JP2010088160A - 非接触ポイント給電設備 - Google Patents

非接触ポイント給電設備 Download PDF

Info

Publication number
JP2010088160A
JP2010088160A JP2008251954A JP2008251954A JP2010088160A JP 2010088160 A JP2010088160 A JP 2010088160A JP 2008251954 A JP2008251954 A JP 2008251954A JP 2008251954 A JP2008251954 A JP 2008251954A JP 2010088160 A JP2010088160 A JP 2010088160A
Authority
JP
Japan
Prior art keywords
reactor
voltage
power supply
coil winding
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008251954A
Other languages
English (en)
Other versions
JP5246654B2 (ja
Inventor
Shuzo Nishino
修三 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Original Assignee
Daifuku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd filed Critical Daifuku Co Ltd
Priority to JP2008251954A priority Critical patent/JP5246654B2/ja
Publication of JP2010088160A publication Critical patent/JP2010088160A/ja
Application granted granted Critical
Publication of JP5246654B2 publication Critical patent/JP5246654B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】本発明は、装置に搭載される電気二重層コンデンサとバッテリを効率よく充電できる非接触ポイント給電設備を提供することを目的とする。
【解決手段】受電コイル32に接続された一次側巻線(コイル巻線)44と三次側巻線46がコア部材に巻かれ、二次側巻線45がコア部材の中心に設けられた第1リアクトル34Aと、第1リアクトル34Aの二次側巻線45に接続されキャパシタバンク38へ給電する第1整流回路35Aと、受電コイル32に接続された一次側巻線47と二次側巻線48がコア部材に巻かれた第2リアクトル34Bと、第1リアクトル34Aの三次側巻線46及び第2リアクトル34Bの二次側巻線48を逆極性で直列にして接続されバッテリ40へ給電する第2整流回路35Bを備え、各リアクトルの巻線数をキャパシタバンク38の充電可能最大電流とバッテリ40の充電可能最大電流及び使用電圧範囲に基づいて設定する。
【選択図】図3

Description

本発明は、所定位置に自ら移動あるいは搬送されてきて留まり、所定位置から自ら移動あるいは搬送されていく装置に対して、前記所定位置において非接触で給電し、前記装置に搭載されたバッテリおよび電気二重層コンデンサに充電する非接触ポイント給電設備に関するものである。
従来の非接触ポイント給電設備の一例が、特許文献1に開示されている。
特許文献1に開示されている非接触ポイント給電設備は、モノレールに沿って配置される複数のロボットステーションにおいて、モノレールに案内されて走行する火災用ロボットへ、非接触で給電する設備である。
前記各ロボットステーションにはそれぞれ、非接触式給電装置が設けられている。この非接触式給電装置は、コ字状の磁性体と、この磁性体に巻かれた給電用配線を備え、この給電用配線は、高周波電源装置を介して制御盤に接続されている。この制御盤は、時間(例えば20時間)経過する毎に一定時間(例えば4時間)の間、高周波電源装置をオンし、非接触式給電装置の給電用配線に高周波電流を供給させる。
また各火災用ロボットにはそれぞれ、ロボットステーション間を走行するための駆動源等として蓄電池が搭載され、ロボットステーションにおいて前記非接触式給電装置から非接触で給電され前記蓄電池へ充電する非接触式受電装置が設けられている。この非接触式受電装置は、受電時に非接触式給電装置のコ字状の磁性体に対向するコ字状の磁性体と、この磁性体に巻かれた受電コイルと、この受電コイルによって受電された高周波電流を直流電流に変換して蓄電池(充電式電池)を充電する電源変換装置を備えている。
上記構成により、制御盤により間欠給電制御が行われ、給電用配線を流れる高周波電流は電磁誘導により、ロボットステーションに停止しているロボットの受電コイルによって受電され、受電された高周波電流は電源変換装置によって直流に変換され、充電式電池(蓄電池)が充電される。
またバッテリおよび電気二重層コンデンサに充電する車両用電源装置の一例が特許文献2に開示されている。
特許文献2には、車載発電機(オルタネータ)により充電され、車両に搭載された種々の電気的負荷に対し電流供給を行う車両用電源装置として、電気二重層コンデンサを電気的負荷に対し電流供給可能に接続し、この電気二重層コンデンサの自己放電電流分の電流を補充充電するために鉛蓄電池(バッテリ)を設けたことが開示されている。この鉛蓄電池は、電気二重層コンデンサの正極側端子と電気的負荷との接続ラインである電流供給ラインに、自己放電補充用抵抗を介してその正極側端子が接続され、さらに前記電流供給ラインと鉛蓄電池の正極端子との間に、前記自己放電補充用抵抗に対して並列に、自己放電補充用抵抗より小さい抵抗値の鉛蓄電池充電用抵抗およびこれと直列接続された鉛蓄電池側へ順方向のダイオードが接続されている。前記自己放電補充用抵抗の抵抗値は、鉛蓄電池から電気二重層コンデンサの自己放電分を補充するために必要かつ十分な電流供給を行うための抵抗値に設定されている。
上記構成により、オルタネータは車両のエンジンの回転により発電され、通常12Vに電圧制御されており、またバッテリにより電気二重層コンデンサの正極側端子が一定電圧に保持されていることから、車両のエンジンが回転されていると、電気二重層コンデンサはフル充電の状態に充電され、電気的負荷に、電気二重層コンデンサの電気エネルギーが供給される。また電気的負荷がない状態では、鉛蓄電池より自己放電補充用抵抗を介して電気二重層コンデンサに電荷が蓄積される。また車両の走行状態や電気機器の使用状態によって電気的負荷が軽い場合には、鉛蓄電池の電気エネルギーの大半が電気二重層コンデンサに供給され、鉛蓄電池より電気二重層コンデンサの自己放電電流分のみが補充される。また自己放電補充用抵抗と並列に、小さい抵抗値の鉛蓄電池充電用抵抗およびダイオードを接続することにより十分な充電、すなわちその放電電流より大きい充電電流を確保することが可能となっている。
特開平8−126715号公報 特開平9−247850号公報
特許文献1に記載の非接触ポイント給電設備においては、非接触式給電装置の自己インダクタンスに注目すると、非接触式給電装置に対向して非接触式受電装置が存在する場合には同非接触式受電装置のコ字状の磁性体によって非接触式給電装置の自己インダクタンスが大きい一方、非接触式給電装置に対向して非接触式受電装置が存在しない場合は同非接触式受電装置のコ字状磁性体の消失によって非接触式給電装置の自己インダクタンスが小さくなる。よって、非接触式給電装置に接続された高周波電源装置の出力電圧は一定電圧であるので、該電圧において非接触式給電装置に対向して非接触式受電装置が存在したときに流れる受電コイルの電流を非接触式給電装置の定格電流に設定すると、非接触式受電装置が存在しなくなった時には非接触式給電装置のインダクタンスが小さくなって給電用配線に流れる電流が大きくなることから給電用配線が焼損する恐れがあった。
また特許文献2に記載の車両用電源装置においては、電気二重層コンデンサとバッテリでは電気特性が異なり、電気二重層コンデンサとバッテリでは効率よく充電できる充電電流には大きな差がある。しかし、オルタネータは電圧制御され、出力される最大電流は20A程度であるため、バッテリには良好な使用状態であるが、電気二重層コンデンサには十分な充電電流(たとえば、50A)が給電されず、充電効率が悪いという問題があった。またオルタネータが停止した状態で、車載機器へ給電されると、電気二重層コンデンサから給電され、バッテリから補充されるが、バッテリから長時間補充されると、バッテリの電圧が低下して、再充電できなくなる恐れがあった。
そこで、本発明は、非接触式受電装置が所定位置に存在したり、存在しなくなったとき、例えば非接触式給電装置に出力電圧が一定であるシンプルな電源を接続した場合においても、一次側の非接触式給電装置のコイル(給電用配線)に何ら不具合が発生せず、搭載された電気二重層コンデンサとバッテリを効率よく充電できる非接触ポイント給電設備を提供することを目的としたものである。
前記した目的を達成するために、本発明の請求項1記載の非接触ポイント給電設備は、所定位置に自ら移動あるいは搬送されてきて留まり、所定位置から自ら移動あるいは搬送されていく装置に対して、前記所定位置において非接触で給電し、前記装置に搭載されたバッテリおよび電気二重層コンデンサに充電する非接触ポイント給電設備であって、
高周波電流を供給する電源と、前記所定位置に配置され、前記電源より高周波電流が供給され磁束を発生する誘導コイルを有する一次側の給電ユニットと、前記装置に設けられ、前記給電ユニットに対向すると、前記誘導コイルに発生する磁束により起電力が誘起される受電コイルを有する二次側の受電ユニットとを備え、
前記装置に、前記受電ユニットの受電コイルとともに前記給電ユニットの誘導コイルに給電される高周波電流の周波数に共振する共振回路を形成する共振コンデンサと、環状磁路を形成する円環型のコア部材を有し、前記受電コイルと並列に接続された一次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれ、1本の二次側コイル巻線が前記コア部材の中心の貫通孔を貫通して設けられ、三次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれた第1リアクトルと、前記第1リアクトルの二次側コイル巻線に接続され、前記電気二重層コンデンサへ給電する第1整流回路と、環状磁路を形成する円環型のコア部材を有し、前記受電コイルと並列に接続された一次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれ、二次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれた第2リアクトルと、前記第1リアクトルの三次側コイル巻線および前記第2リアクトルの二次側コイル巻線を逆極性で直列に接続し、この直列回路が接続され前記バッテリへ給電する第2整流回路とを備え、
前記第1リアクトルの一次側コイル巻線の巻数を、前記電気二重層コンデンサの充電が可能な最大電流に基づいて設定し、前記第1リアクトルの三次側コイル巻線と前記第2リアクトルの二次側コイル巻線の巻数を、前記バッテリの充電が可能な最大電流およびバッテリの使用電圧範囲に基づいて設定したことを特徴としたものである。
上記構成によれば、装置に充電特性、使用電圧範囲が異なる電気二重層コンデンサとバッテリが搭載され、所定位置で充電されるとき、第1リアクトルと第2リアクトルの巻数を、電気二重層コンデンサの充電が可能な最大電流とバッテリの充電が可能な最大電流とバッテリの使用電圧範囲に基づいて設定することにより、電気二重層コンデンサとバッテリはそれぞれ充電が可能な電流で効率よく充電され、かつバッテリは使用条件に合わせて充電される。
すなわち、受電コイルとコンデンサからなる並列共振回路から出力される一次電流IACは一定電流であることから、第1リアクトルの一次側コイル巻線の巻数Nを、電気二重層コンデンサの充電が可能な最大電流をIemaxとすると、
=Iemax÷IAC
と設定する。これにより電気二重層コンデンサは充電が可能な電流で効率よく充電される。また第1リアクトルの三次側コイル巻線の巻数Nを、バッテリの充電が可能な最大電流をIbmaxとすると、
=N×IAC÷Ibmax
と設定する。このとき、第1リアクトルの三次側電圧Vは、共振回路の最大電圧をVmaxとすると、
=Vmax×N÷N
で求められるが、バッテリの使用電圧範囲の上限電圧(最大電圧)をVbuとすると、V>Vbuとなり、バッテリの使用電圧範囲を超えてしまうことがある。このとき、第2リアクトルの一次側コイル巻線の巻数Nを一次側コイル巻線の巻数Nに設定し、第2リアクトルの二次側電圧Vを、
=V+Vbu
とするために、第2リアクトルの二次側コイル巻線の巻数Nを、
=(V+Vbu)÷Vmax×N(=N
と設定する。これにより、逆極性で直列に接続された第1リアクトルの三次側コイル巻線と、第2リアクトルの二次側コイル巻線の両端電圧(=V−V)はバッテリの使用電圧範囲の上限電圧Vbu以下に抑えられる。
このように、各巻数N,N,N,Nを設定することにより、電気二重層コンデンサとバッテリは、充電が可能な電流で効率よく充電され、かつバッテリは使用条件に合わせて充電される。
また低電圧で且つ大電流で電気二重層コンデンサを充電でき、効率よく充電することができる。
また第1リアクトルの二次側コイル巻線には、受電ユニットの共振回路から出力される一定電流IACのN倍の電流が流れるために、二次側コイル巻線の線径を大きくする必要があるが、二次側コイル巻線はコア部材の貫通孔に貫通され、コア部材に巻く必要がないので、コア部材を小型化でき、よってコア部材の設置スペースを小さくでき、安価な非接触ポイント給電設備を提供できる。
また請求項2記載の非接触ポイント給電設備は、請求項1に記載の発明であって、前記電源より前記給電ユニットの誘導コイルへ供給される高周波電流は、前記バッテリの電圧が最大使用電圧に達するか、または前記電気二重層コンデンサの電圧が最大使用電圧に達すると遮断されることを特徴としたものである。
上記構成によれば、バッテリまたは電気二重層コンデンサの電圧が、最大使用電圧(フル充電電圧)に達すると、給電ユニットの誘導コイルへ供給される高周波電流は遮断され、充電が終了され、不要な電力の消費が抑えられる。
また請求項3記載の非接触ポイント給電設備は、請求項1または請求項2に記載の発明であって、前記電気二重層コンデンサは前記装置の負荷へ給電し、前記バッテリはダイオードを介して、前記負荷と前記電気二重層コンデンサへ給電することを特徴としたものである。
上記構成によれば、バッテリあるいは電気二重層コンデンサから負荷へ給電され、バッテリから電気二重層コンデンサへ給電される。
さらに請求項4記載の非接触ポイント給電設備は、請求項3に記載の発明であって、前記バッテリの電圧が前記使用電圧範囲より低下すると、前記バッテリからの前記負荷と前記電気二重層コンデンサに対する給電を遮断することを特徴とするものである。
バッテリは、その特性上、電圧が使用電圧範囲より低下すると、再充電できなくなる。
上記構成によれば、バッテリの電圧が前記使用電圧範囲より低下すると、バッテリからの負荷と電気二重層コンデンサに対する給電が遮断され、バッテリが保護される。
また請求項5記載の非接触ポイント給電設備は、請求項1〜請求項4のいずれかに記載の発明であって、前記第1リアクトルのコア部材の飽和電圧を、前記電気二重層コンデンサのフル充電電圧と、前記設定した第1リアクトルの一次側コイル巻線の巻数に基づいて設定したことを特徴とするものである。
上記構成によれば、電気二重層コンデンサのフル充電電圧に設定した第1リアクトルの一次側コイル巻線の巻数を乗算した電圧を、第1リアクトルのコア部材の飽和電圧に設定すると、電気二重層コンデンサの電圧がフル充電電圧に達したとき、第1リアクトルのコア部材のインピーダンスが小さくなり、共振暴走が回避される。
さらに請求項6記載の非接触ポイント給電設備は、請求項1〜請求項5のいずれかに記載の発明であって、前記電気二重層コンデンサに近接して前記第1リアクトルを配置し、前記バッテリに近接して前記第2リアクトルを配置したことを特徴としたものである。
コア部材の二次側コイル巻線には、受電ユニットの共振回路から出力される一定電流より大きな電流が流れる。よって二次側コイル巻線および接続する電線の線径は大きくなるため、敷設には困難が伴う。
上記構成によれば、電気二重層コンデンサに近接して前記第1リアクトルを配置し、前記バッテリに近接して前記第2リアクトルを配置したことにより、二次側コイル巻線および接続する電線の長さを短くでき、敷設を容易にできる。
また請求項7記載の非接触ポイント給電設備は、請求項1〜請求項6のいずれかに記載の発明であって、前記第1リアクトルより前記三次側コイル巻線を削除し、環状磁路を形成する円環型のコア部材を有し、前記受電コイルと並列に接続された一次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれ、前記三次側コイル巻線が二次側コイル巻線として前記環状磁路に鎖交するようにコア部材に巻かれた第3リアクトルを備え、前記第2リアクトルの二次側コイル巻線および前記第3リアクトルの二次側コイル巻線を逆極性で直列に接続し、前記第2整流回路へ接続したことを特徴としたものである。
上記構成によれば、第1リアクトルの三次側コイル巻線が、別途設けたコア部材に二次側コイル巻線として巻かれる。
本発明の非接触ポイント給電設備は、装置に充電特性、使用電圧範囲が異なる電気二重層コンデンサとバッテリが設けられ、所定位置で充電されるとき、第1リアクトルと第2リアクトルのコイル巻線の巻数を、電気二重層コンデンサの充電が可能な最大電流とバッテリの充電が可能な最大電流とバッテリの使用電圧範囲に基づいて設定することにより、電気二重層コンデンサとバッテリをそれぞれ充電可能な電流で効率よく充電でき、かつバッテリを使用条件に合わせて充電できる、という顕著な効果を有している。
以下に、本発明の実施の形態における非接触ポイント給電設備について、図面を参照しながら説明する。
図1は、本発明の実施の形態における非接触ポイント給電設備を備えた物品搬送設備の走行経路図、図2は物品搬送設備の同要部構成図である。
図1および図2において、11はフロア12に設置された一対の走行レールであり、13はこの走行レール11に案内されて自走し、物品Rを搬送する4輪の搬送台車(装置の一例)である。なお、搬送台車13の総台数を5台としている。
前記走行レール11により、ループ状(環状)に形成される搬送経路(移動経路の一例)14が構成され、この搬送経路14に沿って複数(図では9台)のステーション(所定位置の一例)15が配置されており、搬送台車13は、搬送経路14に沿って走行し、搬送経路14に沿って配置されたステーション15間に渡って物品Rを搬送する搬送車を構成している。
また各ステーション15にはそれぞれ、各搬送台車13との間で物品Rの移載、すなわち搬入、搬出を行う移載用コンベヤ装置(たとえば、ローラコンベヤやチェンコンベヤ)16が設けられている。
前記搬送台車13は、図2に示すように、車体21と、この車体21上に設置され、物品Rを移載し載置する移載・載置用コンベヤ装置(たとえば、ローラコンベヤやチェンコンベヤ)22と、車体21の下部に取付けられ、車体21を一方の走行レール11に対して支持する2台の旋回式従動車輪装置23と、車体21の下部に取付けられ、車体21を他方の走行レール11に対して支持するとともに走行レール11の曲がり形状に追従可能でかつ旋回式従動車輪装置23に対して遠近移動自在(スライド自在)とした2台の旋回・スライド式駆動車輪装置24と、これら旋回・スライド式駆動車輪装置24のうちの一方に連結された走行用モータ(消費電力が変動する負荷の一例)25と、ステーション15と間の信号授受に使用される光伝送装置26Aを備えている。前記走行用モータ25の駆動により搬送台車13は走行される。
また各ステーション15毎にそれぞれ、搬送台車13の光伝送装置26Aとの間で信号の授受を行う光伝送装置26Bと、搬送台車13がステーション15に停止していることを検出する台車検出センサ27と、所定周波数(たとえば10kHz)の高周波電流(交流電流)を供給する、出力電圧が一定な電源装置28が設けられ、この電源装置28より高周波電流が供給され磁束を発生する給電ユニット29が走行レール11の外方側面に走行方向に沿って設けられている。給電ユニット29の詳細は後述する。
前記電源装置28は、台車検出センサ27によりステーション15前に搬送台車13が停止していることが検出され、かつ光伝送装置26Bより搬送台車13から充電指令信号(後述する)を入力しているとき、高周波電流を給電ユニット29へ供給する。
また各搬送台車13にはそれぞれ、一方の旋回式従動車輪装置23の外方に、給電ユニット29に対向すると、給電ユニット29により起電力が誘起され、走行用モータ25へ給電するための受電ユニット30が設置され、また受電ユニット30に接続された誘導受電回路31が設置されている。
図3に示すように、前記受電ユニット30は、給電ユニット29に対向すると、後述する誘導コイル53に発生する磁束により起電力が誘起される受電コイル32と、受電コイル32に並列に接続され受電コイル32とともに給電ユニット29の周波数に共振する共振回路を形成するた共振コンデンサ33から形成されている(詳細は後述する)。
また図3に示すように、誘導受電回路31として、共振コンデンサ33の両端に(共振回路の両端に)後述する一次側巻線44,47が並列に接続される2個(複数個の一例)のリアクトル34A,34Bと、2つの整流回路35A,35Bと、整流回路35A,35Bのそれぞれのプラス側出力端に一端が接続された2個のDCチョーク36A,36Bが設けられている。
第1DCチョーク36Aの他端と第1整流回路35Aのマイナス側出力端間に、直列接続されたQ個(Qは2以上の整数)の電気2重層キャパシタ37からなるキャパシタバンク38が接続され、このキャパシタバンク38に、走行用モータ25を駆動するインバータ(電気的負荷の一例)39が接続されている。
また第2DCチョーク36Bの他端に正極側端子が接続され、第2整流回路35Bのマイナス側出力端に負極側端子が接続されたバッテリ40が設けられている。このバッテリ40の正極側端子に一端が接続されたスイッチ41が設けられ、このスイッチ41の他端にアノードが接続され、カソードがキャパシタバンク38の正極側端子に接続されたダイオード42が設けられている。
また上記DCチョーク36A,36Bは、流れる電流が少ないときインダクタンスは大きくなり、流れる電流が大きいときインダクタンスは小さくなるという特性を持っている。
よって、充電時に、キャパシタバンク38の電圧が低く、充電電流が大きいとき、インダクタンスは小さいために、電圧降下(DCチョーク36Aの両端の電圧差)は小さく、キャパシタバンク38が効率よく充電され、続いてキャパシタバンク38の電圧が上昇し、キャパシタバンク38のフル充電電圧Vfに近づき充電電流が少なくなると、DCチョーク36Aのインダクタンスは大きくなり、電圧降下(DCチョーク36Aの両端の電圧差)が大きくなる。
また充電時に、バッテリ40の電圧が低く、充電電流が大きいとき、インダクタンスは小さいために、電圧降下(DCチョーク36Bの両端の電圧差)は小さく、バッテリ40が効率よく充電され、続いてバッテリ40の電圧が上昇し、バッテリ40の上限電圧Vbuに近づき充電電流が少なくなると、DCチョーク36Bのインダクタンスは大きくなり、電圧降下(DCチョーク36Bの両端の電圧差)が大きくなる。
また前記インバータ39を制御して走行用モータ25を駆動し、搬送台車13の走行を制御し、またスイッチ41を開閉制御する制御装置50が設けられている。
この制御装置50は、キャパシタバンク38の両端電圧VDCとバッテリ40の両端電圧Vを監視しており、またバッテリ40から給電されている。また制御装置50は、監視しているキャパシタバンク38の電圧VDCとバッテリ40の電圧Vの状態により、ステーション15の電源装置28に対して、上記充電指令信号(充電するのか、しないかの信号)を、光伝送装置26A,26Bを介して出力している。すなわち、キャパシタバンク38の電圧VDCがフル充電電圧Vf以上となるか、あるいはバッテリ40の電圧Vが使用電圧範囲の上限電圧Vbu以上となると、充電指令信号をオフ(充電不要)とし、搬送台車13がステーション15に停止し、フル充電電圧Vfより下がると、充電指令信号をオン(充電必要)としている。上述したように、電源装置28は、台車検出センサ27によりステーション15前に搬送台車13が停止していることが検出され、かつ光伝送装置26Bを介して搬送台車13より出力される充電指令信号がオンのとき、高周波電流を給電ユニット29へ給電し、また充電指令信号がオフとなると給電を停止し、不要な電力の消費を防止している。
また制御装置50は、キャパシタバンク38の電圧VDCが、{バッテリ40の使用電圧範囲の下限電圧Vbw−ダイオード42の降下電圧}未満となると、スイッチ41を開(オフ)として、バッテリ40からの放電を停止し、バッテリ40からの放電によりバッテリ40の電圧Vが、使用電圧範囲の下限電圧Vbwより低下しないように制御している。
上記リアクトル34A,34Bの構成を図4に示す。
図示するように、リアクトル34A,34Bはそれぞれ、中央に貫通孔(空洞)43aを設けた、環状磁路を形成する円環型(ドーナツ形状)のコア部材43を有し、各コア部材43はそれぞれ、アモルファス合金軟磁性材料やナノ結晶軟磁性材料{高透磁率で高効率材料、すなわち最大磁束密度が大きく、かつコアロスの少ない(B−H特性においてヒステリシスループが囲む面積が小さい)材料}の帯体をロール状に密に巻き、そして外径とコア中央部の貫通孔(空洞)43aの径をほぼ同一として形成されている。また各コア部材43に発生する熱を放熱するために、たとえばアルミニウムや銅などの熱伝導率の高い低透磁率材料、あるいはたとえばSUS304などの低透磁率材料からなる放熱板43bが設けられている。またこの放熱板43bは、ブラケットを兼ねてL字形に折り曲げられており、その主面はコア部材43の外径より大きく、コア部材43の貫通孔43aとほぼ同径の孔43cが空けられている。また柔軟な絶縁材料からなり、コア部材43の貫通孔43aおよび放熱板43bの孔43cの径にほぼ一致する径の円筒状の中空芯材43d(たとえば、紙やプラスチックからなる筒状の芯材)を備え、この中空芯材43dを位置決め部材として、この中空芯材43dにコア部材43、放熱板43bの順にその貫通孔43a,孔43cを通し(揃え)、続けてこれらコア部材43と放熱板43bを接合し、さらに揃えた孔43a,43cを使用して、通常の絶縁電線(撚り線)からなるコイル巻線(後述する)がコア部材43の環状磁路に鎖交するように巻かれている。
前記第1リアクトル34Aには、入力端子44Aを両端に有する一次側コイル巻線44が前記環状磁路に鎖交するようにコア部材43に巻かれ(コイル巻数N;Nは2以上の数)、出力端子45Aを両端に有する1本の二次側コイル巻線45がコア部材43の貫通孔43aを貫通して設けられ、さらに出力端子46Aを両端に有する三次側コイル巻線46が前記環状磁路に鎖交するようにコア部材43に巻かれている(コイル巻数N;Nは2以上の数)。
また第2リアクトル34Bには、入力端子47Aを両端に有する一次側コイル巻線47が前記環状磁路に鎖交するように、第1リアクトル34Aの一次側コイル巻線44と同一の巻数でコア部材43に巻かれ{コイル巻数N(=N)}}、さらに出力端子48Aを両端に有する二次側コイル巻線48が前記環状磁路に鎖交するようにコア部材43に巻かれている(コイル巻数N;Nは2以上の数)。
図3に示すように、第1リアクトル34Aの一次側コイル巻線44の両入力端子44Aと、第2リアクトル34Bの一次側コイル巻線47の両入力端子47Aがそれぞれ受電ユニット30の共振コンデンサ33の両端に接続されている。また第1リアクトル34Aの二次側コイル巻線45の両出力端子45Aが、第1整流回路35Aの入力端に接続されている。
また第1リアクトル34Aの三次側コイル巻線46と、第2リアクトル34Bの二次側コイル巻線48が逆極性で直列に接続され、この直列回路の両端が第2整流回路35Bの入力端に接続されている。
いま、各リアクトル34A,34Bの入力端電圧(入力電圧)をV、第1リアクトル34Aの二次側コイル巻線45の出力端電圧(出力電圧)をV、第1リアクトル34Aの三次側コイル巻線46の出力端電圧(出力電圧)をV、第2リアクトル34Bの二次側コイル巻線48の出力端電圧(出力電圧)をV、第1リアクトル34Aの入力端電流(入力電流)をI、第1リアクトル34Aの二次側コイル巻線45の出力端電流(出力電流)をIとすると、V,I,V,Vは、
=V÷N ・・・(1)
=I×N ・・・(2)
=V×N÷N ・・・(3)
=V×N÷N ・・・(4)
で求められる。
このように、二次側コイル巻線45には、入力電流Iの一次側コイル巻線44のN倍の電流が流れるために、二次側コイル巻線45の線径を、一次側コイル巻線44の線径より大きくする必要が生じる。
[第1リアクトル34Aの一次側コイル巻線44の巻数Nの設定]
受電コイル32のリアクタンスLoと共振コンデンサ33の静電容量Cを給電ユニット29に供給される高周波電流の周波数に共振するように設定し、給電ユニット29の高周波電流を一定とした場合、受電ユニット30の共振回路から出力される電流IACは、一定の値となる。
キャパシタバンク38の電圧VDCが、バッテリ40の電圧Vが使用電圧範囲(下限電圧Vbw〜上限電圧Vbu)未満のとき、バッテリ40へは充電電流が流れないので、共振回路の出力電流IACは、第1リアクトル34Aの一次側コイル巻線44へのみへ流入する。今、キャパシタバンク38の充電が可能な最大電流をIemaxとし、この最大電流で充電を可能とするとき、(2)式より、巻線数Nは、
=Iemax÷I
で求められ、これを設定する。
またキャパシタバンク38のフル充電電圧をVfとすると、設定した巻線数Nにより第1リアクトル34Aのコア部材43の飽和電圧Vを、(1)式より、
飽和電圧V=Vf×N
と設定する。これにより、キャパシタバンク38の電圧VDCがフル充電電圧Vfとなると、コア部材43は飽和する。
[第1リアクトル34Aの三次側コイル巻線46の巻数N、および第2リアクトル34Bの二次側コイル巻線48の巻数Nの設定]
バッテリ40の充電が可能な最大電流をIbmaxとするとき、三次側コイル巻線46の巻数Nを、
=N×IAC÷Ibmax
で求める。
このとき、第1リアクトルの三次側電圧Vは、共振回路の最大電圧をVmaxとすると、(3)式より、
=Vmax×N÷N
で求められるが、
>Vbuc
となり、三次側電圧Vはバッテリ40の使用電圧範囲を超えてしまうことがある。
このとき、第2リアクトル34Bの一次側コイル巻線47の巻数Nを第1リアクトル34Aの一次側コイル巻線の巻数Nに設定し、第2リアクトル34Bの二次側電圧Vを、
=V+Vbu
とするために、第2リアクトルの二次側コイル巻線の巻数Nを、(4)式より、
=(V+Vbu)÷Vmax×N
(なお、N=N
と設定する。これにより、逆極性で直列に接続された第1リアクトル34Aの三次側コイル巻線46と、第2リアクトル34Bの二次側コイル巻線48の両端電圧(=V−V)をバッテリ40の使用電圧範囲の上限電圧Vbu以下に抑えることができる。
このように、各巻数N,N,N,Nを設定することにより、キャパシタバンク38はキャパシタバンク38の充電が可能な最大電流で効率よく充電され、バッテリ40は使用電圧範囲において充電が可能な電流で効率よく充電される。
今、共振回路の出力電流IAC=2A,キャパシタバンク38の充電可能最大電流Iemax=50A,フル充電電圧Vf=20V,バッテリ40の充電可能最大電流Ibmax=10A,上限電圧Vbu=14.9Vとすると、
=25ターン
=500V
=5ターン
が求められ、このとき、共振回路の最大電圧をVmaxは、飽和電圧Vに制限されることから、
=5.7ターン
が求められる。
また第1リアクトル34Aの二次側コイル巻線45には、共振回路の出力電流IACのN倍の大きな電流が流れることによって、二次側コイル巻線45および接続する電線の線径は大きくなるため、キャパシタバンク38に近接して第1リアクトル34Aを配置して電線の長さを短くしている。
以下、上記給電ユニット29と受電ユニット30の構成を詳細に説明する。
[給電ユニット29]
給電ユニット29は、図6〜図8に示すように、非磁性体の枠体51に磁性部材52を配置し、磁性部材52に、電源装置28より高周波電流が供給され磁束を発生する誘導コイル(一次側コイル)53を巻回し、またこの誘導コイル53に並列に、誘導コイル53とともに電源装置28より誘導コイル53に供給される高周波電流の周波数(例えば、10kHz)に共振する共振回路を形成する2個の共振コンデンサ(一次側コンデンサ)54を接続して(取り付けて)構成されている。
前記枠体51は、四角形状の平板に四角形状の中空部を設けて四角の枠の形状とした上部枠体56と、この上部枠体56の一方の縁部56aから下方に垂設された第1側部枠体57と、縁部56aに対向する他方の縁部56bから下方に垂設され、前記第1側部枠体57に対向し且つ同寸法の第2側部枠体58から構成されている。そして、第1側部枠体57および第2側部枠体58の他端がアルミニウム製の平板59に連結されている。
前記磁性部材52は、第1フェライトコア61と第2フェライトコア62とE形フェライトコア63から構成されている。
第1フェライトコア61は、上部枠体56上の内方の縁に沿って、且つこの内方の縁より内方に突出し、互いに接触して固定される複数のフェラント板からなり、平面視四角の枠の形状に配置されている。
また第2フェライトコア62は、第1フェライトコア61の中央で第1フェライトコア61と同じ平面高さで配置されている。また第2フェライトコア62の径を、枠の形状の第1フェライトコア61の径の3分の1から4分の1程度としている。
またE形フェライトコア63は、第1側部枠体57と第2側部枠体58との間に配置され、一方の外方凸部63aの外側面が第1側部枠体57に沿って配置され、他方の外方凸部63cの外側面が第2側部枠体58に沿って配置され、両方の外方凸部63a,63cの上面が第1フェライトコア61の裏面に接触され、中央凸部63bの上面が第2フェライトコア62の裏面に接触されている。
また枠体51と第1フェライトコア61およびE形フェライトコア63との固定には、非磁性体(例えば、ポリカボネート)製の皿ねじ64を使用している。また第2フェライトコア62とE形フェライトコア63との固定には、前記皿ねじ64および非磁性体(例えば、ウレタンゴム)製の固定部材65を使用している。
また上記誘導コイル53は、図8(b)に示すように、E形フェライトコア63の中央凸部63bおよび両凹部63d,63e(E形フェライトコア63の一部の一例)に巻回されている。
また上記2個の共振コンデンサ54は、第1側部枠体57と第2側部部材58が取り付けられていない、上部枠体56の縁部56c,56dの略中央の裏面に垂設されている。
このような給電ユニット29の構成によれば、電源装置28より誘導コイル53に高周波電流が供給されることにより発生する磁束の磁路は、E形フェライトコア63の両側の凸部63a,63c−第1フェライトコア61−第1フェライトコア61の全周−中央の第2フェライトコア62−E形フェライトコア63の中央の凸部63b−E形フェライトコア63の両側の凹部63d,63e−E形フェライトコア63の両側の凸部63a,63cと形成され、四角の枠の形状に配置された第1フェライトコア61の全周と中央の第2フェライトコア62との間を磁束が飛ぶ構成が得られる。このような第1フェライトコア61の全周と第2フェライトコア62との間で、磁束が飛ぶ構成とするために必要なフェライトコアは、すなわち枠の形状の第1フェライトコア61と第2フェライトコア62を裏面側で接続するフェライトコアは、磁束は回る縁、立ち上がるところがあれば回ることから、E形フェライトコア63で十分であり、枠の形状の第1フェライトコア61の裏面全体(裏面全周)に連続してE形フェライトコア63の両側の凸部63a,63cに相当するフェライトコアを設ける必要はなく、フェライトコアの数は少なくて済み、給電ユニット29を簡易化することができる。
[受電ユニット41]
上記受電ユニット30は、図6、図9および図10に示すように、前記受電コイル32と、この受電コイル32が巻回され受電コイル32を支持する非磁性体からなる第1支持体(非磁性部材の一例)71と、この第1支持体71を所定間隔をおいて支持する平板の非磁性体からなる第2支持体72と、この第2支持体72上に配置され、受電コイル32に並列に接続され受電コイル32とともに給電ユニット29の誘導コイル53に供給される高周波電流の周波数に共振する共振回路を形成する上記共振コンデンサ(二次側共振コンデンサ)33と、受電コイル32と共振コンデンサ33を接続する端子台73から構成されている。
前記第1支持体71は、四角形状の第1平板75と、円柱形状の支持体(受電コイルが巻回される非磁性部材の部分の一例)76と、円形状の第2平板77と、4本の支柱78から構成され、これら各部品75〜78は非磁性体から形成されている。
前記円柱形状の支持体76の径は、第1フェライトコア61の平面の径と第2フェライトコア62の平面の径との中間の径とされており、第1平板75の一方の面上に皿ねじ80により固定される。
また前記円形状の第2平板77の径は、支持体76の径より大きな径とされており、支持体76上に中心を合わせて固定され、受電コイル32を巻くときの鍔として機能し、また受電コイル32が給電ユニット29の第1フェライトコア61および第2フェライトコア62と直接接触することを防止している。また円形状の第2平板77および第1平板75には、受電コイル32に発生する熱を逃がすために複数の通気孔79が設けられている。
上記受電コイル32は、第1支持体71の第1平板75と第2平板77との間で、支持体76に巻かれており、先端は共振コンデンサ33とともに第2支持体72上の端子台73に並列に接続されている。
また4本の支柱78は、第1平板75の他方の面(支持体76が取り付けられていない面)の4隅に垂設されており、第2支持体72は、第1支持体71の4本の支柱78の先端に固定されている。
上記受電ユニット30の受電コイル32は、図6に示すように、受電コイル32の中心が、第2フェライトコア62の中心に位置し、第1フェライトコア61および第2フェライトコア62に対向するようギャップgを設けて配置される。
したがって、受電コイル32は、給電ユニット29により発生する磁束が第1フェライトコア61の全周と中央の第2フェライトコア62との間で飛ぶ磁路の中に位置し、受電コイル32に最も効率良く起電力が発生し、給電される。
「作用」
以下、上記実施の形態における作用を説明する。
搬送台車13の制御装置50は、キャパシタバンク38またはバッテリ40に蓄電された電力を使用して(詳細は後述する)、インバータ39を制御して走行用モータ25を駆動して、搬送台車13を走行させてステーション15間を移動させる。なお、制御装置50へは、バッテリ40より給電されている。
ステーション15に到着すると(詳細な制御方法については説明を省略する)、図6に示すように、搬送台車13の受電ユニット30とステーション15の給電ユニット29が対向して位置され、受電コイル32の中心が、第2フェライトコア62の中心に位置し、第1フェライトコア61および第2フェライトコア62に対向するように配置される。
また搬送台車13の制御装置50は、キャパシタバンク38の両端電圧がフル充電電圧Vf以上か未満かどうかを確認し、未満のとき、充電指令信号(オン信号)を光伝送装置26A,26Bを介してステーション15へ出力する。このとき、バッテリ40の両端電圧は使用電圧範囲の下限電圧Vbwに維持されている。
各ステーション15では、搬送台車13がステーション15に対向して停止し、台車検出センサ27がオンすると、電源装置28は、光伝送装置26Bを介して入力する搬送台車13からの充電指令信号がオンかどうかを確認する。充電指令信号がオンのとき、電源装置28は、高周波電流を給電ユニット29へ供給する。すると、第1フェライトコア61の全周と中央の第2フェライトコア62との間で磁束が飛ぶ磁路の中に、受電ユニット32の受電コイル32は位置し、受電コイル32に最も効率良く起電力が発生し、この受電コイル32と共振コンデンサ33とから形成される共振回路より一定電流(出力電流IAC)がリアクトル34A,34Bへ給電される。
図5に示すように、キャパシタバンク38が充電されてなく、電圧VDCがバッテリ40の下限電圧Vbw未満の状態では、バッテリ40へは給電されず、第1リアクトル34Aにのみ一定電流IACが流れ、一定の出力電流IACのN倍の大きな充電電流、すなわち充電可能な最大電流Iemaxによりキャパシタバンク38は、充電される。このとき、電源装置28から給電ユニット29へ向かって流れる電流は、略、キャパシタバンク38を充電する電力に対応した電流のみが供給される。つまり、受電ユニット30にはフェライトコアが無いので、給電ユニット29のインダクタンスは受電ユニット30の有無で変化せず、また給電ユニット29は常に共振状態を維持するので、受電ユニット30が位置された場合には単に抵抗が増加した等価回路状態となり、抵抗に応じた所定の電流が給電ユニット29に供給され、この電流分がキャパシタバンク38へ供給されることになる。
キャパシタバンク38ヘ充電が続けられ、キャパシタバンク38の電圧が上昇し、キャパシタバンク38の電圧VDCが、{下限電圧Vbw−ダイオード42の降下電圧}となると、搬送台車13の制御装置50は、スイッチ41を閉(オン)とし、バッテリ40をダイオード42を介してインバータ39およびキャパシタバンク38へ接続する。
続いてキャパシタバンク38の電圧が上昇し、キャパシタバンク38の両端電圧VDCが下限電圧Vbwとなると、第2リアクトル34Bへも共振回路の出力電流IACが流れはじめ、電流IACはリアクトル34A,34Bの一次側コイル巻線44,47に分流され、キャパシタバンク38とバッテリ40がともに充電される。
キャパシタバンク38の電圧がさらに上昇しフル充電電圧Vfとなると、あるいはバッテリ40が使用電圧範囲の上限電圧Vbuとなると、搬送台車13の制御装置50は、充電指令信号をオフとする。このとき、充電電流は流れなくなる。
このような充電が続けられ、キャパシタバンク38の電圧が上昇し、キャパシタバンク38の定格電圧(フル充電電圧)Vfに近づく。上述したように、第1リアクトル34Aの出力端電圧(出力電圧;実効値)Vをキャパシタバンク38の充電電圧VDC(フル充電電圧Vf)に設定しているために、出力電圧のVの実効値からピーク電圧(√2×V)の間の電圧でも充電され、出力電圧のピーク電圧(√2×V)まで充電されようとなる。しかし、上述したようにキャパシタバンク38の電圧が上昇し、キャパシタバンク38のフル充電電圧Vfに近づくと、DCチョーク36Aにより電圧が大きく降下されるので(DCチョーク36Aの両端の電圧差が大きくなり)、キャパシタバンク38の充電電圧VDCがピーク電圧(√2×V)まで充電されることはない。なお、充電効率をよくするために、出力電圧のVの実効値をキャパシタバンク38のフル充電電圧Vfに設定しているが、出力電圧のVのピーク電圧をキャパシタバンク38のフル充電電圧Vfに設定してもよい。
またバッテリ40の電圧が上昇し、出力電圧(V−V)の実効値からピーク電圧{√2(V−V)}の間の電圧でも充電され、出力電圧のピーク電圧{√2(V−V)}まで充電されようとなる。しかし、上述したようにバッテリ40の電圧が上昇し、バッテリ40の上限電圧Vbuに近づくと、DCチョーク36Bにより電圧が大きく降下され(DCチョーク36Bの両端の電圧差が大きくなり)、同時に制御装置50へ給電されて一定電力は消費されるので、バッテリ40の電圧Vがピーク電圧{√2(V−V)}まで充電されることはない。
ステーション15の電源装置28は、充電指令信号がオフとなると、給電ユニット29への給電を停止し、充電が終了される。充電が終了すると、バッテリ40の電圧Vは、その特性により1V程低下する。
搬送台車13の制御装置50は、ステーション15における物品Rの移載作業が終了すると、移動を開始すべくインバータ39を駆動して走行用モータ25を回動させる。インバータ39ヘは、キャパシタバンク38とバッテリ40の電圧の高いほうから給電される。実施の形態では、キャパシタバンク38のフル充電電圧Vfが高いので、キャパシタバンク38からインバータ39へ放電され、キャパシタバンク38の電圧VDCが低下する。
キャパシタバンク38の電圧VDCが低下し、{バッテリ40の電圧V−ダイオード42の降下電圧}となると、バッテリ40からの放電が可能となり、キャパシタバンク38とバッテリ40の電圧の高いほうから給電される。またバッテリ40から、キャパシタバンク38が充電されることもある。
そして、バッテリ40の電圧が下限電圧Vbwとなると、スイッチ41は開(オフ)とされ、バッテリ40が切り離され、バッテリ40からの給電(バッテリ40の放電)が停止され、バッテリ40の電圧Vが、使用電圧範囲の下限電圧Vbwより低下し、再充電できなくなることが回避される。以後、キャパシタバンク38からのみインバータ39へ給電され、走行用モータ25が回転駆動され、搬送台車13は移動する。
なお、ステーション15に搬送台車13が停止されていないにもかかわらず、電源装置28より給電ユニット29へ給電されても、すなわち受電ユニット30が無い状態で給電されても、受電ユニット30にはフェライトコアがないため、給電ユニット29のインダクタンスは変化せず、共振状態が崩れないことから、電源装置28から見てインピーダンスは無限大となり、電源装置28から誘導コイル53へ向かって流れる電流は、給電ユニット29のコイル銅損、コア鉄損による消費電力に見合う分だけであって略ゼロに近く、電力ロスは発生せず、大きな電流が流れて誘導コイル53が焼損することはない。
以上のように実施の形態によれば、搬送台車13に充電特性、使用電圧範囲が異なるキャパシタバンク38(電気二重層コンデンサ37)とバッテリ40が設けられ、ステーション15(所定位置)で充電されるとき、リアクトル34A,34Bの巻数N,N,N,Nをキャパシタバンク38の充電が可能な最大電流とバッテリ40の充電が可能な最大電流とバッテリ40の使用電圧範囲に基づいて設定することにより、キャパシタバンク38をキャパシタバンク38の充電が可能な最大電流で効率よく充電でき、バッテリ40を使用電圧範囲において充電が可能な電流で効率よく充電でき、かつバッテリ40を使用条件に合わせて充電できる。
また二次側コイル巻線45は線径を大きくする必要があるが、二次側コイル巻線45はコア部材43の貫通孔43aに貫通させ、コア部材43に巻く必要がないので、コア部材43を小型化でき、よって第1リアクトル34Aの設置スペースを小さくできる。また低電圧(最大両端電圧Vmaxの1/N)で大電流(共振回路の出力電流IACのN倍の電流)でキャパシタバンク38を効率よく充電できる。
また実施の形態によれば、キャパシタバンク38の電圧VDCがフル充電電圧Vfに達すると、またはバッテリ40の電圧Vが使用電圧範囲の上限電圧Vbuに達すると、給電ユニット29へ供給される高周波電流は遮断され、充電が終了されることにより、消費電力を抑えることができ、また共振暴走を回避できる。
また実施の形態によれば、バッテリ40の電圧Vが使用電圧範囲の下限電圧Vbwまで低下すると、バッテリ40からのインバータ39(負荷)とキャパシタバンク38(電気二重層コンデンサ37)に対する給電が遮断されることにより、バッテリ40を再充電できなくなる事態を回避できる。
また実施の形態によれば、キャパシタバンク38(電気二重層コンデンサ37)のフル充電電圧Vfに設定した第1リアクトル34Aの一次側コイル巻線44の巻数Nを乗算した電圧を、第1リアクトル34Aのコア部材43の飽和電圧に設定したことにより、キャパシタバンク38の電圧VDCがフル充電電圧Vfに達したとき、第1リアクトル34Aのコア部材43のインピーダンスが小さくなり、給電ユニット29への給電の遮断が遅れた場合においても、共振暴走を回避できる。
また実施の形態によれば、第1リアクトル34Aの二次側コイル巻線45には、共振回路の出力電流IACのN倍の大きな電流が流れることによって、二次側コイル巻線45および接続する電線の線径は大きくなるため、敷設には困難が伴うが、キャパシタバンク38に近接して第1リアクトル34Aを配置することにより、二次側コイル巻線45および接続する電線の長さを短くでき、敷設を容易にできる。また第2リアクトル34Bの二次側コイル巻線48にも、一次側コイル巻線47より大きな電流が流れることによって、二次側コイル巻線48および接続する電線の線径は大きくなるため、敷設には困難が伴うが、バッテリ40に近接して第2リアクトル34Bを配置することにより、二次側コイル巻線48および接続する電線の長さを短くでき、敷設を容易にできる。
また実施の形態によれば、一次側の給電ユニット29には磁性部材が設けられ、二次側の受電ユニット30には非磁性材料が使用され(磁性部材が設けられてなく)、かつ一次側の給電ユニット29は共振状態にあり、給電時に二次側の受電ユニット30も共振状態となることから、搬送台車13がステーション15位置に存在するときも存在しないときも、一次側の給電ユニット29のインダクタンスは一定で、共振状態は崩れないことにより、搬送台車13が存在しなくなったときに給電ユニット29の誘導コイル53に所定の負荷電流より大きな電流が流れることを防止でき、一次側の給電ユニット29の誘導コイル53に不具合が発生することを回避できる。
また実施の形態によれば、給電ユニット29の構成により、簡易化された構造で、枠の形状の第1フェライトコア61の全周と中央の第2フェライトコア62との間で磁束が飛ぶ磁束の流れを得ることができ、このとき、受電コイル32の中心が、第2フェライトコア62の中心に位置し、第1フェライトコア61および第2フェライトコア62に対向するように配置され、受電コイル32が第1フェライトコア61の平面の径と第2フェライトコア62の平面の径の中間の径の非磁性体の円柱形状の支持体76に巻かれていることにより、最も効率よく、前記磁束は受電コイル32を通り、受電コイル32に最も効率よく起電力が発生し、最も効率よく搬送台車13に給電することができる。
なお、本実施の形態では、第1リアクトル34Aの二次側コイル巻線45を1本だけコア部材43に貫通させているが、数本(2,3本)の二次側コイル巻線45をコア部材43の貫通孔43aに巻くようにしてもよい。数本(2,3本)であれば、線径が大きくなってもコア部材43の貫通孔43aに巻くことができるが、1本のときに最大の変圧比をとれることはいうまでもない。
また本実施の形態では、第1リアクトル34Aに三次側コイル巻線46を設けているが、第1リアクトル34Aより三次側コイル巻線46を削除し、環状磁路を形成する円環型のコア部材43を別途用意し、受電コイル32と並列に接続された一次側コイル巻線が前記環状磁路に鎖交するようにコア部材43に巻かれ、前記三次側コイル巻線が二次側コイル巻線として前記環状磁路に鎖交するようにコア部材43に巻かれた第3リアクトルを設けるようにしてもよい。このとき、第3リアクトルの一次側コイル巻線の巻数を第1リアクトル34Aの一次側コイル巻線44の巻数Nと同一とし、第2リアクトル34Bの二次側コイル巻線48および前記第3リアクトルの二次側コイル巻線を逆極性で直列に接続し、第2整流回路35Bへ接続する。このように、第3リアクトルを設けるようにしてもよいが、第1リアクトル34Aに三次側コイル巻線46を設けることにより、別途、この三次側コイル巻線46を二次側コイル巻線とする第3リアクトルを設けた場合と比較してコア部材43の数を減らすことができ、コストを低減できる。
また本実施の形態では、所定位置に自ら移動あるいは搬送されてきて留まり、所定位置から自ら移動あるいは搬送されていく装置を、自走する搬送台車13としているが、自走する搬送台車13に限ることはなく、外力により移動あるいは搬送される台車などであってもよく、またキャパシタバンク38とバッテリ40を走行用電源として使用しているが、物品Rの移載用電源として使用するようにしてもよい。
また本実施の形態では、第1フェライトコア61を平面視四角の枠の形状に配置しているが、平面視で円形の枠の形状に配置してもよい。
また本実施の形態では、キャパシタバンク38の電圧が上昇し、電圧VDCがキャパシタバンク38の定格電圧(フル充電電圧)Vfとなると、搬送台車13の制御装置50は、ステーション15へ出力する充電指令信号をオフとして、給電ユニット29への給電を停止し、充電電流Iを流さないようにしている。すなわち、キャパシタバンク38の(バッテリあるいは電気二重層コンデンサ)の電圧が前記定格電圧に達すると、給電ユニット50へ供給される高周波電流を遮断するようにしているが、受電コイル32の両端(共振回路の両端)を短絡するスイッチを設け、制御装置50にキャパシタバンク38の定格電圧(フル充電電圧)Vfを予め設定し、監視しているキャパシタバンク38の電圧が、設定された定格電圧(フル充電電圧)Vfとなると、前記スイッチを駆動して受電コイル32の両端を短絡して、充電電流Iを流さないようにしてもよく、給電ユニット29へ供給される高周波電流を遮断したことと同じ作用が得られる。
本発明の実施の形態における非接触ポイント給電設備を備えた物品搬送設備の走行経路図である。 同物品搬送設備の要部構成図である。 同物品搬送設備の回路図である。 同物品搬送設備の回路に使用するリアクトルの斜視図であり、(a)は第1リアクトルの上方からの斜視図、(b)は第2リアクトルの上方からの斜視図である。 同物品搬送設備の充放電時の動作説明図である。 同物品搬送設備の給電時の給電ユニットと受電ユニットの配置を示す図である。 同物品搬送設備の給電ユニットの図であり、(a)は斜め上方からの斜視図、(b)は斜め下方からの斜視図である。 同物品搬送設備の給電ユニットの図であり、(a)は平面図、(b)は断面図である。 同物品搬送設備の受電ユニットの図であり、(a)は斜め上方からの斜視図、(b)は斜め下方からの斜視図である。 同物品搬送設備の受電ユニットの図であり、(a)は平面図、(b)は一部断面側面図である。
符号の説明
11 走行レール
13 搬送台車
14 搬送経路
15 ステーション
21 車体
25 走行用モータ
26A,26B 光伝送装置
27 台車検出センサ
28 電源装置
29 給電ユニット
30 受電ユニット
31 誘導受電回路
32 受電コイル
33 共振コンデンサ
34A,34B リアクトル
35A,35B 整流回路
36A,36B DCチョーク
37 電気2重層キャパシタ
38 キャパシタバンク
39 インバータ
40 バッテリ
41 スイッチ
42 ダイオード
43 コア部材
44 一次側コイル巻線
45 二次側コイル巻線
46 三次側コイル巻線
47 一次側コイル巻線
48 二次側コイル巻線
50 制御装置
51 枠体
52 磁性部材
53 誘導コイル
54 共振コンデンサ
61 第1フェライトコア
62 第2フェライトコア
63 E形フェライトコア
71 第1支持体
72 第2支持体
75 第1平板
76 支持体
77 第2平板
78 支柱

Claims (7)

  1. 所定位置に自ら移動あるいは搬送されてきて留まり、所定位置から自ら移動あるいは搬送されていく装置に対して、前記所定位置において非接触で給電し、前記装置に搭載されたバッテリおよび電気二重層コンデンサに充電する非接触ポイント給電設備であって、
    高周波電流を供給する電源と、
    前記所定位置に配置され、前記電源より高周波電流が供給され磁束を発生する誘導コイルを有する一次側の給電ユニットと、
    前記装置に設けられ、前記給電ユニットに対向すると、前記誘導コイルに発生する磁束により起電力が誘起される受電コイルを有する二次側の受電ユニットと
    を備え、
    前記装置に、
    前記受電ユニットの受電コイルとともに前記給電ユニットの誘導コイルに給電される高周波電流の周波数に共振する共振回路を形成する共振コンデンサと、
    環状磁路を形成する円環型のコア部材を有し、前記受電コイルと並列に接続された一次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれ、1本の二次側コイル巻線が前記コア部材の中心の貫通孔を貫通して設けられ、三次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれた第1リアクトルと、
    前記第1リアクトルの二次側コイル巻線に接続され、前記電気二重層コンデンサへ給電する第1整流回路と、
    環状磁路を形成する円環型のコア部材を有し、前記受電コイルと並列に接続された一次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれ、二次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれた第2リアクトルと、
    前記第1リアクトルの三次側コイル巻線および前記第2リアクトルの二次側コイル巻線を逆極性で直列に接続し、この直列回路が接続され前記バッテリへ給電する第2整流回路と
    を備え、
    前記第1リアクトルの一次側コイル巻線の巻数を、前記電気二重層コンデンサの充電が可能な最大電流に基づいて設定し、
    前記第1リアクトルの三次側コイル巻線と前記第2リアクトルの二次側コイル巻線の巻数を、前記バッテリの充電が可能な最大電流およびバッテリの使用電圧範囲に基づいて設定したこと
    を特徴とする非接触ポイント給電設備。
  2. 前記電源より前記給電ユニットの誘導コイルへ供給される高周波電流は、前記バッテリの電圧が最大使用電圧に達するか、または前記電気二重層コンデンサの電圧が最大使用電圧に達すると遮断されること
    を特徴とする請求項1に記載の非接触ポイント給電設備。
  3. 前記電気二重層コンデンサは前記装置の負荷へ給電し、
    前記バッテリはダイオードを介して、前記負荷と前記電気二重層コンデンサへ給電すること
    を特徴とする請求項1または請求項2に記載の非接触ポイント給電設備。
  4. 前記バッテリの電圧が前記使用電圧範囲より低下すると、前記バッテリからの前記負荷と前記電気二重層コンデンサに対する給電を遮断すること
    を特徴とする請求項3に記載の非接触ポイント給電設備。
  5. 前記第1リアクトルのコア部材の飽和電圧を、前記電気二重層コンデンサのフル充電電圧と、前記設定した第1リアクトルの一次側コイル巻線の巻数に基づいて設定したこと
    を特徴とする請求項1〜請求項4のいずれかに記載の非接触ポイント給電設備。
  6. 前記電気二重層コンデンサに近接して前記第1リアクトルを配置し、前記バッテリに近接して前記第2リアクトルを配置したこと
    を特徴とする請求項1〜請求項5のいずれかに記載の非接触ポイント給電設備。
  7. 前記第1リアクトルより前記三次側コイル巻線を削除し、
    環状磁路を形成する円環型のコア部材を有し、前記受電コイルと並列に接続された一次側コイル巻線が前記環状磁路に鎖交するようにコア部材に巻かれ、前記三次側コイル巻線が二次側コイル巻線として前記環状磁路に鎖交するようにコア部材に巻かれた第3リアクトルを備え、
    前記第2リアクトルの二次側コイル巻線および前記第3リアクトルの二次側コイル巻線を逆極性で直列に接続し、前記第2整流回路へ接続したこと
    を特徴とする請求項1〜請求項6のいずれかに記載の非接触ポイント給電設備。
JP2008251954A 2008-09-30 2008-09-30 非接触ポイント給電設備 Active JP5246654B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251954A JP5246654B2 (ja) 2008-09-30 2008-09-30 非接触ポイント給電設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251954A JP5246654B2 (ja) 2008-09-30 2008-09-30 非接触ポイント給電設備

Publications (2)

Publication Number Publication Date
JP2010088160A true JP2010088160A (ja) 2010-04-15
JP5246654B2 JP5246654B2 (ja) 2013-07-24

Family

ID=42251573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251954A Active JP5246654B2 (ja) 2008-09-30 2008-09-30 非接触ポイント給電設備

Country Status (1)

Country Link
JP (1) JP5246654B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043966A (ja) * 2010-08-19 2012-03-01 Railway Technical Research Institute 非接触給電コイル
JP2012095471A (ja) * 2010-10-28 2012-05-17 Daifuku Co Ltd 誘導受電回路
JP2016134965A (ja) * 2015-01-16 2016-07-25 Tdk株式会社 受電装置
JP2018121426A (ja) * 2017-01-25 2018-08-02 株式会社ダイヘン ワイヤレス給電システム、管理装置、管理方法及び管理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126715A (ja) * 1994-10-31 1996-05-21 Nohmi Bosai Ltd 火災用ロボット設備
JP2001025241A (ja) * 1999-07-05 2001-01-26 Daifuku Co Ltd 無接触給電設備の2次側受電回路およびこの2次側受電回路を使用する移動体
JP2005313884A (ja) * 2004-03-30 2005-11-10 Daifuku Co Ltd 無接触給電設備
JP2010035292A (ja) * 2008-07-28 2010-02-12 Daifuku Co Ltd 誘導受電回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126715A (ja) * 1994-10-31 1996-05-21 Nohmi Bosai Ltd 火災用ロボット設備
JP2001025241A (ja) * 1999-07-05 2001-01-26 Daifuku Co Ltd 無接触給電設備の2次側受電回路およびこの2次側受電回路を使用する移動体
JP2005313884A (ja) * 2004-03-30 2005-11-10 Daifuku Co Ltd 無接触給電設備
JP2010035292A (ja) * 2008-07-28 2010-02-12 Daifuku Co Ltd 誘導受電回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043966A (ja) * 2010-08-19 2012-03-01 Railway Technical Research Institute 非接触給電コイル
JP2012095471A (ja) * 2010-10-28 2012-05-17 Daifuku Co Ltd 誘導受電回路
JP2016134965A (ja) * 2015-01-16 2016-07-25 Tdk株式会社 受電装置
JP2018121426A (ja) * 2017-01-25 2018-08-02 株式会社ダイヘン ワイヤレス給電システム、管理装置、管理方法及び管理プログラム

Also Published As

Publication number Publication date
JP5246654B2 (ja) 2013-07-24

Similar Documents

Publication Publication Date Title
USRE45651E1 (en) Electronic control method for a planar inductive battery charging apparatus
Villa et al. High-misalignment tolerant compensation topology for ICPT systems
JP5437650B2 (ja) 非接触給電装置
US9457676B2 (en) Contactless power transfer apparatus
EP0929926B1 (en) Method and apparatus for supplying contactless power
US7710751B2 (en) Secondary-side power receiving circuit of noncontact power supplying equipment
JP3304677B2 (ja) 誘導電力分配システムおよび車両
JP3900822B2 (ja) 非接触で給電される移動体の電源回路
JP3465075B2 (ja) 非接触給電装置
WO2015029297A1 (ja) 非接触受電装置
US11043845B2 (en) Power feeding device and wireless power transmission device
JP5246654B2 (ja) 非接触ポイント給電設備
US10218186B2 (en) Power feeding device and non-contact power transmission device
US20130088087A1 (en) Non-contact power feeding device
JP2013135491A (ja) アンテナ
JP2015179704A (ja) 給電パッドとその給電パッドを用いたフォークリフトの非接触充電システム、および、受電パッドとその受電パッドを用いた非接触給電設備の2次側受電回路
JP2011167009A (ja) 非接触給電装置
JP5250867B2 (ja) 誘導受電回路
JP2000116035A (ja) 輸送設備
JP3491179B2 (ja) 非接触受電装置
JP2015153773A (ja) 非接触給電システム
JP3491177B2 (ja) 非接触電力供給システム
JPH05336607A (ja) 移動体の無接触給電設備
JP5413849B2 (ja) 誘導受電回路
JP2000116036A (ja) 輸送設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

R150 Certificate of patent or registration of utility model

Ref document number: 5246654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250