JPH06188464A - Thin film thermoelectric element and manufacture thereof - Google Patents

Thin film thermoelectric element and manufacture thereof

Info

Publication number
JPH06188464A
JPH06188464A JP4337452A JP33745292A JPH06188464A JP H06188464 A JPH06188464 A JP H06188464A JP 4337452 A JP4337452 A JP 4337452A JP 33745292 A JP33745292 A JP 33745292A JP H06188464 A JPH06188464 A JP H06188464A
Authority
JP
Japan
Prior art keywords
thin film
film thermoelectric
thermoelectric material
insulating
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4337452A
Other languages
Japanese (ja)
Inventor
Yasushi Nakagiri
康司 中桐
Hisaaki Gyoten
久朗 行天
Yoshiaki Yamamoto
義明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4337452A priority Critical patent/JPH06188464A/en
Publication of JPH06188464A publication Critical patent/JPH06188464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To prevent the transfer of heat from a high temperature side to a low temperature side inside an insulating board and protect element efficiency from being degraded by dividing the insulating board to which a thin film thermoelectric material adheres into several portions, providing a span alternately. CONSTITUTION:A thin film thermoelectric material 4 is continuously installed in such a manner that it may span insulating boards 2 and 3 which are separated without contact. Metal electrodes 5 and 6 are installed to the ends of the insulating boards 2 and 3 which are separated from each other while they are placed in contact with the thin film thermoelectric material 4. Peltier effect absorbs and generates heat on an interface in contact with the thin film thermoelectric material 4, thereby producing differential temperatures on both ends of the thin film thermoelectric material 4. Since the insulating boards 1 and 2 are separated from each other in this case, this construction makes it possible to prevent heat loss resultant from the transfer of heat from a high temperature side to a low temperature side passing through the boards and obtain a compact and widely applicable thin film thermoelectric element without causing a drop in element efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱と電気を相互に変換
する熱電素子に関し、特に薄膜材料を用いた薄膜熱電素
子及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric element for converting heat and electricity to each other, and more particularly to a thin film thermoelectric element using a thin film material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】熱電材料は、両端に温度差をつけると電
圧が発生し、逆に通電すると温度差が発生する材料であ
り、従来から廃熱利用による発電や、通電による局所部
分の冷却等に使用されていた。そして、その場合の熱電
材料はバルク材料と呼ばれる一辺が数mmの直方体や円
筒形状のエレメントを用い、これらを複数個林立させて
使用していた。
2. Description of the Related Art Thermoelectric materials are materials in which a voltage is generated when a temperature difference is applied to both ends and a temperature difference is generated when electricity is applied to the opposite ends. Was used to. In this case, the thermoelectric material used is a rectangular parallelepiped or cylindrical element having a side of several mm, which is called a bulk material, and a plurality of these elements are used in a standing state.

【0003】ところが、近年、その熱電材料を薄膜形状
とする試みが、2つの理由からなされてきている。1つ
は、最近のマイクロエレクトロニクスの発展等により、
微細加工、微細領域制御、薄膜加工等の技術が進展し、
熱電材料においても薄膜形状で対応する必要性が高ま
り、応用分野が増えていることである。2つは、バルク
材料は溶製、焼結等の方法で作製し、不純物の添加等に
より材料性能を向上させているが、現状の性能では広範
囲な実用化にはまだ適していない。
However, in recent years, attempts to form the thermoelectric material into a thin film have been made for two reasons. One is the recent development of microelectronics.
Technology such as fine processing, fine area control, thin film processing has advanced,
In thermoelectric materials as well, there is an increasing need for thin film shapes, and the number of application fields is increasing. Second, the bulk material is manufactured by a method such as melting and sintering, and the material performance is improved by adding impurities, but the current performance is not yet suitable for wide-range practical use.

【0004】そこで、製造方法を変え、形状に工夫を加
える等の手段によって従来とは違った特長を見出してい
くことが必要であり、その一つとして薄膜材料にて熱電
素子を作製する試みがなされている。
Therefore, it is necessary to find a characteristic different from the conventional one by changing the manufacturing method and devising the shape, and one of them is an attempt to manufacture a thermoelectric element with a thin film material. Has been done.

【0005】薄膜材料からなる熱電素子において、温度
差又は通電の方向として2方向が考えられる。即ち、膜
面方向と膜厚方向である。膜厚方向の場合は、基本的に
はバルク材料を相似的に縮小したものと考えられるが、
その場合非常に近距離に温度差をつけることになり、熱
ロスが発生する可能性が多い。また製造プロセスを考え
た場合も、膜の表裏に熱的接触を良好に伝熱媒体設置さ
せることも困難であると考えられる。そこで、膜面方向
を温度差又は通電方向とする方法が実際的である。
In a thermoelectric element made of a thin film material, two directions can be considered as the temperature difference or the direction of energization. That is, the film surface direction and the film thickness direction. In the case of the thickness direction, it is considered that the bulk material is basically reduced in size,
In that case, a temperature difference is made in a very short distance, and heat loss is likely to occur. Also, when considering the manufacturing process, it is considered difficult to satisfactorily establish thermal contact between the front and back surfaces of the film so as to provide a heat transfer medium. Therefore, a practical method is to make the film surface direction the temperature difference or the energization direction.

【0006】膜面方向に通電した場合の温度差を考える
ための例を図3を用いて説明する。
An example for considering the temperature difference when current is applied in the film surface direction will be described with reference to FIG.

【0007】図3に示した薄膜熱電素子11において、
絶縁性基板12の表面には、金属電極13、14が設置
され、薄膜熱電材料15が付着されている。金属電極1
3、14間に電流を流すことにより、金属電極13と薄
膜熱電材料15の界面及び金属電極14と薄膜熱電材料
15の界面においてペルチェ効果により吸熱及び発熱が
発生する。その結果、薄膜熱電材料15の両端には、そ
れに相当した温度差が発生する。そして、P型およびN
型半導体の薄膜熱電材料を利用してこのような素子を多
数並列することにより、この温度差を拡大して冷却等に
使用することが可能となる。
In the thin film thermoelectric element 11 shown in FIG.
On the surface of the insulating substrate 12, metal electrodes 13 and 14 are installed, and a thin film thermoelectric material 15 is attached. Metal electrode 1
By passing an electric current between 3 and 14, heat absorption and heat generation occur at the interface between the metal electrode 13 and the thin film thermoelectric material 15 and at the interface between the metal electrode 14 and the thin film thermoelectric material 15 due to the Peltier effect. As a result, a temperature difference corresponding to that occurs at both ends of the thin film thermoelectric material 15. And P-type and N
By arranging a large number of such elements in parallel by using a thin film thermoelectric material of the type semiconductor, it becomes possible to expand this temperature difference and use it for cooling or the like.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな構成の場合の熱収支を考えてみると、通常バルク材
料でも熱ロスとなる熱電材料内部の熱移動に加えて、基
板内部を通って高温側から低温側へと熱が流れてしまう
ことが分かる。すなわち、単独で存在しているバルク材
料に対して、薄膜材料ではどうしても付着すべき基板が
存在しているのでその基板が熱ロスの一因となり、同等
の熱電性能を持つバルク材料と薄膜材料で比較すると、
素子効率がどうしても薄膜材料を用いた場合の方が劣っ
てしまうという問題があった。
However, considering the heat balance in the case of such a configuration, in addition to the heat transfer inside the thermoelectric material which usually causes heat loss even in the bulk material, a high temperature is passed through the inside of the substrate. It can be seen that heat flows from the side to the low temperature side. In other words, in contrast to the bulk material that exists alone, there is a substrate that must adhere to the thin film material, and that substrate contributes to heat loss. By comparison,
There is a problem that the element efficiency is inferior when the thin film material is used.

【0009】本発明は上記従来の問題点に鑑み、薄膜熱
電材料を用いても効率低下を起こさずに利用できる薄膜
熱電素子及びその製造方法を提供することを目的とす
る。
In view of the above-mentioned conventional problems, it is an object of the present invention to provide a thin film thermoelectric element which can be used without lowering the efficiency even when a thin film thermoelectric material is used, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本願の第1発明の薄膜熱
電素子は、互いに間隔を設けて分割された複数の板状又
は薄膜状の絶縁性基板と、絶縁性基板の表面に絶縁性基
板間の間隔を橋渡しして連続して設けた薄膜熱電材料
と、薄膜熱電材料の両端部にそれぞれ接合した金属部と
から成ることを特徴とする。
A thin film thermoelectric element according to the first invention of the present application comprises a plurality of plate-like or thin film-like insulating substrates divided at intervals, and an insulating substrate on the surface of the insulating substrate. It is characterized by comprising a thin film thermoelectric material which is continuously provided by bridging an interval between the thin film thermoelectric material and metal parts which are respectively joined to both ends of the thin film thermoelectric material.

【0011】本願の第2発明の薄膜熱電素子の製造方法
は、絶縁性基板の表面に、薄膜熱電材料の付着と金属部
の形成を行い、薄膜熱電材料は保存した状態で絶縁性基
板の一部を除去して絶縁性基板を間隔を設けて分割する
ことを特徴とする。
In the method for manufacturing a thin film thermoelectric element of the second invention of the present application, the thin film thermoelectric material is adhered and the metal part is formed on the surface of the insulating substrate, and the thin film thermoelectric material is stored on the surface of the insulating substrate. It is characterized in that the insulating substrate is divided by removing the portions to provide an interval.

【0012】好適には、絶縁性基板の除去部が可溶性有
機物により構成されている。
Preferably, the removed portion of the insulating substrate is made of a soluble organic substance.

【0013】[0013]

【作用】本発明の薄膜熱電素子によれば、薄膜熱電材料
を付着する絶縁性基板が互いに間隔を設けて複数に分割
されているため、この絶縁性基板内部を高温側から低温
側へと熱が伝わるのを防止でき、素子効率の低下を防止
することができる。
According to the thin-film thermoelectric element of the present invention, since the insulating substrates to which the thin-film thermoelectric material is adhered are divided into a plurality of portions with a space therebetween, the inside of the insulating substrate is heated from the high temperature side to the low temperature side. Can be prevented from being transmitted, and a decrease in element efficiency can be prevented.

【0014】又、絶縁性基板に薄膜熱電材料を付着した
後この絶縁性基板の一部を除去することにより、特にそ
の除去部を可溶性有機物にて構成して容易に除去するこ
とにより、薄膜熱電材料にて橋渡しされた絶縁性基板の
分割部を容易に製造することができる。
Further, by depositing a thin film thermoelectric material on an insulating substrate and then removing a part of this insulating substrate, particularly by making the removed portion of a soluble organic substance and easily removing it, the thin film thermoelectric material can be easily removed. It is possible to easily manufacture the divided portion of the insulating substrate bridged by the material.

【0015】[0015]

【実施例】以下、本発明の一実施例の薄膜熱電素子につ
いて図1、図2を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A thin film thermoelectric element according to an embodiment of the present invention will be described below with reference to FIGS.

【0016】図1において、1は薄膜熱電素子である。
2、3は互いに接触せずに分離された絶縁性基板であ
り、その表面に薄膜熱電材料4が付着されている。この
薄膜熱電材料4は分離された絶縁性基板2、3間の間隔
を橋渡しして連続して設けられている。絶縁性基板2、
3の互いに離れた端部には金属電極5、6が設置され、
薄膜熱電材料4の両端部と接触している。
In FIG. 1, reference numeral 1 is a thin film thermoelectric element.
Reference numerals 2 and 3 denote insulating substrates which are separated without making contact with each other, and a thin film thermoelectric material 4 is attached to the surface thereof. The thin film thermoelectric material 4 is continuously provided by bridging the gap between the separated insulating substrates 2 and 3. Insulating substrate 2,
Metal electrodes 5 and 6 are installed at the ends of the 3 apart from each other,
It is in contact with both ends of the thin film thermoelectric material 4.

【0017】このような構成において、金属電極5、6
間に電流を流すことにより、金属電極5、6と薄膜熱電
材料4が接触している界面でペルチェ効果により吸熱・
発熱が起こり、薄膜熱電材料4の両端に温度差が生じ
る。
In such a structure, the metal electrodes 5, 6
By passing an electric current between them, heat is absorbed by the Peltier effect at the interface between the metal electrodes 5 and 6 and the thin film thermoelectric material 4.
Heat is generated, and a temperature difference occurs at both ends of the thin film thermoelectric material 4.

【0018】この場合、絶縁性基板2、3が一体となっ
た基板では、基板内を通って高温側から低温側へと熱が
移動してしまい、熱ロスとなってしまうが、本実施例で
は絶縁性基板1、2が分離された構造となっているの
で、このようなロスは生じない。結果としてバルク材料
と比べて効率低下を起こすことはない。
In this case, in the substrate in which the insulating substrates 2 and 3 are integrated, heat is transferred from the high temperature side to the low temperature side through the inside of the substrate, resulting in heat loss. In this case, since the insulating substrates 1 and 2 are separated, such loss does not occur. As a result, there is no loss of efficiency compared to bulk materials.

【0019】さらに、このような薄膜熱電素子1はコン
パクトであり、マイクロエレクトロニクス技術との複合
により広い汎用性が期待される。
Further, such a thin film thermoelectric element 1 is compact, and is expected to have a wide versatility by combining with the microelectronics technology.

【0020】次に、上記薄膜熱電素子1の製造方法につ
いて、図2を参照しながら説明する。まず、絶縁性基板
2、3を間隔を設けて配置してそれら間に介装した可溶
性有機材料7にて一体化し、基板8を構成する。続い
て、この基板8の両端に金属電極5、6を設置する。次
に、これら絶縁性基板2、3及び可溶性有機材料7の表
面に薄膜熱電材料4を金属電極5、6に接触させるよう
に付着する。最後に、基板8の可溶性有機材料7を有機
溶媒(図示せず)により溶解して除去する。
Next, a method of manufacturing the thin film thermoelectric element 1 will be described with reference to FIG. First, the insulating substrates 2 and 3 are arranged at intervals and integrated with the soluble organic material 7 interposed therebetween to form the substrate 8. Then, the metal electrodes 5 and 6 are installed on both ends of the substrate 8. Next, the thin film thermoelectric material 4 is attached to the surfaces of the insulating substrates 2 and 3 and the soluble organic material 7 so as to be in contact with the metal electrodes 5 and 6. Finally, the soluble organic material 7 of the substrate 8 is dissolved and removed by an organic solvent (not shown).

【0021】この場合、可溶性有機材料7及び有機溶媒
(図示せず)は、薄膜熱電材料4の性質に影響を及ぼさ
ないものにする必要がある。また、薄膜熱電素子1の強
度の面から薄膜熱電材料4の膜厚をある程度確保するた
めには、薄膜熱電材料4を印刷、コーティング等で数1
0μmの厚さに形成する方法がある。
In this case, the soluble organic material 7 and the organic solvent (not shown) must be those that do not affect the properties of the thin film thermoelectric material 4. Further, in order to secure the film thickness of the thin film thermoelectric material 4 to some extent from the viewpoint of the strength of the thin film thermoelectric element 1, the thin film thermoelectric material 4 may be printed, coated, etc.
There is a method of forming to a thickness of 0 μm.

【0022】上記のような製造方法を用いることによ
り、互いに間隔を設けて分割された複数の絶縁性基板
2、3の表面及び絶縁性基板2、3間の間隔を橋渡しし
て連続して設けられた薄膜熱電材料4を有する薄膜熱電
素子1を製造することが可能となる。
By using the above-described manufacturing method, the surfaces of the plurality of insulating substrates 2 and 3 divided at intervals and the intervals between the insulating substrates 2 and 3 are bridged and continuously provided. It is possible to manufacture the thin film thermoelectric element 1 having the thin film thermoelectric material 4 thus obtained.

【0023】なお、薄膜熱電材料4を絶縁性基板の表面
に付着させた後、分割部に設けた可燃性材料を熱処理に
て完全燃焼させて除去したり、一体の絶縁性基板の一部
を機械的加工にて除去する等の方法によって絶縁性基板
を間隔を設けて分割してもよい。それらの方法を用いた
場合でも、薄膜熱電材料4の性質に影響を及ぼさないよ
うに留意する必要がある。
After depositing the thin film thermoelectric material 4 on the surface of the insulating substrate, the combustible material provided in the divided portions is completely burned and removed by heat treatment, or a part of the integrated insulating substrate is removed. The insulating substrate may be divided at intervals by a method such as removal by mechanical processing. Even if these methods are used, it is necessary to take care so as not to affect the properties of the thin film thermoelectric material 4.

【0024】[0024]

【発明の効果】本発明によれば、以上のように薄膜熱電
材料を付着した絶縁性基板が互いに間隔を設けて複数に
分割されているため、この絶縁性基板内部を高温側から
低温側へと熱が伝わるのを防止でき、素子効率の低下を
起こすことなく、コンパクトで応用性の広い薄膜熱電素
子を得ることができる。
As described above, according to the present invention, since the insulating substrates to which the thin film thermoelectric material is adhered are divided into a plurality of spaces at intervals, the inside of the insulating substrate changes from the high temperature side to the low temperature side. It is possible to prevent the transfer of heat, and to obtain a thin film thermoelectric element that is compact and has a wide range of applications, without causing a decrease in element efficiency.

【0025】また、絶縁性基板に薄膜熱電材料を付着し
た後この絶縁性基板の一部を除去することにより、特に
その除去部を可溶性有機物にて構成して容易に除去する
ことにより、薄膜熱電材料にて橋渡しされた絶縁性基板
の分割部を容易に形成して、安価に薄膜熱電素子を製造
することができる。
Further, by depositing the thin film thermoelectric material on the insulating substrate and then removing a part of the insulating substrate, in particular, the removal portion is made of a soluble organic substance and easily removed. It is possible to easily form the divided portion of the insulating substrate bridged by the material and manufacture the thin film thermoelectric element at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における薄膜熱電素子を示
し、(a)は平面図、(b)は正面図である。
1A and 1B show a thin film thermoelectric element according to an embodiment of the present invention, wherein FIG. 1A is a plan view and FIG. 1B is a front view.

【図2】同実施例の薄膜熱電素子の製造工程の説明図で
ある。
FIG. 2 is an explanatory diagram of a manufacturing process of the thin film thermoelectric element of the example.

【図3】従来例の薄膜熱電素子を示し、(a)は平面
図、(b)は正面図である。
3A and 3B show a conventional thin film thermoelectric element, in which FIG. 3A is a plan view and FIG. 3B is a front view.

【符号の説明】[Explanation of symbols]

1 薄膜熱電素子 2 絶縁性基板 3 絶縁性基板 4 薄膜熱電材料 5 金属電極 6 金属電極 7 可溶性有機材料 1 Thin Film Thermoelectric Element 2 Insulating Substrate 3 Insulating Substrate 4 Thin Film Thermoelectric Material 5 Metal Electrode 6 Metal Electrode 7 Soluble Organic Material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いに間隔を設けて分割された複数の板
状又は薄膜状の絶縁性基板と、絶縁性基板の表面に絶縁
性基板間の間隔を橋渡しして連続して設けた薄膜熱電材
料と、薄膜熱電材料の両端部にそれぞれ接合した金属部
とから成ることを特徴とする薄膜熱電素子。
1. A plurality of plate-shaped or thin-film insulating substrates divided at intervals, and a thin-film thermoelectric material continuously provided on the surface of the insulating substrate by bridging the intervals between the insulating substrates. And a metal part bonded to both ends of the thin film thermoelectric material, respectively.
【請求項2】 絶縁性基板の表面に、薄膜熱電材料の付
着と金属部の形成を行い、薄膜熱電材料を保存した状態
で絶縁性基板の一部を除去して絶縁性基板を間隔を設け
て分割することを特徴とする薄膜熱電素子の製造方法。
2. A thin film thermoelectric material is adhered and a metal part is formed on the surface of the insulating substrate, and a part of the insulating substrate is removed in a state where the thin film thermoelectric material is preserved to provide the insulating substrate with a space. A method for manufacturing a thin-film thermoelectric element, characterized in that the thin film thermoelectric element is divided.
【請求項3】 絶縁性基板の除去部が可溶性有機物によ
り構成されていることを特徴とする請求項2記載の薄膜
熱電素子の製造方法。
3. The method for producing a thin film thermoelectric element according to claim 2, wherein the removed portion of the insulating substrate is made of a soluble organic substance.
JP4337452A 1992-12-17 1992-12-17 Thin film thermoelectric element and manufacture thereof Pending JPH06188464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4337452A JPH06188464A (en) 1992-12-17 1992-12-17 Thin film thermoelectric element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4337452A JPH06188464A (en) 1992-12-17 1992-12-17 Thin film thermoelectric element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06188464A true JPH06188464A (en) 1994-07-08

Family

ID=18308773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337452A Pending JPH06188464A (en) 1992-12-17 1992-12-17 Thin film thermoelectric element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06188464A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043423A (en) * 1997-04-28 2000-03-28 Sharp Kabushiki Kaisha Thermoelectric device and thermoelectric module
WO2009084172A1 (en) 2007-12-27 2009-07-09 Daikin Industries, Ltd. Thermoelectric device
US8519505B2 (en) 2008-10-20 2013-08-27 3M Innovative Properties Company Electrically conductive polymer composite and thermoelectric device using electrically conductive polymer material
JP2015511404A (en) * 2012-02-24 2015-04-16 オー−フレックス・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Thermoelectric element
DE102017115168A1 (en) * 2017-07-06 2019-01-10 Mahle International Gmbh Thermoelectric module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043423A (en) * 1997-04-28 2000-03-28 Sharp Kabushiki Kaisha Thermoelectric device and thermoelectric module
WO2009084172A1 (en) 2007-12-27 2009-07-09 Daikin Industries, Ltd. Thermoelectric device
US8536439B2 (en) 2007-12-27 2013-09-17 Daikin Industries, Ltd. Thermoelectric device
US8519505B2 (en) 2008-10-20 2013-08-27 3M Innovative Properties Company Electrically conductive polymer composite and thermoelectric device using electrically conductive polymer material
US8669635B2 (en) 2008-10-20 2014-03-11 3M Innovative Properties Company Electrically conductive nanocomposite material and thermoelectric device comprising the material
JP2015511404A (en) * 2012-02-24 2015-04-16 オー−フレックス・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Thermoelectric element
US9899588B2 (en) 2012-02-24 2018-02-20 O-Flexx Technologies Gmbh Thermoelectric element
DE102017115168A1 (en) * 2017-07-06 2019-01-10 Mahle International Gmbh Thermoelectric module
DE102017115168B4 (en) * 2017-07-06 2019-02-14 Mahle International Gmbh Thermoelectric module

Similar Documents

Publication Publication Date Title
JP3447915B2 (en) Thermoelectric element and thermoelectric element module using the same
US4497973A (en) Thermoelectric device exhibiting decreased stress
US8536439B2 (en) Thermoelectric device
JPS58212377A (en) Improved thermoelectric device and method of producing same
EP0122121A2 (en) Improved substrateless thermoelectric device and method of making same
KR100658699B1 (en) Flexible thermoelectric module
JP4622577B2 (en) Cascade module for thermoelectric conversion
JPH09199766A (en) Manufacture of thermoelectric conversion module
RU2606250C2 (en) Thermoelectric element
JPH06188464A (en) Thin film thermoelectric element and manufacture thereof
JPH01208876A (en) Thermoelectric device and manufacture thereof
JP2006319262A (en) Thermoelectric conversion module
JPS61240665A (en) Semiconductor device
JPH0955541A (en) Thermoelectric device
JPS6114103A (en) Ozonizer using ceramic
JPH03295281A (en) Thermoelectric device and manufacture thereof
JPH02198179A (en) Thermoelectric element and manufacture thereof
JPH06310765A (en) Thermionic element and thermionic device
JPH08153898A (en) Thermoelectric element
EP3428981B1 (en) Thermoelectric conversion module
JPS60235430A (en) Semiconductor device
JPH0669549A (en) Thermoelectric device
JPH06275871A (en) Thermoelectric power generation module
JP2001024242A (en) Thermoelectric power generating module
JP2018182090A (en) Peltier module and manufacturing method of peltier module