JPH06310765A - Thermionic element and thermionic device - Google Patents

Thermionic element and thermionic device

Info

Publication number
JPH06310765A
JPH06310765A JP5096128A JP9612893A JPH06310765A JP H06310765 A JPH06310765 A JP H06310765A JP 5096128 A JP5096128 A JP 5096128A JP 9612893 A JP9612893 A JP 9612893A JP H06310765 A JPH06310765 A JP H06310765A
Authority
JP
Japan
Prior art keywords
thermoelectric element
copper
layer
type
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5096128A
Other languages
Japanese (ja)
Other versions
JP3472593B2 (en
Inventor
Yasutada Kobayashi
靖忠 木林
Masataka Yamanashi
正孝 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP09612893A priority Critical patent/JP3472593B2/en
Publication of JPH06310765A publication Critical patent/JPH06310765A/en
Application granted granted Critical
Publication of JP3472593B2 publication Critical patent/JP3472593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To protect a thermionic semiconductor against damage or falling off by composing the electrode of a thermionic element of a nickel layer and a copper layer or a copper alloy layer of specific or larger thickness. CONSTITUTION:A contact electrode having double structure of a nickel plating layer and a copper plating layer of 10mum thick or thicken formed at the opposite ends of a Bi-Te based thermionic semiconductor 13 is bonded through a solder layer 18 to a copper electrode formed on a heat-exchanging board 11 comprising an insulating board of alumina ceramic, for example. The thick copper plating layer in the contact electrode relaxes concentration of stress and the copper having the properties for reducing the oxide of solder flux also provides high wettability to the solder thus enhancing the reliability. This structure enhances durability against the temperature cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電素子およびこれを
用いた熱電装置に係り、特にその電極構造に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric element and a thermoelectric device using the same, and more particularly to an electrode structure thereof.

【0002】[0002]

【従来の技術】p型半導体とn型半導体とを、金属電極
を介して接合してpn素子対を形成し、この接合部を流
れる電流の方向によって一方の端部が発熱せしめられる
と共に他方の端部が冷却せしめられるいわゆるペルチェ
効果を利用した熱電素子は、小型で構造が簡単なことか
ら、携帯用ク―ラ等いろいろなデバイスにおいて幅広い
利用が期待されている。
2. Description of the Related Art A p-type semiconductor and an n-type semiconductor are joined to each other through a metal electrode to form a pn element pair, and one end is made to generate heat and the other is made to go by the direction of the current flowing through this joint. Thermoelectric elements that utilize the so-called Peltier effect, whose ends can be cooled, are expected to be widely used in various devices such as portable coolers because of their small size and simple structure.

【0003】従来このような熱電素子は、図4に示すよ
うに、例えばBi−Te系熱電半導体103の両端に形
成されたニッケルめっき層106aと半田層106bと
の2層構造の接触電極106を、アルミナセラミックな
どの絶縁性基板からなる熱交換基板101上に形成され
た銅電極105に、固着することによって形成されてい
た。この場合接触電極106は極めて薄く形成されるた
め、熱電半導体103と熱交換基板101との間の熱膨
張率の差に起因して発生する応力が、すべて半田層10
6bにかかるため、温度サイクルに対する耐久性が悪い
という問題がある。
Conventionally, such a thermoelectric element has, as shown in FIG. 4, a contact electrode 106 having a two-layer structure of a nickel plating layer 106a and a solder layer 106b formed at both ends of a Bi-Te system thermoelectric semiconductor 103, for example. It was formed by fixing to a copper electrode 105 formed on a heat exchange substrate 101 made of an insulating substrate such as an alumina ceramic. In this case, since the contact electrode 106 is formed to be extremely thin, the stress generated due to the difference in coefficient of thermal expansion between the thermoelectric semiconductor 103 and the heat exchange substrate 101 is entirely applied to the solder layer 10.
Since it takes 6b, there is a problem that the durability against the temperature cycle is poor.

【0004】このような熱電素子を多数個集めて形成し
たサ―モモジュ―ルは、例えば、図5に示すように、ア
ルミナセラミックス基板等の熱伝導性の良好な絶縁性基
板からなる第1および第2の熱交換基板111,112
間にこれに対して良好な熱接触性をもつように多数個の
PN素子対113が挟持せしめられると共に、各素子対
113間を夫々第1および第2の電極114,115に
よって直列接続せしめられて構成されている。
A thermomodule formed by collecting a large number of such thermoelectric elements has, for example, as shown in FIG. 5, a first and a second insulating substrates made of an insulating ceramic material such as an alumina ceramic substrate. Second heat exchange substrate 111, 112
A large number of PN element pairs 113 are sandwiched between them so as to have good thermal contact therewith, and each element pair 113 is connected in series by the first and second electrodes 114 and 115, respectively. Is configured.

【0005】そして、この第1および第2の電極11
4,115は大電流にも耐え得るように通常銅板からな
り、熱交換基板111,112表面に形成された導電体
層パタ―ン上に半田層116bを介して固着されてい
る。
Then, the first and second electrodes 11
4, 115 are usually made of a copper plate so as to be able to withstand a large current, and are fixed on a conductor layer pattern formed on the surfaces of the heat exchange substrates 111, 112 via a solder layer 116b.

【0006】更にこの第1および第2の電極上には、半
田層116bおよびニッケル層116aを介してP型熱
電素子113a又はN型熱電素子113bが交互に夫々
1対ずつ固着せしめられ、PN素子対113を構成する
と共に各素子対間は直列接続されている。
Further, a pair of P-type thermoelectric elements 113a or N-type thermoelectric elements 113b are alternately fixed on the first and second electrodes via a solder layer 116b and a nickel layer 116a, respectively. The pair 113 is formed and each element pair is connected in series.

【0007】ここでP型熱電素子113aとN型熱電素
子113bは、熱起電力、電気抵抗等の特性が異なるた
め、大きさを変化させる必要がある場合があるが、実装
の困難性から通常は、P型,N型ともに同一形状の熱電
素子を用いていた。
Since the P-type thermoelectric element 113a and the N-type thermoelectric element 113b have different characteristics such as thermoelectromotive force and electric resistance, it may be necessary to change the size, but it is usually difficult to mount them. Used the same type of thermoelectric element for both P type and N type.

【0008】しかしながら特性の異なるP型およびN型
の熱電素子を同一形状にした場合、P型熱電素子113
aとN型熱電素子113bとで電気的なマッチング(相
性)の最適化をとることができず、熱電モジュールとし
ての性能が低下するという問題があった。
However, when the P-type and N-type thermoelectric elements having different characteristics have the same shape, the P-type thermoelectric element 113 is used.
There is a problem in that the electrical matching (compatibility) cannot be optimized between a and the N-type thermoelectric element 113b, and the performance as a thermoelectric module is deteriorated.

【0009】[0009]

【発明が解決しようとする課題】このように従来の熱電
装置の熱交換基板材料あるいは電極と、熱電半導体本体
との熱膨張係数の差に起因する応力集中により、低温側
と高温側の温度差が大きくなったり、温度変化が大きく
なるに従い、熱電半導体が破損したり、脱落したりする
という問題があった。
As described above, due to the stress concentration due to the difference in the thermal expansion coefficient between the heat exchange substrate material or electrode of the conventional thermoelectric device and the thermoelectric semiconductor body, the temperature difference between the low temperature side and the high temperature side is high. There is a problem that the thermoelectric semiconductor may be damaged or fall out as the temperature becomes larger or the temperature change becomes larger.

【0010】また熱電装置では、P型熱電素子113a
とN型熱電素子113bは、熱起電力、電気抵抗等の特
性が異なるため、大きさを変化させる必要がある場合が
あるが、実装の困難性から通常は同一形状の熱電素子を
用いており、形状が同一であると、P型熱電素子113
aとN型熱電素子113bとで電気的なマッチングの最
適化ができず、熱電モジュールの性能が低下するという
問題があった。
In the thermoelectric device, the P-type thermoelectric element 113a is used.
Since the N-type thermoelectric element 113b and the N-type thermoelectric element 113b have different characteristics such as thermoelectromotive force and electric resistance, it may be necessary to change the size, but due to the difficulty of mounting, the thermoelectric elements having the same shape are usually used. , The P-type thermoelectric element 113 has the same shape.
There is a problem in that the electrical matching cannot be optimized between a and the N-type thermoelectric element 113b, and the performance of the thermoelectric module deteriorates.

【0011】本発明は、前記実情に鑑みてなされたもの
で、形状因子を比較的自由に選ぶことができまた、高温
部と低温部との温度差ΔTが大きい場合や温度変化が大
きい場合にも適用可能であり、熱電半導体が破損した
り、脱落したりすることなく信頼性の高い熱電装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and the shape factor can be selected relatively freely, and the temperature difference ΔT between the high temperature portion and the low temperature portion is large or the temperature change is large. The present invention is also applicable, and an object thereof is to provide a highly reliable thermoelectric device without damaging or dropping the thermoelectric semiconductor.

【0012】[0012]

【課題を解決するための手段】そこで本発明では、熱電
素子の、熱電半導体に形成される接触電極を、ニッケル
層と、厚さ10μm 以上の銅層又は銅を含む合金層とで
構成する。
Therefore, in the present invention, the contact electrode formed on the thermoelectric semiconductor of the thermoelectric element is composed of a nickel layer and a copper layer having a thickness of 10 μm or more or an alloy layer containing copper.

【0013】また本発明の第2では、この熱電半導体本
体の両端に相対向して形成された1対の電極を形成し、
熱電半導体本体の厚さが前記熱電素子の厚さの80%以
下となるようにしている。
According to a second aspect of the present invention, a pair of electrodes formed facing each other at both ends of the thermoelectric semiconductor body is formed.
The thickness of the thermoelectric semiconductor body is 80% or less of the thickness of the thermoelectric element.

【0014】さらに本発明の第3では、熱交換基板上に
電極を介してn型熱電素子とp型熱電素子とからなる少
なくとも1対の熱電素子対を配設した熱電装置におい
て、前記n型熱電素子とp型熱電素子がそれぞれn型お
よびp型熱電素子本体の両端に相対向して形成された1
対の電極とから構成され、一方の熱電素子本体が他方の
熱電素子本体よりも厚く、かつ素子全体としての厚さが
n型熱電素子とp型熱電素子とで互いに等しくなるよう
に各電極の厚さを調整している。
Further, in a third aspect of the present invention, there is provided a thermoelectric device in which at least one thermoelectric element pair consisting of an n-type thermoelectric element and a p-type thermoelectric element is provided on a heat exchange substrate via electrodes, wherein the n-type thermoelectric element is provided. A thermoelectric element and a p-type thermoelectric element are formed opposite to each other at both ends of the n-type and p-type thermoelectric element bodies, respectively.
A pair of electrodes, one of the thermoelectric element bodies is thicker than the other thermoelectric element body, and the n-type thermoelectric element and the p-type thermoelectric element have the same total thickness of each electrode. The thickness is adjusted.

【0015】[0015]

【作用】上記構成によれば、銅層又は銅を含む合金は半
田との濡れ性が良好であり、厚い銅層又は銅を含む合金
層の側面まで半田が良好になじむため、半田フィレット
部の応力集中が緩和され、温度サイクルに対する耐久性
を増加せしめることができる。
According to the above structure, the copper layer or the alloy containing copper has good wettability with the solder, and the solder is well adapted to the side surface of the thick copper layer or the alloy layer containing copper. Stress concentration can be relaxed, and durability against temperature cycling can be increased.

【0016】また、本発明の第2によれば、熱電半導体
本体の厚さの1.2倍以上の厚さの熱電素子を形成する
ため、厚さが非常に薄い熱電素子も組み立てが容易であ
る。また素子のL/A(厚さ/断面積)すなわち形状因
子を比較的自由に選ぶことができ、最大電流値を自由に
選ぶことができる。
According to the second aspect of the present invention, since the thermoelectric element having a thickness 1.2 times or more the thickness of the thermoelectric semiconductor body is formed, the thermoelectric element having a very small thickness can be easily assembled. is there. Further, the L / A (thickness / cross-sectional area) of the element, that is, the form factor can be relatively freely selected, and the maximum current value can be freely selected.

【0017】さらに本発明の第3によれば、p型熱電素
子本体とn型熱電素子本体とを同一断面で異なる長さと
なるように設計することができ、電気的特性がそれぞれ
異なる場合でも最適設計を行うことができ、しかも機械
的組み立てが容易である。
Further, according to the third aspect of the present invention, the p-type thermoelectric element body and the n-type thermoelectric element body can be designed so as to have different lengths in the same cross section, and are optimal even when the electric characteristics are different from each other. It can be designed and is easy to mechanically assemble.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0019】実施例1 この熱電素子は、図1に部分拡大断面図を示すように、
接触電極をニッケルめっき層16と厚さ15μm の銅め
っき層17とによって形成し、これを半田層18を介し
て熱交換基板上に接続したことを特徴とする。
Example 1 This thermoelectric element has a partially enlarged sectional view as shown in FIG.
The contact electrode is formed by a nickel plating layer 16 and a copper plating layer 17 having a thickness of 15 μm, which is connected to the heat exchange substrate via a solder layer 18.

【0020】すなわち、Bi−Te系熱電半導体13の
両端に形成されたニッケルめっき層16と厚さ15μm
の銅めっき層17とによって形成された2層構造の接触
電極を、アルミナセラミックなどの絶縁性基板からなる
熱交換基板11上に形成された銅電極15に、半田層1
8を介して固着することによって形成されている。
That is, the nickel plating layers 16 formed on both ends of the Bi-Te system thermoelectric semiconductor 13 and the thickness of 15 μm.
The copper-plated layer 17 and the contact electrode having a two-layer structure are connected to the copper electrode 15 formed on the heat exchange substrate 11 made of an insulating substrate such as alumina ceramic and the solder layer 1
It is formed by fixing via 8.

【0021】かかる構成によれば、接触電極に厚い銅め
っき層を含むため、この銅めっき層によって応力集中が
緩和され、かつ銅は半田フラックスの酸化物を還元し易
い性質を有し半田との濡れ性も良好であるため、接続の
信頼性が高い。したがって温度サイクルに対する耐久性
が増大する。
According to this structure, since the contact electrode includes the thick copper plating layer, stress concentration is relaxed by the copper plating layer, and copper has a property of easily reducing the oxide of the solder flux, and the copper Since the wettability is also good, the connection is highly reliable. Therefore, the durability against temperature cycling is increased.

【0022】実施例2 この熱電素子は、図2に示すように、厚さ0.2mmの超
薄型熱電半導体23の両端にNiめっき層26を介し
て、1.3mmの厚い銅めっき層27を形成したことを特
徴とするものである。
Example 2 As shown in FIG. 2, this thermoelectric element has a 1.3 mm thick copper plating layer 27 with Ni plating layers 26 at both ends of an ultrathin thermoelectric semiconductor 23 having a thickness of 0.2 mm. Is formed.

【0023】すなわち、Bi−Te系熱電半導体23の
両端に形成されたニッケルめっき層26と厚さ1.0mm
の厚づけ銅めっき層27とによって形成された2層構
造の接触電極を形成したもので、アルミナセラミックな
どの絶縁性基板からなる熱交換基板(図示せず)上に形
成された銅電極(図示せず)に、半田層を介して固着さ
れている。
That is, the nickel plating layers 26 formed on both ends of the Bi-Te system thermoelectric semiconductor 23 and the thickness of 1.0 mm
A thick contact copper plating layer 27 and a contact electrode having a two-layer structure, which is formed on a heat exchange substrate (not shown) made of an insulating substrate such as alumina ceramic (see FIG. (Not shown) is fixed via a solder layer.

【0024】かかる構成によれば、上記実施例1の効果
に加え、熱電半導体本体の厚さの6倍以上の厚さの熱電
素子を形成するため、厚さが非常に薄い熱電素子も組み
立てが容易である。また素子のL/A(厚さ/断面積)
すなわち形状因子を比較的自由に選ぶことができ、最大
電流値を自由に選ぶことができる。
According to this structure, in addition to the effects of the first embodiment, since the thermoelectric element having a thickness of 6 times or more the thickness of the thermoelectric semiconductor body is formed, the thermoelectric element having a very thin thickness can be assembled. It's easy. In addition, L / A of element (thickness / cross-sectional area)
That is, the form factor can be relatively freely selected, and the maximum current value can be freely selected.

【0025】実施例3 この熱電装置は、図3に示すように、このp型熱電素子
とn型熱電素子とで断面積は同一にしてp型熱電半導体
33aをn型熱電半導体33bよりも薄くし、この差を
接触電極を構成する銅めっき層37a,37bの厚さを
調整することにより補償し、全長の等しい熱電素子対を
形成したことを特徴とする。
Example 3 In this thermoelectric device, as shown in FIG. 3, the p-type thermoelectric element and the n-type thermoelectric element have the same cross-sectional area, and the p-type thermoelectric semiconductor 33a is thinner than the n-type thermoelectric semiconductor 33b. However, this difference is compensated by adjusting the thickness of the copper plating layers 37a and 37b forming the contact electrodes to form thermoelectric element pairs having the same total length.

【0026】すなわち、p型(Bi−Te系)熱電半導
体33aをp型(Bi−Te系)熱電半導体33bより
も薄くしさらにニッケルめっき層36を介してこれらの
両端に形成される銅めっき層37a,bとによって形成
された2層構造の接触電極を、アルミナセラミックなど
の絶縁性基板からなる熱交換基板31,32上に形成さ
れた銅電極35に、半田層38を介して固着することに
よって形成されている。 ここでp型熱電素子の銅めっ
き層37aはn型熱電素子の銅めっき層37bよりも、
p型熱電半導体33aとp型熱電半導体33bとの厚さ
の差の2分の1だけ厚く形成され、両素子が熱交換基板
31,32に良好に接続せしめられるように構成されて
いる。
That is, the p-type (Bi-Te based) thermoelectric semiconductor 33a is made thinner than the p-type (Bi-Te based) thermoelectric semiconductor 33b, and the copper plating layers formed on both ends of the nickel plating layer 36 are interposed therebetween. Fixing the contact electrode having a two-layer structure formed by 37a and 37b to the copper electrode 35 formed on the heat exchange substrates 31 and 32 made of an insulating substrate such as alumina ceramic through the solder layer 38. Is formed by. Here, the copper plating layer 37a of the p-type thermoelectric element is
The p-type thermoelectric semiconductor 33a and the p-type thermoelectric semiconductor 33b are formed to be thicker by a half of the difference in thickness, so that both elements can be satisfactorily connected to the heat exchange substrates 31 and 32.

【0027】かかる構成によれば、p型熱電素子本体と
n型熱電素子本体とを同一断面で異なる長さとなるよう
に設計することができ、電気的特性がそれぞれ異なる場
合でも最適設計を行うことができ、最大電流値を等しく
することができる。さらにまた機械的組み立てが容易で
ある。
With this structure, the p-type thermoelectric element body and the n-type thermoelectric element body can be designed to have different lengths in the same cross section, and optimal design can be performed even when the electric characteristics are different from each other. The maximum current value can be made equal. Furthermore, mechanical assembly is easy.

【0028】なお前記実施例では、銅めっき層を用いた
例について説明したが、銅合金等他の材料を用いても良
い。
In the above embodiment, an example using a copper plating layer has been described, but other materials such as copper alloy may be used.

【0029】[0029]

【発明の効果】以上説明してきたように、本発明によれ
ば、温度サイクルに対する耐久性が向上し、組み立てが
容易で設計の自由度の高い熱電素子および熱電装置を得
ることが可能となる。
As described above, according to the present invention, it is possible to obtain a thermoelectric element and a thermoelectric device which have improved durability against temperature cycles, are easy to assemble, and have a high degree of freedom in design.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の熱電素子を示す図FIG. 1 is a diagram showing a thermoelectric element according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の熱電素子を示す図FIG. 2 is a diagram showing a thermoelectric element according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の熱電装置を示す図FIG. 3 is a diagram showing a thermoelectric device according to a third embodiment of the present invention.

【図4】従来例の熱電装置を示す図FIG. 4 is a diagram showing a conventional thermoelectric device.

【図5】従来例の熱電装置を示す図FIG. 5 is a diagram showing a conventional thermoelectric device.

【符号の説明】[Explanation of symbols]

1 熱交換基板 31,32…熱交換基板 33a P型Bi−Te熱電半導体 33b N型Bi−Te熱電半導体 35 電極 36 ニッケルめっき層 37a,b 銅めっき層 38 半田層 1 Heat Exchange Substrate 31, 32 ... Heat Exchange Substrate 33a P-type Bi-Te Thermoelectric Semiconductor 33b N-type Bi-Te Thermoelectric Semiconductor 35 Electrode 36 Nickel Plating Layer 37a, b Copper Plating Layer 38 Solder Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ペルチェ効果を有する半導体材料からな
る熱電素子本体と、 この熱電素子本体の両端に相対向してとりつけられた1
対の電極とから構成され、 前記電極がニッケル層と、厚さ10μm 以上の銅層又は
銅を含む合金層とを具備したことを特徴とする熱電素
子。
1. A thermoelectric element body made of a semiconductor material having a Peltier effect, and a thermoelectric element body mounted on opposite ends of the thermoelectric element body so as to face each other.
A thermoelectric element comprising a pair of electrodes, the electrode comprising a nickel layer and a copper layer having a thickness of 10 μm or more or an alloy layer containing copper.
【請求項2】 ペルチェ効果を有する半導体材料からな
る熱電素子本体と、 この熱電素子本体の両端に相対向して形成された1対の
電極とから構成された熱電素子において、 前記熱電素子本体の厚さが前記熱電素子の厚さの80%
以下であることを特徴とする熱電素子。
2. A thermoelectric element body comprising a thermoelectric element body made of a semiconductor material having a Peltier effect, and a pair of electrodes formed opposite to each other at both ends of the thermoelectric element body. 80% of the thickness of the thermoelectric element
A thermoelectric element characterized by the following.
【請求項3】 熱交換基板上に電極を介してn型熱電素
子とp型熱電素子とからなる少なくとも1対の熱電素子
対を配設した熱電装置において、 前記n型熱電素子とp型熱電素子がそれぞれn型および
p型熱電素子本体の両端に相対向して形成された1対の
電極とから構成され、一方の熱電素子本体が他方の熱電
素子本体よりも厚く、かつ素子全体としての厚さがn型
熱電素子とp型熱電素子とで互いに等しくなるように各
電極の厚さが調整されていることを特徴とする熱電装
置。
3. A thermoelectric device in which at least one thermoelectric element pair consisting of an n-type thermoelectric element and a p-type thermoelectric element is provided on a heat exchange substrate via electrodes, wherein the n-type thermoelectric element and the p-type thermoelectric element are provided. The element is composed of a pair of electrodes formed opposite to each other at both ends of the n-type and p-type thermoelectric element bodies, one thermoelectric element body being thicker than the other thermoelectric element body, and A thermoelectric device characterized in that the thickness of each electrode is adjusted so that the n-type thermoelectric element and the p-type thermoelectric element have the same thickness.
JP09612893A 1993-04-22 1993-04-22 Thermoelectric device Expired - Fee Related JP3472593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09612893A JP3472593B2 (en) 1993-04-22 1993-04-22 Thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09612893A JP3472593B2 (en) 1993-04-22 1993-04-22 Thermoelectric device

Publications (2)

Publication Number Publication Date
JPH06310765A true JPH06310765A (en) 1994-11-04
JP3472593B2 JP3472593B2 (en) 2003-12-02

Family

ID=14156752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09612893A Expired - Fee Related JP3472593B2 (en) 1993-04-22 1993-04-22 Thermoelectric device

Country Status (1)

Country Link
JP (1) JP3472593B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051085A1 (en) * 2007-10-15 2009-04-23 Sumitomo Chemical Company, Limited Thermoelectric conversion module
WO2010090460A3 (en) * 2009-02-05 2010-11-25 주식회사 엘지화학 Thermoelectric element module and thermoelectric element production method
FR3040239A1 (en) * 2015-08-21 2017-02-24 Univ De Lorraine IMPROVED THERMOELECTRIC ELEMENT AND THERMOELECTRIC CONVERTER COMPRISING SUCH AN ELEMENT.
US9917238B2 (en) 2012-01-16 2018-03-13 Kelk Ltd. Thermoelectric element and thermoelectric module provided with same
JP2018157136A (en) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 Thermoelectric conversion module
JP2020535661A (en) * 2018-08-21 2020-12-03 エルジー・ケム・リミテッド Thermoelectric module
CN114551707A (en) * 2021-03-10 2022-05-27 中国科学院理化技术研究所 Low-temperature thermoelectric device and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051085A1 (en) * 2007-10-15 2009-04-23 Sumitomo Chemical Company, Limited Thermoelectric conversion module
WO2010090460A3 (en) * 2009-02-05 2010-11-25 주식회사 엘지화학 Thermoelectric element module and thermoelectric element production method
US8889453B2 (en) 2009-02-05 2014-11-18 Lg Chem, Ltd. Thermoelectric element module and manufacturing method
US9917238B2 (en) 2012-01-16 2018-03-13 Kelk Ltd. Thermoelectric element and thermoelectric module provided with same
FR3040239A1 (en) * 2015-08-21 2017-02-24 Univ De Lorraine IMPROVED THERMOELECTRIC ELEMENT AND THERMOELECTRIC CONVERTER COMPRISING SUCH AN ELEMENT.
WO2017032943A1 (en) * 2015-08-21 2017-03-02 Universite De Lorraine Improved thermoelectric element and thermoelectric converter including at least one such element
US20180226556A1 (en) * 2015-08-21 2018-08-09 Universite De Lorraine Improved thermoelectric element and thermoelectric converter including at least one such element
US10658561B2 (en) 2015-08-21 2020-05-19 Universite De Lorraine Thermoelectric element and thermoelectric converter including at least one such element
JP2018157136A (en) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 Thermoelectric conversion module
JP2020535661A (en) * 2018-08-21 2020-12-03 エルジー・ケム・リミテッド Thermoelectric module
US11430936B2 (en) 2018-08-21 2022-08-30 Lg Chem, Ltd. Thermoelectric module
CN114551707A (en) * 2021-03-10 2022-05-27 中国科学院理化技术研究所 Low-temperature thermoelectric device and preparation method thereof

Also Published As

Publication number Publication date
JP3472593B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
US6314741B1 (en) Thermoelectric device
US9601677B2 (en) Thermoelectric (TE) devices/structures including thermoelectric elements with exposed major surfaces
JP4728745B2 (en) Thermoelectric device and thermoelectric module
JP3510831B2 (en) Heat exchanger
JP2013508983A (en) Planar thermoelectric generator
JPH10190071A (en) Multistage electronic cooling device
JP2005277206A (en) Thermoelectric converter
JP5159264B2 (en) Thermoelectric device and thermoelectric module
JP3472593B2 (en) Thermoelectric device
JP3443793B2 (en) Manufacturing method of thermoelectric device
JP2010287729A (en) Heating/cooling test apparatus
JP2003179273A (en) Thermoelectric converting device
JPH04249385A (en) Thermoelectric device
JPH077187A (en) Thermoelectric converter
JP2000164941A (en) Thermoelectric conversion module
EP1981095A2 (en) A peltier module
JP3813180B2 (en) Current connections for power semiconductor devices
JP3404841B2 (en) Thermoelectric converter
JPH0485973A (en) Thermoelectric generator
JPH10135523A (en) Thermoelectric device
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2729647B2 (en) Thermoelectric device manufacturing method
JP3498223B2 (en) Thermopile
JPH0337246Y2 (en)
JP3007904U (en) Thermal battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees