JPS61240665A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61240665A
JPS61240665A JP8182785A JP8182785A JPS61240665A JP S61240665 A JPS61240665 A JP S61240665A JP 8182785 A JP8182785 A JP 8182785A JP 8182785 A JP8182785 A JP 8182785A JP S61240665 A JPS61240665 A JP S61240665A
Authority
JP
Japan
Prior art keywords
heat sink
thermal expansion
copper
semiconductor element
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8182785A
Other languages
Japanese (ja)
Other versions
JPH0322706B2 (en
Inventor
Akira Kazami
風見 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8182785A priority Critical patent/JPS61240665A/en
Publication of JPS61240665A publication Critical patent/JPS61240665A/en
Publication of JPH0322706B2 publication Critical patent/JPH0322706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To ease difference between thermal expansion coefficient of a semiconductor device and the heat sink, by laminating three layers into the heat sink. CONSTITUTION:The semiconductor device has a power semiconductor element 3 fixed through a heat sink laminated into three layers over a metal substrate 1. The heat sink 2 consists of plates of copper 4, invar 5 and copper 4 which are extended into given thicknesses and are stamped into given sizes respectively. The thermal expansion coefficient of invar 5 is 1.5X10<-6>/ deg.C. According to this structure, and by selecting ratios of the thicknesses of the three laminated plates of the heat sink being 1:1:1, the thermal expansion coefficient becomes 11X10<-6>/ deg.C, which is smaller than that of the copper 4. Moreover, by selecting the ratios of 1:3:1, the thermal expansion coefficient becomes 6X10<-6>/ deg.C, being near that of silicon. Thus, it is prevented that wax for fixing the silicon power semiconductor element may be deteriorated, and the heat conductivity and therefore heat radiating ability can be improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体装置、特にパワー半導体素子を組み込ん
だ半導体装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to improvements in semiconductor devices, particularly semiconductor devices incorporating power semiconductor elements.

(ロ)従来の技術 従来の半導体装置は第2図に示す如く、アルミ基板(ト
)上の導電路上に銅で形成したヒートシンク(ロ)を介
してシリコンパワー半導体素子@を固着していた。上述
した技術によると銅の熱膨張率が16.7 X 107
℃、シリコンの熱膨張率が2.4×10”/’Cとなる
為両者の熱膨張率が著しく異なり温度サイクルによって
半導体素子(イ)を固着するろう材にクラックが発生す
る欠点があった。他の従来例として銅とシリコンの熱膨
張率を緩和する為に第3図に示す如く、アルミ基板00
上に銅のヒートシンク(ロ)およびシリコンと熱膨張率
のほぼ等しいモリブデン板(至)を介してシリコンパワ
ー半導体素子(2)を固着することによりクラックの発
生を防止していた。
(B) Prior Art As shown in FIG. 2, in a conventional semiconductor device, a silicon power semiconductor element is fixed on a conductive path on an aluminum substrate (G) via a heat sink (B) formed of copper. According to the above technology, the coefficient of thermal expansion of copper is 16.7 x 107
℃, the coefficient of thermal expansion of silicon is 2.4 x 10''/'C, so the coefficient of thermal expansion of the two is significantly different, and there is a drawback that cracks occur in the brazing material that fixes the semiconductor element (a) due to temperature cycles. .As another conventional example, in order to reduce the coefficient of thermal expansion of copper and silicon, as shown in Fig. 3, an aluminum substrate 00
The occurrence of cracks was prevented by fixing the silicon power semiconductor element (2) thereon via a copper heat sink (b) and a molybdenum plate (t) having a coefficient of thermal expansion substantially equal to that of silicon.

斯る従来技術として例えば特開昭51−6672号公報
等が知られる。
As such a conventional technique, for example, Japanese Patent Laid-Open No. 51-6672 is known.

(ハ) 発明が解決しようとする問題点上述した従来の
構造ではクラックの発生は低減できるが、モリブデン板
が高価である為コスト高になる欠点がある。またモリブ
デン板の介在により半導体素子からアルミ基板までの熱
抵抗が増加する欠点もある。更にモリブデン板を使用し
ない場合は半導体素子を固着するろう材にクラックが発
生する欠点があった。
(c) Problems to be Solved by the Invention Although the conventional structure described above can reduce the occurrence of cracks, it has the disadvantage of increasing costs because the molybdenum plates are expensive. Another drawback is that the presence of the molybdenum plate increases the thermal resistance from the semiconductor element to the aluminum substrate. Furthermore, when a molybdenum plate is not used, there is a drawback that cracks occur in the brazing material that fixes the semiconductor element.

に)問題点を解決するための手段 本発明は上述した点に鑑みてなされたものであり、第1
図に示す如く金属基板(1)上に銅(4)、インバー(
5) 、銅(4)の3層に積層したヒートシンク(2)
を使用し、その上面に半導体素子(3)を固着するもの
である。
B) Means for Solving the Problems The present invention has been made in view of the above points, and
As shown in the figure, copper (4) and invar (
5) Heat sink (2) laminated with three layers of copper (4)
A semiconductor element (3) is fixed on the upper surface of the semiconductor element.

(ホ)作用 本発明に依ればヒートシンクを3層に積層することによ
りヒートシンクの熱膨張率と半導体素子の熱膨張率とを
緩和することができる。
(E) Function According to the present invention, by stacking the heat sink in three layers, the coefficient of thermal expansion of the heat sink and the coefficient of thermal expansion of the semiconductor element can be reduced.

(へ)実施例 本発明に依る半導体装置は第1図に示す如く、金属基板
(1)上に3層に積層したヒートシンク(2)を介して
パワー半導体素子(3)を固着するものである。
(F) Embodiment As shown in FIG. 1, the semiconductor device according to the present invention is one in which a power semiconductor element (3) is fixed on a metal substrate (1) via a heat sink (2) laminated in three layers. .

金属基板(1)は良熱伝導性のアルミニウムで形成され
その表面は酸化アルミニウム膜で被覆してもよい。
The metal substrate (1) is made of aluminum having good thermal conductivity, and its surface may be coated with an aluminum oxide film.

ヒートシンク(2)は銅(4)、インバー(5)、銅(
4)の夫ローラーでクラッドし圧延工程で所定の厚にな
るまで伸し、プレスで所定の大きさに打抜き、半導体素
子(3)を固着できる様に銀又はニッケル等でメッキを
行なう。
The heat sink (2) is made of copper (4), invar (5), copper (
4) It is clad with a husband roller, stretched to a predetermined thickness in a rolling process, punched into a predetermined size with a press, and plated with silver or nickel so that the semiconductor element (3) can be fixed.

インバー(5)はニッケル36%、鉄64%の合金であ
る。インバー(5)の熱膨張率は1. s X 1 o
−’/℃に対しモリブデンの熱膨張率は5.5 X 1
0−’/’Cであり、インバー(5)はモリブデンの約
1/3の熱膨張率である。熱膨張率はモリブデンより好
結果を得られる。
Invar (5) is an alloy of 36% nickel and 64% iron. The thermal expansion coefficient of Invar (5) is 1. s X 1 o
-'/°C, the thermal expansion coefficient of molybdenum is 5.5 x 1
0-'/'C, and Invar (5) has a coefficient of thermal expansion that is about 1/3 that of molybdenum. Better thermal expansion coefficient than molybdenum can be obtained.

前記ヒートシンク(2)上に半導体素子(3)をろう付
し、次に金属基板(1)上にヒートシンク(2)をろう
付する。
A semiconductor element (3) is brazed onto the heat sink (2), and then the heat sink (2) is brazed onto the metal substrate (1).

斯る本発明の構造に依ればヒートシンク(2)の3層の
積層の割合を1対1対1にすることに依り熱膨張率が1
1×10/°Cとなり銅(4)の熱膨張率より小さくな
る。又前記積層の割合を1対3対1にすれば熱膨張率は
6 X 10−’/℃となりシリコンの熱膨張率に近く
なる。
According to the structure of the present invention, the coefficient of thermal expansion can be reduced to 1 by setting the ratio of the three layers of the heat sink (2) to 1:1:1.
The coefficient of thermal expansion is 1×10/°C, which is smaller than that of copper (4). If the ratio of the laminated layers is 1:3:1, the coefficient of thermal expansion will be 6 x 10-'/°C, which is close to the coefficient of thermal expansion of silicon.

(ト)発明の効果 本発明に依ればヒートシンクを銅、インバー、銅の3層
に積層することによりシリコンパワー半導体素子を固着
するろう材の劣化を防止でき且つモリブデン板を使用す
る場合よりも熱伝導度がよくなり放熱性に優れる。又、
本発明に依るヒートシンクは銅、インバー等の安価な材
料ででき、極めて量産に適するヒートシンクを実現でき
る。
(G) Effects of the Invention According to the present invention, by laminating the heat sink in three layers of copper, invar, and copper, it is possible to prevent deterioration of the brazing filler metal that fixes the silicon power semiconductor element, and it is better than the case where a molybdenum plate is used. Good thermal conductivity and excellent heat dissipation. or,
The heat sink according to the present invention is made of inexpensive materials such as copper and invar, and can realize a heat sink that is extremely suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による実施例を示す断面図、第2図およ
び第3図は従来例を示す断面図である。 (1)・・・金属基板、(2)・・・ヒートシンク、(
3)・・・半導体素子、(4)・・・銅、(5)−・・
インバー。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 靜 夫 第2図 第3図
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIGS. 2 and 3 are sectional views showing a conventional example. (1)...Metal substrate, (2)...Heat sink, (
3)...Semiconductor element, (4)...Copper, (5)-...
Invar. Applicant: Sanyo Electric Co., Ltd., and 1 other representative: Patent attorney: Yasuo Sano Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、金属基板上に熱伝導性良好なヒートシンクを介して
パワー半導体素子を固着する半導体装置に於いて、前記
ヒートシンクは両主面を銅板で形成し、該銅板間に熱膨
張係数の低い金属を挿入し、前記パワー半導体素子との
熱膨張係数の差を縮少させることを特徴とする半導体装
置。 2、特許請求の範囲第1項に於いて、前記熱膨張係数の
低い金属としてインバーを用いることを特徴とした半導
体装置。
[Claims] 1. In a semiconductor device in which a power semiconductor element is fixed on a metal substrate via a heat sink with good thermal conductivity, both main surfaces of the heat sink are formed of copper plates, and heat is distributed between the copper plates. A semiconductor device characterized in that a metal having a low expansion coefficient is inserted to reduce a difference in thermal expansion coefficient between the power semiconductor element and the power semiconductor element. 2. A semiconductor device according to claim 1, wherein invar is used as the metal having a low coefficient of thermal expansion.
JP8182785A 1985-04-17 1985-04-17 Semiconductor device Granted JPS61240665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8182785A JPS61240665A (en) 1985-04-17 1985-04-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8182785A JPS61240665A (en) 1985-04-17 1985-04-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61240665A true JPS61240665A (en) 1986-10-25
JPH0322706B2 JPH0322706B2 (en) 1991-03-27

Family

ID=13757304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8182785A Granted JPS61240665A (en) 1985-04-17 1985-04-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61240665A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104641U (en) * 1989-02-06 1990-08-20
JPH0475369A (en) * 1990-07-18 1992-03-10 Hitachi Ltd Electronic device and engine ignition device using the same
JPH0511450U (en) * 1991-07-22 1993-02-12 三洋電機株式会社 Hybrid integrated circuit
JPH0515440U (en) * 1991-07-31 1993-02-26 京セラ株式会社 Package for storing optical semiconductor devices
JPH06188324A (en) * 1992-12-16 1994-07-08 Kyocera Corp Semiconductor device
EP0746022A1 (en) * 1995-05-30 1996-12-04 Motorola, Inc. Hybrid multi-chip module and method of fabricating
GB2401481A (en) * 2003-04-30 2004-11-10 Agilent Technologies Inc Application specific heat sink assembly
JP2006013368A (en) * 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Circuit device and manufacturing method thereof
US7456492B2 (en) 2005-12-26 2008-11-25 Denso Corporation Semiconductor device having semiconductor element, insulation substrate and metal electrode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104641U (en) * 1989-02-06 1990-08-20
JPH0475369A (en) * 1990-07-18 1992-03-10 Hitachi Ltd Electronic device and engine ignition device using the same
JPH0511450U (en) * 1991-07-22 1993-02-12 三洋電機株式会社 Hybrid integrated circuit
JPH0515440U (en) * 1991-07-31 1993-02-26 京セラ株式会社 Package for storing optical semiconductor devices
JPH06188324A (en) * 1992-12-16 1994-07-08 Kyocera Corp Semiconductor device
EP0746022A1 (en) * 1995-05-30 1996-12-04 Motorola, Inc. Hybrid multi-chip module and method of fabricating
US5751552A (en) * 1995-05-30 1998-05-12 Motorola, Inc. Semiconductor device balancing thermal expansion coefficient mismatch
GB2401481A (en) * 2003-04-30 2004-11-10 Agilent Technologies Inc Application specific heat sink assembly
GB2401481B (en) * 2003-04-30 2006-07-12 Agilent Technologies Inc Heat sink
JP2006013368A (en) * 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Circuit device and manufacturing method thereof
US7456492B2 (en) 2005-12-26 2008-11-25 Denso Corporation Semiconductor device having semiconductor element, insulation substrate and metal electrode

Also Published As

Publication number Publication date
JPH0322706B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
US3617816A (en) Composite metallurgy stripe for semiconductor devices
JPS61240665A (en) Semiconductor device
JPS6337496B2 (en)
US3248681A (en) Contacts for semiconductor devices
JP3400479B2 (en) Electronic heating and cooling equipment
JPH10144967A (en) Thermoelectric element module for cooling
JPS61240666A (en) Semiconductor device
US3306784A (en) Epitaxially bonded thermoelectric device and method of forming same
JPH08153898A (en) Thermoelectric element
JPH06310765A (en) Thermionic element and thermionic device
JP6317178B2 (en) Circuit board and electronic device
EP1981095A2 (en) A peltier module
JPS6015937A (en) Cladding material for semiconductor support electrode
JPH0629581A (en) Thermoelectric element
JPS61119051A (en) Semiconductor device
JP2503778B2 (en) Substrate for semiconductor device
JPH0210781A (en) Multistage electronic cooler
JPS5842243A (en) Supporting electrode plate for semiconductor element
US20020149055A1 (en) Semiconductor device including insulating substrate formed of single-crystal silicon chip
US20210249579A1 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
US20210249580A1 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
JPS6315430A (en) Manufacture of semiconductor device
JP3007086U (en) Insulating substrate
WO2021200265A1 (en) Thermoelectric conversion module
JPS60236236A (en) Electrode plate for semiconductor element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term