JP2002305330A - Element for thermoelectromotive force amplification - Google Patents

Element for thermoelectromotive force amplification

Info

Publication number
JP2002305330A
JP2002305330A JP2001109329A JP2001109329A JP2002305330A JP 2002305330 A JP2002305330 A JP 2002305330A JP 2001109329 A JP2001109329 A JP 2001109329A JP 2001109329 A JP2001109329 A JP 2001109329A JP 2002305330 A JP2002305330 A JP 2002305330A
Authority
JP
Japan
Prior art keywords
film
polyaniline
thermoelectromotive force
thickness
polyaniline film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001109329A
Other languages
Japanese (ja)
Inventor
Naoki Toshima
直樹 戸嶋
Ko Gen
虎 厳
Naohiko Fukuoka
直彦 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2001109329A priority Critical patent/JP2002305330A/en
Publication of JP2002305330A publication Critical patent/JP2002305330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an element for thermoelectromotive force amplification that is formed by polyanilines film having a high dimensionless thermoelectric performance index (ZT) that is not provided in the conventional organic material, can be miniaturized and thinned, and generates large thermoelectromotive force. SOLUTION: In the element for thermoelectromotive force amplification, plural thermocouples made of a laminate should be connected in series. The laminate comprises the slender polyanilines film-like object, and a semiconductor film-like object. In the polyanilines film-like object (A), the thickness, length, and width are set to 0.42 to 2×10<7> nm, 300 to 14×10<7> nm, and 300 to 2×10<7> nm, respectively. The semiconductor film-like object (B) is set to the film-like object of a p- or an n-type semiconductor (1) or (2) where the Seebeck coefficient is different from that of the polyanilines film-like object. In the semiconductor film-like object, the length and width are nearly the same as the polyanilines film-like object, and at the same time the thickness is set to 0.42 to 2×10<7> nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な熱起電力増
幅用素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel thermo-electromotive force amplifying element.

【0002】[0002]

【従来の技術】本発明者らは、先に特開2000−32
3758号公報において、ドーピングされたポリアニリ
ンからなる高導電層とドーピングされていないポリアニ
リンからなる低導電層とが交互に積層された有機熱電材
料とその製造方法に関する提案を行い、特願2000−
140831号においては、高い熱電特性における物理
的内部因子(TPF)を有するドープしたエメラルジン
型導電性ポリアニリン類とその製造方法を提案した。そ
して、特願2000−290208号においては、伸び
た分子配座を有し、膜厚0.42〜1000nm、導電
率15000Ω −1以上をもつドープしたエメラ
ルジン型導電性ポリアニリン類製膜状物とその製造方法
を提案した。
2. Description of the Related Art The present inventors have previously described Japanese Patent Application Laid-Open No. 2000-32.
No. 3758 proposes an organic thermoelectric material in which a high conductive layer made of doped polyaniline and a low conductive layer made of undoped polyaniline are alternately laminated, and a method of manufacturing the same.
No. 140831 proposed a doped emeraldine-type conductive polyaniline having a physical internal factor (TPF) with high thermoelectric properties and a method for producing the same. Japanese Patent Application No. 2000-290208 discloses a doped emeraldine-type conductive polyaniline film having an elongated molecular conformation, a film thickness of 0.42 to 1000 nm, and a conductivity of 15,000 Ω - 1 m −1 or more. Article and its manufacturing method were proposed.

【0003】しかし、汎用無機熱電材料より、熱電特性
の低いポリアニリン類膜状物を熱電材料として実用化す
るためには、そのデバイス化が必要であるということが
判ってきた。
However, it has been found that in order to put a polyaniline film having lower thermoelectric properties into practical use as a thermoelectric material than a general-purpose inorganic thermoelectric material, it is necessary to make it into a device.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
の有機材料にはなかった高い無次元熱電性能指数(Z
T)を有するポリアニリン類膜状物から形成され、小型
化や薄型化が可能で、かつ大きな熱起電力を出す熱起電
力増幅用素子に関する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high dimensionless thermoelectric figure of merit (Z) which has not been obtained in conventional organic materials.
The present invention relates to a thermoelectromotive force amplifying element which is formed from a polyaniline film having T), can be reduced in size and thickness, and generates a large thermoelectromotive force.

【0005】[0005]

【課題を解決するための手段】本発明の第1は、(A)
膜厚が0.42nm〜2×10nm、好ましくは0.
42nm〜2×10nm、とくに好ましくは0.42
nm〜2×10nm、長さが300nm〜14×10
nm、好ましくは300nm〜14×10nm、と
くに好ましくは300nm〜14×10nm、幅が3
00nm〜2×10nm、好ましくは300nm〜2
×10nm、とくに好ましくは300nm〜2×10
nmの細長いポリアニリン類膜状物と、(B)(イ)
ゼーベック係数がポリアニリン類膜状物とは異なるp型
半導体または(ロ)ゼーベック係数がポリアニリン類膜
状物とは異なるn型半導体の膜状物であって、該半導体
膜状物の長さと幅は前記ポリアニリン類膜状物とはほぼ
同一であり、かつその厚みが0.42nm〜2×10
nmである半導体膜状物、との積層体よりなる熱電対を
複数直列につないだことを特徴とする熱起電力増幅用素
子に関する。本発明の第2は、前記ポリアニリン類膜状
物が、導電率5000Ω−1−1以上の十分な導電性
を示し、かつゼーベック係数2×10−5VK−1以上
のものである請求項1記載の熱起電力増幅用素子に関す
る。本発明の第3は、前記ポリアニリン類膜状物が、3
00Kで無次元熱電性能指数(ZT)が0.01以上、
427Kで無次元熱電性能指数(ZT)が0.03以上
である請求項1または2記載の熱起電力増幅用素子に関
する。本発明の第4は、前記熱電対が5×10−3〜3
×10個/mmの積層密度で十分な数積層されてお
り、かつその熱起電力が6×10−5VK−1以上であ
る請求項1〜3いずれか記載の熱起電力増幅用素子に関
する。
Means for Solving the Problems A first aspect of the present invention is that (A)
The film thickness is 0.42 nm to 2 × 10 7 nm, preferably 0.1 nm.
42 nm to 2 × 10 5 nm, particularly preferably 0.42
nm to 2 × 10 3 nm, length 300 nm to 14 × 10
7 nm, preferably 300 nm to 14 × 10 5 nm, particularly preferably 300 nm to 14 × 10 3 nm, and a width of 3 nm.
00 nm to 2 × 10 7 nm, preferably 300 nm to 2
× 10 6 nm, particularly preferably 300 nm to 2 × 10
4 nm elongated polyaniline film, (B) (a)
A p-type semiconductor having a Seebeck coefficient different from that of a polyaniline film, or (b) an n-type semiconductor having a Seebeck coefficient different from a polyaniline film, wherein the length and width of the semiconductor film are: It is almost the same as the polyaniline film, and has a thickness of 0.42 nm to 2 × 10 7.
The present invention relates to an element for amplifying a thermoelectromotive force, characterized in that a plurality of thermocouples composed of a laminate of a semiconductor film having a thickness of nm and a laminate thereof are connected in series. A second aspect of the present invention is that the polyaniline film has a sufficient conductivity of 5000 Ω −1 m −1 or more and a Seebeck coefficient of 2 × 10 −5 VK −1 or more. 1. A thermoelectric power amplifying element according to item 1. A third aspect of the present invention is that the polyaniline film-like substance is
At 00K, the dimensionless thermoelectric figure of merit (ZT) is 0.01 or more,
The thermoelectric power amplifying element according to claim 1 or 2, wherein the dimensionless thermoelectric figure of merit (ZT) at 427K is 0.03 or more. A fourth aspect of the present invention is that the thermocouple is 5 × 10 −3 to 3 × 10 −3.
The thermoelectric power amplifying device according to any one of claims 1 to 3, wherein a sufficient number of the layers are stacked at a stacking density of × 10 4 / mm 3 and the thermoelectromotive force is 6 × 10 −5 VK −1 or more. Related to the element.

【0006】本発明におけるポリアニリン類膜状物と
は、下記式で示されるようなポリアニリン類を通常のド
ーピング剤を用いてドープしたp型のエメラルジン型導
電性ポリアニリン類膜状物(N−置換アニリン以外のも
の)を指し、その分子量は通常1万〜100万である。
このようなポリアニリン類膜状物は、基本的には本発明
者らの特開2000−323758号公報や特願200
0−290208号などにより得ることができる。
The polyaniline film in the present invention is a p-type emeraldine-type conductive polyaniline film (N-substituted aniline) obtained by doping a polyaniline represented by the following formula with a usual doping agent. ), And its molecular weight is usually 10,000 to 1,000,000.
Such polyaniline film-like materials are basically disclosed in Japanese Patent Application Laid-Open No. 2000-323758 and Japanese Patent Application No. 2000-323758.
No. 0-290208.

【化1】 (式中、R、R、R、Rは、水素、アルキル
基、アリール基、ハロゲン、スルホン酸基、カルボキシ
ル基、ニトリル基よりなる群からそれぞれ独立して選ば
れた基であり、Aはドーピング剤である酸基であり、y
は全ポリアニリン類中におけるキノイド型構造の割合を
示し、nはアニリン単位の数を示す。)
Embedded image (Wherein, R 1 , R 2 , R 3 , and R 4 are each independently selected from the group consisting of hydrogen, an alkyl group, an aryl group, a halogen, a sulfonic acid group, a carboxyl group, and a nitrile group. , A is an acid group as a doping agent, and y
Represents the ratio of the quinoid structure in all polyanilines, and n represents the number of aniline units. )

【0007】本発明に用いるドーピング剤は、ポリアニ
リン類に対する機能性酸とくに、カンファースルホン酸
(CSA)、ドデシルベンゼンスルホン酸(DBS)、
2−ナフタレンスルホン酸、リン酸などを挙げることが
できる。
The doping agent used in the present invention is a functional acid for polyanilines, particularly camphorsulfonic acid (CSA), dodecylbenzenesulfonic acid (DBS),
Examples thereof include 2-naphthalenesulfonic acid and phosphoric acid.

【0008】本発明で用いる溶剤は、とくに制限はない
が、N−メチルピロリドン(NMP)、ジメチルスルホ
キシド(DMSO)、m−クレゾール、ジメチルフラン
(DMF)、N,N′−ジメチルプロピレン尿素(DM
PU)、クロロホルム、トルエン、キシレンなどを例示
することができる。
Although the solvent used in the present invention is not particularly limited, N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), m-cresol, dimethylfuran (DMF), N, N'-dimethylpropylene urea (DM
PU), chloroform, toluene, xylene and the like.

【0009】ドープしたエメラルジン型ポリアニリン類
製膜状物調製用の混合溶液におけるポリアニリン類とド
ーパントの割合は、ポリアニリン類のアニリン単位に対
してのモル比で通常0.2〜2.0、好ましくは0.3
〜1.0、とくに好ましくは0.35〜0.55であ
り、ポリアニリン類とドーパントの総量の溶媒に対する
重量含有率は、通常1〜10重量%、好ましくは3〜8
重量%、とくに好ましくは4〜5重量%である。
The ratio of the polyaniline and the dopant in the mixed solution for preparing the doped emeraldine-type polyaniline film-forming material is usually 0.2 to 2.0, preferably 0.2 to 2.0, preferably in a molar ratio of the polyaniline to the aniline unit. 0.3
The weight content of the total amount of the polyaniline and the dopant with respect to the solvent is usually 1 to 10% by weight, preferably 3 to 8%.
%, Particularly preferably 4 to 5% by weight.

【0010】前記ポリアニリン類とドーパントおよび溶
媒との混合溶液に、その溶解状態を向上させる目的で超
音波処理を行うことが望ましい。超音波処理機の出力は
110〜930W、液温は20〜55℃、処理時間は1
〜10時間程度であるが、液温はドーパントや溶媒の沸
点によって変化する。このようにして得られた溶液は遠
心分離などの手段によって不溶分を完全に除去すること
が好ましい。
It is desirable that the mixed solution of the polyaniline, the dopant and the solvent is subjected to ultrasonic treatment for the purpose of improving the dissolution state. The output of the ultrasonic processor is 110-930W, the liquid temperature is 20-55 ° C, and the processing time is 1
The liquid temperature varies depending on the dopant and the boiling point of the solvent. It is preferable that the solution thus obtained is completely removed of insoluble components by means such as centrifugation.

【0011】不溶分を除去したポリアニリン類溶液は、
流延成形、スピンコートなどの手段で薄膜に成形する。
溶液濃度をうすくすれば流延成形でもかなり膜厚を薄く
することができる。
The polyaniline solution from which the insolubles have been removed is
It is formed into a thin film by means such as casting and spin coating.
If the solution concentration is reduced, the film thickness can be considerably reduced even in casting.

【0012】前記塗布密度は、The coating density is as follows:

【数1】塗布密度=(塗布した溶液の重量)/(塗布さ
れた基板の面積) 単位:(gcm−2) で示すことができる。
## EQU1 ## Coating density = (weight of applied solution) / (area of applied substrate) Unit: (gcm −2 )

【0013】本発明における製膜手段は、とくに制限す
るものではないが、スピンコート法やスプレー法などを
用いることができる。
The film forming means in the present invention is not particularly limited, but a spin coating method, a spray method or the like can be used.

【0014】本発明におけるポリアニリン類膜状物の長
さに関する規定は、ポリアニリン類分子の長さの可能な
上限と下限を示し、ポリアニリン類膜状物の幅は、その
分子の幅とトンネル電流が流れない分子間隔との範囲を
カバーする範囲であり、ポリアニリン類膜状物の厚み
は、その分子の厚みとトンネル電流が流れなくなる分子
間隔との範囲をカバーする範囲である。しかしながら本
発明の特徴とする点は小型の熱電対が高体積密度で一体
化されていることである。
The definition of the length of the polyaniline film in the present invention indicates the upper limit and the lower limit of the length of the polyaniline molecule, and the width of the polyaniline film is determined by the width of the molecule and the tunnel current. The thickness of the polyaniline film is a range that covers the range of the molecular spacing that does not flow, and the thickness of the polyaniline film covers the range of the molecular spacing that prevents the tunnel current from flowing. However, a feature of the present invention is that a small thermocouple is integrated with a high volume density.

【0015】本発明で用いるポリアニリン類はp型ゼー
ベック係数を示すが、これと異なるゼーベック係数を示
すp型半導体としては、例えばポリピロール、ポリチオ
フェン、ポリパラフェニレン、ポリビニレンフェニレ
ン、ポリアセンなどを挙げることができる。また、ポリ
アニリン類と異なるゼーベック係数を示すn型半導体と
しては、白金−ロジウム合金、白金、金、銅、グラファ
イトなどを挙げることができるが、これに限定されるも
のではない。
The polyaniline used in the present invention has a p-type Seebeck coefficient. Examples of the p-type semiconductor having a different Seebeck coefficient include polypyrrole, polythiophene, polyparaphenylene, polyvinylenephenylene, and polyacene. it can. Examples of the n-type semiconductor exhibiting a Seebeck coefficient different from that of polyanilines include a platinum-rhodium alloy, platinum, gold, copper, graphite, and the like, but are not limited thereto.

【0016】前記(B)のp型またはn型半導体は、前
記(A)のポリアニリン類膜状物(外観的にはいわゆる
膜状のものから線状のものまでを包含している)と積層
して用いる関係上、その長さと幅は、前記(A)のポリ
アニリン類膜状物とほぼ同一であるが、厚みは必ずしも
同一である必要はなく、同じである方が最高積層密度が
得られるので好ましい。これらの条件を満足するよう
に、つぎの範囲から、前記(B)の半導体膜状物の寸法
を設定することができる。すなわち、前記(B)の半導
体膜状物は、膜厚が0.42nm〜2×10nm、好
ましくは0.42nm〜2×10nm、特に好ましく
は0.42nm〜2×10nmと薄く、長さが300
nm〜14×10nm、好ましくは300nm〜14
×10nm、特に好ましくは300nm〜14×10
nmと短く、幅が300nm〜2×10nm、好ま
しくは300nm〜2×10nm、とくに好ましくは
300nm〜2×10nmと細い形状のものである。
The p-type or n-type semiconductor of (B) is laminated with the polyaniline-like film of (A) (including the so-called film-like to linear-like appearance). Although the length and width are almost the same as those of the above-mentioned polyaniline film-like material (A), the thickness is not necessarily required to be the same, and the same lamination gives the highest lamination density. It is preferred. The dimensions of the semiconductor film (B) can be set from the following ranges so as to satisfy these conditions. That is, the semiconductor film-like material (B) has a thickness of 0.42 nm to 2 × 10 7 nm, preferably 0.42 nm to 2 × 10 5 nm, and particularly preferably 0.42 nm to 2 × 10 3 nm. Thin and 300 in length
nm to 14 × 10 7 nm, preferably 300 nm to 14
× 10 5 nm, particularly preferably 300 nm to 14 × 10
It is as short as 3 nm, and has a narrow width of 300 nm to 2 × 10 7 nm, preferably 300 nm to 2 × 10 6 nm, particularly preferably 300 nm to 2 × 10 4 nm.

【0017】本発明の熱起電力増幅素子は、前記(A)
のポリアニリン類膜状物と前記(B)の半導体膜状物の
積層体よりなる熱電対を複数直列につないだものである
が、本発明の基本である積層体の断面は、正方形でも長
方形でも円でもよく、長方形のケースが後述の実施例1
であり、円のケースが後述の実施例2である。積層密度
と製造方法の観点からいうと幅の方が高さ(膜厚)より
大きい長方形の方が望ましい。
The thermoelectromotive force amplifying element of the present invention is characterized in that (A)
A plurality of thermocouples composed of a laminate of the polyaniline film and the semiconductor film of the above (B) are connected in series, and the cross section of the laminate which is the basis of the present invention may be square or rectangular. It may be a circle, and a rectangular case is described in Example 1 described later.
The case of a circle is Example 2 described later. From the viewpoint of the lamination density and the manufacturing method, a rectangle having a width larger than the height (film thickness) is preferable.

【0018】本発明のポリアニリン膜状物を用いた熱起
電力増幅素子は、300Kで無次元熱電性能指数(Z
T)が0.01、427Kで無次元熱電性能指数(Z
T)が0.03と、従来報告された導電性有機高分子の
中で、一番大きな値を示すポリアニリン類膜とゼーベッ
ク係数の異なる他の熱電材料膜とから形成されており、
従来報告された導電性有機高分子の熱電特性ZTより大
きな値を示すことが特徴的である。なお、ZTは
The thermoelectromotive force amplifying device using the polyaniline film of the present invention has a dimensionless thermoelectric figure of merit (Z) at 300K.
T) is 0.01 or 427 K, and the dimensionless thermoelectric figure of merit (Z
T) is 0.03, which is formed from a polyaniline film showing the largest value among the conductive organic polymers reported so far and another thermoelectric material film having a different Seebeck coefficient,
It is characteristic that it shows a value larger than the thermoelectric property ZT of the conductive organic polymer reported hitherto. In addition, ZT

【数2】ZT=T×(Sσ/k) Sはゼーベック係数(VK−1)(絶対温度差1℃当り
の起電力) σは導電率(Ω−1−1) kは熱伝導率(Wm−1−1) Tは絶対温度 で示すことができる。
ZT = T × (S 2 σ / k) S is Seebeck coefficient (VK −1 ) (electromotive force per 1 ° C. absolute temperature difference) σ is conductivity (Ω −1 m −1 ) k is heat Conductivity (Wm -1 K -1 ) T can be expressed in absolute temperature.

【0019】また本発明の熱起電力増幅素子は、請求項
1〜3いずれか記載のポリアニリン類膜状物やゼーベッ
ク係数の異なる他のp型やn型半導体膜状物のどちらか
の熱電材料のゼーベック係数やZTよりいずれも大きな
値を示すことが特徴的である。
Further, the thermoelectric power amplifying element of the present invention is a thermoelectric material of any one of the polyaniline film material according to any one of claims 1 to 3 and another p-type or n-type semiconductor film material having a different Seebeck coefficient. It is a characteristic that it shows a value larger than both the Seebeck coefficient and ZT.

【0020】本発明における積層密度は、The lamination density in the present invention is:

【数3】積層密度=(積層した熱電対の数)/(熱起電
力増幅用素子の体積) 単位:(個/nm) で示すことができる〔図2(b)参照〕。
## EQU3 ## Stacking density = (number of stacked thermocouples) / (volume of thermoelectromotive force amplifying element) Unit: (number / nm 3 ) [see FIG. 2 (b)].

【0021】[0021]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれにより何等限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited in any way by this.

【0022】実施例1 アニリンを重合温度−8℃〜−6℃で化学酸化重合する
ことにより得られた重量平均分子量(Mw)9900
0、分散度(Mw/Mn)=3.20のポリアニリン
1.0gを(±)−10−カンファースルホン酸1.2
g、m−クレゾール24.9gの混合液に溶解し、液温
20〜55℃において、110〜930W、38KHz
の超音波処理を4時間行い、溶解とドーピングを充分に
進行させた後、遠心分離を行って不溶解分を除去した。
このようにして得られたドープしたエメラルジン型導電
性ポリアニリン溶液をシリコンウェーハ基板上に2×1
−3gcm−2の塗布密度でスピンコートし、80℃
で10分間加熱して、図1に示すような1×10nm
の膜厚のドープしたエメラルジン型導電性ポリアニリン
膜〔導電率=10000Ω−1−1、ZT=10−2
(300K)〕を得た。この膜を20Torr〜10
−4Torrの減圧下60℃で24時間乾燥処理して熱
電特性測定用サンプルとした。
Example 1 Weight average molecular weight (Mw) 9900 obtained by subjecting aniline to chemical oxidation polymerization at a polymerization temperature of -8 ° C to -6 ° C.
0, 1.0 g of polyaniline having a dispersity (Mw / Mn) of 3.20 was added to (±) -10-camphorsulfonic acid 1.2.
g and m-cresol in a mixed solution of 24.9 g, and at a liquid temperature of 20 to 55 ° C., 110 to 930 W and 38 KHz.
Was carried out for 4 hours to sufficiently advance dissolution and doping, and then centrifuged to remove insoluble components.
The thus obtained doped emeraldine-type conductive polyaniline solution was placed on a silicon wafer substrate at 2 × 1
Spin coating at a coating density of 0 −3 gcm −2 , 80 ° C.
For 10 minutes, and 1 × 10 5 nm as shown in FIG.
Emeraldine-type conductive polyaniline film [conductivity = 10000Ω −1 m −1 , ZT = 10 −2]
(300K)]. Apply this film at 20 Torr to 10
The sample was dried at 60 ° C. for 24 hours under a reduced pressure of −4 Torr to obtain a thermoelectric property measurement sample.

【0023】このポリアニリン膜と膜厚1mmのグラフ
ァイト膜(HOPG)から、図2に示すように、積層密
度5×10−3個/mmの熱起電力増幅用素子を作製
してその熱起電力を測定すると300Kで2.5×10
−4VK−1以上の大きな値を示した。この値は、従来
報告された導電性有機高分子のゼーベック係数に比べる
と20倍近く大きかった。
From this polyaniline film and a 1 mm-thick graphite film (HOPG), as shown in FIG. 2, a thermoelectric power amplifying element having a lamination density of 5 × 10 −3 pieces / mm 3 was prepared and the heat generation was performed. 2.5 × 10 at 300K when measuring power
-4 VK -1 or more. This value was nearly 20 times larger than the Seebeck coefficient of a conductive organic polymer reported hitherto.

【0024】実施例2 実施例1のポリアニリン膜を用いて白金合金線を被覆す
ることにより形成した線状熱電対を図2(a)と同様の
要領で接続して、積層密度88個/mmの熱起電力増
幅用素子を作製した。この場合白金合金線は本発明の前
記(B)に相当するゼーベック係数の異なる熱電材料と
接続線の両方を兼ねる役割を果たしている。そしてこの
熱起電力増幅素子の熱起電力を測定すると、300Kで
6.0×10−5VK−1以上の大きな値を示した。こ
の値は従来報告された導電性有機高分子のゼーベック係
数に比べると4倍近く大きい。
Example 2 A linear thermocouple formed by coating a platinum alloy wire using the polyaniline film of Example 1 was connected in the same manner as in FIG. A thermoelectric power amplifying element of No. 3 was produced. In this case, the platinum alloy wire serves as both a thermoelectric material having a different Seebeck coefficient and a connection wire corresponding to the above (B) of the present invention. When the thermoelectromotive force of this thermoelectric power amplification element was measured, it showed a large value of 6.0 × 10 −5 VK −1 or more at 300K. This value is nearly four times larger than the Seebeck coefficient of a conductive organic polymer reported in the past.

【0025】比較例1 実施例1のポリアニリン膜のみの熱電特性を測定する
と、熱起電力が1.3×10−5VK−1と、実施例1
と2の熱電対列に比べて4分の1〜20分の1倍の低い
値を示した。
COMPARATIVE EXAMPLE 1 The thermoelectric properties of only the polyaniline film of Example 1 were measured, and the thermoelectromotive force was found to be 1.3 × 10 −5 VK −1.
2 and 1 to 20 times lower than those of the thermopile trains 2 and 2.

【0026】[0026]

【発明の効果】本発明における熱起電力増幅用素子は、
小型や薄型が容易であり、温度差を直接電力に変換した
り、反対に電力を直接温度差に変換する素子であり、可
動部がなく直接変換できる点が特徴的である。具体的に
は体温で動く時計、振動のない冷蔵庫(ワイン冷却保存
用)、レーザーを利用した発電、液化天然ガスなどの冷
廃熱を利用した発電、発熱するのが避けられないデバイ
スたとえばEL素子やLSIなどの電子冷却材(ペルチ
エ効果を利用)として用いることが可能である。
The element for amplifying a thermoelectromotive force according to the present invention comprises:
It is easy to be small and thin, and it is an element that directly converts a temperature difference into electric power, or conversely, directly converts electric power into a temperature difference. Specifically, a clock that moves at body temperature, a refrigerator without vibration (for cooling and storing wine), power generation using a laser, power generation using cold waste heat such as liquefied natural gas, and a device that cannot avoid generating heat, such as an EL element It can be used as an electronic coolant (utilizing the Peltier effect) such as an LSI and an LSI.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたポリアニリン膜の断面の走
査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of a cross section of a polyaniline film obtained in Example 1.

【図2】実施例1で作製した熱起電力増幅用素子の概念
図である。(a)は、直列につないだことを示す回路図
である。(b)は、(a)の積層された状態の立体的概
念図である。
FIG. 2 is a conceptual diagram of a thermoelectromotive force amplifying element manufactured in Example 1. (A) is a circuit diagram showing that they are connected in series. (B) is a three-dimensional conceptual diagram of the laminated state of (a).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福岡 直彦 兵庫県神戸市中央区東川崎町1丁目3番3 号 ケミプロ化成株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Naohiko Fukuoka 1-3-3 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Inside Chemipro Kasei Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (A)厚みが0.42nm〜2×10
nm、長さが300nm〜14×10nm、幅が30
0nm〜2×10nmの細長いポリアニリン類膜状物
と、(B)(イ)ゼーベック係数がポリアニリン類膜状
物とは異なるp型半導体または(ロ)ゼーベック係数が
ポリアニリン類膜状物とは異なるn型半導体の膜状物で
あって、該半導体膜状物の長さと幅は前記ポリアニリン
類膜状物とはほぼ同一であり、かつその厚みが0.42
nm〜2×10nmである半導体膜状物、との積層体
よりなる熱電対を複数直列につないだことを特徴とする
熱起電力増幅用素子。
(A) a thickness of 0.42 nm to 2 × 10 7
nm, length between 300 nm and 14 × 10 7 nm, width 30
An elongated polyaniline film having a thickness of 0 nm to 2 × 10 7 nm, and (B) a (a) p-type semiconductor having a Seebeck coefficient different from that of a polyaniline film or (b) a polyaniline film having a Seebeck coefficient. A film of a different n-type semiconductor, wherein the length and width of the semiconductor film are substantially the same as those of the polyaniline film, and the thickness thereof is 0.42.
A thermo-electromotive force amplifying element comprising a plurality of thermocouples, each of which is formed by laminating a semiconductor film having a thickness of 2 nm to 2 × 10 7 nm.
【請求項2】 前記ポリアニリン類膜状物が、導電率5
000Ω−1−1以上の十分な導電性を示し、かつゼ
ーベック係数2×10−5VK−1以上のものである請
求項1記載の熱起電力増幅用素子。
2. The method according to claim 1, wherein the polyaniline film has a conductivity of 5.
The element for amplifying a thermoelectromotive force according to claim 1, wherein the element has sufficient conductivity of 000 Ω −1 m −1 or more and has a Seebeck coefficient of 2 × 10 −5 VK −1 or more.
【請求項3】 前記ポリアニリン類膜状物が、300K
で無次元熱電性能指数(ZT)が0.01以上、427
Kで無次元熱電性能指数(ZT)が0.03以上である
請求項1または2記載の熱起電力増幅用素子。
3. The polyaniline film material is 300K.
Dimensionless thermoelectric figure of merit (ZT) is 0.01 or more, 427
The thermoelectric power amplifying element according to claim 1 or 2, wherein a dimensionless thermoelectric figure of merit (ZT) in K is 0.03 or more.
【請求項4】 前記熱電対が5×10−3〜3×10
個/mmの積層密度で十分な数積層されており、かつ
その熱起電力が6×10−5VK−1以上である請求項
1〜3いずれか記載の熱起電力増幅用素子。
4. The thermocouple according to claim 1, wherein said thermocouple is 5 × 10 −3 to 3 × 10 4.
The thermoelectromotive force amplifying element according to any one of claims 1 to 3, wherein a sufficient number of the thermoelectromotive force elements are stacked at a stacking density of 3 pieces / mm3, and the thermoelectromotive force is 6 x 10-5 VK- 1 or more.
JP2001109329A 2001-04-06 2001-04-06 Element for thermoelectromotive force amplification Pending JP2002305330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109329A JP2002305330A (en) 2001-04-06 2001-04-06 Element for thermoelectromotive force amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109329A JP2002305330A (en) 2001-04-06 2001-04-06 Element for thermoelectromotive force amplification

Publications (1)

Publication Number Publication Date
JP2002305330A true JP2002305330A (en) 2002-10-18

Family

ID=18961289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109329A Pending JP2002305330A (en) 2001-04-06 2001-04-06 Element for thermoelectromotive force amplification

Country Status (1)

Country Link
JP (1) JP2002305330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519505B2 (en) 2008-10-20 2013-08-27 3M Innovative Properties Company Electrically conductive polymer composite and thermoelectric device using electrically conductive polymer material
CN110233201A (en) * 2019-07-12 2019-09-13 中国科学院化学研究所 A kind of plural layers device of six cyano trimethylene cyclopropane doping CuPc

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121815A (en) * 1997-10-17 1999-04-30 Seiko Instruments Inc Thermoelectric element
JP2000323758A (en) * 1999-05-06 2000-11-24 Science Univ Of Tokyo Organic thermoelectric material and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121815A (en) * 1997-10-17 1999-04-30 Seiko Instruments Inc Thermoelectric element
JP2000323758A (en) * 1999-05-06 2000-11-24 Science Univ Of Tokyo Organic thermoelectric material and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519505B2 (en) 2008-10-20 2013-08-27 3M Innovative Properties Company Electrically conductive polymer composite and thermoelectric device using electrically conductive polymer material
US8669635B2 (en) 2008-10-20 2014-03-11 3M Innovative Properties Company Electrically conductive nanocomposite material and thermoelectric device comprising the material
CN110233201A (en) * 2019-07-12 2019-09-13 中国科学院化学研究所 A kind of plural layers device of six cyano trimethylene cyclopropane doping CuPc

Similar Documents

Publication Publication Date Title
Wang et al. Naphthodithiophenediimide–bithiopheneimide copolymers for high‐performance n‐type organic thermoelectrics: significant impact of backbone orientation on conductivity and thermoelectric performance
Petsagkourakis et al. Thermoelectric materials and applications for energy harvesting power generation
Fan et al. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface
Culebras et al. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction
Zhang et al. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently
Zuo et al. High Seebeck coefficient and power factor in n‐type organic thermoelectrics
Yue et al. Poly (3, 4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review
Jiang et al. Improved thermoelectric performance of PEDOT: PSS films prepared by polar-solvent vapor annealing method
JP4296236B2 (en) Thermoelectric material, thermoelectric element and method for producing thermoelectric material
Chen et al. Flexible Thermoelectric generators with ultrahigh output power enabled by magnetic field–aligned metallic nanowires
Liu et al. Flexible unipolar thermoelectric devices based on patterned poly [K x (Ni-ethylenetetrathiolate)] thin films
Pudzs et al. Thin film organic thermoelectric generator based on tetrathiotetracene
Abd Rahman et al. Effect of bismuth telluride concentration on the thermoelectric properties of PEDOT: PSS–glycerol organic films
JP3694855B2 (en) Organic thermoelectric material and method for producing the same
Zhu et al. Thermoelectric performance of poly (3-hexylthiophene) films doped by iodine vapor with promising high seebeck coefficient
JP4282948B2 (en) Thermoelectric conversion material and thermoelectric conversion element
Ukai et al. Electrical conduction of regioregular and regiorandom poly (3-hexylthiophene) doped with iodine
JP2002305330A (en) Element for thermoelectromotive force amplification
Oki et al. Thermoelectric thiophene dendrimers with large Seebeck coefficients
Rahman et al. Enhanced thermoelectric properties of bismuth telluride–organic hybrid films via graphene doping
KR101650709B1 (en) Manufacturing Method For High Crystalline Thermoelectric Film
JP2000323758A5 (en)
JP2019512879A (en) Thermal voltage generator
Lohn et al. Assessment on thermoelectric power factor in silicon nanowire networks
Lu et al. Preparation of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)/Fe3O4 nanocomposite film and its thermoelectric performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405