JP2011018689A - Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion - Google Patents

Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion Download PDF

Info

Publication number
JP2011018689A
JP2011018689A JP2009160749A JP2009160749A JP2011018689A JP 2011018689 A JP2011018689 A JP 2011018689A JP 2009160749 A JP2009160749 A JP 2009160749A JP 2009160749 A JP2009160749 A JP 2009160749A JP 2011018689 A JP2011018689 A JP 2011018689A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
substrate
thermoelectric
material layer
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009160749A
Other languages
Japanese (ja)
Inventor
Shigeki Egashira
繁樹 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009160749A priority Critical patent/JP2011018689A/en
Publication of JP2011018689A publication Critical patent/JP2011018689A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a laminate structure for thermoelectric conversion, capable of preventing a thermoelectric material layer from peeling from a substrate in a manufacturing step by achieving high bondability between the thermoelectric material layer and the substrate, and maintaining thermoelectric characteristics in a direction horizontal to the substrate; a thermoelectric conversion element using the laminate structure for thermoelectric conversion; an infrared sensor manufactured using the thermoelectric conversion element; and a method for manufacturing the laminate structure for thermoelectric conversion.SOLUTION: The laminate structure for thermoelectric conversion has a structure in which a substrate 10, a buffer layer 20 formed by distributingly laminating a plurality of independent laminate portions 21 comprising Ti metal or Ti alloy, and a thermoelectric material layer 30 containing as effective components one or two elements selected from a first group of Bi and Sb and one or two elements selected from a second group of Te and Se are laminated in this order.

Description

本発明は、熱電変換用積層構造、該熱電変換用積層構造を用いた熱電変換素子、該熱電変換素子を用いた赤外線センサ、及び前記熱電変換用積層構造の製造方法に関する。   The present invention relates to a laminated structure for thermoelectric conversion, a thermoelectric conversion element using the laminated structure for thermoelectric conversion, an infrared sensor using the thermoelectric conversion element, and a method for producing the laminated structure for thermoelectric conversion.

赤外線センサは、量子型と熱型とに大別される。このうち量子型は、感度及び応答速度で優れる反面、非常に高価であり、且つ即時性に劣るなど応用分野が限定される。一方、熱型は、ボロメータ型、焦電型及びサーモパイル型に分類され、感度及び応答速度に難はあるものの、安価なことから、近年著しい発展がみられる。特に自動車に積載する安価な民生用赤外線センサとしては、検出感度以外の全ての点で優れているサーモパイル型が実用化されつつある。
サーモパイル型赤外線センサとは、赤外線を吸収して熱に変換し、この熱エネルギーを熱電材料のゼーベック効果による熱起電力として検出するセンサである。この検出感度を向上させる方法として、赤外線強度を検知する熱電材料に特性の高いBiTeを適用することが有効と考えられる。しかしながら、BiTeは非常に脆い材料であり、薄膜で使用すると製造過程の超音波洗浄等により基板から剥離し易いという問題があった。
従来、成膜条件を最適化することで、基板とBiTeを用いた熱電材料との密着性を向上させるものがあった。そのようなものとして、例えば下記特許文献1がある。
下記特許文献1は、熱電発電素子およびその製造方法に関する発明で、微小な熱電発電素子を製造し導電性接着剤により配線を行う方法と、その構造に関する技術が開示されている。
Infrared sensors are roughly classified into quantum types and thermal types. Among them, the quantum type is excellent in sensitivity and response speed, but is limited in application fields such as being very expensive and inferior in immediacy. On the other hand, the thermal type is classified into a bolometer type, a pyroelectric type, and a thermopile type, and although there are difficulties in sensitivity and response speed, since it is inexpensive, remarkable development has been seen in recent years. In particular, as an inexpensive consumer infrared sensor mounted on an automobile, a thermopile type that is superior in all respects except detection sensitivity is being put into practical use.
A thermopile type infrared sensor is a sensor that absorbs infrared rays and converts the infrared rays into heat, and detects this thermal energy as a thermoelectromotive force due to the Seebeck effect of the thermoelectric material. As a method for improving the detection sensitivity, it is considered effective to apply BiTe having high characteristics to the thermoelectric material for detecting the infrared intensity. However, BiTe is a very brittle material, and when used as a thin film, there is a problem that it is easily peeled off from the substrate by ultrasonic cleaning or the like during the manufacturing process.
Conventionally, there has been a technique for improving the adhesion between a substrate and a thermoelectric material using BiTe by optimizing the film forming conditions. As such a thing, there exists the following patent document 1, for example.
Patent Document 1 below is an invention relating to a thermoelectric power generation element and a method for manufacturing the same, and discloses a method for manufacturing a micro thermoelectric power generation element and wiring with a conductive adhesive, and a technique related to the structure.

特開2001−358373号公報JP 2001-358373 A

上記特許文献1においては、微小な熱電発電素子の配線がショートやパターン欠落することがないメリットがある。
しかしながら、BiTeは非常に脆い材料であり、薄膜で使用すると製造過程の超音波洗浄等により基板から剥離し易いという問題があるところ、上記特許文献1おいては、製造段階における熱電発電素子の基板からの剥離防止に対する対策は何らとられておらず、そのような構成も何ら開示されていないという問題があった。
In the said patent document 1, there exists an advantage by which the wiring of a micro thermoelectric power generation element does not short-circuit or a pattern missing.
However, BiTe is a very brittle material, and when used as a thin film, there is a problem that it is easily peeled off from the substrate by ultrasonic cleaning or the like in the manufacturing process. There is a problem that no measures are taken against prevention of peeling from the sheet, and no such configuration is disclosed.

そこで本発明は上記従来における問題点を解決し、熱電材料層と基板との高い密着性を実現できることで、製造段階における熱電材料層の基板からの剥離防止を図ることができると共に、基板と水平方向の熱電特性を維持することが可能な熱電変換用積層構造、該熱電変換用積層構造を用いた熱電変換素子、該熱電変換素子を用いた赤外線センサ、及び前記熱電変換用積層構造の製造方法の提供を課題とする。   Therefore, the present invention solves the above-described conventional problems and realizes high adhesion between the thermoelectric material layer and the substrate, thereby preventing the thermoelectric material layer from peeling off from the substrate in the manufacturing stage and at the same time with the substrate. Laminate structure for thermoelectric conversion capable of maintaining directional thermoelectric characteristics, thermoelectric conversion element using the laminate structure for thermoelectric conversion, infrared sensor using the thermoelectric conversion element, and method for producing the laminate structure for thermoelectric conversion The issue is to provide

本発明の熱電変換用積層構造は、基板と、Ti金属若しくはTi合金からなる独立積層部を複数、相互に分散して積層形成してなる緩衝層と、Bi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層とが、この順で積層されていることを第1の特徴としている。   The laminated structure for thermoelectric conversion of the present invention is selected from a substrate, a buffer layer formed by dispersing and laminating a plurality of independent laminated parts made of Ti metal or Ti alloy, and a first group of Bi and Sb. A first feature is that a thermoelectric material layer containing one or two elements and one or two elements selected from the second group of Te and Se as active components is laminated in this order.

上記本発明の第1の特徴によれば、基板と、Ti金属若しくはTi合金からなる独立積層部を複数、相互に分散して積層形成してなる緩衝層と、Bi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層とが、この順で積層されていることから、応力に対する変形吸収能を有するTi金属層若しくはTi合金層で基板上に緩衝層を形成し、緩衝層上に熱電材料層を積層形成することで、基板と熱電材料層との高い密着性を実現できる。よって熱電材料層を薄膜で使用した場合でも、製造段階において基板から剥離し難くすることができる。
また緩衝層は、Ti金属若しくはTi合金からなる独立積層部を複数、相互に分散して積層形成することで構成されていることから、緩衝層と熱電材料層との間の絶縁性を確実に確保することができる。よって基板と水平方向の熱電特性を維持することができる。
更にBi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層とすることで、起電力の大きい熱電材料層とすることができる。
According to the first feature of the present invention, the substrate, the buffer layer formed by laminating a plurality of independent laminated parts made of Ti metal or Ti alloy, and the first group of Bi and Sb are used. Since the thermoelectric material layer containing the selected 1 or 2 element and the 1 or 2 element selected from the second group of Te and Se as active components is laminated in this order, the deformation absorption capacity against stress By forming a buffer layer on the substrate with a Ti metal layer or a Ti alloy layer having a layer and laminating a thermoelectric material layer on the buffer layer, high adhesion between the substrate and the thermoelectric material layer can be realized. Therefore, even when the thermoelectric material layer is used as a thin film, it can be made difficult to peel from the substrate in the manufacturing stage.
In addition, since the buffer layer is formed by laminating and forming a plurality of independent laminated portions made of Ti metal or Ti alloy, the insulation between the buffer layer and the thermoelectric material layer is ensured. Can be secured. Therefore, the thermoelectric characteristics in the horizontal direction with respect to the substrate can be maintained.
Furthermore, a large electromotive force is obtained by forming a thermoelectric material layer containing, as active ingredients, one or two elements selected from the first group of Bi and Sb and one or two elements selected from the second group of Te and Se. It can be a thermoelectric material layer.

また本発明の熱電変換素子は、第1の特徴に記載の熱電変換用積層構造を一定の長さをもって形成すると共に、前記熱電変換用積層構造の両端部にそれぞれ電極層を積層形成してなる温接点部と冷接点部とを設けたことを第2の特徴としている。   The thermoelectric conversion element of the present invention is formed by forming the thermoelectric conversion laminated structure according to the first feature with a certain length and laminating electrode layers on both ends of the thermoelectric conversion laminated structure. The second feature is that a hot junction part and a cold junction part are provided.

上記本発明の第2の特徴によれば、第1の特徴に記載の熱電変換用積層構造を一定の長さをもって形成すると共に、前記熱電変換用積層構造の両端部にそれぞれ電極層を積層形成してなる温接点部と冷接点部とを設けたことから、基板と熱電材料層との高い密着性を実現可能な熱電変換素子とすることができる。また基板と水平方向の熱電特性を維持することができると共に、起電力の大きい熱電変換素子とすることができる。   According to the second feature of the present invention, the thermoelectric conversion laminated structure according to the first feature is formed with a certain length, and electrode layers are laminated on both ends of the thermoelectric conversion laminated structure. Since the hot junction portion and the cold junction portion thus formed are provided, a thermoelectric conversion element capable of realizing high adhesion between the substrate and the thermoelectric material layer can be obtained. In addition, thermoelectric characteristics in the horizontal direction with respect to the substrate can be maintained, and a thermoelectric conversion element having a large electromotive force can be obtained.

また本発明の赤外線センサは、請求項2に記載の熱電変換素子の温接点部に接続している赤外線吸収発熱部を備えたことを第3の特徴としている。   A third feature of the infrared sensor of the present invention is that the infrared sensor includes an infrared absorption heat generating portion connected to the hot junction portion of the thermoelectric conversion element according to claim 2.

上記本発明の第3の特徴によれば、第2の特徴に記載の熱電変換素子の温接点部に接続している赤外線吸収発熱部を備えたことから、基板と熱電材料層との高い密着性を実現可能な赤外線センサとすることができる。また基板と水平方向の熱電特性を維持することができると共に、起電力の大きい赤外線センサとすることができる。よって高い検出感度を有する赤外線センサとすることができる。   According to the third aspect of the present invention, since the infrared absorption heat generating part connected to the hot junction part of the thermoelectric conversion element according to the second characteristic is provided, high adhesion between the substrate and the thermoelectric material layer is achieved. Infrared sensor capable of realizing the characteristics. Further, the thermoelectric characteristics in the horizontal direction with respect to the substrate can be maintained, and an infrared sensor having a large electromotive force can be obtained. Therefore, an infrared sensor having high detection sensitivity can be obtained.

また本発明の熱電変換用積層構造の製造方法は、基板上に、Ti金属若しくはTi合金による独立積層部を複数、相互に分散してなる緩衝層を積層形成する工程と、前記緩衝層を介して、Bi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層を積層形成する工程とを有することを第4の特徴としている。   The method for manufacturing a laminated structure for thermoelectric conversion according to the present invention includes a step of laminating and forming a plurality of independent laminated portions made of Ti metal or Ti alloy on a substrate, and a buffer layer formed by dispersing each other. And laminating a thermoelectric material layer containing, as active ingredients, one or two elements selected from the first group of Bi and Sb and one or two elements selected from the second group of Te and Se. This is the fourth feature.

上記本発明の第4の特徴によれば、基板上に、Ti金属若しくはTi合金による独立積層部を複数、相互に分散してなる緩衝層を積層形成する工程と、前記緩衝層を介して、Bi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層を積層形成する工程とを有することから、基板上にTi金属層若しくはTi合金層による緩衝層を積層形成すると共に、該緩衝層を介して、Bi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層を積層形成することができる。よって基板と熱電材料層との高い密着性を実現可能な熱電変換用積層構造を製造することができる。従って製造段階における熱電材料層の基板からの剥離防止を図ることができる。また緩衝層と熱電材料層との間の絶縁性を確実に確保することができ、基板と水平方向の熱電特性を維持することができる熱電変換用積層構造を製造することができる。また起電力の大きい熱電変換用積層構造を製造することができる。   According to the fourth aspect of the present invention, a step of laminating and forming a buffer layer formed by dispersing a plurality of independent laminated portions made of Ti metal or Ti alloy on the substrate, and through the buffer layer, And a step of laminating a thermoelectric material layer containing, as active ingredients, one or two elements selected from the first group of Bi and Sb and one or two elements selected from the second group of Te and Se. A buffer layer made of a Ti metal layer or a Ti alloy layer is formed on the substrate, and one or two elements selected from the first group of Bi and Sb and the second group of Te and Se are formed through the buffer layer. A thermoelectric material layer containing one or two elements selected from the above as an active ingredient can be formed. Therefore, a laminated structure for thermoelectric conversion capable of realizing high adhesion between the substrate and the thermoelectric material layer can be manufactured. Accordingly, it is possible to prevent peeling of the thermoelectric material layer from the substrate in the manufacturing stage. In addition, it is possible to manufacture a laminated structure for thermoelectric conversion that can reliably ensure insulation between the buffer layer and the thermoelectric material layer and can maintain thermoelectric characteristics in the horizontal direction with respect to the substrate. Moreover, the laminated structure for thermoelectric conversion with a large electromotive force can be manufactured.

本発明の熱電変換用積層構造、該熱電変換用積層構造を用いた熱電変換素子、該熱電変換素子を用いた赤外線センサ、及び前記熱電変換用積層構造の製造方法によれば、熱電材料層と基板との高い密着性を実現できることで、製造段階における熱電材料層の基板からの剥離防止を図ることができる。また基板と水平方向の熱電特性を維持することができると共に、起電力の大きい熱電変換用積層構造、該熱電変換用積層構造を用いた熱電変換素子、該熱電変換素子を用いた赤外線センサとすることができる。   According to the laminated structure for thermoelectric conversion of the present invention, the thermoelectric conversion element using the laminated structure for thermoelectric conversion, the infrared sensor using the thermoelectric conversion element, and the method for producing the laminated structure for thermoelectric conversion, the thermoelectric material layer and By realizing high adhesion to the substrate, it is possible to prevent the thermoelectric material layer from being peeled off from the substrate in the manufacturing stage. In addition, the thermoelectric characteristics in the horizontal direction with respect to the substrate can be maintained, and a thermoelectric conversion laminated structure having a large electromotive force, a thermoelectric conversion element using the thermoelectric conversion laminated structure, and an infrared sensor using the thermoelectric conversion element be able to.

本発明の実施形態に係る熱電変換素子の製造工程を簡略化して示す斜視図である。It is a perspective view which simplifies and shows the manufacturing process of the thermoelectric conversion element which concerns on embodiment of this invention. 本発明の実施形態に係る赤外線センサの内部構造を簡略化して示す平面図である。It is a top view which simplifies and shows the internal structure of the infrared sensor which concerns on embodiment of this invention. 本発明の実施形態に係る熱電変換素子を構成する緩衝層の変形例を示す斜視図である。It is a perspective view which shows the modification of the buffer layer which comprises the thermoelectric conversion element which concerns on embodiment of this invention.

以下の図面を参照して、本発明の実施形態に係る熱電変換用積層構造、該熱電変換用積層構造を用いた熱電変換素子、該熱電変換素子を用いた赤外線センサ、及び前記熱電変換用積層構造の製造方法を説明し、本発明の理解に供する。しかし、以下の説明は本発明の実施形態であって、特許請求の範囲に記載の内容を限定するものではない。   With reference to the following drawings, a thermoelectric conversion laminated structure according to an embodiment of the present invention, a thermoelectric conversion element using the thermoelectric conversion laminated structure, an infrared sensor using the thermoelectric conversion element, and the thermoelectric conversion laminate A method of manufacturing the structure will be described to help understand the present invention. However, the following description is an embodiment of the present invention, and does not limit the contents described in the claims.

まず図1を参照して、本発明の実施形態に係る熱電変換素子1の製造方法を説明する。   First, with reference to FIG. 1, the manufacturing method of the thermoelectric conversion element 1 which concerns on embodiment of this invention is demonstrated.

図1(a)を参照して、基板10上にTi金属からなる独立積層部21をスパッタリングにより複数、相互に分散して積層形成することで緩衝層20を形成する。
基板10としては、リジット基板、フレキシブル基板、リジットフレキシブル基板等、プリント基板として用いられるものであれば如何なるものであってもよい。例えば紙フェノール基板、紙エポキシ基板、ガラスコンポジット基板、ガラスエポキシ基板、セラミックス基板、テフロン(登録商標)基板、アルミナ基板、コンポジット基板、Si基板、SiN基板等とすることができる。
Referring to FIG. 1A, the buffer layer 20 is formed by laminating and forming a plurality of independent laminated portions 21 made of Ti metal on a substrate 10 by sputtering.
The substrate 10 may be any substrate as long as it is used as a printed circuit board, such as a rigid substrate, a flexible substrate, or a rigid flexible substrate. For example, a paper phenol substrate, a paper epoxy substrate, a glass composite substrate, a glass epoxy substrate, a ceramic substrate, a Teflon (registered trademark) substrate, an alumina substrate, a composite substrate, a Si substrate, a SiN substrate, and the like can be used.

また独立積層部21は、Ti金属からなるものに限るものではなく、Ti合金からなるものであってもよい。Ti合金としては、例えばTi−Ta、Ti−Alを用いることができる。
また独立積層部21の形成方法は、スパッタリングに限るものではなく、PLD(Pulsed Laser Deposition)法やEB(Electron Beam)法等の他の物理的蒸着法、化学的蒸着法、その他、如何なるものであってもよい。
また緩衝層20の厚みは2nm〜5nm、より好ましくは2nm〜3nmとすることが望ましい。
なお、ここで緩衝層20の「厚み」とは、図1(a)に示すように、基板10の厚み方向Aと同じ方向の寸法をさすものとする。
Moreover, the independent laminated part 21 is not restricted to what consists of Ti metal, You may consist of Ti alloy. For example, Ti-Ta or Ti-Al can be used as the Ti alloy.
In addition, the method of forming the independent laminated portion 21 is not limited to sputtering, but any other physical vapor deposition method such as PLD (Pulsed Laser Deposition) method or EB (Electron Beam) method, chemical vapor deposition method, or any other method. There may be.
The thickness of the buffer layer 20 is desirably 2 nm to 5 nm, more preferably 2 nm to 3 nm.
Here, the “thickness” of the buffer layer 20 refers to a dimension in the same direction as the thickness direction A of the substrate 10 as shown in FIG.

また独立積層部21の形状、数、基板10上における配置位置等は、本実施形態におけるものに限るものではなく、適宜変更可能である。例えば、独立積層部21の形状としては、点、楕円、四角形、多角形、線条等とすることができる。また基板10上における配置位置としては、複数の独立積層部21が規則的に配置されるものであってもよいし、不規則に配置されるものであってもよい。
つまり複数の独立積層部21を相互に分散させて積層形成することで、複数の独立積層部21を相互に独立させることができ、基板10と水平方向である、図1(c)におけるB−B線方向に電流が流れない構成とできるものであれば、如何なるものであってもよい。より具体的には、緩衝層20において、後述する温接点部41側から冷接点部42側へ電流が流れない構成とできるものであれば、如何なるものであってもよい。
Further, the shape and number of the independent laminated portions 21, the arrangement position on the substrate 10, and the like are not limited to those in the present embodiment, and can be changed as appropriate. For example, the shape of the independent laminated portion 21 can be a point, an ellipse, a quadrangle, a polygon, a filament, or the like. Further, as the arrangement position on the substrate 10, the plurality of independent laminated portions 21 may be regularly arranged, or may be irregularly arranged.
That is, by forming a plurality of independent laminated portions 21 in a mutually dispersed manner, the plurality of independent laminated portions 21 can be made independent from each other, and the horizontal direction of the substrate 10 is B- in FIG. Any configuration can be used as long as no current flows in the B-line direction. More specifically, any buffer layer 20 may be used as long as it can be configured such that no current flows from a later-described hot junction portion 41 side to a cold junction portion 42 side.

次に図1(b)を参照して、緩衝層20を形成した後、Ti金属からなる独立積層部21が酸化しないように、連続して熱電材料層30をスパッタリングにより緩衝層20の上に積層形成する。
熱電材料層30としては、Bi、Sbの第1群から選ばれる1又は2の元素と、Te、Seの第2群から選ばれる1又は2の元素とを、有効成分として含むものを用いる。例えばBi−Sb−Te、Sb−Te、Sb−Se、Bi−Se、Bi−Te、Bi−Sb−Se−Teとすることができる。このような構成とすることで、起電力の大きい熱電材料層30とすることができる。
Next, referring to FIG. 1B, after the buffer layer 20 is formed, the thermoelectric material layer 30 is continuously formed on the buffer layer 20 by sputtering so that the independent laminated portion 21 made of Ti metal is not oxidized. Laminate.
As the thermoelectric material layer 30, a layer containing 1 or 2 element selected from the first group of Bi and Sb and 1 or 2 element selected from the second group of Te and Se as active ingredients is used. For example, Bi-Sb-Te, Sb-Te, Sb-Se, Bi-Se, Bi-Te, Bi-Sb-Se-Te can be used. By setting it as such a structure, it can be set as the thermoelectric material layer 30 with a large electromotive force.

また熱電材料層30の積層方法は、スパッタリングに限るものではなく、PLD(Pulsed Laser Deposition)法やEB(Electron Beam)法などの他の物理蒸着法を用いるものであってもよい。
なお、熱電材料層30の厚みは100nm〜500nm、より好ましくは300nm〜400nmとすることが望ましい。
Moreover, the lamination | stacking method of the thermoelectric material layer 30 is not restricted to sputtering, You may use other physical vapor deposition methods, such as PLD (Pulsed Laser Deposition) method and EB (Electron Beam) method.
The thickness of the thermoelectric material layer 30 is preferably 100 nm to 500 nm, more preferably 300 nm to 400 nm.

熱電材料層30の積層形成により、図1(b)に示すように、基板10上に緩衝層20を介して熱電材料層30を積層形成してある熱電変換用積層構造100が形成される。   As shown in FIG. 1B, the thermoelectric conversion laminated structure 100 in which the thermoelectric material layer 30 is laminated on the substrate 10 via the buffer layer 20 is formed by the lamination of the thermoelectric material layer 30.

次に図1(c)を参照して、一定の長さをもって形成した熱電変換用積層構造100の両端部に電極層40を積層形成する。なお、この電極層40は、温接点部41と冷接点部42とから構成されている。
電極層40としては、金、白金、アルミニウム、銅等の良導電性金属を用いることができる。
また電極層40の形成方法は、スパッタリング、PLD(Pulsed Laser Deposition)法、EB(Electron Beam)法等の物理蒸着法を用いることができる。
以上の工程を経ることで、図1(c)に示す熱電変換素子1が製造される。
この熱電変換素子1は、以下の特徴を有する。
Next, with reference to FIG.1 (c), the electrode layer 40 is laminated | stacked and formed in the both ends of the laminated structure 100 for thermoelectric conversion formed with fixed length. The electrode layer 40 includes a hot junction part 41 and a cold junction part 42.
As the electrode layer 40, a highly conductive metal such as gold, platinum, aluminum, or copper can be used.
The electrode layer 40 can be formed by a physical vapor deposition method such as sputtering, a PLD (Pulsed Laser Deposition) method, or an EB (Electron Beam) method.
By passing through the above process, the thermoelectric conversion element 1 shown in FIG.1 (c) is manufactured.
This thermoelectric conversion element 1 has the following characteristics.

応力に対する変形吸収能を有するTi金属層若しくはTi合金層で緩衝層20を形成することで、基板10と熱電材料層30との高い密着性を実現できる。よって熱電材料層30を薄膜で使用した場合でも、製造段階において基板10から剥離し難くすることができる。
またTi金属からなる独立積層部21を複数、相互に分散して積層形成して緩衝層20を構成することで、隣接する独立積層部21間に電流が流れることを防止することができる。つまり熱電材料層30よりも高い抵抗値を有する緩衝層20とすることができる。よって緩衝層20と熱電材料層30との間に絶縁層を介することなく、緩衝層20と熱電材料層30との絶縁を確保することができる。よって基板10と水平方向の熱電特性を維持することができる。
更にBi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層30とすることで、起電力の大きい熱電変換素子1とすることができる。
High adhesion between the substrate 10 and the thermoelectric material layer 30 can be realized by forming the buffer layer 20 with a Ti metal layer or a Ti alloy layer having the ability to absorb deformation against stress. Therefore, even when the thermoelectric material layer 30 is used as a thin film, it can be made difficult to peel from the substrate 10 in the manufacturing stage.
Further, by forming a plurality of independent laminated portions 21 made of Ti metal in a mutually dispersed manner to form the buffer layer 20, it is possible to prevent current from flowing between the adjacent independent laminated portions 21. That is, the buffer layer 20 having a higher resistance value than the thermoelectric material layer 30 can be obtained. Therefore, the insulation between the buffer layer 20 and the thermoelectric material layer 30 can be ensured without interposing the insulating layer between the buffer layer 20 and the thermoelectric material layer 30. Therefore, the thermoelectric characteristics in the horizontal direction with respect to the substrate 10 can be maintained.
Furthermore, by making the thermoelectric material layer 30 including, as active ingredients, one or two elements selected from the first group of Bi and Sb and one or two elements selected from the second group of Te and Se, A large thermoelectric conversion element 1 can be obtained.

次に図2を参照して、本実施形態に係る赤外線センサ200を説明する。
この赤外線センサ200は、遠赤外線センサであり、基板10上に既述した熱電変換素子1を備えると共に、温接点部41に赤外線吸収発熱部50を接続しているものである。
同一部材、同一機能を果たすものについては、同一番号を付し、以下の説明を省略する。
Next, an infrared sensor 200 according to the present embodiment will be described with reference to FIG.
The infrared sensor 200 is a far-infrared sensor, which includes the thermoelectric conversion element 1 described above on the substrate 10 and has an infrared absorbing heat generating unit 50 connected to the hot junction 41.
The same member and the same function are given the same number, and the following description is omitted.

赤外線吸収発熱部50に赤外線が吸収されることで、赤外線吸収発熱部50と接続されている温接点部41の温度が上昇する。
温接点部41の温度が上昇すると、冷接点部42との温度差に応じた電位差が熱電材料層30に生じる。つまり熱電材料層30の電位差に応じた起電力が得られる。この起電力が冷接点部42を構成する電極から取り出され、電気信号として基板10上の読み出し回路に送られる。この電気信号は、熱電変換素子1が配置されている領域に入射された赤外線量を示している。そして基板10上の図示していない多数の熱電変換素子1からの電気信号に基づいて、外部回路で赤外線画像が作成される。
The infrared ray is absorbed by the infrared absorption heat generating unit 50, so that the temperature of the hot contact portion 41 connected to the infrared absorption heat generating unit 50 rises.
When the temperature of the hot junction part 41 rises, a potential difference corresponding to the temperature difference from the cold junction part 42 is generated in the thermoelectric material layer 30. That is, an electromotive force corresponding to the potential difference of the thermoelectric material layer 30 is obtained. This electromotive force is taken out from the electrodes constituting the cold junction portion 42 and sent as an electrical signal to a readout circuit on the substrate 10. This electrical signal indicates the amount of infrared rays incident on the region where the thermoelectric conversion element 1 is disposed. Based on electric signals from a number of thermoelectric conversion elements 1 (not shown) on the substrate 10, an infrared image is created by an external circuit.

なお赤外線吸収発熱部50は、ニッケルクロム膜、白金膜等で形成することができる。   Note that the infrared absorption heat generating portion 50 can be formed of a nickel chrome film, a platinum film, or the like.

次に図3を参照して本発明の実施形態に係る熱電変換素子1を構成する緩衝層20の変形例を説明する。   Next, with reference to FIG. 3, the modification of the buffer layer 20 which comprises the thermoelectric conversion element 1 which concerns on embodiment of this invention is demonstrated.

まず図3(a)を参照して、本変形例1は、緩衝層20を構成する独立積層部を線条に形成したものである。その他の点においては、既述した本発明の実施形態における熱電変換素子1と同一である。同一部材、同一機能を果たすものについては、同一番号を付し、以下の説明を省略する。   First, referring to FIG. 3A, in the first modification, the independent laminated portion constituting the buffer layer 20 is formed in a line. In other points, it is the same as the thermoelectric conversion element 1 in embodiment of this invention mentioned above. The same member and the same function are given the same number, and the following description is omitted.

図3(a)に示すように、C−C線方向を長寸とした線条の独立積層部22を複数、B−B線方向に間隔を隔てて積層形成することにより、緩衝層20においてB−B線方向、即ち図1(c)に示す温接点部41側から冷接点部42側へ、電流が流れない構成とすることができる。よって熱電材料層30よりも高い抵抗値を有する緩衝層20とすることができる。従って緩衝層20と熱電材料層30との間に絶縁層を介することなく、緩衝層20と熱電材料層30との絶縁を確保することができる。よって基板10と水平方向の熱電特性を維持することができる。   As shown in FIG. 3A, the buffer layer 20 is formed by laminating a plurality of independent laminated portions 22 each having a long line in the C-C line direction at intervals in the B-B line direction. It can be set as the structure which an electric current does not flow from the BB line direction, ie, the warm junction part 41 side shown in FIG.1 (c), to the cold junction part 42 side. Therefore, the buffer layer 20 having a higher resistance value than the thermoelectric material layer 30 can be obtained. Therefore, the insulation between the buffer layer 20 and the thermoelectric material layer 30 can be ensured without interposing the insulating layer between the buffer layer 20 and the thermoelectric material layer 30. Therefore, the thermoelectric characteristics in the horizontal direction with respect to the substrate 10 can be maintained.

次に図3(b)を参照して、本変形例2は、緩衝層20を構成する独立積層部をブロック状に形成したものである。その他の点においては、既述した本発明の実施形態における熱電変換素子1と同一である。同一部材、同一機能を果たすものについては、同一番号を付し、以下の説明を省略する。
なお「ブロック状」とは、複数の独立積層部23が図3(b)に示すB−B線及びC−C線方向において、均等な間隔で規則正しく配置された状態を示すものとする。
Next, with reference to FIG.3 (b), this modification 2 forms the independent laminated part which comprises the buffer layer 20 in the block shape. In other points, it is the same as the thermoelectric conversion element 1 in embodiment of this invention mentioned above. The same member and the same function are given the same number, and the following description is omitted.
The “block shape” indicates a state in which a plurality of independent laminated portions 23 are regularly arranged at equal intervals in the BB line and CC line directions shown in FIG.

独立積層部23をブロック状に形成することで、緩衝層20においてB−B線方向、即ち図1(c)に示す温接点部41側から冷接点部42側へ、電流が流れない構成とすることができる。更にC−C線方向にも電流が流れることを防止することができる。よって一段と熱電材料層30よりも高い抵抗値を有する緩衝層20とすることができる。従って緩衝層20と熱電材料層30との間に絶縁層を介することなく、緩衝層20と熱電材料層30との絶縁を確保することができる。よって基板10と水平方向の熱電特性を一段と維持することができる。   By forming the independent laminated portion 23 in a block shape, the buffer layer 20 has a configuration in which no current flows in the BB line direction, that is, from the hot junction portion 41 side to the cold junction portion 42 side shown in FIG. can do. Furthermore, it is possible to prevent a current from flowing in the CC line direction. Therefore, the buffer layer 20 having a higher resistance value than the thermoelectric material layer 30 can be obtained. Therefore, the insulation between the buffer layer 20 and the thermoelectric material layer 30 can be ensured without interposing the insulating layer between the buffer layer 20 and the thermoelectric material layer 30. Therefore, the thermoelectric characteristics in the horizontal direction with respect to the substrate 10 can be further maintained.

本発明は基板と熱電材料層との密着性及び熱電特性に優れた熱電変換素子として遠赤外線カメラ等に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a far-infrared camera or the like as a thermoelectric conversion element having excellent adhesion and thermoelectric properties between a substrate and a thermoelectric material layer.

1 熱電変換素子
10 基板
20 緩衝層
21 独立積層部
22 独立積層部
23 独立積層部
30 熱電材料層
40 電極層
41 温接点部
42 冷接点部
50 赤外線吸収発熱部
100 熱電変換用積層構造
200 赤外線センサ
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 10 Board | substrate 20 Buffer layer 21 Independent laminated part 22 Independent laminated part 23 Independent laminated part 30 Thermoelectric material layer 40 Electrode layer 41 Hot junction part 42 Cold junction part 50 Infrared absorption heating part 100 Thermoelectric conversion laminated structure 200 Infrared sensor

Claims (4)

基板と、Ti金属若しくはTi合金からなる独立積層部を複数、相互に分散して積層形成してなる緩衝層と、Bi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層とが、この順で積層されていることを特徴とする熱電変換用積層構造。   A substrate, a buffer layer formed by laminating a plurality of independent laminated portions made of Ti metal or Ti alloy, and one or two elements selected from the first group of Bi and Sb and Te and Se. A laminated structure for thermoelectric conversion, wherein a thermoelectric material layer containing one or two elements selected from the second group as an active ingredient is laminated in this order. 請求項1に記載の熱電変換用積層構造を一定の長さをもって形成すると共に、前記熱電変換用積層構造の両端部にそれぞれ電極層を積層形成してなる温接点部と冷接点部とを設けたことを特徴とする熱電変換素子。   The thermoelectric conversion laminated structure according to claim 1 is formed with a certain length, and a hot junction part and a cold junction part are formed by laminating electrode layers on both ends of the thermoelectric conversion laminate structure, respectively. The thermoelectric conversion element characterized by the above-mentioned. 請求項2に記載の熱電変換素子の温接点部に接続している赤外線吸収発熱部を備えたことを特徴とする赤外線センサ。   An infrared sensor comprising an infrared absorption heating part connected to the hot junction part of the thermoelectric conversion element according to claim 2. 基板上に、Ti金属若しくはTi合金による独立積層部を複数、相互に分散してなる緩衝層を積層形成する工程と、前記緩衝層を介して、Bi、Sbの第1群から選ばれる1又は2の元素とTe、Seの第2群から選ばれる1又は2の元素とを有効成分として含む熱電材料層を積層形成する工程とを有することを特徴とする熱電変換用積層構造の製造方法。   A step of laminating and forming a plurality of independent laminated portions of Ti metal or Ti alloy on the substrate, and a buffer layer formed by mutual dispersion; and 1 or 2 selected from the first group of Bi and Sb via the buffer layer And a step of laminating a thermoelectric material layer containing two elements and one or two elements selected from the second group of Te and Se as active ingredients.
JP2009160749A 2009-07-07 2009-07-07 Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion Pending JP2011018689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160749A JP2011018689A (en) 2009-07-07 2009-07-07 Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160749A JP2011018689A (en) 2009-07-07 2009-07-07 Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion

Publications (1)

Publication Number Publication Date
JP2011018689A true JP2011018689A (en) 2011-01-27

Family

ID=43596278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160749A Pending JP2011018689A (en) 2009-07-07 2009-07-07 Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion

Country Status (1)

Country Link
JP (1) JP2011018689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212838A (en) * 2011-03-23 2012-11-01 National Institute Of Advanced Industrial & Technology Thermoelectric thin film device
CN109411592A (en) * 2016-11-11 2019-03-01 优材科技有限公司 Thermoelectric material structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212838A (en) * 2011-03-23 2012-11-01 National Institute Of Advanced Industrial & Technology Thermoelectric thin film device
CN109411592A (en) * 2016-11-11 2019-03-01 优材科技有限公司 Thermoelectric material structure

Similar Documents

Publication Publication Date Title
JP5891584B2 (en) Thermoelectric generator
JP5987444B2 (en) Thermoelectric conversion device and manufacturing method thereof
WO2002084235A1 (en) Infrared sensor
JP5589589B2 (en) Thermoelectric element and method for manufacturing thermoelectric element
WO2010079686A1 (en) Optical sensor
JP2010165840A (en) Thermoelectric conversion module and thermoelectric conversion module block
JP5669103B2 (en) Thermoelectric thin film device
JP2011047127A (en) Window structure
JP2011018689A (en) Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion
JP6431992B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2011018688A (en) Laminate structure for thermoelectric conversion, thermoelectric conversion element, infrared sensor and method for manufacturing the laminate structure for thermoelectric conversion
JP6174246B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
WO2017022392A1 (en) Radiation heat sensor
JP6505585B2 (en) Thermoelectric conversion element
JP2003344155A (en) Infrared sensor
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method
KR20170098564A (en) Thermo electric element
JP2016192424A (en) Thermoelectric conversion element and thermoelectric conversion module
JP4817243B2 (en) Peltier module and manufacturing method thereof
JPH0760120B2 (en) Optical power sensor
JP5200884B2 (en) Thermoelectric power generation device
KR102448420B1 (en) Thermoelectric element
JP2001203399A (en) Infrared ray sensor
WO2013171941A1 (en) Infrared ray radiating element
JP5200885B2 (en) Thermoelectric power generation device