like.
  • a method of preparing the first substrate 12 and the second substrate 20 by preparing a plate material in which a low heat conductive material and a high heat conductive material are laminated and removing a part of the high heat conductive material by etching or the like is exemplified.
  • each of the first substrate 12 and the second substrate 20 has a planar shape in which one entire surface is a low heat conduction portion, and the other surface is a convex high heat conduction on the planar low heat conduction portion. A portion is formed and has unevenness (see FIGS. 1B and 2D).
  • a concave portion is formed in a part of the sheet-like low thermal conductive material by etching or the like, and a high thermal conductive portion is formed by vacuum deposition or the like using a mask so as to fill the concave portion.
  • a method for producing the second substrate 20 is exemplified. In this case, both the first substrate 12 and the second substrate 20 are planar (see FIGS. 3A and 3B). Commercially available products can also be used for the first substrate 12 and the second substrate 20.
  • the first adhesion layer 14 is formed on the surface of the first substrate 12 on the side where the high thermal conductive portion 12b is not formed.
  • the first adhesion layer 14 is formed by a known method such as a vapor deposition method (vacuum film formation method) such as vacuum deposition or sputtering, a sol-gel method, a coating method, or a printing method, depending on the material for forming the first adhesion layer 14. What is necessary is just to form.
  • the first adhesion layer 14 may be formed using a liquid adhesive or a film adhesive.
  • the surface of the first substrate 12 on which the first adhesion layer 14 is formed prior to the formation of the first adhesion layer 14, it is preferable to subject the surface of the first substrate 12 on which the first adhesion layer 14 is formed to a roughening treatment.
  • a roughening treatment prior to the formation of the first adhesion layer 14, it is preferable to perform the roughening treatment on the surface of the first substrate 12 on the side where the high thermal conductive portion 12 b is not formed.
  • the roughening treatment is particularly preferably performed so that the arithmetic average roughness Ra of the formation surface of the first adhesion layer 14 of the first substrate 12 is 0.9 ⁇ m or more, and is 1.5 ⁇ m or more. Is more preferable.
  • a known method can be used for the roughening treatment.
  • a roughening treatment method there is a method in which a metal foil is pressure-bonded or heat-sealed to a surface to be roughened and then transferred to a surface to be roughened by peeling or dissolving the metal surface. Illustrated.
  • a method of forming irregularities on the surface to be roughened by irradiation with plasma, UV ozone, electron beam or the like As another roughening treatment method, a method of forming irregularities on the surface roughened by sandblasting or the like is exemplified.
  • thermoelectric conversion layer 16 is formed on the first adhesion layer 14.
  • the thermoelectric conversion layer 16 is made of Ni or Ni alloy.
  • the thermoelectric conversion layer 16 is formed by a vapor deposition method such as sputtering or vacuum deposition, a printing method using an ink in which Ni or Ni alloy powder is dispersed, a method of sticking a sheet material made of Ni or Ni alloy, Ni or Ni What is necessary is just to form by the well-known method which can form the film
  • thermoelectric conversion element 10 having high adhesion to the first adhesion layer 14 and excellent flexibility is obtained.
  • a thermoelectric conversion layer 16 may be formed by forming a layer made of Ni or a Ni alloy foil on the first adhesion layer 14 and then performing patterning by etching or the like (see FIG. 2 (B)).
  • the electrode 26 and the electrode 28 are formed so as to sandwich the thermoelectric conversion layer 16 in the surface direction.
  • the formation of the electrode 26 and the electrode 28 may be performed by a known method according to the material for forming the electrode 26 and the electrode 28.
  • the second adhesion layer 18 is formed on the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 corresponding to the entire surface of the first substrate 12 (first adhesion layer 14).
  • the second adhesion layer 18 is formed only on the thermoelectric conversion layer 16.
  • the second adhesion layer 18 may be formed by a known method similar to that of the first adhesion layer 14 depending on the material for forming the second adhesion layer 18.
  • the prepared second substrate 20 is attached to the thermoelectric conversion layer 16 with the side where the high heat conduction portion 20b is not formed, and the thermoelectric conversion element 10 is manufactured.
  • thermoelectric conversion element of the present invention can be used for various applications. Examples include various power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies.
  • power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies.
  • sensor element uses such as a thermal sensor and a thermocouple, are illustrated besides a power generation use.
  • thermoelectric conversion element As described above, the thermoelectric conversion element, the thermoelectric conversion module, and the manufacturing method of the thermoelectric conversion element of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and various types can be made without departing from the gist of the present invention. Of course, improvements and changes may be made.
  • thermoelectric conversion element of the present invention will be described in more detail with reference to specific examples of the present invention.
  • present invention is not limited to the following examples.
  • Example 1 An adhesive-free single-sided copper-clad polyimide substrate (FELIOS R-F775, manufactured by Panasonic Electric Works Co., Ltd.) was prepared.
  • the copper-clad polyimide substrate has a size of 60 ⁇ 60 mm, a polyimide layer thickness of 20 ⁇ m, and a copper layer thickness of 70 ⁇ m.
  • the copper layer of this copper-clad polyimide substrate is etched to form a copper stripe pattern having a width of 500 ⁇ m and an interval of 500 ⁇ m, as shown in FIG. 2 (A), FIG. 2 (C) and FIG. 2 (D).
  • One substrate and a second substrate were produced.
  • a 200 nm-thick silicon oxide layer (SiO 2 layer) was formed as a first adhesion layer on the entire surface of the first substrate which is a polyimide layer by EB vapor deposition (Electron Beam vapor deposition).
  • the surface where the entire surface of the first substrate is a polyimide layer is the planar surface of the first substrate.
  • a thermoelectric conversion layer made of Ni having a thickness of 1 ⁇ m was formed by a sputtering method using a Ni target. Note that the thermoelectric conversion layer was formed using a metal mask at an equal interval of 1770 (59 ⁇ 30) patterns of 500 ⁇ 1000 ⁇ m as conceptually shown in FIG.
  • an electrode 26 made of gold (Au) having a thickness of 2 ⁇ m is produced by a vacuum deposition method using a metal mask, and 1770 thermoelectric conversion layers are connected in series as conceptually shown in FIG. Connected.
  • first substrate and the second substrate on which the thermoelectric conversion layer is formed are laminated as a second adhesion layer via a non-support adhesive sheet (SK-2478, manufactured by Soken Chemical Co., Ltd.), and an automatic press machine (TP700A, Taiyo Yu A thermoelectric conversion module in which 1770 thermoelectric conversion elements are connected in series was manufactured by bonding with a press load of 5 kN.
  • a non-support adhesive sheet SK-2478, manufactured by Soken Chemical Co., Ltd.
  • TP700A Taiyo Yu
  • FIGS. 2A to 2C the first substrate and the second substrate are laminated with a polyimide layer on the entire surface of the first substrate and the second substrate. A certain surface was faced, and the copper stripe portion of the first substrate and the portion without the copper stripe of the second substrate were aligned in the plane direction.
  • the surface on which the entire surface of the second substrate is a polyimide layer is a planar surface of the second substrate.
  • the portion of the second substrate without the copper stripe is the portion
  • thermoelectric conversion layer the electrical conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured by the following method.
  • a 15 ⁇ 4 mm thermoelectric conversion layer made of Ni having a thickness of 1 ⁇ m was formed in the center of the polyimide substrate by a sputtering method using the same Ni target.
  • the electrical conductivity ⁇ and Seebeck coefficient S were measured using a thermoelectric property evaluation apparatus (ZEM-3, manufactured by ULVAC-RIKO).
  • the center temperature of the substrate was 30 ° C.
  • the conductivity ⁇ was 46500 S / cm and the Seebeck coefficient S was ⁇ 15.4 ⁇ V / K.
  • thermoelectric conversion module was sandwiched between a heated copper plate and a copper plate connected with a cold water circulation device, and the temperature of the heated copper plate was adjusted so that the temperature difference between both copper plates would be 10 ° C. . Further, the electrode of the most upstream thermoelectric conversion layer and the electrode of the most downstream thermoelectric conversion layer connected in series are connected to a source meter (source meter 2450, manufactured by Keithley), and the open circuit voltage and the short circuit current are measured.
  • thermoelectric conversion module After measuring the amount of power generation, a bending test of the thermoelectric conversion module was conducted according to JIS K 5600. A cylindrical mandrel having a diameter of 32 mm was used and bent 180 °. After performing the bending test, the power generation amount of the thermoelectric conversion module was measured as before. As a result, the power generation amount was 41.8 ⁇ W.
  • thermoelectric conversion module was produced by producing a thermoelectric conversion element in the same manner as in Example 1 except that the silicon oxide layer was not formed on the first substrate as the first adhesion layer. However, after forming the thermoelectric conversion layer, in many thermoelectric conversion elements, the thermoelectric conversion layer peeled off from the first substrate, and an appropriate thermoelectric conversion module could not be produced.
  • thermoelectric conversion module was produced in the same manner as in Example 1 except that the first adhesion layer formed on the first substrate was replaced with a chromium layer instead of the silicon oxide layer.
  • the chromium layer was formed by a sputtering method using chromium as a target.
  • the electrical conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity ⁇ was 42000 S / cm, and the Seebeck coefficient S was ⁇ 14.7 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 36.4 ⁇ W, and the power generation amount after the bending test was 34.6 ⁇ W.
  • thermoelectric conversion module was produced in the same manner as in Example 1 except that the thermoelectric conversion layer was replaced with an Ni90Mo10 alloy layer (Ni90 atom%, Mo10 atom% alloy layer) instead of the Ni layer.
  • the Ni90Mo10 alloy layer was formed by a sputtering method using a Ni90Mo10 alloy as a target.
  • the conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity ⁇ was 8000 S / cm, and the Seebeck coefficient S was 10 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 4.19 ⁇ W, and the power generation amount after the bending test was 4.02 ⁇ W.
  • thermoelectric conversion element was produced by producing a thermoelectric conversion element in the same manner as in Example 3 except that the silicon oxide layer was not formed as the first adhesion layer on the first substrate. However, after forming the thermoelectric conversion layer, in many thermoelectric conversion elements, the thermoelectric conversion layer peeled off from the first substrate, and an appropriate thermoelectric conversion module could not be produced.
  • thermoelectric conversion module was produced in the same manner as in Example 1 except that the electrode forming material was changed from gold to copper (Cu).
  • the conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured.
  • the conductivity ⁇ was 42000 S / cm
  • the Seebeck coefficient S was ⁇ 14.5 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured.
  • the power generation amount before the bending test was 53.8 ⁇ W
  • the power generation amount after the bending test was 50.6 ⁇ W.
  • a polyimide substrate (Kapton 100V, manufactured by Toray DuPont) having a size of 60 ⁇ 60 mm and a thickness of 25 ⁇ m was prepared.
  • a chromium film with a thickness of 100 nm by a vacuum deposition method using a metal mask, and then depositing a gold film with a thickness of 1000 nm on the chromium layer, 95 metal electrode layers were patterned on the polyimide substrate.
  • Ni foil having a thickness of 100 ⁇ m was cut to prepare 95 Ni chips of 3 ⁇ 3 mm.
  • the produced Ni chip was bonded onto the metal electrode layer formed on the polyimide substrate using a silver paste (FA705BN, manufactured by Fujikura Kasei Co., Ltd.). Furthermore, by using silver paste (FA705BN, manufactured by Fujikura Kasei Co., Ltd.) as an adhesive and connecting the upper surface of the Ni chip and the metal electrode layer under the adjacent Ni chip with a copper foil having a thickness of 18 ⁇ m, uni A thermoelectric conversion module comprising 95 leg-type thermoelectric conversion elements connected in series was produced. In the same manner as in Example 1, the conductivity ⁇ and Seebeck coefficient S of the Ni foil were measured. As a result, the conductivity ⁇ was 140000 S / cm and the Seebeck coefficient S was ⁇ 18 ⁇ V / K.
  • thermoelectric conversion module the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured in the same manner as in Example 1, no power generation could be measured.
  • Ni with high thermal conductivity there is no temperature difference between the upper and lower sides of the thermoelectric conversion layer (between the electrodes), so it is estimated that no thermoelectromotive force occurred.
  • thermoelectric conversion element of the present invention Ni or Ni alloy, which is a general-purpose material that has high heat conductivity but high power generation and high conductivity, is used in plane.
  • a thermoelectric conversion element of a mold By forming a thermoelectric conversion element of a mold, a high power generation amount can be obtained.
  • Example 1 and Example 2 in which the thermoelectric conversion layer is formed of Ni obtain a high power generation amount.
  • the thermoelectric conversion module using the thermoelectric conversion element of the present invention has almost the same amount of power generation before and after the bending test, and is excellent in flexibility.
  • Example 4 when the electrode is made of copper, a higher power generation amount is obtained due to the excellent conductivity of copper and a slightly higher Seebeck coefficient than gold.
  • thermoelectric conversion module using the thermoelectric conversion element of the present invention is useful for using Ni or Ni alloy in the thermoelectric conversion layer.
  • Example 5 An adhesive-free double-sided copper-clad polyimide substrate (FELIOS R-F775, manufactured by Panasonic Electric Works Co., Ltd.) was prepared.
  • the copper-clad polyimide substrate has a size of 60 ⁇ 60 mm, a polyimide layer thickness of 25 ⁇ m, and a copper layer thickness of 70 ⁇ m.
  • the copper on one surface of the double-sided copper-clad polyimide substrate was completely removed by etching. When the exposed polyimide surface was observed with a laser microscope (VK-X100, manufactured by Keyence Corporation), it was found that there were irregularities derived from the surface of the copper layer (copper foil).
  • the arithmetic average roughness Ra of the surface from which the copper layer was removed was measured and found to be 0.989 ⁇ m.
  • the arithmetic average roughness Ra was measured according to JIS B 0601 (2001) by measuring the height of the surface using a shape measurement laser microscope: VK-X200 (manufactured by Keyence Corporation). . At this time, the observation range was set to 1.405 mm in width and 1.05 mm in length. From this observation range, three lines were extracted in the horizontal direction, the arithmetic average roughness Ra was determined, and the average value was calculated.
  • the remaining copper layer of the copper-clad polyimide substrate from which the copper layer on one side is removed is etched to form a copper stripe pattern having a width of 500 ⁇ m and an interval of 500 ⁇ m, and FIG. 2 (A), FIG. 2 (C) and A first substrate and a second substrate as shown in FIG.
  • a silicon oxide layer (SiO 2 layer) having a thickness of 200 nm was formed as a first adhesion layer on the entire surface of the first substrate which is a polyimide layer by EB vapor deposition.
  • the surface on which the entire surface of the first substrate is a polyimide layer is the planar surface of the first substrate.
  • a thermoelectric conversion layer made of Ni having a thickness of 1 ⁇ m was formed by a sputtering method using a Ni target. Note that the thermoelectric conversion layer was formed using a metal mask at an equal interval of 1770 (59 ⁇ 30) patterns of 500 ⁇ 1000 ⁇ m as conceptually shown in FIG.
  • thermoelectric conversion layers were connected in series.
  • first substrate and the second substrate on which the thermoelectric conversion layer is formed are laminated as a second adhesion layer via a non-support adhesive sheet (SK-2478, manufactured by Soken Chemical Co., Ltd.), and an automatic press machine (TP700A, Taiyo Yu A thermoelectric conversion module in which 1770 thermoelectric conversion elements are connected in series was manufactured by bonding with a press load of 5 kN.
  • a non-support adhesive sheet SK-2478, manufactured by Soken Chemical Co., Ltd.
  • TP700A Taiyo Yu
  • FIGS. 2A to 2C the first substrate and the second substrate are laminated with a polyimide layer on the entire surface of the first substrate and the second substrate. A certain surface was faced, and the copper stripe portion of the first substrate and the portion without the copper stripe of the second substrate were aligned in the plane direction.
  • the surface on which the entire surface of the second substrate is a polyimide layer is a planar surface of the second substrate.
  • the portion of the second substrate without the copper stripe is the portion
  • thermoelectric conversion layer The conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured in the same manner as in Example 1 except that the thermoelectric conversion layer was formed on the surface of the copper-clad polyimide substrate from which the copper foil was removed. As a result, the conductivity ⁇ was 46500 S / cm and the Seebeck coefficient S was ⁇ 15.4 ⁇ V / K. Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 43.4 ⁇ W, and the power generation amount after the bending test was 42.1 ⁇ W.
  • thermoelectric conversion module was produced in the same manner as in Example 5 except that the first adhesion layer formed on the first substrate was replaced with a chromium layer instead of the silicon oxide layer.
  • the chromium layer was formed by a sputtering method using chromium as a target.
  • the conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity ⁇ was 42000 S / cm, and the Seebeck coefficient S was ⁇ 14.7 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 36.4 ⁇ W, and the power generation amount after the bending test was 35.2 ⁇ W.
  • thermoelectric conversion module was produced in the same manner as in Example 5 except that the thermoelectric conversion layer was replaced with an Ni90Mo10 alloy layer (Ni90 atom%, Mo10 atom% alloy layer) instead of the Ni layer.
  • the Ni90Mo10 alloy layer was formed by a sputtering method using a Ni90Mo10 alloy as a target.
  • the conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity ⁇ was 8000 S / cm, and the Seebeck coefficient S was 10 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 4.19 ⁇ W, and the power generation amount after the bending test was 4.07 ⁇ W.
  • thermoelectric conversion module was prepared in the same manner as in Example 5 except that the electrode was changed from a laminated electrode made of chromium and gold to a laminated electrode made of 0.05 ⁇ m thick chromium and 0.5 ⁇ m thick copper. Produced.
  • the conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured.
  • the conductivity ⁇ was 42000 S / cm
  • the Seebeck coefficient S was ⁇ 14.7 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured.
  • the power generation amount before the bending test was 45.2 ⁇ W
  • the power generation amount after the bending test was 43.4 ⁇ W.
  • the first adhesion layer formed on the first substrate is a chromium layer instead of the silicon oxide layer, and the electrode is a laminated electrode made of chromium and gold, and has a thickness of 0.05 ⁇ m and a thickness of 0.5 ⁇ m.
  • a thermoelectric conversion module was produced in the same manner as in Example 5 except that the laminated electrode was made of copper.
  • the conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity ⁇ was 42000 S / cm, and the Seebeck coefficient S was ⁇ 14.7 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 38.2 ⁇ W, and the power generation amount after the bending test was 37.1 ⁇ W.
  • Example 10 A first substrate was produced in the same manner as in Example 5 except that the copper beats on one surface of the double-sided copper-clad polyimide substrate were removed, and then this surface was subjected to a roughening treatment by sandblasting.
  • the sand blasting was performed with a sand blasting apparatus (SCM-4RBY-05-401, manufactured by Fuji Seisakusho Co., Ltd.) using ⁇ 20 ⁇ m alumina particles at a supply air pressure of 0.1 MPa.
  • SCM-4RBY-05-401 manufactured by Fuji Seisakusho Co., Ltd.
  • the arithmetic average roughness Ra of the surface subjected to the roughening treatment was measured in the same manner as in Example 5, the arithmetic average roughness Ra was 1.68 ⁇ m.
  • thermoelectric conversion module was produced in the same manner as in Example 9 except that this first substrate was used.
  • the conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured.
  • the conductivity ⁇ was 46500 S / cm and the Seebeck coefficient S was ⁇ 15.4 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured.
  • the power generation amount before the bending test was 43.4 ⁇ W
  • the power generation amount after the bending test was 42.6 ⁇ W.
  • Example 11 A first substrate was produced in the same manner as in Example 10.
  • a thermoelectric conversion module was produced in the same manner as in Example 8 except that this first substrate was used.
  • the conductivity ⁇ and Seebeck coefficient S of the thermoelectric conversion layer were measured.
  • the conductivity ⁇ was 42000 S / cm
  • the Seebeck coefficient S was ⁇ 14.7 ⁇ V / K.
  • the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured.
  • the power generation amount before the bending test was 45.2 ⁇ W
  • the power generation amount after the bending test was 44.3 ⁇ W.
  • thermoelectric conversion module As shown in Table 2, a highly flexible thermoelectric conversion module is obtained by roughening the formation surface of the first adhesion layer of the first substrate. In particular, as shown in Example 10 and Example 11, by increasing the surface roughness of the surface of the first substrate on which the first adhesion layer is formed, the amount of power generation is almost unchanged before and after the bending test. A thermoelectric conversion module having excellent flexibility can be obtained.
  • thermoelectric conversion module produced by the method similar to Example 11 was adhere
  • thermoelectric conversion module of the present invention can generate power even with air cooling, and can generate power even with a curved heat source. From the above results, the effects of the present invention are clear.

Abstract

This invention comprises the following: a first substrate that, in the plane thereof, has a high-thermal-conductivity section that exhibits higher thermal conductivity than other regions of said first substrate; a first contact layer; a thermoelectric conversion layer comprising nickel or a nickel alloy; a second contact layer; and a second substrate that, in the plane thereof, has a high-thermal-conductivity section that exhibits higher thermal conductivity than other regions of said second substrate and does not completely overlap the high-thermal-conductivity section of the first substrate. This makes it possible to provide the following: a thermoelectric conversion element and a thermoelectric conversion module that can generate electricity efficiently and exhibit good flexibility; and a method for manufacturing said thermoelectric conversion element.

Description

熱電変換素子および熱電変換モジュールならびに熱電変換素子の製造方法Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
 本発明は、熱電変換素子に関する。詳しくは、高い発電量が得られ、さらに、可撓性も良好な熱電変換素子、この熱電変換素子を用いる熱電変換モジュール、および、この熱電変換素子の製造方法に関する。 The present invention relates to a thermoelectric conversion element. Specifically, the present invention relates to a thermoelectric conversion element capable of obtaining a high power generation amount and having good flexibility, a thermoelectric conversion module using the thermoelectric conversion element, and a method for manufacturing the thermoelectric conversion element.
 熱エネルギーと電気エネルギーを相互に変換することができる熱電変換材料が、熱によって発電する発電素子やペルチェ素子のような熱電変換素子に用いられている。
 熱電変換素子は、熱エネルギーを直接電力に変換することができ、可動部を必要としない等の利点を有する。そのため、熱電変換素子を利用する発電装置は、例えば、焼却炉や工場の各種の設備など、排熱される部位に設けることで、動作コストを掛ける必要なく、簡易に電力を得ることができる。
Thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used in thermoelectric conversion elements such as power generation elements and Peltier elements that generate electricity by heat.
The thermoelectric conversion element can convert heat energy directly into electric power, and has an advantage that a movable part is not required. For this reason, a power generation device that uses a thermoelectric conversion element can be easily obtained without incurring operating costs by providing it at a site where heat is exhausted, such as an incinerator or various facilities in a factory.
 熱電変換素子は、一般的に、板状の基板の上に電極を有し、電極の上にブロック状の熱電変換層(発電層)を有し、熱電変換層の上に板状の電極を有してなる構成を有する。この熱電変換素子は、uni leg型とも呼ばれている。
 すなわち、通常の熱電変換素子は、電極で熱電変換層を厚さ方向に挟持し、熱電変換層の厚さ方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換させている。
A thermoelectric conversion element generally has an electrode on a plate-like substrate, a block-like thermoelectric conversion layer (power generation layer) on the electrode, and a plate-like electrode on the thermoelectric conversion layer. It has the structure which has. This thermoelectric conversion element is also called a uni leg type.
That is, in a normal thermoelectric conversion element, a thermoelectric conversion layer is sandwiched between electrodes in the thickness direction, a temperature difference is generated in the thickness direction of the thermoelectric conversion layer, and heat energy is converted into electric energy.
 これに対し、特許文献1および特許文献2には、高熱伝導部を有する基板を用いることにより、熱電変換層の厚さ方向ではなく、熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する熱電変換素子が記載されている。
 具体的には、特許文献1には、P型材料およびN型材料で形成された熱電変換層の両面に、熱伝導率が異なる2種類の材料で構成された柔軟性を有するフィルム基板を設け、熱伝導率が異なる材料を、基板の外面で、かつ、通電方向の逆位置に位置するように構成した熱電変換素子が記載されている。
On the other hand, in Patent Document 1 and Patent Document 2, by using a substrate having a high heat conduction portion, a temperature difference is generated not in the thickness direction of the thermoelectric conversion layer but in the surface direction of the thermoelectric conversion layer, A thermoelectric conversion element that converts energy into electrical energy is described.
Specifically, in Patent Document 1, a flexible film substrate composed of two types of materials having different thermal conductivities is provided on both surfaces of a thermoelectric conversion layer formed of a P-type material and an N-type material. A thermoelectric conversion element is described in which materials having different thermal conductivities are arranged on the outer surface of the substrate and at positions opposite to the energizing direction.
 また、特許文献2には、シート状の第1絶縁性部と、シート状の第2絶縁性部と、両絶縁性部の間に収容される熱起電力を取り出すための第1端部および第2端部を有する板状の熱電変換層と、熱電変換層と第1絶縁性部との間に配置される、第1端部の第1絶縁性部側を覆う、第1絶縁性部よりも熱伝導率が高い第1高熱伝導性部と、板状部材と第2絶縁性部との間に配置された、板状部材の第2端部の第2絶縁性部側を覆う、第2絶縁性部よりも熱伝導率が高い第2高熱伝導性部とを有する素子が記載されている。 Patent Document 2 discloses a sheet-like first insulating portion, a sheet-like second insulating portion, a first end portion for taking out a thermoelectromotive force accommodated between both insulating portions, and A plate-like thermoelectric conversion layer having a second end, and a first insulating portion that is disposed between the thermoelectric conversion layer and the first insulating portion and covers the first insulating portion side of the first end. Covering the second insulating portion side of the second end portion of the plate-like member, which is disposed between the first high thermal conductivity portion having a higher thermal conductivity than the plate-like member and the second insulating portion, An element having a second high thermal conductivity portion having a higher thermal conductivity than the second insulating portion is described.
特許第3981738号公報Japanese Patent No. 3981738 特開2011-35203号公報JP 2011-35203 A
 前述のように、熱電変換素子は、熱電変換層に接続される電極の離間方向すなわち通電方向に温度差を生じさせることで、発電する。また、この温度差が大きい程、高い発電量を得ることができる。
 従って、熱電変換層を電極で挟持してなる構成を有する、一般的な熱電変換素子では、熱電変換層に大きな温度差を生じさせるためには、熱電変換層を電極の挟持方向に厚くする必要がある。
As described above, the thermoelectric conversion element generates power by generating a temperature difference in the separation direction of the electrodes connected to the thermoelectric conversion layer, that is, the energization direction. In addition, the larger the temperature difference, the higher the power generation amount.
Therefore, in a general thermoelectric conversion element having a configuration in which a thermoelectric conversion layer is sandwiched between electrodes, in order to cause a large temperature difference in the thermoelectric conversion layer, it is necessary to increase the thickness of the thermoelectric conversion layer in the electrode sandwiching direction. There is.
 これに対して、特許文献1や特許文献2に記載される熱電変換素子は、基板に設けられる高熱伝導部によって熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する。
 そのため、薄いシート状の熱電変換層でも、熱電変換層を長くすることで、大きな温度差を生じさせることができ、高い発電量が得られる。さらに、熱電変換層をシート状にできるので、可撓性にも優れ、曲面等への設置も容易な発電装置が得られる。
On the other hand, the thermoelectric conversion elements described in Patent Document 1 and Patent Document 2 generate a temperature difference in the surface direction of the thermoelectric conversion layer by the high heat conduction portion provided on the substrate, and convert the heat energy into electric energy. To do.
Therefore, even in a thin sheet-like thermoelectric conversion layer, a long temperature difference can be generated by making the thermoelectric conversion layer long, and a high power generation amount can be obtained. Furthermore, since the thermoelectric conversion layer can be formed into a sheet shape, a power generator that is excellent in flexibility and easy to install on a curved surface or the like can be obtained.
 その反面、特許文献1や特許文献2では、熱電変換層に、希少な金属を含む合金を用いており、材料の汎用性の点で難点が有る。例えば、特許文献1では、熱電変換層にCePd3-YbPdを用いており、特許文献2では、熱電変換層に(Bi2Te31-x(Sb2Te3xや(Bi2Te31-x(Sb2Te3xを用いている。 On the other hand, in Patent Document 1 and Patent Document 2, an alloy containing a rare metal is used for the thermoelectric conversion layer, which is difficult in terms of versatility of the material. For example, in Patent Document 1, CePd 3 —YbPd is used for the thermoelectric conversion layer. In Patent Document 2, (Bi 2 Te 3 ) 1-x (Sb 2 Te 3 ) x and (Bi 2 Te are used for the thermoelectric conversion layer. 3 ) 1-x (Sb 2 Te 3 ) x is used.
 本発明の目的は、汎用性の高い材料からなる熱電変換層を用いる、高い発電量が得られ、かつ、可撓性も良好な熱電変換素子、この熱電変換素子を用いる熱電変換モジュール、および、この熱電変換素子の製造方法を提供することにある。 An object of the present invention is to use a thermoelectric conversion layer made of a highly versatile material, to obtain a high power generation amount, and to have good flexibility, a thermoelectric conversion module using the thermoelectric conversion element, and It is in providing the manufacturing method of this thermoelectric conversion element.
 このような目的を達成するために、本発明の熱電変換素子は、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板と、
 第1基板の上に形成される第1密着層と、
 第1密着層の上に形成される、ニッケルもしくはニッケル合金からなる熱電変換層と、
 熱電変換層の上に形成される第2密着層と、
 第2密着層の上に形成される、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向において自身の高熱伝導部が第1基板の高熱伝導部と完全に重複しない第2基板と、
 面方向に熱電変換層を挟むように、熱電変換層に接続される一対の電極とを有することを特徴とする熱電変換素子を提供する。
In order to achieve such an object, the thermoelectric conversion element of the present invention includes a first substrate having a high thermal conductivity portion having a thermal conductivity higher than that of other regions in at least a part of the surface direction,
A first adhesion layer formed on the first substrate;
A thermoelectric conversion layer made of nickel or a nickel alloy formed on the first adhesion layer;
A second adhesion layer formed on the thermoelectric conversion layer;
The high adhesion portion formed on the second adhesion layer and having a thermal conductivity higher than that of other regions is provided in at least a part of the surface direction, and the high heat conduction portion of the first substrate is formed in the surface direction. A second substrate that does not completely overlap with the high thermal conductivity part;
A thermoelectric conversion element comprising a pair of electrodes connected to a thermoelectric conversion layer so as to sandwich the thermoelectric conversion layer in a plane direction is provided.
 このような本発明の熱電変換素子において、熱電変換層のニッケル含有量が90原子%以上であるのが好ましい。
 また、熱電変換層がニッケルで形成されるのが好ましい。
 また、第1基板の高熱伝導部と第2基板の高熱伝導部とが、面方向において、電極の離間方向に異なる位置に設けられるのが好ましい。
 また、第1基板の高熱伝導部および第2基板の高熱伝導部が、積層方向に対して外面に位置するのが好ましい。
 また、第1基板の第1密着層側の表面が、粗面化処理を施されたものであるのが好ましい。
 さらに、第1基板の第1密着層側の表面の算術平均粗さRaが0.9μm以上であるのが好ましい。
In such a thermoelectric conversion element of the present invention, the nickel content of the thermoelectric conversion layer is preferably 90 atomic% or more.
Moreover, it is preferable that a thermoelectric conversion layer is formed with nickel.
In addition, it is preferable that the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate are provided at different positions in the plane direction in the electrode separation direction.
Moreover, it is preferable that the high heat conduction part of a 1st board | substrate and the high heat conduction part of a 2nd board | substrate are located in an outer surface with respect to the lamination direction.
Moreover, it is preferable that the surface of the first substrate on the first adhesion layer side has been subjected to a roughening treatment.
Further, the arithmetic average roughness Ra of the surface of the first substrate on the first adhesion layer side is preferably 0.9 μm or more.
 また、本発明の熱電変換モジュールは、本発明の熱電変換素子を、複数、直列に接続してなる熱電変換モジュールを提供する。 Also, the thermoelectric conversion module of the present invention provides a thermoelectric conversion module formed by connecting a plurality of thermoelectric conversion elements of the present invention in series.
 このような本発明の熱電変換モジュールにおいて、第1基板および第2基板のいずれか一方の高熱伝導部に接する放熱フィンを有するのが好ましい。
 また、放熱フィンと高熱伝導部とが熱伝導接着シートまたは熱電導性接着剤で接着されているのが好ましい。
In such a thermoelectric conversion module of the present invention, it is preferable to have a radiating fin in contact with either one of the first substrate and the second substrate and the high thermal conduction portion.
Moreover, it is preferable that the radiation fin and the high thermal conductive portion are bonded with a thermal conductive adhesive sheet or a thermoconductive adhesive.
 また、本発明の熱電変換素子の製造方法は、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板に、第1密着層を形成する工程、
 第1密着層の上に、ニッケルもしくはニッケル合金からなる熱電変換層を形成する工程、
 面方向に挟むようにして、熱電変換層に電極対を接続する工程、
 熱電変換層の上に第2密着層を形成する工程、
 および、第2密着層の上に、面方向の少なくとも一部に、他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向おいて自身の高熱伝導部が第1基板の高熱伝導部と完全に重複しないように第2基板を積層する工程、を有することを特徴とする熱電変換素子の製造方法を提供する。
In addition, the method for manufacturing a thermoelectric conversion element of the present invention includes a step of forming a first adhesion layer on a first substrate having a high thermal conductivity portion having a higher thermal conductivity than at other regions in at least a part of a plane direction.
Forming a thermoelectric conversion layer made of nickel or a nickel alloy on the first adhesion layer;
Connecting the electrode pair to the thermoelectric conversion layer so as to be sandwiched in the surface direction,
Forming a second adhesion layer on the thermoelectric conversion layer;
And on the 2nd adhesion layer, it has a high heat conduction part whose heat conductivity is higher than other fields in at least a part of the surface direction, and its own high heat conduction part is the first substrate in the surface direction. And a step of laminating the second substrate so as not to completely overlap with the high thermal conductivity portion.
 このような本発明の熱電変換素子の製造方法において、熱電変換層の形成を、気相堆積法によって行うのが好ましい。
 また、第1密着層の形成に先立ち、第1基板の第1密着層の形成面に粗面化処理を行うのが好ましい。
 さらに、粗面化処理を、第1基板の第1密着層の形成面の算術平均粗さRaが0.9μm以上となるように行うのが好ましい。
In such a method for manufacturing a thermoelectric conversion element of the present invention, the thermoelectric conversion layer is preferably formed by a vapor deposition method.
In addition, prior to the formation of the first adhesion layer, it is preferable to perform a roughening treatment on the surface of the first substrate on which the first adhesion layer is formed.
Further, it is preferable that the roughening treatment is performed so that the arithmetic average roughness Ra of the surface of the first substrate on which the first adhesion layer is formed is 0.9 μm or more.
 このような本発明の熱電変換素子および熱電変換モジュールは、汎用性の高いニッケルもしくはニッケル合金からなる、薄いシート状の熱電変換素子を有することにより、高い発電量が得られる上に、良好な可撓性を有する。
 また、本発明の熱電変換素子の製造方法によれば、このような本発明の熱電変換素子を好適に製造できる。
Such a thermoelectric conversion element and thermoelectric conversion module according to the present invention has a thin sheet-like thermoelectric conversion element made of nickel or a nickel alloy having high versatility, so that a high power generation amount can be obtained and a good potential can be obtained. It has flexibility.
Moreover, according to the manufacturing method of the thermoelectric conversion element of this invention, such a thermoelectric conversion element of this invention can be manufactured suitably.
図1(A)は、本発明の熱電変換素子の一例を概念的に示す上面図、図1(B)は、同正面図、図1(C)は、同底面図である。1A is a top view conceptually showing an example of the thermoelectric conversion element of the present invention, FIG. 1B is a front view thereof, and FIG. 1C is a bottom view thereof. 図2(A)~図2(D)は、本発明の熱電変換素子を利用する本発明の熱電変換モジュールの一例を説明するための概念図である。2A to 2D are conceptual diagrams for explaining an example of the thermoelectric conversion module of the present invention using the thermoelectric conversion element of the present invention. 図3(A)および図3(B)は、本発明の熱電変換素子に利用可能な基板の別の例を概念的に示す正面図である。FIG. 3A and FIG. 3B are front views conceptually showing another example of a substrate that can be used in the thermoelectric conversion element of the present invention.
 以下、本発明の熱電変換素子および熱電変換モジュール、ならびに、熱電変換素子の製造方法について、添付の図面に示される好適実施例を基に詳細に説明する。 Hereinafter, the thermoelectric conversion element, the thermoelectric conversion module, and the method for manufacturing the thermoelectric conversion element of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.
 図1に、本発明の熱電変換素子の一例を概念的に示す。なお、図1(A)は上面図(図1(B)を紙面上方から見た図)、図1(B)は正面図(後述する基板等の面方向から見た図)、図1(C)は底面図(図1(B)を紙面下方から見た図)である。 FIG. 1 conceptually shows an example of the thermoelectric conversion element of the present invention. 1A is a top view (a view of FIG. 1B viewed from above), FIG. 1B is a front view (a view of a substrate or the like described later), and FIG. C) is a bottom view (a view of FIG. 1B viewed from the lower side of the drawing).
 図1(A)~図1(C)に示すように、熱電変換素子10は、基本的に、第1基板12と、第1密着層14と、熱電変換層16と、第2密着層18と、第2基板20と、電極26および電極28とを有して構成される。
 具体的には、第1基板12の上に第1密着層14を有し、第1密着層14の上に熱電変換層16を有し、熱電変換層16の上に第2密着層18を有し、第2密着層18の上に第2基板20を有する。さらに、第1基板12と第2基板20(第1密着層14と第2密着層18)との間において、熱電変換層16を第1基板12および第2基板20の基板面方向に挟むようにして、熱電変換層16に電極26および電極28が接続される。すなわち、電極26と電極28とは、電極対を構成する。
 以下、第1基板12および第2基板20の基板面方向を、単に『面方向』とも言う。
As shown in FIGS. 1A to 1C, the thermoelectric conversion element 10 basically includes a first substrate 12, a first adhesion layer 14, a thermoelectric conversion layer 16, and a second adhesion layer 18. And the second substrate 20, the electrode 26 and the electrode 28.
Specifically, the first adhesion layer 14 is provided on the first substrate 12, the thermoelectric conversion layer 16 is provided on the first adhesion layer 14, and the second adhesion layer 18 is provided on the thermoelectric conversion layer 16. And has a second substrate 20 on the second adhesion layer 18. Further, the thermoelectric conversion layer 16 is sandwiched between the first substrate 12 and the second substrate 20 (the first adhesion layer 14 and the second adhesion layer 18) in the substrate surface direction of the first substrate 12 and the second substrate 20. The electrode 26 and the electrode 28 are connected to the thermoelectric conversion layer 16. That is, the electrode 26 and the electrode 28 constitute an electrode pair.
Hereinafter, the substrate surface directions of the first substrate 12 and the second substrate 20 are also simply referred to as “surface directions”.
 図1に示すように、第1基板12は、低熱伝導部12aおよび高熱伝導部12bを有する。同様に、第2基板20も、低熱伝導部20aおよび高熱伝導部20bを有する。図示例において、両基板は、互いの高熱伝導部が、電極26と電極28との離間方向に異なる位置となるように配置される。電極26と電極28との離間方向とは、すなわち通電方向である。
 なお、両基板は、配置位置、および、表裏や面方向の向きが異なるのみで、構成は同じであるので、第1基板12と第2基板20とを区別する必要が有る場合を除いて、説明は第1基板12を代表例として行う。
As shown in FIG. 1, the 1st board | substrate 12 has the low heat conduction part 12a and the high heat conduction part 12b. Similarly, the 2nd board | substrate 20 also has the low heat conduction part 20a and the high heat conduction part 20b. In the illustrated example, the two substrates are arranged such that their high thermal conductivity portions are at different positions in the direction in which the electrode 26 and the electrode 28 are separated from each other. The separation direction of the electrode 26 and the electrode 28 is the energization direction.
In addition, since both boards differ only in the arrangement position and the orientation of the front and back sides and the surface direction, and the configuration is the same, unless it is necessary to distinguish between the first board 12 and the second board 20, The description will be made using the first substrate 12 as a representative example.
 図示例の熱電変換素子10において、第1基板12(第2基板20)は、低熱伝導部12a(低熱伝導部20a)となる板状物の、一方の面の半分の領域を覆うように、高熱伝導部12b(高熱伝導部20b)を積層してなる構成を有する。
 従って、第1基板12の一面(一方の表面)は、面方向の半分の領域が低熱伝導部12aで、残りの半分の領域は高熱伝導部12bとなる。また、第1基板12の他方の面は、全面が低熱伝導部12aとなる。
 なお、本発明の熱電変換素子において、第1基板(第2基板)は、低熱伝導部の表面に高熱伝導部を積層してなる構成以外にも、各種の構成が利用可能である。例えば、第1基板は、図3(A)に概念的に示すように、低熱伝導部12aとなる板状物の、一方の面の半分の領域に凹部を形成して、この凹部に、表面が均一となるように高熱伝導部12bを組み込んでなる構成でもよい。
 さらに、第1基板は図1(A)に示す積層体で、第2基板は図3(A)に示す凹部に高熱伝導部を組み込んでなる構成等、第1基板と第2基板とで、高熱伝導部の形成方法が異なってもよい。
In the illustrated thermoelectric conversion element 10, the first substrate 12 (second substrate 20) covers a region on one half of one surface of the plate-like material that becomes the low thermal conduction portion 12 a (low thermal conduction portion 20 a). It has a configuration in which the high heat conduction part 12b (high heat conduction part 20b) is laminated.
Therefore, on one surface (one surface) of the first substrate 12, a half region in the plane direction is the low heat conduction portion 12a, and the other half region is the high heat conduction portion 12b. In addition, the other surface of the first substrate 12 is the low thermal conductive portion 12a.
In addition, in the thermoelectric conversion element of this invention, various structures can be utilized for the 1st board | substrate (2nd board | substrate) besides the structure formed by laminating | stacking a high heat conduction part on the surface of a low heat conduction part. For example, as conceptually shown in FIG. 3 (A), the first substrate is formed with a recess in a half region of one surface of the plate-like material that becomes the low heat conducting portion 12a, The structure which incorporates the high heat conductive part 12b so that may become uniform may be sufficient.
Further, the first substrate is a laminated body shown in FIG. 1A, and the second substrate is a first substrate and a second substrate, such as a configuration in which a high heat conduction portion is incorporated in the concave portion shown in FIG. The method for forming the high thermal conductivity portion may be different.
 低熱伝導部12aは、ガラス板、セラミックス板、プラスチックフィルムなど、絶縁性を有し、かつ、熱電変換層16や電極26等の形成等に対する十分な耐熱性を有するものであれば、各種の材料からなる物が利用可能である。
 好ましくは、低熱伝導部12aには、プラスチックフィルムが利用される。低熱伝導部12aにプラスチックフィルムを用いることにより、軽量化やコストの低下を計ると共に、可撓性(フレキシブル性)を有する熱電変換素子10が形成可能となり、好ましい。
The low heat conduction part 12a is made of various materials as long as it has insulating properties and sufficient heat resistance to the formation of the thermoelectric conversion layer 16 and the electrode 26, such as a glass plate, a ceramic plate, and a plastic film. A thing consisting of can be used.
Preferably, a plastic film is used for the low thermal conductive portion 12a. By using a plastic film for the low heat conducting portion 12a, it is possible to reduce the weight and cost, and to form the thermoelectric conversion element 10 having flexibility (flexibility), which is preferable.
 低熱伝導部12aに利用可能なプラスチックフィルムとしては、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-フタレンジカルボキシレート等のポリエステル樹脂、ポリイミド、ポリカーボネート、ポリプロピレン、ポリエーテルスルホン、シクロオレフィンポリマー、ポリエーテルエーテルケトン(PEEK)、トリアセチルセルロース(TAC)等の樹脂、ガラスエポキシ、液晶性ポリエステル等からなるフィルム(シート状物/板状物)が例示される。
 中でも、熱伝導率、耐熱性、耐溶剤性、入手の容易性や経済性等の点で、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等からなるフィルムは、好適に利用される。
Specific examples of the plastic film that can be used for the low thermal conductive portion 12a include polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2, Polyester resin such as 6-phthalenedicarboxylate, polyimide, polycarbonate, polypropylene, polyether sulfone, cycloolefin polymer, polyether ether ketone (PEEK), triacetyl cellulose (TAC) resin, glass epoxy, liquid crystalline polyester, etc. The film (sheet-like material / plate-like material) consisting of is exemplified.
Among them, a film made of polyimide, polyethylene terephthalate, polyethylene naphthalate, or the like is suitably used in terms of thermal conductivity, heat resistance, solvent resistance, availability, economy, and the like.
 高熱伝導部12bは、低熱伝導部12aよりも熱伝導率が高いものであれば、各種の材料からなるフィルムや金属箔が例示される。
 具体的には、熱伝導率等の点で、金、銀、銅、アルミニウム等の各種の金属が例示される。中でも、熱伝導率、経済性等の点で、銅およびアルミニウムは好適に利用される。
As long as the high heat conductive part 12b has a heat conductivity higher than the low heat conductive part 12a, the film and metal foil which consist of various materials are illustrated.
Specifically, various metals such as gold, silver, copper, and aluminum are exemplified in terms of thermal conductivity and the like. Among these, copper and aluminum are preferably used in terms of thermal conductivity, economy, and the like.
 なお、本発明において、第1基板12の厚さ、低熱伝導部12aの厚さ等は、高熱伝導部12bおよび低熱伝導部12aの形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。なお、第1基板12の厚さとは、高熱伝導部12bが無い領域の低熱伝導部12aの厚さである。本発明者らの検討によれば、第1基板12の厚さは、2~50μmが好ましく、2~25μmがより好ましく、2~20μmがより好ましい。
 また、第1基板12の面方向の大きさ、基板12における高熱伝導部12bの面方向の面積率等も、低熱伝導部12aおよび高熱伝導部12bの形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。第1基板12の面方向の大きさとは、すなわち、第1基板12を基板面と直交する方向から見た際の大きさである。
In the present invention, the thickness of the first substrate 12, the thickness of the low thermal conductive portion 12 a, and the like are appropriately determined according to the forming material of the high thermal conductive portion 12 b and the low thermal conductive portion 12 a, the size of the thermoelectric conversion element 10, and the like. , You can set. In addition, the thickness of the 1st board | substrate 12 is the thickness of the low heat conductive part 12a of the area | region which does not have the high heat conductive part 12b. According to the study by the present inventors, the thickness of the first substrate 12 is preferably 2 to 50 μm, more preferably 2 to 25 μm, and more preferably 2 to 20 μm.
Further, the size in the surface direction of the first substrate 12, the area ratio in the surface direction of the high heat conducting portion 12 b in the substrate 12, the forming material of the low heat conducting portion 12 a and the high heat conducting portion 12 b, the size of the thermoelectric conversion element 10, etc. It may be set appropriately according to the above. The size in the surface direction of the first substrate 12 is a size when the first substrate 12 is viewed from a direction orthogonal to the substrate surface.
 さらに、第1基板12における高熱伝導部12bの面方向の位置も、図示例に限定されず、各種の位置が利用可能である。
 例えば、第1基板12において、高熱伝導部12bは、面方向において低熱伝導部12aに内包されてもよい。あるいは、高熱伝導部12bは、面方向において、一部を第1基板12の端部に位置し、それ以外の領域を低熱伝導部12aに内包されてもよい。
 さらに、第1基板12は、面方向に複数の高熱伝導部12bを有してもよい。
Furthermore, the position of the first substrate 12 in the surface direction of the high thermal conductive portion 12b is not limited to the illustrated example, and various positions can be used.
For example, in the 1st board | substrate 12, the high heat conductive part 12b may be included in the low heat conductive part 12a in the surface direction. Alternatively, a part of the high heat conduction unit 12b may be located at the end of the first substrate 12 in the plane direction, and the other region may be included in the low heat conduction unit 12a.
Further, the first substrate 12 may have a plurality of high heat conducting portions 12b in the surface direction.
 なお、図1に示す熱電変換素子10は、第1基板12と第2基板20との間での温度差を生じ易い好ましい態様として、第1基板12および第2基板20は、共に、高熱伝導部12bおよび高熱伝導部20bを積層方向の外側に位置している。
 しかしながら、本発明は、これ以外にも、第1基板12および第2基板20が、共に、高熱伝導部12bおよび高熱伝導部20bを積層方向の内側に位置する構成でもよい。あるいは、第1基板12が高熱伝導部12bを積層方向の外側に位置し、第2基板20が高熱伝導部20bを積層方向の内側に位置するような構成でもよい。
 なお、高熱伝導部が金属等の導電率を有する材料で形成され、かつ、積層方向の内側に配置される場合で、かつ、第1密着層14および/または第2密着層18が、導電性を有する場合もある。この場合には、高熱伝導部と、電極26および電極28との絶縁性を確保するために、間に絶縁層等を形成してもよい。
Note that the thermoelectric conversion element 10 shown in FIG. 1 is a preferable mode in which a temperature difference between the first substrate 12 and the second substrate 20 is likely to occur, and both the first substrate 12 and the second substrate 20 have high thermal conductivity. The part 12b and the high heat conduction part 20b are located outside in the stacking direction.
However, the present invention may have a configuration in which the first substrate 12 and the second substrate 20 both have the high heat conduction portion 12b and the high heat conduction portion 20b located inside in the stacking direction. Alternatively, the first substrate 12 may be configured such that the high heat conductive portion 12b is positioned outside in the stacking direction, and the second substrate 20 is positioned such that the high heat conductive portion 20b is positioned inside in the stacking direction.
In the case where the high thermal conductivity portion is formed of a material having conductivity such as metal and disposed inside the stacking direction, and the first adhesion layer 14 and / or the second adhesion layer 18 are electrically conductive. May have. In this case, an insulating layer or the like may be formed between the high heat conduction portion and the electrode 26 and the electrode 28 in order to ensure insulation.
 熱電変換素子10において、第1基板12の上には、第1密着層14を介して熱電変換層16を有する。また、熱電変換層16の上には、第2密着層18を介して第2基板20を有する。
 すなわち、熱電変換素子10において、第1基板12と熱電変換層16との間には、第1密着層14が設けられる。また、熱電変換素子10において、第2基板20と熱電変換層16との間には、第2密着層18が設けられる。
In the thermoelectric conversion element 10, the thermoelectric conversion layer 16 is provided on the first substrate 12 via the first adhesion layer 14. A second substrate 20 is provided on the thermoelectric conversion layer 16 with a second adhesion layer 18 interposed therebetween.
That is, in the thermoelectric conversion element 10, the first adhesion layer 14 is provided between the first substrate 12 and the thermoelectric conversion layer 16. In the thermoelectric conversion element 10, a second adhesion layer 18 is provided between the second substrate 20 and the thermoelectric conversion layer 16.
 第1基板12の第1密着層14の形成面は、粗面化処理を施されたものであるのが好ましい。すなわち、図示例においては、第1基板12の高熱伝導部12bが形成されていない側の面は、表面に粗面化処理を施されたものであるのが好ましい。
 特に、第1基板12の第1密着層14の形成面は、算術平均粗さRaが0.9μm以上であるのが好ましい。さらに、第1基板12の第1密着層14の形成面は、1.5μm以上であるのがより好ましい。
 第1基板12の第1密着層14の形成面が、粗面化処理を施されたものであることにより、表面の凹凸に起因して、アンカー効果が生じ、第1基板12と、熱電変換層16や電極26および電極28との密着性を向上できる。
 なお、算術平均粗さRaは、JIS B 0601(2001)に準拠して測定すればよい。また、後に詳述するが、粗面化処理は、公知の方法で行えばよい。
The formation surface of the first adhesion layer 14 of the first substrate 12 is preferably subjected to a roughening treatment. That is, in the illustrated example, it is preferable that the surface of the first substrate 12 on the side where the high thermal conductive portion 12b is not formed is a surface roughened.
In particular, the surface of the first substrate 12 on which the first adhesion layer 14 is formed preferably has an arithmetic average roughness Ra of 0.9 μm or more. Furthermore, the formation surface of the first adhesion layer 14 of the first substrate 12 is more preferably 1.5 μm or more.
The formation surface of the first adhesion layer 14 of the first substrate 12 is subjected to a roughening treatment, so that an anchor effect occurs due to the unevenness of the surface, and the first substrate 12 and the thermoelectric conversion Adhesion with the layer 16, the electrode 26, and the electrode 28 can be improved.
In addition, what is necessary is just to measure arithmetic mean roughness Ra based on JISB0601 (2001). Further, as will be described later in detail, the roughening treatment may be performed by a known method.
 後述するが、本発明の熱電変換素子10の熱電変換層16は、ニッケルもしくはニッケル合金からなるものである。以下、『ニッケル』は『Ni』と記載する。第1密着層14および第2密着層18は、このような熱電変換層16と、第1基板12および第2基板20との十分な密着性を確保するためのものである。
 第1密着層14および第2密着層18に関しては、後に詳述する。
As will be described later, the thermoelectric conversion layer 16 of the thermoelectric conversion element 10 of the present invention is made of nickel or a nickel alloy. Hereinafter, “nickel” is referred to as “Ni”. The first adhesion layer 14 and the second adhesion layer 18 are for ensuring sufficient adhesion between the thermoelectric conversion layer 16 and the first substrate 12 and the second substrate 20.
The first adhesion layer 14 and the second adhesion layer 18 will be described in detail later.
 熱電変換素子10において、第1基板12の上には、第1密着層14を介して熱電変換層16を有する。熱電変換層16は、言い換えれば発電層である。また、熱電変換層16の上には、第2密着層18を介して第2基板20を有する。なお、前述のように、両基板は、積層方向において、高熱伝導部を外側に位置する。従って、熱電変換層16は、一方の面が第1基板12の全面が低熱伝導部12aとなる面に対面し、他方の面が第2基板20の全面が低熱伝導部20aとなる面に対面する。
 熱電変換層16は、面方向の中心を、両基板の低熱伝導部と高熱伝導部との境界に一致して設けられる。
 また、熱電変換層16には、面方向に挟むように、電極26および電極28からなる電極対が接続される。
In the thermoelectric conversion element 10, the thermoelectric conversion layer 16 is provided on the first substrate 12 via the first adhesion layer 14. In other words, the thermoelectric conversion layer 16 is a power generation layer. A second substrate 20 is provided on the thermoelectric conversion layer 16 with a second adhesion layer 18 interposed therebetween. Note that, as described above, both the substrates have the high thermal conductivity portion located outside in the stacking direction. Therefore, one surface of the thermoelectric conversion layer 16 faces the surface where the entire surface of the first substrate 12 becomes the low heat conduction portion 12a, and the other surface faces the surface where the entire surface of the second substrate 20 becomes the low heat conduction portion 20a. To do.
The thermoelectric conversion layer 16 is provided in such a manner that the center in the plane direction coincides with the boundary between the low thermal conductivity portion and the high thermal conductivity portion of both substrates.
The thermoelectric conversion layer 16 is connected to an electrode pair including the electrode 26 and the electrode 28 so as to be sandwiched in the surface direction.
 熱電変換素子は、例えば、熱源との接触などによる加熱によって、加熱される部分とそれ以外の部分との間で温度差が生じることにより、この温度差に応じて、熱電変換層16の内部において、この温度差の方向のキャリア密度に差が生じ、電力が発生する。図示例においては、例えば、第1基板12側に熱源を設け、第1基板12の高熱伝導部12bと、第2基板20の高熱伝導部20bとの間に温度差を生じさせることにより、発電する。また、電極26および電極28に配線を接続することにより、加熱等によって発生した電力(電気エネルギー)が取り出される。 The thermoelectric conversion element generates a temperature difference between the heated part and the other part due to, for example, heating by contact with a heat source, etc. A difference occurs in the carrier density in the direction of the temperature difference, and electric power is generated. In the illustrated example, for example, a heat source is provided on the first substrate 12 side, and a temperature difference is generated between the high heat conduction portion 12b of the first substrate 12 and the high heat conduction portion 20b of the second substrate 20, thereby generating power. To do. Further, by connecting wiring to the electrode 26 and the electrode 28, electric power (electric energy) generated by heating or the like is taken out.
 本発明の熱電変換素子10において、熱電変換層16は、NiもしくはNi合金からなるものである。
 本発明の熱電変換素子10は、高熱伝導部および低熱伝導部を有する基板を2枚用い、両基板の高熱伝導部を面方向に異なる位置として、この2枚の基板で熱電変換層を挟持してなる構成を有し、かつ、熱電変換層16をNiもしくはNi合金で形成することにより、汎用性の高い材料を用いて、高い発電量が得られ、かつ、可撓性にも優れる熱電変換素子を実現している。
 以下、高熱伝導部および低熱伝導部を有する基板を2枚用い、両基板の高熱伝導部を面方向に異なる位置として、この2枚の基板で熱電変換層を挟持してなる構成を、『in plane型』とも言う。
In the thermoelectric conversion element 10 of the present invention, the thermoelectric conversion layer 16 is made of Ni or a Ni alloy.
The thermoelectric conversion element 10 of the present invention uses two substrates having a high heat conduction portion and a low heat conduction portion, and places the high heat conduction portions of both substrates in different positions in the plane direction, and sandwiches the thermoelectric conversion layer between the two substrates. The thermoelectric conversion has a structure and is formed of Ni or Ni alloy so that a high power generation amount can be obtained using a highly versatile material and the flexibility is excellent. The device is realized.
Hereinafter, a configuration in which two substrates having a high heat conduction portion and a low heat conduction portion are used, and the high heat conduction portions of both the substrates are located at different positions in the plane direction, and the thermoelectric conversion layer is sandwiched between the two substrates, “in Also called “plane type”.
 NiやNi合金は、温度差による発電力が高いことが知られている。すなわち、NiやNi合金は、ゼーベック係数が大きいことが知られている。また、NiやNi合金は、導電率も高いことが知られている。
 熱電変換層は、ゼーベック係数が大きく、かつ、導電率が高い程、高い発電量が得られる。従って、熱電変換層にNiもしくはNi合金を用いることにより、高い発電量を得られる熱電変換素子が得られることが考えられる。
 しかしながら、その反面、NiやNi合金は、熱伝導率が高い。
Ni and Ni alloys are known to have high power generation due to temperature differences. That is, Ni and Ni alloys are known to have a large Seebeck coefficient. Ni and Ni alloys are also known to have high electrical conductivity.
In the thermoelectric conversion layer, the higher the Seebeck coefficient and the higher the electrical conductivity, the higher the amount of power generated. Therefore, it is conceivable that a thermoelectric conversion element capable of obtaining a high power generation amount can be obtained by using Ni or a Ni alloy for the thermoelectric conversion layer.
However, Ni and Ni alloys have high thermal conductivity.
 前述のように、通常の熱電変換素子は、ブロック状の熱電変換層を電極で挟持してなる構成を有する。このような熱電変換素子では、熱電変換層を厚くすることにより、電極と電極との離間方向で熱電変換層に生じる温度差を大きくできる。電極と電極との離間方向とは、すなわち、電極対の離間方向である。以下、電極と電極との離間方向を『電極間方向』とも言う。
 しかしながら、NiやNi合金は、熱伝導率が高い。そのため、ブロック状の熱電変換層を用いる通常の熱電変換素子では、NiやNi合金を熱電変換層に用いると、熱電変換層を厚くしても、熱電変換層に温度差を生じさせることが非常に困難である。
 そのため、ブロック状の熱電変換層を電極で挟持してなる通常の熱電変換素子では、熱伝導率が高いNiやNi合金を熱電変換層に用いることはできず、できるだけ熱伝導率が低い材料を用いて、熱電変換層を形成している。
As described above, a normal thermoelectric conversion element has a configuration in which a block-shaped thermoelectric conversion layer is sandwiched between electrodes. In such a thermoelectric conversion element, by increasing the thickness of the thermoelectric conversion layer, the temperature difference generated in the thermoelectric conversion layer in the direction of separation between the electrodes can be increased. The separation direction between the electrodes is the separation direction of the electrode pair. Hereinafter, the separation direction between the electrodes is also referred to as “inter-electrode direction”.
However, Ni and Ni alloys have high thermal conductivity. Therefore, in a normal thermoelectric conversion element using a block-shaped thermoelectric conversion layer, if Ni or a Ni alloy is used for the thermoelectric conversion layer, even if the thermoelectric conversion layer is made thick, it causes a temperature difference in the thermoelectric conversion layer. It is difficult to.
Therefore, in a normal thermoelectric conversion element in which a block-shaped thermoelectric conversion layer is sandwiched between electrodes, Ni or Ni alloy having high thermal conductivity cannot be used for the thermoelectric conversion layer, and a material having as low thermal conductivity as possible is used. It is used to form a thermoelectric conversion layer.
 一方、in plane型である本発明の熱電変換素子10は、第1基板12は高熱伝導部12bを、第2基板20は高熱伝導部20bを、それぞれ有し、かつ、高熱伝導部12bと高熱伝導部20bとは、重複せずに面方向に異なる位置に配置される。従って、例えば、第1基板12側に熱源を設けると、高熱伝導部12bと高熱伝導部20bとの間で、熱電変換層16の面方向に温度差が生じる。すなわち、in plane型である本発明の熱電変換素子10では、図1(A)~図1(C)に矢印xで概念的に示すように、シート状の熱電変換層16の面方向に熱が流れる。
 そのため、本発明の熱電変換素子10は、熱電変換層16を厚くしなくても、シート状の熱電変換層16で、電極間において熱電変換層16に大きな温度差を生じさせることができる。また、熱電変換層16を電極間方向に長くすることにより、面方向の長い距離の温度差によって、より高い発電量が得られる。
On the other hand, in the thermoelectric conversion element 10 of the present invention which is an in-plane type, the first substrate 12 has a high heat conduction part 12b, and the second substrate 20 has a high heat conduction part 20b, and the high heat conduction part 12b and the high heat conduction part 12b. The conductive portion 20b is arranged at a different position in the plane direction without overlapping. Therefore, for example, when a heat source is provided on the first substrate 12 side, a temperature difference is generated in the surface direction of the thermoelectric conversion layer 16 between the high thermal conductivity portion 12b and the high thermal conductivity portion 20b. That is, in the thermoelectric conversion element 10 of the present invention that is an in-plane type, the heat is applied in the surface direction of the sheet-like thermoelectric conversion layer 16 as conceptually shown by the arrow x in FIGS. Flows.
Therefore, the thermoelectric conversion element 10 of the present invention can cause a large temperature difference in the thermoelectric conversion layer 16 between the electrodes by the sheet-like thermoelectric conversion layer 16 without increasing the thickness of the thermoelectric conversion layer 16. Further, by making the thermoelectric conversion layer 16 longer in the inter-electrode direction, a higher power generation amount can be obtained due to a temperature difference over a long distance in the surface direction.
 ここで、本発明者らの検討によれば、in plane型の熱電変換素子では、NiやNi合金のように熱伝導率が高い材料で熱電変換層を形成しても、熱電変換層に温度差を生じさせることができる。
 水や電気と同様に、熱も、伝わる経路すなわち流路が大きい程、流れ易い。また、熱の流路が短い程、伝熱し易く、流れ方向の温度差が生じ難い。
 in plane型の熱電変換素子10は、熱電変換層16が、ブロック状ではなく薄いシート状である。そのため、in plane型の熱電変換素子10では、熱電変換層16における熱の流路が狭く、熱が流れ難いため、熱電変換層16に温度差を生じさせ易い。
 加えて、前述のように、in plane型の熱電変換素子10は、良好な可撓性が得られるのが利点の1つであるが、良好な可撓性を得るためには、熱電変換層16は薄い方が有利である。すなわち、熱電変換層16を薄くすることで、より温度差を生じさせ易くし、かつ、可撓性も良好にできる。しかも、in plane型の熱電変換素子10では、前述のように、大きな温度差を得るためには、電極間における熱電変換層16が長い方が有利であり、この点でも、熱電変換層16に温度差が生じ易い。
Here, according to the study by the present inventors, in the in-plane type thermoelectric conversion element, even if the thermoelectric conversion layer is formed of a material having high thermal conductivity such as Ni or Ni alloy, the temperature in the thermoelectric conversion layer is reduced. A difference can be made.
Like water and electricity, heat also flows more easily as the path through which it travels, that is, the flow path, is larger. Further, the shorter the heat flow path, the easier the heat transfer and the less the temperature difference in the flow direction.
In the in-plane type thermoelectric conversion element 10, the thermoelectric conversion layer 16 is not a block shape but a thin sheet shape. Therefore, in the in-plane type thermoelectric conversion element 10, since the heat flow path in the thermoelectric conversion layer 16 is narrow and it is difficult for heat to flow, a temperature difference is easily generated in the thermoelectric conversion layer 16.
In addition, as described above, the in-plane type thermoelectric conversion element 10 is one of the advantages that good flexibility is obtained. In order to obtain good flexibility, the thermoelectric conversion layer is used. 16 is advantageously thinner. That is, by making the thermoelectric conversion layer 16 thinner, a temperature difference can be easily generated, and flexibility can be improved. Moreover, in the in-plane type thermoelectric conversion element 10, as described above, in order to obtain a large temperature difference, it is advantageous that the thermoelectric conversion layer 16 between the electrodes is long. Temperature differences are likely to occur.
 すなわち、本発明の熱電変換素子10は、in plane型とすることにより、熱伝導率が高いNiやNi合金を用いても、熱電変換層16に温度差を生じさせることができ、高い発電量を得ることができる。 That is, the thermoelectric conversion element 10 of the present invention is an in-plane type, so that even if Ni or Ni alloy having high thermal conductivity is used, a temperature difference can be generated in the thermoelectric conversion layer 16 and a high power generation amount can be obtained. Can be obtained.
 ここで、in plane型の熱電変換素子10は、熱電変換層16を、高熱伝導部および低熱伝導部を有する第1基板12と第2基板20とで挟持してなる構成を有する。前述のように、第1基板12および第2基板20の低熱伝導部12aおよび低熱伝導部20aは、ガラス板、セラミックス板、プラスチックフィルム等で形成される。
 ところが、NiやNi合金は、これらの材料に対する密着性が低い。そのため、第1基板12および第2基板20に、直接、接触して熱電変換層16を形成すると、形成中に熱電変換層16が剥がれて適正な熱電変換層が形成できない、形成した熱電変換層が湾曲や折り曲げ等によって剥離して、熱電変換素子が壊れてしまう等の不都合を生じる。
Here, the in-plane type thermoelectric conversion element 10 has a configuration in which the thermoelectric conversion layer 16 is sandwiched between a first substrate 12 and a second substrate 20 having a high heat conduction portion and a low heat conduction portion. As described above, the low thermal conductive portion 12a and the low thermal conductive portion 20a of the first substrate 12 and the second substrate 20 are formed of a glass plate, a ceramic plate, a plastic film, or the like.
However, Ni and Ni alloys have low adhesion to these materials. Therefore, when the thermoelectric conversion layer 16 is formed in direct contact with the first substrate 12 and the second substrate 20, the thermoelectric conversion layer 16 is peeled off during the formation, and an appropriate thermoelectric conversion layer cannot be formed. Is peeled off by bending or bending, and the thermoelectric conversion element is broken.
 これに対して、本発明の熱電変換素子10は、熱電変換層16と第1基板12との間に第1密着層14を有し、さらに、熱電変換層16と第2基板20との間に第2密着層18を有する。そのため、十分な密着力で、熱電変換層16と、第1基板12および第2基板20とを積層することができる。
 これにより、NiやNi合金からなる適正な熱電変換層16を形成できると共に、曲げ延ばし等を繰り返し行っても、熱電変換層16と、第1基板12および第2基板20との剥離等を生じない、可撓性に優れる熱電変換素子10を得ることができる。
On the other hand, the thermoelectric conversion element 10 of the present invention has the first adhesion layer 14 between the thermoelectric conversion layer 16 and the first substrate 12, and further between the thermoelectric conversion layer 16 and the second substrate 20. 2 has a second adhesion layer 18. Therefore, the thermoelectric conversion layer 16 and the first substrate 12 and the second substrate 20 can be stacked with sufficient adhesion.
As a result, an appropriate thermoelectric conversion layer 16 made of Ni or Ni alloy can be formed, and even if bending and the like are repeated, peeling of the thermoelectric conversion layer 16 from the first substrate 12 and the second substrate 20 occurs. The thermoelectric conversion element 10 excellent in flexibility can be obtained.
 すなわち、本発明の熱電変換素子10は、in plane型を採用し、NiあるいはNi合金で熱電変換層16を形成し、さらに、熱電変換層16と第1基板12および第2基板20との間に第1密着層14および第2密着層18を有することにより、汎用の材料で、熱伝導率は高いが、発電量および導電率が共に高い材料からなる熱電変換層16に、大きな温度差を生じさせて高い発電量を得、さらに、in plane型の特徴の1つである良好な可撓性も実現している。 That is, the thermoelectric conversion element 10 of the present invention adopts an in-plane type, forms the thermoelectric conversion layer 16 with Ni or Ni alloy, and further, between the thermoelectric conversion layer 16 and the first substrate 12 and the second substrate 20. The first adhesion layer 14 and the second adhesion layer 18 have a large temperature difference in the thermoelectric conversion layer 16 which is a general-purpose material and has a high thermal conductivity but a high power generation amount and a high conductivity. This produces a high power generation amount, and also realizes good flexibility, which is one of the features of the in-plane type.
 本発明の熱電変換素子10において、熱電変換層16は、NiあるいはNi合金からなるものである。
 Ni合金は、温度差を生じることで発電するNi合金が、各種、利用可能である。具体的には、V、Cr、Si、Al、Ti、Mo、Mn、Zn、Sn、Cu、Co、Fe、Mg、Zrなどの1成分、もしくは、2成分以上と混合したNi合金等が例示される。
In the thermoelectric conversion element 10 of the present invention, the thermoelectric conversion layer 16 is made of Ni or Ni alloy.
As the Ni alloy, various Ni alloys that generate electric power by generating a temperature difference can be used. Specifically, examples include one component such as V, Cr, Si, Al, Ti, Mo, Mn, Zn, Sn, Cu, Co, Fe, Mg, and Zr, or a Ni alloy mixed with two or more components. Is done.
 ここで、本発明の熱電変換素子10において、熱電変換層16は、Ni含有量が90原子%以上であるのが好ましく、Ni含有量が95原子%以上であるのがより好ましく、Niからなるのが特に好ましい。なお、Niからなるとは、Niおよび不可避的不純物からなるものを含む。
 熱電変換層16のNi含有量を90原子%以上とすることにより、Niの高い導電率を活用して、熱電変換層16の内部抵抗を下げることで高い発電量が得られる、小さい内部抵抗を維持したまま熱電変換層16を薄くできるので、熱電変換素子10を薄くでき、これを利用する熱電変換モジュールの薄膜化、軽量化および可撓性化(フレキシブル化)を図れる等の点で好ましい。
Here, in the thermoelectric conversion element 10 of the present invention, the thermoelectric conversion layer 16 preferably has a Ni content of 90 atomic% or more, more preferably a Ni content of 95 atomic% or more, and is made of Ni. Is particularly preferred. In addition, what consists of Ni includes what consists of Ni and an unavoidable impurity.
By setting the Ni content of the thermoelectric conversion layer 16 to 90 atomic% or more, a high internal conductivity of Ni is utilized to reduce the internal resistance of the thermoelectric conversion layer 16, thereby obtaining a high power generation amount with a small internal resistance. Since the thermoelectric conversion layer 16 can be made thin while maintaining it, it is preferable in that the thermoelectric conversion element 10 can be made thin, and the thermoelectric conversion module using this can be made thinner, lighter and more flexible (flexible).
 また、熱電変換層16は、ゼーベック係数Sが-15μV/K以下であり、かつ、導電率σが10000S/cm以上であるのが好ましい。
 熱電変換層16が、このような特性を有することにより、Niの高い導電率を活用して、熱電変換層16の内部抵抗を下げることで高い発電量が得られる点で好ましい。また、、熱電変換層16が、このような特性を有することにより、Niの高い導電率を活用して小さい内部抵抗を維持たまま熱電変換層16を薄くできるので、熱電変換素子10を薄くでき、これを利用する熱電変換モジュールの薄膜化、軽量化および可撓性化を図れる点でも好ましい。
The thermoelectric conversion layer 16 preferably has a Seebeck coefficient S of −15 μV / K or less and a conductivity σ of 10,000 S / cm or more.
The thermoelectric conversion layer 16 having such characteristics is preferable in that a high power generation amount can be obtained by reducing the internal resistance of the thermoelectric conversion layer 16 by utilizing the high conductivity of Ni. In addition, since the thermoelectric conversion layer 16 has such characteristics, the thermoelectric conversion element 16 can be made thin while maintaining a small internal resistance by utilizing the high conductivity of Ni, and thus the thermoelectric conversion element 10 can be made thin. The thermoelectric conversion module using this is also preferable in that it can be made thin, light, and flexible.
 本発明の熱電変換素子10において、熱電変換層16の厚さ、電極間方向の長さ、この長さと直交する方向の長さ、面方向の大きさ、基板に対する面方向の面積率等は、熱電変換素子10の大きさや用途等に応じて、適宜、設定すればよい。 In the thermoelectric conversion element 10 of the present invention, the thickness of the thermoelectric conversion layer 16, the length in the direction between the electrodes, the length in the direction orthogonal to this length, the size in the surface direction, the area ratio in the surface direction with respect to the substrate, etc. What is necessary is just to set suitably according to the magnitude | size, use, etc. of the thermoelectric conversion element 10. FIG.
 ここで、本発明の熱電変換素子10においては、図1(B)に示すように、電極間方向の熱電変換層16の長さをL、熱電変換層16の厚さをTとした際に、L/Tのアスペクト比が100~2000であるのが好ましく、L/Tのアスペクト比が200~1000であるのがより好ましく、L/Tのアスペクト比が200~500であるのが特に好ましい。熱電変換層16の厚さとは、第1基板12、熱電変換層16および第2基板20の積層方向の熱電変換層16のサイズである。
 前述のように、熱電変換層16の電極間方向の温度差を大きくするためには、熱電変換層16が薄い方が有利であり、また、電極間で熱電変換層16が長い方が有利である。そのため、熱電変換層16におけるL/Tのアスペクト比を上記範囲とすることにより、熱電変換層16に大きな温度差を生じさせて、より高い発電量を得ることができる等の点で好ましい。
Here, in the thermoelectric conversion element 10 of the present invention, when the length of the thermoelectric conversion layer 16 in the inter-electrode direction is L and the thickness of the thermoelectric conversion layer 16 is T, as shown in FIG. The aspect ratio of L / T is preferably 100 to 2000, the aspect ratio of L / T is more preferably 200 to 1000, and the aspect ratio of L / T is particularly preferably 200 to 500. . The thickness of the thermoelectric conversion layer 16 is the size of the thermoelectric conversion layer 16 in the stacking direction of the first substrate 12, the thermoelectric conversion layer 16, and the second substrate 20.
As described above, in order to increase the temperature difference between the electrodes of the thermoelectric conversion layer 16, it is advantageous that the thermoelectric conversion layer 16 is thin, and it is advantageous that the thermoelectric conversion layer 16 is long between the electrodes. is there. Therefore, it is preferable that the L / T aspect ratio in the thermoelectric conversion layer 16 is within the above range in that a large temperature difference is generated in the thermoelectric conversion layer 16 and a higher power generation amount can be obtained.
 さらに、本発明者らの検討によれば、熱電変換層16の厚さTは、0.05~4μmが好ましく、1~2μmがより好ましい。
 熱電変換層16の厚さTを、この範囲とすることにより、より高い発電量を得ることができる、可撓性が良好な熱電変換素子10が得られる等の点で好ましい。
Further, according to the study by the present inventors, the thickness T of the thermoelectric conversion layer 16 is preferably 0.05 to 4 μm, more preferably 1 to 2 μm.
By setting the thickness T of the thermoelectric conversion layer 16 within this range, it is preferable in that a higher power generation amount can be obtained, and the thermoelectric conversion element 10 having good flexibility can be obtained.
 第1密着層14および第2密着層18は、第1基板12および第2基板20の形成材料に応じて、第1基板12および第2基板20と、熱電変換層16との十分な密着力が得られる材料からなるものが、各種、利用可能である。
 具体的には、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化ジルコニウム等の各種の金属酸化物や、クロム、銅、チタン等の各種の金属からなる層が例示される。
 また、液状の接着剤を利用する密着層やフィルム状の接着剤や接着シートを利用する密着層も、第1密着層14および第2密着層18として好適に利用可能である。これらの接着剤は、市販品を利用してもよい。
 中でも、第1密着層14および第2密着層18は、酸化ケイ素からなる層およびクロムからなる層が好ましく、酸化ケイ素からなる層が特に好ましい。
 なお、第1密着層14と第2密着層18の形成材料は、同じでも異なってもよい。
The first adhesion layer 14 and the second adhesion layer 18 have sufficient adhesion strength between the first substrate 12 and the second substrate 20 and the thermoelectric conversion layer 16 according to the forming materials of the first substrate 12 and the second substrate 20. There are various types of materials that can be obtained.
Specifically, examples include various metal oxides such as silicon oxide, aluminum oxide, tantalum oxide, and zirconium oxide, and layers made of various metals such as chromium, copper, and titanium.
In addition, an adhesion layer using a liquid adhesive or an adhesion layer using a film-like adhesive or an adhesive sheet can be suitably used as the first adhesion layer 14 and the second adhesion layer 18. These adhesives may use commercially available products.
Among these, the first adhesion layer 14 and the second adhesion layer 18 are preferably a layer made of silicon oxide and a layer made of chromium, and a layer made of silicon oxide is particularly preferable.
Note that the materials for forming the first adhesion layer 14 and the second adhesion layer 18 may be the same or different.
 第1密着層14および第2密着層18の厚さは、第1密着層14および第2密着層18の形成材料、第1基板12および第2基板20の形成材料や大きさ等に応じて、十分な密着力を得られる厚さを、適宜、設定すればよい。
 本発明者らの検討によれば、密着層は、十分な密着量が得られれば薄い方が好ましい。具体的には、50~500nmが好ましく、100~200nmがより好ましい。
 第1密着層14および第2密着層18の厚さを、この範囲とすることにより、十分な密着性が得られる、可撓性が良好な熱電変換素子10が得られる等の点で好ましい。
 なお、第1基板12と第1密着層14との界面、第1密着層14と熱電変換層16との界面、熱電変換層16と第2密着層18との界面、第2密着層18と第2基板20との界面の1以上において、密着性を向上するために、基板の表面および/または密着層の表面に、プラズマ処理、UVオゾン処理、電子線照射処理等の公知の表面処理を施して、表面の改質や洗浄を行ってもよい。
The thickness of the first adhesion layer 14 and the second adhesion layer 18 depends on the forming material of the first adhesion layer 14 and the second adhesion layer 18, the forming material and the size of the first substrate 12 and the second substrate 20, and the like. The thickness capable of obtaining sufficient adhesion may be set as appropriate.
According to the study by the present inventors, it is preferable that the adhesion layer be thin if a sufficient adhesion amount is obtained. Specifically, 50 to 500 nm is preferable, and 100 to 200 nm is more preferable.
By setting the thickness of the first adhesion layer 14 and the second adhesion layer 18 in this range, it is preferable in that sufficient adhesion can be obtained, and the thermoelectric conversion element 10 having good flexibility can be obtained.
In addition, the interface between the first substrate 12 and the first adhesion layer 14, the interface between the first adhesion layer 14 and the thermoelectric conversion layer 16, the interface between the thermoelectric conversion layer 16 and the second adhesion layer 18, and the second adhesion layer 18 In order to improve the adhesion at one or more of the interfaces with the second substrate 20, a known surface treatment such as plasma treatment, UV ozone treatment, electron beam irradiation treatment is applied to the surface of the substrate and / or the surface of the adhesion layer. The surface may be modified or cleaned.
 なお、第1密着層14および/または第2密着層18は、図示例のように、第1基板12および第2基板20の全面に対応して形成してもよく、第1基板12および第2基板20の熱電変換層16に対応する領域のみに形成してもよい。 The first adhesion layer 14 and / or the second adhesion layer 18 may be formed corresponding to the entire surface of the first substrate 12 and the second substrate 20 as in the illustrated example. The two substrates 20 may be formed only in a region corresponding to the thermoelectric conversion layer 16.
 熱電変換層16には、熱電変換層16を面方向に挟持するように、電極26および電極28が接続される。 An electrode 26 and an electrode 28 are connected to the thermoelectric conversion layer 16 so as to sandwich the thermoelectric conversion layer 16 in the surface direction.
 電極26および電極28は、必要な導電率を有するものであれば、各種の材料で形成可能である。
 具体的には、銅、銀、金、白金、ニッケル、クロム、銅合金などの金属材料、酸化インジウムスズ(ITO)や酸化亜鉛(ZnO)等の各種のデバイスで透明電極として利用されている材料等が例示される。中でも、銅、金、白金、ニッケル、銅合金等は好ましく例示され、銅、金、白金、ニッケルは、より好ましく例示される。中でも、高い発電量が得られる等の点で、銅は特に好適に例示される。
The electrode 26 and the electrode 28 can be formed of various materials as long as they have a necessary conductivity.
Specifically, materials used as transparent electrodes in various devices such as metal materials such as copper, silver, gold, platinum, nickel, chromium, and copper alloys, and indium tin oxide (ITO) and zinc oxide (ZnO). Etc. are exemplified. Especially, copper, gold | metal | money, platinum, nickel, a copper alloy etc. are illustrated preferably, and copper, gold | metal | money, platinum, nickel is illustrated more preferably. Among these, copper is particularly preferably exemplified in that a high power generation amount is obtained.
 また、電極26および電極28の厚さや大きさ等も、熱電変換層16の厚さや、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。 Further, the thickness and size of the electrode 26 and the electrode 28 may be appropriately set according to the thickness of the thermoelectric conversion layer 16 and the size of the thermoelectric conversion element 10.
 図示例の熱電変換素子10は、電極間方向に対面して当接するように、第1基板12の高熱伝導部12bと、第2基板20が高熱伝導部20bとが、電極間方向で、面方向の異なる位置に位置される。
 本発明の熱電変換素子は、これ以外にも、第1基板の高熱伝導部と、第2基板の高熱伝導部とが、面方向において完全に重複しなければ、各種の構成が利用可能である。言い換えれば、本発明の熱電変換素子は、第1基板の高熱伝導部と第2基板の高熱伝導部とが、面方向すなわち基板面と直交する方向から見た際に完全に重複しなければ、各種の構成が利用可能である。なお、以下の例においても、高熱伝導部は、図1(B)に示すように低熱伝導部の上に載置されてもよく、あるいは、図3(A)に示すように低熱伝導部に形成した凹部に組み込まれてもよい。
In the illustrated example, the thermoelectric conversion element 10 faces the abutting direction between the electrodes, and the high heat conduction portion 12b of the first substrate 12 and the high heat conduction portion 20b of the second substrate 20 face each other in the interelectrode direction. Located in different positions.
In addition to this, the thermoelectric conversion element of the present invention can be used in various configurations as long as the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap in the plane direction. . In other words, in the thermoelectric conversion element of the present invention, the high heat conduction part of the first substrate and the high heat conduction part of the second substrate do not completely overlap when viewed from the surface direction, that is, the direction orthogonal to the substrate surface. Various configurations are available. Also in the following example, the high heat conduction part may be placed on the low heat conduction part as shown in FIG. 1 (B), or the low heat conduction part as shown in FIG. 3 (A). You may incorporate in the formed recessed part.
 例えば、図1に示す例において、第1基板12の高熱伝導部12bを図中右側に移動し、第2基板20の高熱伝導部20bを図中左側に移動して、面方向において、両高熱伝導部を、電極間方向に離間させてもよい。具体的には、第1基板12の高熱伝導部12bと第2基板20の高熱伝導部20bとは、面方向において、電極26と電極28との離間方向における熱電変換層16の大きさに対して、電極間方向に10~90%離間させるのが好ましく、10~50%離間させるのがより好ましい。
 あるいは、この両高熱伝導部が離間する構成において、高熱伝導部12bおよび/または高熱伝導部20bに、他方に向かう凸部を設け、面方向において、両基板の高熱伝導部が一部重複するようにしてもよい。
For example, in the example shown in FIG. 1, the high heat conduction portion 12 b of the first substrate 12 is moved to the right side in the drawing, the high heat conduction portion 20 b of the second substrate 20 is moved to the left side in the drawing, The conductive portion may be separated in the direction between the electrodes. Specifically, the high heat conduction part 12b of the first substrate 12 and the high heat conduction part 20b of the second substrate 20 are in the plane direction with respect to the size of the thermoelectric conversion layer 16 in the direction in which the electrode 26 and the electrode 28 are separated from each other. Thus, it is preferably 10 to 90% apart in the direction between the electrodes, and more preferably 10 to 50% apart.
Alternatively, in the configuration in which both the high heat conductive portions are separated from each other, the high heat conductive portion 12b and / or the high heat conductive portion 20b are provided with a convex portion directed to the other, so that the high heat conductive portions of both the substrates partially overlap in the surface direction. It may be.
 逆に、図1に示す例において、第1基板12の高熱伝導部12bを図中左側に移動し、第2基板20の高熱伝導部20bを図中右側に移動することによって、両基板の高熱伝導部の一部を、面方向で重複させてもよい。 On the other hand, in the example shown in FIG. 1, the high heat conduction portion 12b of the first substrate 12 is moved to the left side in the drawing, and the high heat conduction portion 20b of the second substrate 20 is moved to the right side in the drawing, A part of the conductive portion may overlap in the surface direction.
 また、本発明においては、これ以外にも、第1基板の高熱伝導部と、第2基板の高熱伝導部とが、面方向において完全に重複しなければ、各種の構成が利用可能である。
 例えば、第1基板に円形の高熱伝導部を形成し、第2基板に同サイズの正方形の高熱伝導部を形成して、両高熱伝導部の中心を面方向で一致させるように、両基板を配置してもよい。この構成でも、距離は短いが、両高熱伝導部は、端部(周辺)位置が面方向で異なるので、熱電変換層には面方向の温度差が生じ、厚さ方向に温度差を生じさせる熱電変換素子に比して、効率の良い発電が可能である。なお、同サイズの円と正方形とは、直径と一辺の長さとが等しい円と正方形である。
In addition, in the present invention, various configurations can be used as long as the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap in the plane direction.
For example, a circular high thermal conductivity portion is formed on the first substrate, a square high thermal conductivity portion of the same size is formed on the second substrate, and the two substrates are mounted so that the centers of both high thermal conductivity portions coincide in the plane direction. You may arrange. Even in this configuration, although the distance is short, since the end (periphery) positions of the two high heat conducting portions are different in the surface direction, a temperature difference in the surface direction is generated in the thermoelectric conversion layer, and a temperature difference is generated in the thickness direction. Efficient power generation is possible compared to thermoelectric conversion elements. In addition, the circle and square of the same size are a circle and a square with the same diameter and the length of one side.
 さらに、本発明の熱電変換素子は、必要に応じて、熱電変換層16や電極26および電極28等の劣化を防止するための、ガスバリア層、酸化防止層、保護層(パッシベーション膜)等を有してもよい。
 これらの層は、例えば、熱電変換層16と第1密着層14および第2密着層18との間や、第1密着層14と第1基板12との間および第2密着層18と第2基板20との間、第1基板12および第2基板20の外面側等に設ければよい。
 これらの層としては、酸化ケイ素層、酸化アルミニウム層、窒化ケイ素層、酸化ジルコニウム層等が例示される。
 従って、例えば、第1密着層14および/または第2密着層18を酸化ケイ素や酸化アルミニウムで形成した場合には、密着層がガスバリア層としても作用する。
Furthermore, the thermoelectric conversion element of the present invention has a gas barrier layer, an antioxidant layer, a protective layer (passivation film) and the like for preventing deterioration of the thermoelectric conversion layer 16, the electrode 26, the electrode 28, and the like, if necessary. May be.
These layers are, for example, between the thermoelectric conversion layer 16 and the first adhesion layer 14 and the second adhesion layer 18, between the first adhesion layer 14 and the first substrate 12, and between the second adhesion layer 18 and the second adhesion layer 18. What is necessary is just to provide in the outer surface side of the 1st board | substrate 12 and the 2nd board | substrate 20, etc. between the board | substrates 20.
Examples of these layers include a silicon oxide layer, an aluminum oxide layer, a silicon nitride layer, and a zirconium oxide layer.
Therefore, for example, when the first adhesion layer 14 and / or the second adhesion layer 18 is formed of silicon oxide or aluminum oxide, the adhesion layer also functions as a gas barrier layer.
 図2(A)~図2(D)に、このような本発明の熱電変換素子10を、複数、直列に接続してなる本発明の熱電変換モジュールの一例を示す。なお、図2(A)~図2(C)は上面図、図2(D)は正面図である。
 本例において、第1基板12Aおよび第2基板20Aは、矩形板状の低熱伝導材料の表面に、長尺な四角柱状の高熱伝導部を、四角柱の低熱伝導部に接触する一辺の長さと等間隔で、四角柱の長手方向と直交する方向に配列してなる構成を有する。
 すなわち、第1基板12Aおよび第2基板20Aは、一面の表面の全面が低熱伝導部で、他面の表面が、長尺な低熱伝導部と高熱伝導部とが、長手方向と直交する方向に等間隔で交互に形成された構成を有する(図2(A)、図2(C)および図2(D)参照)。
 なお、本例においても、第1基板(第2基板)は、低熱伝導部の表面に高熱伝導部を載置した構成以外の、各種の構成が利用可能である。例えば、第1基板は、図3(B)に概念的に示すように、第1基板は、矩形板状の低熱伝導材料に、一方向(図3(B)の紙面に直交する方向)に長尺な溝を、長手方向と直交する方向に溝の幅と等間隔で形成して、この溝に高熱伝導材料を組み込んでなる構成でもよい。
FIGS. 2A to 2D show an example of the thermoelectric conversion module of the present invention in which a plurality of such thermoelectric conversion elements 10 of the present invention are connected in series. 2A to 2C are top views and FIG. 2D is a front view.
In this example, the first substrate 12A and the second substrate 20A have a rectangular plate-like low thermal conductive material on the surface of a long rectangular pillar-shaped high thermal conductive portion and a length of one side in contact with the low thermal conductive portion of the rectangular pillar. It has a configuration that is arranged at equal intervals in a direction orthogonal to the longitudinal direction of the quadrangular prism.
That is, in the first substrate 12A and the second substrate 20A, the entire surface of one surface is a low heat conductive portion, and the other surface is a direction in which a long low heat conductive portion and a high heat conductive portion are orthogonal to the longitudinal direction. The structure is alternately formed at equal intervals (see FIGS. 2A, 2C, and 2D).
Also in this example, the first substrate (second substrate) can use various configurations other than the configuration in which the high thermal conductivity portion is placed on the surface of the low thermal conductivity portion. For example, as conceptually shown in FIG. 3B, the first substrate is a rectangular plate-like low heat conductive material in one direction (a direction perpendicular to the paper surface of FIG. 3B). A configuration in which long grooves are formed at equal intervals with the width of the grooves in a direction orthogonal to the longitudinal direction, and a high heat conductive material is incorporated in the grooves may be employed.
 図2(B)および図2(C)に概念的に示すように、熱電変換層16は矩形の面形状を有し、第1基板12Aの全面が低熱伝導部12aである側の表面に、低熱伝導部12aと高熱伝導部12bとの境界と中心とを面方向で一致させて形成される。第1基板12Aの全面が低熱伝導部12aである側の表面とは、図2(D)を図中上下方向に表裏反転した状態の上側の面である。
 図示例においては、熱電変換層16の図2(B)における横方向の大きさは、高熱伝導部12bの幅と同じである。以下、図2(B)における横方向を、単に『横方向』とも言う。言い換えれば、横方向とは、低熱伝導部12aと高熱伝導部12bとの交互の配列方向である。
 熱電変換層16は、横方向に、低熱伝導部12aと高熱伝導部12bとの境界に対して、1境界置きに等間隔で形成される。熱電変換層16は、横方向に、高熱伝導部12bの幅と同じ間隔で等間隔に形成される。高熱伝導部12bの幅と、熱電変換層16の横方向の大きさとは、等しい。
 また、熱電変換層16は、横方向に等間隔に配列された熱電変換層16の列が、図2(B)における上下方向に等間隔で配列されるように、二次元的に形成される。以下、図2(B)における上下方向を、単に『上下方向』とも言う。言い換えれば、上下方向とは、低熱伝導部12aおよび高熱伝導部12bの長手方向である。
 さらに、図2(B)に示すように、熱電変換層16の横方向の配列は、上下方向に隣接する列では、高熱伝導部12bの幅の分だけ、横方向にズレて形成される。すなわち、上下方向に隣接する列では、熱電変換層16は、高熱伝導部12bの幅の分だけ、互い違いに形成される。
 なお、第1基板12Aの熱電変換層16の形成面には、全面に、第1密着層14が形成されている。
As conceptually shown in FIGS. 2B and 2C, the thermoelectric conversion layer 16 has a rectangular surface shape, and the entire surface of the first substrate 12A is on the surface on the side that is the low thermal conductive portion 12a. The boundary and the center of the low heat conduction part 12a and the high heat conduction part 12b are made to correspond in the surface direction. The surface on the side where the entire surface of the first substrate 12A is the low thermal conductive portion 12a is the upper surface in a state where FIG.
In the illustrated example, the horizontal size of the thermoelectric conversion layer 16 in FIG. 2B is the same as the width of the high thermal conductive portion 12b. Hereinafter, the horizontal direction in FIG. 2B is also simply referred to as “lateral direction”. In other words, the horizontal direction is an alternately arranged direction of the low heat conducting portions 12a and the high heat conducting portions 12b.
The thermoelectric conversion layer 16 is formed at equal intervals every other boundary with respect to the boundary between the low thermal conductivity portion 12a and the high thermal conductivity portion 12b in the lateral direction. The thermoelectric conversion layers 16 are formed at equal intervals in the horizontal direction at the same interval as the width of the high thermal conduction portion 12b. The width of the high heat conducting portion 12b and the lateral size of the thermoelectric conversion layer 16 are equal.
Further, the thermoelectric conversion layers 16 are two-dimensionally formed so that the rows of the thermoelectric conversion layers 16 arranged at equal intervals in the horizontal direction are arranged at equal intervals in the vertical direction in FIG. . Hereinafter, the vertical direction in FIG. 2B is also simply referred to as “vertical direction”. In other words, the up and down direction is the longitudinal direction of the low heat conduction portion 12a and the high heat conduction portion 12b.
Further, as shown in FIG. 2 (B), the horizontal arrangement of the thermoelectric conversion layers 16 is shifted in the horizontal direction by the width of the high thermal conductive portion 12b in the columns adjacent in the vertical direction. That is, in the columns adjacent in the vertical direction, the thermoelectric conversion layers 16 are alternately formed by the width of the high heat conduction portion 12b.
Note that a first adhesion layer 14 is formed on the entire surface of the first substrate 12A on which the thermoelectric conversion layer 16 is formed.
 各熱電変換層16は、電極26(電極28)によって直列に接続される。具体的には、図2(B)に示すように、図中横方向の熱電変換層16の配列において、電極26が、各熱電変換層16を横方向に挟むように設けられる。これにより、横方向に配列された熱電変換層16が、電極26によって直列に接続される。なお、図2(B)においては、構成を明確にするために、電極26を網掛けして示している。
 さらに、熱電変換層16の横方向の端部では、上下方向に隣接する列の熱電変換層16が、電極26によって接続される。この横方向の列の端部での電極26による上下方向の熱電変換層16の接続は、一方の端部の熱電変換層16は上側の列の同側端部の熱電変換層16と接続され、他方の端部の熱電変換層16は下側の列の同側端部の熱電変換層16と接続される。
 これにより、全ての熱電変換層16が、横方向に、複数回、折り返した1本の線のように直列で接続される。
Each thermoelectric conversion layer 16 is connected in series by an electrode 26 (electrode 28). Specifically, as shown in FIG. 2B, in the arrangement of the thermoelectric conversion layers 16 in the horizontal direction in the figure, the electrodes 26 are provided so as to sandwich the thermoelectric conversion layers 16 in the horizontal direction. Thereby, the thermoelectric conversion layers 16 arranged in the lateral direction are connected in series by the electrode 26. Note that in FIG. 2B, the electrode 26 is shaded in order to clarify the configuration.
Further, the thermoelectric conversion layers 16 in the rows adjacent in the vertical direction are connected by the electrodes 26 at the lateral ends of the thermoelectric conversion layers 16. In the connection of the vertical thermoelectric conversion layer 16 by the electrode 26 at the end of the horizontal row, the thermoelectric conversion layer 16 at one end is connected to the thermoelectric conversion layer 16 at the same end of the upper row. The thermoelectric conversion layer 16 at the other end is connected to the thermoelectric conversion layer 16 at the same end in the lower row.
Thereby, all the thermoelectric conversion layers 16 are connected in series like the one line | wire folded in multiple times in the horizontal direction.
 さらに、図2(A)に概念的に示すように、熱電変換層16および電極26の上に、第2基板20Aの全面が低熱伝導部20aである側を下方にして、かつ、低熱伝導部12aと高熱伝導部12bとの境界を第1基板12Aと一致させて、第2基板20Aが積層される。この積層は、第1基板12Aの高熱伝導部12bと第2基板20Aの高熱伝導部20bとが、互い違いになるように行われる。
 なお、図示はされないが、第2基板20Aの積層に先立ち、第1基板12Aを全面的に覆うように、熱電変換層16および電極26の上に第2密着層18が形成される。
Further, as conceptually shown in FIG. 2 (A), on the thermoelectric conversion layer 16 and the electrode 26, the side of the second substrate 20A where the entire surface is the low heat conduction portion 20a is directed downward, and the low heat conduction portion. The second substrate 20A is laminated such that the boundary between 12a and the high thermal conductivity portion 12b coincides with the first substrate 12A. This stacking is performed so that the high thermal conductive portion 12b of the first substrate 12A and the high thermal conductive portion 20b of the second substrate 20A are alternated.
Although not shown, prior to the lamination of the second substrate 20A, the second adhesion layer 18 is formed on the thermoelectric conversion layer 16 and the electrode 26 so as to cover the entire first substrate 12A.
 従って、第1基板12Aの低熱伝導部12aと第2基板20Aの高熱伝導部20bのみの領域とが面方向に一致して対面し、第1基板12Aの高熱伝導部12bと第2基板20Aの低熱伝導部20aのみの領域とが面方向に一致して対面する。
 これにより、本発明の熱電変換素子10を、多数、直列に接続してなる、熱電変換モジュールが構成される。
Therefore, the low heat conduction part 12a of the first substrate 12A and the region of the second substrate 20A only with the high heat conduction part 20b are aligned in the plane direction and face each other, and the high heat conduction part 12b of the first substrate 12A and the second substrate 20A The region of only the low heat conducting portion 20a faces the surface direction in alignment.
Thereby, the thermoelectric conversion module formed by connecting many thermoelectric conversion elements 10 of this invention in series is comprised.
 ここで、前述のように、熱電変換層16の横方向の配列は、上下方向に隣接する列では、高熱伝導部12b(すなわち高熱伝導部20b)の幅の分だけ、横方向にズレて形成される。すなわち、上下方向に隣接する列では、熱電変換層16は、高熱伝導部12bの幅の分だけ、互い違いに形成される。
 そのため、折り返した1本の線のように直列に接続された熱電変換層16は、接続方向の一方向の流れにおいて、全ての熱電変換層16が、一方の半分が第1基板12Aの高熱伝導部12bと第2基板20Aの低熱伝導部20aのみの領域とに対面し、他方の半分が第1基板12Aの低熱伝導部12aのみの領域と第2基板20Aの高熱伝導部20bとに対面する。
 例えば、図2(B)の上から下への直列の接続方向で見た場合には、図2(A)~図2(C)に示すように、全ての熱電変換層16が、上流側半分が第1基板12Aの高熱伝導部12bおよび第2基板20Aの低熱伝導部20aのみの領域に対面し、下流側の半分が第1基板12Aの低熱伝導部12aのみの領域および第2基板20Aの高熱伝導部20bに対面する。
 従って、第1基板12A側もしくは第2基板20A側に熱源を配置した際に、直列に接続された全ての熱電変換層16で、接続方向に対する熱の流れ方向すなわち発電した電気の流れ方向が一致し、熱電変換モジュールが適正に発電を行うことができる。
Here, as described above, the arrangement of the thermoelectric conversion layers 16 in the horizontal direction is shifted in the horizontal direction by the width of the high heat conduction portion 12b (that is, the high heat conduction portion 20b) in the columns adjacent in the vertical direction. Is done. That is, in the columns adjacent in the vertical direction, the thermoelectric conversion layers 16 are alternately formed by the width of the high heat conduction portion 12b.
For this reason, the thermoelectric conversion layers 16 connected in series as a single folded line have all the thermoelectric conversion layers 16 in the flow in one direction of the connection direction, and one half of the thermoelectric conversion layers 16 is the high thermal conductivity of the first substrate 12A. The portion 12b faces the region of the second substrate 20A only of the low heat conduction portion 20a, and the other half faces the region of only the low heat conduction portion 12a of the first substrate 12A and the high heat conduction portion 20b of the second substrate 20A. .
For example, when viewed in the serial connection direction from the top to the bottom of FIG. 2 (B), as shown in FIGS. 2 (A) to 2 (C), all the thermoelectric conversion layers 16 are upstream. Half of the first substrate 12A faces the region of only the high thermal conductivity portion 12b and the second substrate 20A of the low thermal conductivity portion 20a, and the half of the downstream side of the first substrate 12A of the region of only the low thermal conductivity portion 12a and the second substrate 20A. It faces the high heat conduction part 20b.
Therefore, when the heat source is arranged on the first substrate 12A side or the second substrate 20A side, the heat flow direction relative to the connection direction, that is, the flow direction of the generated electricity is the same in all the thermoelectric conversion layers 16 connected in series. And the thermoelectric conversion module can generate electricity properly.
 本発明の熱電変換モジュール(熱電変換素子)を熱源に接着し、発電する際には、熱伝導接着シートや熱伝導性接着剤を用いてもよい。
 熱電変換モジュールの加熱側もしくは冷却側に貼付して用いられる熱伝導接着シートおよび熱伝導性接着剤には特に限定はない。従って、市販されている熱伝導接着シートや熱伝導性接着剤を用いることができる。熱伝導接着シートとしては、例えば、信越シリコーン社製のTC-50TXS2、住友スリーエム社製のハイパーソフト放熱材 5580H、電気化学工業社製のBFG20A、日東電工社製のTR5912F等を用いることができる。なお、耐熱性の観点から、シリコーン系粘着剤からなる熱伝導接着シートが好ましい。熱伝導性接着剤としては、例えば、スリーエム社製のスコッチ・ウェルドEW2070、アイネックス社製のTA-01、シーマ電子社製のTCA-4105、TCA-4210、HY-910、薩摩総研社製のSST2-RSMZ、SST2-RSCSZ、R3CSZ、R3MZ等を用いることができる。
 熱伝導接着シートや熱伝導性接着剤を用いることで、熱源との密着性が向上して熱電変換モジュールの加熱側の表面温度が高くなる、冷却効率が向上して熱電変換モジュールの冷却側の表面温度を低くできるなどの効果により、発電量を高くすることができる。
When the thermoelectric conversion module (thermoelectric conversion element) of the present invention is bonded to a heat source to generate electric power, a heat conductive adhesive sheet or a heat conductive adhesive may be used.
There is no limitation in particular in the heat conductive adhesive sheet and heat conductive adhesive which are stuck and used for the heating side or cooling side of a thermoelectric conversion module. Therefore, a commercially available heat conductive adhesive sheet or heat conductive adhesive can be used. As the heat conductive adhesive sheet, for example, TC-50TXS2 manufactured by Shin-Etsu Silicone Co., Ltd., Hypersoft heat dissipation material 5580H manufactured by Sumitomo 3M Co., Ltd., BFG20A manufactured by Denki Kagaku Kogyo Co., Ltd., TR5912F manufactured by Nitto Denko Corporation and the like can be used. In addition, the heat conductive adhesive sheet which consists of silicone type adhesives from a heat resistant viewpoint is preferable. Examples of the thermally conductive adhesive include Scotch Weld EW 2070 manufactured by 3M, TA-01 manufactured by Inex, TCA-4105, TCA-4210, HY-910 manufactured by Cima Electronics, and SST2 manufactured by Satsuma Research Institute. -RSMZ, SST2-RSCSZ, R3CSZ, R3MZ, etc. can be used.
By using a heat conductive adhesive sheet or a heat conductive adhesive, the adhesion to the heat source is improved and the surface temperature on the heating side of the thermoelectric conversion module is increased, the cooling efficiency is improved and the cooling side of the thermoelectric conversion module is improved. Due to the effect of reducing the surface temperature, the amount of power generation can be increased.
 さらに、熱電変換モジュールの冷却側の表面には、好ましくは高熱伝導部に接触して、ステンレス、銅、アルミ等の公知の材料からなる放熱フィン(ヒートシンク)や放熱シートを設けてもよい。放熱フィン等を用いることで、熱電変換モジュールの低温側をより好適に冷却することができ、熱源側と冷却側との温度差が大きくなり、熱電効率がより向上する点で好ましい。放熱フィンや放熱シートは、好ましくは、前述の熱伝導接着シートや熱伝導性接着剤を用いて熱電変換モジュールに接着される。
 放熱フィンとしては、太陽金網社製のT-Wing、事業創造研究所製のFLEXCOOLや、コルゲートフィン、オフセットフィン、ウェービングフィン、スリットフィン、フォールディングフィンなどの各種フィンなどの公知のフィンを用いることができる。特に、フィン高さのあるフォールディングフィンを用いるのが好ましい。
 放熱フィンのフィン高さとしては10~56mm、フィンピッチとしては2~10mm、板厚としては0.1~0.5mmが好ましく、放熱特性が高く、モジュールの冷却ができ発電量が高くなる点で、フィン高さが25mm以上であるのがより好ましい。また、フィンのフレキシブル性が高い、軽量である等の点で、板厚0.1~0.3mmのアルミ製を用いるのが好ましい。
 また、放熱シートとしては、パナソニック社製のPSGグラファイトシート、沖電線社製のクールスタッフ、セラミッション社製のセラックα等の公知の放熱シートを用いることができる。
Furthermore, a heat radiation fin (heat sink) or a heat radiation sheet made of a known material such as stainless steel, copper, or aluminum may be provided on the cooling side surface of the thermoelectric conversion module, preferably in contact with the high heat conduction portion. By using a radiation fin or the like, the low temperature side of the thermoelectric conversion module can be more suitably cooled, and the temperature difference between the heat source side and the cooling side becomes large, which is preferable in terms of further improving thermoelectric efficiency. The heat radiating fins and the heat radiating sheet are preferably bonded to the thermoelectric conversion module using the above-described heat conductive adhesive sheet or heat conductive adhesive.
As the heat radiating fins, known fins such as T-Wing manufactured by Taiyo Wire Mesh Co., Ltd., FLEXCOOL manufactured by the Business Creation Laboratory, and various fins such as corrugated fins, offset fins, waving fins, slit fins, and folding fins may be used. it can. In particular, it is preferable to use a folding fin having a fin height.
The fin height of the heat dissipating fin is preferably 10 to 56 mm, the fin pitch is 2 to 10 mm, and the plate thickness is preferably 0.1 to 0.5 mm. The heat dissipating characteristics are high, the module can be cooled, and the power generation amount is high. And it is more preferable that fin height is 25 mm or more. In addition, it is preferable to use aluminum having a plate thickness of 0.1 to 0.3 mm in view of high fin flexibility and light weight.
As the heat dissipation sheet, a known heat dissipation sheet such as a PSG graphite sheet manufactured by Panasonic Corporation, a cool staff manufactured by Oki Electric Cable Co., or a shellac α manufactured by Ceramission Corporation can be used.
 以下、図1に示す熱電変換素子10の製造方法の一例を説明することにより、本発明の熱電変換素子の製造方法について詳細に説明する。 Hereinafter, the manufacturing method of the thermoelectric conversion element of the present invention will be described in detail by explaining an example of the manufacturing method of the thermoelectric conversion element 10 shown in FIG.
 低熱伝導部12aおよび高熱伝導部12bを有する第1基板12(12A)、および、低熱伝導部20aおよび高熱伝導部20bを有する第2基板20(20A)を用意する。 First substrate 12 (12A) having low heat conduction part 12a and high heat conduction part 12b, and second substrate 20 (20A) having low heat conduction part 20a and high heat conduction part 20b are prepared.
 第1基板12および第2基板20は、フォトリソグラフィー、エッチング、成膜技術等を利用して、公知の方法で作製すればよい。
 例えば、低熱伝導材料と高熱伝導材料とを積層した板材を用意し、高熱伝導材料の一部をエッチング等によって除去して、第1基板12および第2基板20を作製する方法が例示される。この場合には、第1基板12および第2基板20は、一方の面が全面が低熱伝導部である平面状で、他方の面が、平面状の低熱伝導部の上に凸状の高熱伝導部が形成された、凹凸を有するものとなる(図1(B)および図2(D)参照)。
 別の方法として、シート状の低熱伝導材料の一部にエッチング等によって凹部を形成し、この凹部を埋めるように、マスクを用いる真空蒸着等によって高熱伝導部を形成して、第1基板12および第2基板20を作製する方法が例示される。この場合には、第1基板12および第2基板20は、両面が平面状のものとなる(図3(A)および図3(B)参照)。
 また、第1基板12および第2基板20は、市販品も利用可能である。
The first substrate 12 and the second substrate 20 may be manufactured by a known method using photolithography, etching, film formation technology, or the like.
For example, a method of preparing the first substrate 12 and the second substrate 20 by preparing a plate material in which a low heat conductive material and a high heat conductive material are laminated and removing a part of the high heat conductive material by etching or the like is exemplified. In this case, each of the first substrate 12 and the second substrate 20 has a planar shape in which one entire surface is a low heat conduction portion, and the other surface is a convex high heat conduction on the planar low heat conduction portion. A portion is formed and has unevenness (see FIGS. 1B and 2D).
As another method, a concave portion is formed in a part of the sheet-like low thermal conductive material by etching or the like, and a high thermal conductive portion is formed by vacuum deposition or the like using a mask so as to fill the concave portion. A method for producing the second substrate 20 is exemplified. In this case, both the first substrate 12 and the second substrate 20 are planar (see FIGS. 3A and 3B).
Commercially available products can also be used for the first substrate 12 and the second substrate 20.
 第1基板12の高熱伝導部12bが形成されていない側の表面に、第1密着層14を形成する。
 第1密着層14は、第1密着層14の形成材料に応じて、真空蒸着やスパッタリング等の気相堆積法(真空成膜法)、ゾルゲル法、塗布法、印刷法等の公知の方法で形成すればよい。あるいは、前述のように、液状の接着剤やフィルム状の接着剤を用いて、第1密着層14を形成してもよい。
The first adhesion layer 14 is formed on the surface of the first substrate 12 on the side where the high thermal conductive portion 12b is not formed.
The first adhesion layer 14 is formed by a known method such as a vapor deposition method (vacuum film formation method) such as vacuum deposition or sputtering, a sol-gel method, a coating method, or a printing method, depending on the material for forming the first adhesion layer 14. What is necessary is just to form. Alternatively, as described above, the first adhesion layer 14 may be formed using a liquid adhesive or a film adhesive.
 ここで、第1密着層14の形成に先立ち、第1基板12の第1密着層14の形成面には粗面化処理を施すのが好ましい。すなわち、図示例においては、第1密着層14の形成に先立ち、第1基板12の高熱伝導部12bが形成されていない側の表面に、粗面化処理を行うことが好ましい。粗面化処理は、特に、第1基板12の第1密着層14の形成面の算術平均粗さRaが0.9μm以上となるように行うのが好ましく、1.5μm以上となるように行うのがより好ましい。
 第1基板12の第1密着層14の形成面に粗面化処理を行うことにより、基板表面に凹凸が発生し、アンカー効果により熱電変換層や配線層との密着性が向上する。
 粗面化処理は、公知の方法が利用可能である。例えば、粗面化処理方法としては、粗面化する表面に金属箔を圧着や熱融着させたのち、剥離、もしくは溶解させることで金属表面の凹凸を粗面化する表面に転写する方法が例示される。別の粗面化処理方法として、プラズマ、UVオゾン、電子線などを照射して粗面化する表面に凹凸を形成する方法が例示される。別の粗面化処理方法として、サンドブラスト加工などにより粗面化する表面に凹凸を形成する方法が例示される。
Here, prior to the formation of the first adhesion layer 14, it is preferable to subject the surface of the first substrate 12 on which the first adhesion layer 14 is formed to a roughening treatment. In other words, in the illustrated example, prior to the formation of the first adhesion layer 14, it is preferable to perform the roughening treatment on the surface of the first substrate 12 on the side where the high thermal conductive portion 12 b is not formed. The roughening treatment is particularly preferably performed so that the arithmetic average roughness Ra of the formation surface of the first adhesion layer 14 of the first substrate 12 is 0.9 μm or more, and is 1.5 μm or more. Is more preferable.
By roughening the surface of the first substrate 12 on which the first adhesion layer 14 is formed, irregularities are generated on the substrate surface, and the adhesion with the thermoelectric conversion layer and the wiring layer is improved by the anchor effect.
A known method can be used for the roughening treatment. For example, as a roughening treatment method, there is a method in which a metal foil is pressure-bonded or heat-sealed to a surface to be roughened and then transferred to a surface to be roughened by peeling or dissolving the metal surface. Illustrated. As another roughening treatment method, there is exemplified a method of forming irregularities on the surface to be roughened by irradiation with plasma, UV ozone, electron beam or the like. As another roughening treatment method, a method of forming irregularities on the surface roughened by sandblasting or the like is exemplified.
 次いで、第1密着層14の上に、熱電変換層16を形成する。
 前述のように、本発明の熱電変換素子10において、熱電変換層16は、NiもしくはNi合金からなるものである。熱電変換層16は、スパッタリングや真空蒸着などの気相堆積法、NiもしくはNi合金粉末等を分散したインクを用いる印刷法、NiもしくはNi合金からなるシート状物を貼着する方法、NiもしくはNi合金をメッキする方法等、NiもしくはNi合金からなる膜(層)を形成可能な公知の方法で形成すればよい。
 中でも、第1密着層14との密着性が高く、可撓性に優れる熱電変換素子10が得られる等の点で、スパッタリングや真空蒸着などの気相堆積法は、好適に例示される。
 また、必要に応じて、第1密着層14の上に、NiもしくはNi合金箔からなる層を形成した後、エッチング等によるパターンニングを行って、熱電変換層16を形成してもよい(図2(B)参照)。
Next, the thermoelectric conversion layer 16 is formed on the first adhesion layer 14.
As described above, in the thermoelectric conversion element 10 of the present invention, the thermoelectric conversion layer 16 is made of Ni or Ni alloy. The thermoelectric conversion layer 16 is formed by a vapor deposition method such as sputtering or vacuum deposition, a printing method using an ink in which Ni or Ni alloy powder is dispersed, a method of sticking a sheet material made of Ni or Ni alloy, Ni or Ni What is necessary is just to form by the well-known method which can form the film | membrane (layer) which consists of Ni or Ni alloy, such as the method of plating an alloy.
Among these, vapor deposition methods such as sputtering and vacuum evaporation are preferably exemplified in that the thermoelectric conversion element 10 having high adhesion to the first adhesion layer 14 and excellent flexibility is obtained.
If necessary, a thermoelectric conversion layer 16 may be formed by forming a layer made of Ni or a Ni alloy foil on the first adhesion layer 14 and then performing patterning by etching or the like (see FIG. 2 (B)).
 次いで、熱電変換層16を面方向で挟むように、電極26および電極28を形成する。
 電極26および電極28の形成は、電極26および電極28の形成材料等に応じて、公知の方法で行えばよい。
Next, the electrode 26 and the electrode 28 are formed so as to sandwich the thermoelectric conversion layer 16 in the surface direction.
The formation of the electrode 26 and the electrode 28 may be performed by a known method according to the material for forming the electrode 26 and the electrode 28.
 次いで、第1基板12(第1密着層14)の全面に対応して、熱電変換層16、電極26および電極28の上に、第2密着層18を形成する。あるいは、熱電変換層16の上のみに、第2密着層18を形成する。
 第2密着層18は、第2密着層18の形成材料に応じて、第1密着層14と同様の公知の方法で形成すればよい。
Next, the second adhesion layer 18 is formed on the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 corresponding to the entire surface of the first substrate 12 (first adhesion layer 14). Alternatively, the second adhesion layer 18 is formed only on the thermoelectric conversion layer 16.
The second adhesion layer 18 may be formed by a known method similar to that of the first adhesion layer 14 depending on the material for forming the second adhesion layer 18.
 さらに、用意した第2基板20を、高熱伝導部20bが形成されていない側を向けて、熱電変換層16に貼着して、熱電変換素子10を作製する。 Further, the prepared second substrate 20 is attached to the thermoelectric conversion layer 16 with the side where the high heat conduction portion 20b is not formed, and the thermoelectric conversion element 10 is manufactured.
 このような本発明の熱電変換素子は、各種の用途に利用可能である。
 一例として、温泉熱発電機、太陽熱発電機、廃熱発電機などの発電機や、腕時計用電源、半導体駆動電源、小型センサ用電源などの各種装置(デバイス)の電源等、様々な発電用途が例示される。また、本発明の熱電変換素子の用途としては、発電用途以外にも、感熱センサや熱電対などのセンサー素子用途も例示される。
Such a thermoelectric conversion element of the present invention can be used for various applications.
Examples include various power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies. The Moreover, as a use of the thermoelectric conversion element of this invention, sensor element uses, such as a thermal sensor and a thermocouple, are illustrated besides a power generation use.
 以上、本発明の熱電変換素子および熱電変換モジュールならびに熱電変換素子の製造方法について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 As described above, the thermoelectric conversion element, the thermoelectric conversion module, and the manufacturing method of the thermoelectric conversion element of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and various types can be made without departing from the gist of the present invention. Of course, improvements and changes may be made.
 以下、本発明の具体的実施例を挙げて、本発明の熱電変換素子について、より詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the thermoelectric conversion element of the present invention will be described in more detail with reference to specific examples of the present invention. However, the present invention is not limited to the following examples.
 [実施例1]
 接着剤フリーの片面銅張ポリイミド基板(FELIOS R-F775、パナソニック電工社製)を用意した。この銅張ポリイミド基板は、サイズが60×60mmで、ポリイミド層の厚さが20μm、銅層の厚さが70μmのものである。
 この銅張ポリイミド基板の銅層をエッチングして、500μm幅で、500μm間隔の銅ストライプパターンを形成して、図2(A)、図2(C)および図2(D)に示すような第1基板および第2基板を作製した。
[Example 1]
An adhesive-free single-sided copper-clad polyimide substrate (FELIOS R-F775, manufactured by Panasonic Electric Works Co., Ltd.) was prepared. The copper-clad polyimide substrate has a size of 60 × 60 mm, a polyimide layer thickness of 20 μm, and a copper layer thickness of 70 μm.
The copper layer of this copper-clad polyimide substrate is etched to form a copper stripe pattern having a width of 500 μm and an interval of 500 μm, as shown in FIG. 2 (A), FIG. 2 (C) and FIG. 2 (D). One substrate and a second substrate were produced.
 第1基板の全面がポリイミド層である面の全面に、EB蒸着法(Electron Beam蒸着法)によって、第1密着層として厚さ200nmの酸化ケイ素層(SiO2層)を形成した。第1基板の全面がポリイミド層である面とは、すなわち第1基板の平面状の面である。
 次いで、Niターゲットを用いるスパッタリング法によって、厚さ1μmのNiからなる熱電変換層を形成した。なお、熱電変換層は、メタルマスクを用いて、図2(B)に概念的に示すように、500×1000μmのパターンを1770個(59×30個)、等間隔に形成した。
A 200 nm-thick silicon oxide layer (SiO 2 layer) was formed as a first adhesion layer on the entire surface of the first substrate which is a polyimide layer by EB vapor deposition (Electron Beam vapor deposition). The surface where the entire surface of the first substrate is a polyimide layer is the planar surface of the first substrate.
Next, a thermoelectric conversion layer made of Ni having a thickness of 1 μm was formed by a sputtering method using a Ni target. Note that the thermoelectric conversion layer was formed using a metal mask at an equal interval of 1770 (59 × 30) patterns of 500 × 1000 μm as conceptually shown in FIG.
 次いで、メタルマスクを用いる真空蒸着法によって、厚さ2μmの金(Au)からなる電極26を作製して、図2(B)に概念的に示すように、1770個の熱電変換層を直列に接続した。 Next, an electrode 26 made of gold (Au) having a thickness of 2 μm is produced by a vacuum deposition method using a metal mask, and 1770 thermoelectric conversion layers are connected in series as conceptually shown in FIG. Connected.
 さらに、第2密着層としてノンサポート接着シート(SK-2478、綜研化学社製)を介して、熱電変換層を形成した第1基板と第2基板とを積層し、自動プレス機(TP700A、太陽精機社製)を用いてプレス荷重5kNで接着することで、1770個の熱電変換素子を直列に接続してなる熱電変換モジュールを作製した。
 なお、第1基板と第2基板との積層は、図2(A)~図2(C)に示すように、第1基板の熱電変換層形成面と、第2基板の全面がポリイミド層である面とを対面して、第1基板の銅ストライプ部と第2基板の銅ストライプが無い部分とが面方向で一致するように行った。第2基板の全面がポリイミド層である面とは、すなわち第2基板の平面状の面である。また、第2基板の銅ストライプが無い部分とは、すなわち第2基板のポリイミドのみの部分である。
Further, the first substrate and the second substrate on which the thermoelectric conversion layer is formed are laminated as a second adhesion layer via a non-support adhesive sheet (SK-2478, manufactured by Soken Chemical Co., Ltd.), and an automatic press machine (TP700A, Taiyo Yu A thermoelectric conversion module in which 1770 thermoelectric conversion elements are connected in series was manufactured by bonding with a press load of 5 kN.
As shown in FIGS. 2A to 2C, the first substrate and the second substrate are laminated with a polyimide layer on the entire surface of the first substrate and the second substrate. A certain surface was faced, and the copper stripe portion of the first substrate and the portion without the copper stripe of the second substrate were aligned in the plane direction. The surface on which the entire surface of the second substrate is a polyimide layer is a planar surface of the second substrate. Further, the portion of the second substrate without the copper stripe is the portion of the second substrate made of only polyimide.
 他方で、以下の方法で、熱電変換層の導電率σおよびゼーベック係数Sを測定した。
 ポリイミド製の基板の中央に、先と同様のNiターゲットを用いるスパッタリング法によって、厚さ1μmのNiからなる15×4mmの熱電変換層を形成した。
 このNiからなる熱電変換層に関して、導電率σおよびゼーベック係数Sを、熱電特性評価装置(ZEM-3、アルバック理工社製)を用いて測定した。基板の中心温度は30℃とした。
 その結果、導電率σは46500S/cm、ゼーベック係数Sは-15.4μV/Kであった。
On the other hand, the electrical conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured by the following method.
A 15 × 4 mm thermoelectric conversion layer made of Ni having a thickness of 1 μm was formed in the center of the polyimide substrate by a sputtering method using the same Ni target.
Regarding the thermoelectric conversion layer made of Ni, the electrical conductivity σ and Seebeck coefficient S were measured using a thermoelectric property evaluation apparatus (ZEM-3, manufactured by ULVAC-RIKO). The center temperature of the substrate was 30 ° C.
As a result, the conductivity σ was 46500 S / cm and the Seebeck coefficient S was −15.4 μV / K.
 作製した熱電変換モジュールを、加熱した銅プレートと、冷水循環装置を接続した銅プレートとで挟持して、両銅プレートの温度差が10℃になるように、加熱した銅プレートの温度を調節した。
 さらに、直列に接続した最上流の熱電変換層の電極および最下流の熱電変換層の電極とを、ソースメーター(ソースメーター2450、ケースレー社製)とを接続し、開放電圧と短絡電流を計測し、下記式から発電量を求めた。
(発電量)=0.25×(開放電圧)×(短絡電流)
 その結果、発電量は43.4μWであった。
The produced thermoelectric conversion module was sandwiched between a heated copper plate and a copper plate connected with a cold water circulation device, and the temperature of the heated copper plate was adjusted so that the temperature difference between both copper plates would be 10 ° C. .
Further, the electrode of the most upstream thermoelectric conversion layer and the electrode of the most downstream thermoelectric conversion layer connected in series are connected to a source meter (source meter 2450, manufactured by Keithley), and the open circuit voltage and the short circuit current are measured. The power generation amount was obtained from the following formula.
(Power generation amount) = 0.25 × (open circuit voltage) × (short circuit current)
As a result, the power generation amount was 43.4 μW.
 発電量を測定した後、JIS K 5600に準じて熱電変換モジュールの屈曲試験を行った。円筒形マンドレルは直径32mmのものを用い、180°折り曲げとした。
 屈曲試験を行った後、先と同様に熱電変換モジュールの発電量を測定した。
 その結果、発電量は41.8μWであった。
After measuring the amount of power generation, a bending test of the thermoelectric conversion module was conducted according to JIS K 5600. A cylindrical mandrel having a diameter of 32 mm was used and bent 180 °.
After performing the bending test, the power generation amount of the thermoelectric conversion module was measured as before.
As a result, the power generation amount was 41.8 μW.
 [比較例1]
 第1基板に第1密着層として酸化ケイ素層を形成しない以外には、実施例1と同様に熱電変換素子を作製して、熱電変換モジュールを作製した。
 しかしながら、熱電変換層を形成した後、多くの熱電変換素子において、熱電変換層が第1基板から剥離してしまい、適正な熱電変換モジュールを作製できなかった。
[Comparative Example 1]
A thermoelectric conversion module was produced by producing a thermoelectric conversion element in the same manner as in Example 1 except that the silicon oxide layer was not formed on the first substrate as the first adhesion layer.
However, after forming the thermoelectric conversion layer, in many thermoelectric conversion elements, the thermoelectric conversion layer peeled off from the first substrate, and an appropriate thermoelectric conversion module could not be produced.
 [実施例2]
 第1基板に形成する第1密着層を、酸化ケイ素層に代えてクロム層とした以外は、実施例1と同様にして熱電変換モジュールを作製した。なお、クロム層は、クロムをターゲットとするスパッタリング法によって形成した。
 また、実施例1と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは42000S/cm、ゼーベック係数Sは-14.7μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は36.4μW、屈曲試験後の発電量は34.6μWであった。
[Example 2]
A thermoelectric conversion module was produced in the same manner as in Example 1 except that the first adhesion layer formed on the first substrate was replaced with a chromium layer instead of the silicon oxide layer. Note that the chromium layer was formed by a sputtering method using chromium as a target.
Further, in the same manner as in Example 1, the electrical conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 42000 S / cm, and the Seebeck coefficient S was −14.7 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 36.4 μW, and the power generation amount after the bending test was 34.6 μW.
 [実施例3]
 熱電変換層を、Ni層ではなく、Ni90Mo10の合金層(Ni90原子%、Mo10原子%の合金層)に代えた以外は、実施例1と同様にして熱電変換モジュールを作製した。なお、Ni90Mo10の合金層は、Ni90Mo10合金をターゲットとするスパッタリング法によって形成した。
 実施例1と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは8000S/cm、ゼーベック係数Sは10μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は4.19μW、屈曲試験後の発電量は4.02μWであった。
[Example 3]
A thermoelectric conversion module was produced in the same manner as in Example 1 except that the thermoelectric conversion layer was replaced with an Ni90Mo10 alloy layer (Ni90 atom%, Mo10 atom% alloy layer) instead of the Ni layer. The Ni90Mo10 alloy layer was formed by a sputtering method using a Ni90Mo10 alloy as a target.
In the same manner as in Example 1, the conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 8000 S / cm, and the Seebeck coefficient S was 10 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 4.19 μW, and the power generation amount after the bending test was 4.02 μW.
 [比較例2]
 第1基板に第1密着層として酸化ケイ素層を形成しない以外には、実施例3と同様に熱電変換素子を作製して、熱電変換モジュールを作製した。
 しかしながら、熱電変換層を形成した後、多くの熱電変換素子において、熱電変換層が第1基板から剥離してしまい、適正な熱電変換モジュールを作製できなかった。
[Comparative Example 2]
A thermoelectric conversion element was produced by producing a thermoelectric conversion element in the same manner as in Example 3 except that the silicon oxide layer was not formed as the first adhesion layer on the first substrate.
However, after forming the thermoelectric conversion layer, in many thermoelectric conversion elements, the thermoelectric conversion layer peeled off from the first substrate, and an appropriate thermoelectric conversion module could not be produced.
 [実施例4]
 電極の形成材料を金から銅(Cu)に代えた以外は、実施例1と同様にして熱電変換モジュールを作製した。
 実施例1と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは42000S/cm、ゼーベック係数Sは-14.5μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は53.8μW、屈曲試験後の発電量は50.6μWであった。
[Example 4]
A thermoelectric conversion module was produced in the same manner as in Example 1 except that the electrode forming material was changed from gold to copper (Cu).
In the same manner as in Example 1, the conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 42000 S / cm, and the Seebeck coefficient S was −14.5 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 53.8 μW, and the power generation amount after the bending test was 50.6 μW.
 [比較例3]
 大きさ60×60mm、厚さ25μmのポリイミド基板(カプトン100V、東レ・デュポン社製)を用意した。
 メタルマスクを用いた真空蒸着法によって、クロムを100nm成膜し、次いで、クロム層の上に金を1000nm成膜することで、ポリイミド基板の上に95個の金属電極層をパターン形成した。
 次いで、厚さ100μmのNi箔を切断して、3×3mmの95個のNiチップを作製した。作製したNiチップを、銀ペースト(FA705BN、藤倉化成社製)を用いて、ポリイミド基板に形成した金属電極層の上に接着した。
 さらに、銀ペースト(FA705BN、藤倉化成社製)を接着剤として用い、厚さ18μmの銅箔によって、Niチップの上面と、隣接するNiチップの下の金属電極層とを接続することで、uni leg型の熱電変換素子を95個、直列に接続してなる熱電変換モジュールを作製した。
 実施例1と同様にして、Ni箔の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは140000S/cm、ゼーベック係数Sは-18μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定したが、いずれも発電は計測できなかった。熱伝導率の高いNiでは、熱電変換層の上下間(電極間)の温度差が無いため、熱起電力が生じなかったと推定される。
[Comparative Example 3]
A polyimide substrate (Kapton 100V, manufactured by Toray DuPont) having a size of 60 × 60 mm and a thickness of 25 μm was prepared.
By depositing a chromium film with a thickness of 100 nm by a vacuum deposition method using a metal mask, and then depositing a gold film with a thickness of 1000 nm on the chromium layer, 95 metal electrode layers were patterned on the polyimide substrate.
Next, Ni foil having a thickness of 100 μm was cut to prepare 95 Ni chips of 3 × 3 mm. The produced Ni chip was bonded onto the metal electrode layer formed on the polyimide substrate using a silver paste (FA705BN, manufactured by Fujikura Kasei Co., Ltd.).
Furthermore, by using silver paste (FA705BN, manufactured by Fujikura Kasei Co., Ltd.) as an adhesive and connecting the upper surface of the Ni chip and the metal electrode layer under the adjacent Ni chip with a copper foil having a thickness of 18 μm, uni A thermoelectric conversion module comprising 95 leg-type thermoelectric conversion elements connected in series was produced.
In the same manner as in Example 1, the conductivity σ and Seebeck coefficient S of the Ni foil were measured. As a result, the conductivity σ was 140000 S / cm and the Seebeck coefficient S was −18 μV / K.
Moreover, although the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured in the same manner as in Example 1, no power generation could be measured. In Ni with high thermal conductivity, there is no temperature difference between the upper and lower sides of the thermoelectric conversion layer (between the electrodes), so it is estimated that no thermoelectromotive force occurred.
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

 表1に示されるように、本発明の熱電変換素子によれば、熱伝導率は高いが、高い発電量が得られ、導電率も高い汎用の材料であるNiやNi合金を用いてin plane型の熱電変換素子を形成することで、高い発電量を得ることができる。特に、熱電変換層をNiで形成した実施例1および実施例2は、高い発電量を得ている。また、本発明の熱電変換素子を利用する熱電変換モジュールは、屈曲試験の前後で、発電量が殆ど変わらず、可撓性にも優れている。
 さらに、実施例4の結果より、電極を銅とすることで、銅の優れた導電性と、金に比べ、やや大きいゼーベック係数との効果によって、より高い発電量が得られている。なお、金のゼーベック係数は2μV/K、銅のゼーベック係数は4μV/Kである。
 一方、比較例3に示されるように、uni-leg型の熱電変換素子では、同じNiを用いて熱電変換層を作製しても、熱電変換層の上下間の温度差がほとんど無く、発電できないことが明らかになった。すなわち、NiもしくはNi合金を熱電変換層に用いるには、本発明の熱電変換素子を利用する熱電変換モジュールが有用であることがわかった。
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001

As shown in Table 1, according to the thermoelectric conversion element of the present invention, Ni or Ni alloy, which is a general-purpose material that has high heat conductivity but high power generation and high conductivity, is used in plane. By forming a thermoelectric conversion element of a mold, a high power generation amount can be obtained. In particular, Example 1 and Example 2 in which the thermoelectric conversion layer is formed of Ni obtain a high power generation amount. Moreover, the thermoelectric conversion module using the thermoelectric conversion element of the present invention has almost the same amount of power generation before and after the bending test, and is excellent in flexibility.
Furthermore, from the results of Example 4, when the electrode is made of copper, a higher power generation amount is obtained due to the excellent conductivity of copper and a slightly higher Seebeck coefficient than gold. In addition, the Seebeck coefficient of gold is 2 μV / K, and the Seebeck coefficient of copper is 4 μV / K.
On the other hand, as shown in Comparative Example 3, in the uni-leg type thermoelectric conversion element, even if the thermoelectric conversion layer is manufactured using the same Ni, there is almost no temperature difference between the upper and lower sides of the thermoelectric conversion layer, and power generation cannot be performed. It became clear. That is, it was found that a thermoelectric conversion module using the thermoelectric conversion element of the present invention is useful for using Ni or Ni alloy in the thermoelectric conversion layer.
 [実施例5]
 接着剤フリーの両面銅張ポリイミド基板(FELIOS R-F775、パナソニック電工社製)を用意した。この銅張ポリイミド基板は、サイズが60×60mmで、ポリイミド層の厚さが25μm、銅層の厚さが70μmのものである。
 この両面銅張ポリイミド基板の一面の銅を、エッチング処理により、完全に除去した。露出したポリイミド面をレーザー顕微鏡(VK-X100、キーエンス社製)で、観察したところ、銅層(銅箔)の表面に由来した、凹凸があることがわかった。
 この銅層を除去した面(全面がポリイミドである面)の算術平均粗さRaを測定したところ、0.989μmであった。なお、算術平均粗さRaについては、形状測定レーザーマイクロスコープ:VK-X200(キーエンス社製)を用いて、表面の高さを測定することで、JIS B 0601(2001)に準拠して測定した。このとき、観察範囲は、横1.405mm、縦:1.05mmとした。この観察範囲の中から、横方向に3ラインを抽出し、算術平均粗さRaを求め、その平均値を算出した。
[Example 5]
An adhesive-free double-sided copper-clad polyimide substrate (FELIOS R-F775, manufactured by Panasonic Electric Works Co., Ltd.) was prepared. The copper-clad polyimide substrate has a size of 60 × 60 mm, a polyimide layer thickness of 25 μm, and a copper layer thickness of 70 μm.
The copper on one surface of the double-sided copper-clad polyimide substrate was completely removed by etching. When the exposed polyimide surface was observed with a laser microscope (VK-X100, manufactured by Keyence Corporation), it was found that there were irregularities derived from the surface of the copper layer (copper foil).
The arithmetic average roughness Ra of the surface from which the copper layer was removed (surface where the entire surface was polyimide) was measured and found to be 0.989 μm. The arithmetic average roughness Ra was measured according to JIS B 0601 (2001) by measuring the height of the surface using a shape measurement laser microscope: VK-X200 (manufactured by Keyence Corporation). . At this time, the observation range was set to 1.405 mm in width and 1.05 mm in length. From this observation range, three lines were extracted in the horizontal direction, the arithmetic average roughness Ra was determined, and the average value was calculated.
 また、一面の銅層を除去した銅張ポリイミド基板の残りの銅層をエッチングして、500μm幅で、500μm間隔の銅ストライプパターンを形成して、図2(A)、図2(C)および図2(D)に示すような第1基板および第2基板を作製した。 Further, the remaining copper layer of the copper-clad polyimide substrate from which the copper layer on one side is removed is etched to form a copper stripe pattern having a width of 500 μm and an interval of 500 μm, and FIG. 2 (A), FIG. 2 (C) and A first substrate and a second substrate as shown in FIG.
 第1基板の全面がポリイミド層である面の全面に、EB蒸着法によって、第1密着層として厚さ200nmの酸化ケイ素層(SiO2層)を形成した。第1基板の全面がポリイミド層である面とは、すなわち、第1基板の平面状の面である。
 次いで、Niターゲットを用いるスパッタリング法によって、厚さ1μmのNiからなる熱電変換層を形成した。なお、熱電変換層は、メタルマスクを用いて、図2(B)に概念的に示すように、500×1000μmのパターンを1770個(59×30個)、等間隔に形成した。
A silicon oxide layer (SiO 2 layer) having a thickness of 200 nm was formed as a first adhesion layer on the entire surface of the first substrate which is a polyimide layer by EB vapor deposition. The surface on which the entire surface of the first substrate is a polyimide layer is the planar surface of the first substrate.
Next, a thermoelectric conversion layer made of Ni having a thickness of 1 μm was formed by a sputtering method using a Ni target. Note that the thermoelectric conversion layer was formed using a metal mask at an equal interval of 1770 (59 × 30) patterns of 500 × 1000 μm as conceptually shown in FIG.
 次いで、メタルマスクを用いる真空蒸着法によって、厚さ0.05μmのクロム(Cr)と厚さ2μmの金(Au)からなる積層電極を作製して、図2(B)に概念的に示すように、1770個の熱電変換層を直列に接続した。 Next, a laminated electrode made of 0.05 μm thick chromium (Cr) and 2 μm thick gold (Au) is fabricated by vacuum vapor deposition using a metal mask, as conceptually shown in FIG. In addition, 1770 thermoelectric conversion layers were connected in series.
 さらに、第2密着層としてノンサポート接着シート(SK-2478、綜研化学社製)を介して、熱電変換層を形成した第1基板と第2基板とを積層し、自動プレス機(TP700A、太陽精機社製)を用いてプレス荷重5kNで接着することで、1770個の熱電変換素子を直列に接続してなる熱電変換モジュールを作製した。
 なお、第1基板と第2基板との積層は、図2(A)~図2(C)に示すように、第1基板の熱電変換層形成面と、第2基板の全面がポリイミド層である面とを対面して、第1基板の銅ストライプ部と第2基板の銅ストライプが無い部分とが面方向で一致するように行った。第2基板の全面がポリイミド層である面とは、すなわち第2基板の平面状の面である。また、第2基板の銅ストライプが無い部分とは、すなわち第2基板のポリイミドのみの部分である。
Further, the first substrate and the second substrate on which the thermoelectric conversion layer is formed are laminated as a second adhesion layer via a non-support adhesive sheet (SK-2478, manufactured by Soken Chemical Co., Ltd.), and an automatic press machine (TP700A, Taiyo Yu A thermoelectric conversion module in which 1770 thermoelectric conversion elements are connected in series was manufactured by bonding with a press load of 5 kN.
As shown in FIGS. 2A to 2C, the first substrate and the second substrate are laminated with a polyimide layer on the entire surface of the first substrate and the second substrate. A certain surface was faced, and the copper stripe portion of the first substrate and the portion without the copper stripe of the second substrate were aligned in the plane direction. The surface on which the entire surface of the second substrate is a polyimide layer is a planar surface of the second substrate. Further, the portion of the second substrate without the copper stripe is the portion of the second substrate made of only polyimide.
 銅張ポリイミド基板の銅箔を除去した面に熱電変換層を形成した以外は、実施例1と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。
 その結果、導電率σは46500S/cm、ゼーベック係数Sは-15.4μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は43.4μW、屈曲試験後の発電量は42.1μWであった。
The conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured in the same manner as in Example 1 except that the thermoelectric conversion layer was formed on the surface of the copper-clad polyimide substrate from which the copper foil was removed.
As a result, the conductivity σ was 46500 S / cm and the Seebeck coefficient S was −15.4 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 43.4 μW, and the power generation amount after the bending test was 42.1 μW.
 [実施例6]
 第1基板に形成する第1密着層を、酸化ケイ素層に代えてクロム層とした以外は、実施例5と同様にして熱電変換モジュールを作製した。なお、クロム層は、クロムをターゲットとするスパッタリング法によって形成した。
 また、実施例5と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは42000S/cm、ゼーベック係数Sは-14.7μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は36.4μW、屈曲試験後の発電量は35.2μWであった。
[Example 6]
A thermoelectric conversion module was produced in the same manner as in Example 5 except that the first adhesion layer formed on the first substrate was replaced with a chromium layer instead of the silicon oxide layer. Note that the chromium layer was formed by a sputtering method using chromium as a target.
Further, in the same manner as in Example 5, the conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 42000 S / cm, and the Seebeck coefficient S was −14.7 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 36.4 μW, and the power generation amount after the bending test was 35.2 μW.
 [実施例7]
 熱電変換層を、Ni層ではなく、Ni90Mo10の合金層(Ni90原子%、Mo10原子%の合金層)に代えた以外は、実施例5と同様にして熱電変換モジュールを作製した。なお、Ni90Mo10の合金層は、Ni90Mo10合金をターゲットとするスパッタリング法によって形成した。
 実施例5と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは8000S/cm、ゼーベック係数Sは10μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は4.19μW、屈曲試験後の発電量は4.07μWであった。
[Example 7]
A thermoelectric conversion module was produced in the same manner as in Example 5 except that the thermoelectric conversion layer was replaced with an Ni90Mo10 alloy layer (Ni90 atom%, Mo10 atom% alloy layer) instead of the Ni layer. The Ni90Mo10 alloy layer was formed by a sputtering method using a Ni90Mo10 alloy as a target.
In the same manner as in Example 5, the conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 8000 S / cm, and the Seebeck coefficient S was 10 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 4.19 μW, and the power generation amount after the bending test was 4.07 μW.
 [実施例8]
 電極をクロムと金とからなるの積層電極から、厚さ0.05μmのクロムと厚さ0.5μmの銅とからなる積層電極に代えた以外は、実施例5と同様にして熱電変換モジュールを作製した。
 実施例5と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは42000S/cm、ゼーベック係数Sは-14.7μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は45.2μW、屈曲試験後の発電量は43.4μWであった。
[Example 8]
A thermoelectric conversion module was prepared in the same manner as in Example 5 except that the electrode was changed from a laminated electrode made of chromium and gold to a laminated electrode made of 0.05 μm thick chromium and 0.5 μm thick copper. Produced.
In the same manner as in Example 5, the conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 42000 S / cm, and the Seebeck coefficient S was −14.7 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 45.2 μW, and the power generation amount after the bending test was 43.4 μW.
 [実施例9]
 第1基板に形成する第1密着層を、酸化ケイ素層に代えてクロム層とし、さらに、電極をクロムと金とからなる積層電極から、厚さ0.05μmのクロムと厚さ0.5μmの銅とからなる積層電極に代えた以外は、実施例5と同様にして熱電変換モジュールを作製した。
 実施例5と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは42000S/cm、ゼーベック係数Sは-14.7μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は38.2μW、屈曲試験後の発電量は37.1μWであった。
[Example 9]
The first adhesion layer formed on the first substrate is a chromium layer instead of the silicon oxide layer, and the electrode is a laminated electrode made of chromium and gold, and has a thickness of 0.05 μm and a thickness of 0.5 μm. A thermoelectric conversion module was produced in the same manner as in Example 5 except that the laminated electrode was made of copper.
In the same manner as in Example 5, the conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 42000 S / cm, and the Seebeck coefficient S was −14.7 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 38.2 μW, and the power generation amount after the bending test was 37.1 μW.
 [実施例10]
 両面銅張ポリイミド基板の一面の銅拍を除去した後、この面にサンドブラスト加工による粗面化処理を施した以外は、実施例5と同様に第1基板を作製した。
 なお、サンドブラスト加工は、サンドブラスト装置(SCM-4RBY-05-401、不二製作所社製)によって、φ20μmのアルミナ粒子を用いて、供給エアー圧力0.1MPaで行った。粗面化処理を施した面の算術平均粗さRaを実施例5と同様に測定したところ、算術平均粗さRaは1.68μmであった。
 この第1基板を用いた以外は、実施例9と同様にして熱電変換モジュールを作製した。
 実施例5と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは46500S/cm、ゼーベック係数Sは-15.4μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は43.4μW、屈曲試験後の発電量は42.6μWであった。
[Example 10]
A first substrate was produced in the same manner as in Example 5 except that the copper beats on one surface of the double-sided copper-clad polyimide substrate were removed, and then this surface was subjected to a roughening treatment by sandblasting.
The sand blasting was performed with a sand blasting apparatus (SCM-4RBY-05-401, manufactured by Fuji Seisakusho Co., Ltd.) using φ20 μm alumina particles at a supply air pressure of 0.1 MPa. When the arithmetic average roughness Ra of the surface subjected to the roughening treatment was measured in the same manner as in Example 5, the arithmetic average roughness Ra was 1.68 μm.
A thermoelectric conversion module was produced in the same manner as in Example 9 except that this first substrate was used.
In the same manner as in Example 5, the conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 46500 S / cm and the Seebeck coefficient S was −15.4 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 43.4 μW, and the power generation amount after the bending test was 42.6 μW.
 [実施例11]
 実施例10と同様に第1基板を作製した。
 この第1基板を用いた以外は、実施例8と同様にして熱電変換モジュールを作製した。
 実施例5と同様にして、熱電変換層の導電率σおよびゼーベック係数Sを測定した。その結果、導電率σは42000S/cm、ゼーベック係数Sは-14.7μV/Kであった。
 また、実施例1と同様にして、作製した熱電変換モジュールの屈曲試験前および後の発電量を測定した。その結果、屈曲試験前の発電量は45.2μW、屈曲試験後の発電量は44.3μWであった。
[Example 11]
A first substrate was produced in the same manner as in Example 10.
A thermoelectric conversion module was produced in the same manner as in Example 8 except that this first substrate was used.
In the same manner as in Example 5, the conductivity σ and Seebeck coefficient S of the thermoelectric conversion layer were measured. As a result, the conductivity σ was 42000 S / cm, and the Seebeck coefficient S was −14.7 μV / K.
Further, in the same manner as in Example 1, the power generation amount before and after the bending test of the produced thermoelectric conversion module was measured. As a result, the power generation amount before the bending test was 45.2 μW, and the power generation amount after the bending test was 44.3 μW.
 結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002

 表2に示されるように、第1基板の第1密着層の形成面を粗面化処理することにより、可撓性の高い熱電変換モジュールが得られる。
 特に、実施例10および実施例11に示されるように、第1基板の第1密着層の形成面の表面粗さを大きくすることにより、屈曲試験の前後で、殆ど発電量が変わらず、可撓性に優れる熱電変換モジュールが得られる。
The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002

As shown in Table 2, a highly flexible thermoelectric conversion module is obtained by roughening the formation surface of the first adhesion layer of the first substrate.
In particular, as shown in Example 10 and Example 11, by increasing the surface roughness of the surface of the first substrate on which the first adhesion layer is formed, the amount of power generation is almost unchanged before and after the bending test. A thermoelectric conversion module having excellent flexibility can be obtained.
 [実施例12]
 曲面(φ120mm)状の加熱源(表面温度80℃)に、熱伝導接着シート(TR5912F、日東電工社製)を用いて、実施例11と同様の方法で作製した熱電変換モジュールを接着した。
 さらに、熱電変換モジュール表面に、熱伝導接着シート(TR5912F、日東電工社製)を用いて、コルゲートフィン(COA-5B2D75B、サイズ100×100mm、最上インクス社製)を接着した。
 直列に接続した最上流の熱電変換素子の電極および最下流の熱電変換素子の電極と、ソースメーター(ケースレー社製、ソースメーター2450)とを接続し、開放電圧と短絡電流を計測し、発電量を求めたところ、2.7μWの出力が得られた。
 この結果より、本発明の熱で変換モジュールは、空冷でも発電が可能で、かつ、曲面状の熱源に対しても、発電が可能であることがわかる。
 以上の結果より、本発明の効果は明らかである。
[Example 12]
The thermoelectric conversion module produced by the method similar to Example 11 was adhere | attached on the curved surface ((phi) 120mm) -shaped heating source (surface temperature of 80 degreeC) using the heat conductive adhesive sheet (TR5912F, Nitto Denko Corporation make).
Further, a corrugated fin (COA-5B2D75B, size 100 × 100 mm, manufactured by Mogami Inc.) was bonded to the surface of the thermoelectric conversion module using a heat conductive adhesive sheet (TR5912F, manufactured by Nitto Denko Corporation).
Connect the electrode of the most upstream thermoelectric conversion element and the electrode of the most downstream thermoelectric conversion element connected in series to the source meter (source meter 2450, manufactured by Keithley) and measure the open-circuit voltage and short-circuit current, and the amount of power generation Was obtained, and an output of 2.7 μW was obtained.
From this result, it can be seen that the heat conversion module of the present invention can generate power even with air cooling, and can generate power even with a curved heat source.
From the above results, the effects of the present invention are clear.
 10 熱電変換素子
 12,12A 第1基板
 12a,20a 低熱伝導部
 12b,20b 高熱伝導部
 14 第1密着層
 16 熱電変換層
 18 第2密着層
 20,20A 第2基板
 26,28 電極
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion element 12, 12A 1st board | substrate 12a, 20a Low heat conduction part 12b, 20b High heat conduction part 14 1st adhesion layer 16 Thermoelectric conversion layer 18 2nd adhesion layer 20, 20A 2nd board | substrate 26, 28 Electrode

Claims (14)

  1.  面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板と、
     前記第1基板の上に形成される第1密着層と、
     前記第1密着層の上に形成される、ニッケルもしくはニッケル合金からなる熱電変換層と、
     前記熱電変換層の上に形成される第2密着層と、
     前記第2密着層の上に形成される、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向において自身の前記高熱伝導部が前記第1基板の高熱伝導部と完全に重複しない第2基板と、
     面方向に前記熱電変換層を挟むように、前記熱電変換層に接続される一対の電極とを有することを特徴とする熱電変換素子。
    A first substrate having a high thermal conductivity part having a higher thermal conductivity than other regions in at least a part of the surface direction;
    A first adhesion layer formed on the first substrate;
    A thermoelectric conversion layer made of nickel or a nickel alloy formed on the first adhesion layer;
    A second adhesion layer formed on the thermoelectric conversion layer;
    The high adhesion portion formed on the second adhesion layer has a high thermal conductivity higher than that of another region in at least a part of the surface direction, and the high heat conduction portion of the surface in the surface direction includes the first heat conduction portion. A second substrate that does not completely overlap the high thermal conductivity portion of one substrate;
    A thermoelectric conversion element comprising a pair of electrodes connected to the thermoelectric conversion layer so as to sandwich the thermoelectric conversion layer in a plane direction.
  2.  前記熱電変換層のニッケル含有量が90原子%以上である請求項1に記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein the nickel content of the thermoelectric conversion layer is 90 atomic% or more.
  3.  前記熱電変換層がニッケルで形成される請求項2に記載の熱電変換素子。 The thermoelectric conversion element according to claim 2, wherein the thermoelectric conversion layer is formed of nickel.
  4.  前記第1基板の高熱伝導部と前記第2基板の高熱伝導部とが、面方向において、前記電極の離間方向に異なる位置に設けられる請求項1~3のいずれか1項に記載の熱電変換素子。 The thermoelectric conversion according to any one of claims 1 to 3, wherein the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate are provided at different positions in the plane direction in the separation direction of the electrodes. element.
  5.  前記第1基板の高熱伝導部および前記第2基板の高熱伝導部が、積層方向に対して外面に位置する請求項1~4のいずれか1項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 4, wherein the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate are located on an outer surface with respect to the stacking direction.
  6.  前記第1基板の第1密着層側の表面が、粗面化処理を施されたものである請求項1~5のいずれか1項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 5, wherein a surface of the first substrate on the first adhesion layer side is subjected to a roughening treatment.
  7.  前記第1基板の第1密着層側の表面の算術平均粗さRaが0.9μm以上である請求項6に記載の熱電変換素子。 The thermoelectric conversion element according to claim 6, wherein the arithmetic average roughness Ra of the surface of the first substrate on the first adhesion layer side is 0.9 µm or more.
  8.  請求項1~7のいずれか1項に記載の熱電変換素子を、複数、直列に接続してなる熱電変換モジュール。 A thermoelectric conversion module comprising a plurality of the thermoelectric conversion elements according to any one of claims 1 to 7 connected in series.
  9.  前記第1基板および第2基板のいずれか一方の高熱伝導部に接する放熱フィンを有する請求項8に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 8, further comprising heat radiation fins in contact with either one of the first substrate and the second substrate.
  10.  前記放熱フィンと高熱伝導部とが熱伝導接着シートまたは熱電導性接着剤で接着されている請求項9に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 9, wherein the heat radiation fin and the high heat conductive portion are bonded with a heat conductive adhesive sheet or a thermoconductive adhesive.
  11.  面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板に、第1密着層を形成する工程、
     前記第1密着層の上に、ニッケルもしくはニッケル合金からなる熱電変換層を形成する工程、
     面方向に挟むようにして、前記熱電変換層に電極対を接続する工程、
     前記熱電変換層の上に第2密着層を形成する工程、
     および、前記第2密着層の上に、面方向の少なくとも一部に、他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向おいて自身の前記高熱伝導部が前記第1基板の高熱伝導部と完全に重複しないように第2基板を積層する工程、を有することを特徴とする熱電変換素子の製造方法。
    Forming a first adhesion layer on a first substrate having a high thermal conductivity portion having a higher thermal conductivity than other regions in at least part of the surface direction;
    Forming a thermoelectric conversion layer made of nickel or a nickel alloy on the first adhesion layer;
    Connecting the electrode pair to the thermoelectric conversion layer so as to be sandwiched in the surface direction;
    Forming a second adhesion layer on the thermoelectric conversion layer;
    And on the second adhesion layer, at least part of the surface direction has a high heat conduction part having a higher heat conductivity than other regions, and the high heat conduction part of itself in the surface direction And a step of laminating the second substrate so as not to completely overlap with the high thermal conductivity portion of the first substrate.
  12.  前記熱電変換層の形成を、気相堆積法によって行う請求項11に記載の熱電変換素子の製造方法。 The method of manufacturing a thermoelectric conversion element according to claim 11, wherein the thermoelectric conversion layer is formed by a vapor deposition method.
  13.  前記第1密着層の形成に先立ち、前記第1基板の第1密着層の形成面に粗面化処理を行う請求項11または12に記載の熱電変換素子の製造方法。 The method for manufacturing a thermoelectric conversion element according to claim 11 or 12, wherein a surface roughening treatment is performed on a formation surface of the first adhesion layer of the first substrate prior to the formation of the first adhesion layer.
  14.  前記粗面化処理を、前記第1基板の第1密着層の形成面の算術平均粗さRaが0.9μm以上となるように行う請求項13に記載の熱電変換素子の製造方法。 The method for manufacturing a thermoelectric conversion element according to claim 13, wherein the roughening treatment is performed so that an arithmetic average roughness Ra of a surface of the first adhesion layer of the first substrate is 0.9 µm or more.
PCT/JP2015/061210 2014-04-30 2015-04-10 Thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion element WO2015166783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016515916A JP6174246B2 (en) 2014-04-30 2015-04-10 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-093880 2014-04-30
JP2014093880 2014-04-30
JP2015034151 2015-02-24
JP2015-034151 2015-02-24

Publications (1)

Publication Number Publication Date
WO2015166783A1 true WO2015166783A1 (en) 2015-11-05

Family

ID=54358518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061210 WO2015166783A1 (en) 2014-04-30 2015-04-10 Thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion element

Country Status (2)

Country Link
JP (1) JP6174246B2 (en)
WO (1) WO2015166783A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092407A (en) * 2015-11-17 2017-05-25 富士フイルム株式会社 Thermoelectric element
JP2017092263A (en) * 2015-11-11 2017-05-25 日東電工株式会社 Thermoelectric conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCO20110033A1 (en) 2011-08-25 2013-02-26 Nuovo Pignone Spa INTEGRATED HEAT EXCHANGER WITH PRESSURE COMPENSATION AND METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209718A (en) * 2004-01-20 2005-08-04 Ritsumeikan Thermoelectric conversion device
JP2006186255A (en) * 2004-12-28 2006-07-13 Nagaoka Univ Of Technology Thermoelectric conversion element
JP2011035203A (en) * 2009-08-03 2011-02-17 Fujitsu Ltd Thermoelectric conversion module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834866A (en) * 1994-07-25 1996-02-06 Kanegafuchi Chem Ind Co Ltd Method for improving adhrence of polyimide film and polyimide film improved in adherence
JP2002155140A (en) * 2000-08-24 2002-05-28 Du Pont Toray Co Ltd Polyimide film, its manufacturing method and metallic wiring plate using the same as base
JP5087757B2 (en) * 2007-06-08 2012-12-05 住友金属鉱山株式会社 Thermoelectric conversion module and power generator using the same
US9219216B2 (en) * 2010-11-18 2015-12-22 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing the same
JP5912855B2 (en) * 2012-05-23 2016-04-27 富士通コンポーネント株式会社 Touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209718A (en) * 2004-01-20 2005-08-04 Ritsumeikan Thermoelectric conversion device
JP2006186255A (en) * 2004-12-28 2006-07-13 Nagaoka Univ Of Technology Thermoelectric conversion element
JP2011035203A (en) * 2009-08-03 2011-02-17 Fujitsu Ltd Thermoelectric conversion module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092263A (en) * 2015-11-11 2017-05-25 日東電工株式会社 Thermoelectric conversion device
JP2017092407A (en) * 2015-11-17 2017-05-25 富士フイルム株式会社 Thermoelectric element

Also Published As

Publication number Publication date
JP6174246B2 (en) 2017-08-02
JPWO2015166783A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5493562B2 (en) Thermoelectric conversion module
US20110094556A1 (en) Planar thermoelectric generator
TW201535806A (en) Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
JP2008060488A (en) One-side electrode thermoelectric conversion module
JP6174246B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
KR20130033865A (en) Thermoelectric module and manufacturing method for theremoelectric module
JP2016187008A (en) Thermoelectric conversion device
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
US20180183360A1 (en) Thermoelectric conversion module
WO2015163105A1 (en) Thermoelectric conversion element and thermoelectric conversion element manufacturing method
JP6505585B2 (en) Thermoelectric conversion element
JP6510045B2 (en) Thermoelectric conversion element and thermoelectric conversion module
US20210202817A1 (en) Thermoelectric generation cell and thermoelectric generation module
KR101795931B1 (en) Flexible and Thin Multi-layered Thermoelectric energy generator
JP6405446B2 (en) Thermoelectric conversion element and thermoelectric conversion module
WO2015163178A1 (en) Thermoelectric conversion element and thermoelectric conversion element manufacturing method
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
US20130319491A1 (en) Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method
JP2016192424A (en) Thermoelectric conversion element and thermoelectric conversion module
WO2017051699A1 (en) Thermoelectric conversion element
EP3373348A1 (en) Thermoelectric device
JP2011018689A (en) Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion
JP2015099896A (en) Thermoelectric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786570

Country of ref document: EP

Kind code of ref document: A1