JP2010033785A - リチウム遷移金属酸化物粉体 - Google Patents

リチウム遷移金属酸化物粉体 Download PDF

Info

Publication number
JP2010033785A
JP2010033785A JP2008192869A JP2008192869A JP2010033785A JP 2010033785 A JP2010033785 A JP 2010033785A JP 2008192869 A JP2008192869 A JP 2008192869A JP 2008192869 A JP2008192869 A JP 2008192869A JP 2010033785 A JP2010033785 A JP 2010033785A
Authority
JP
Japan
Prior art keywords
transition metal
metal oxide
particle size
oxide powder
lithium transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008192869A
Other languages
English (en)
Other versions
JP5554479B2 (ja
Inventor
Shinya Kagei
慎也 蔭井
Hiromi Hata
祥巳 畑
Keisuke Miyanohara
啓佑 宮之原
Yasuhiro Ochi
康弘 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008192869A priority Critical patent/JP5554479B2/ja
Publication of JP2010033785A publication Critical patent/JP2010033785A/ja
Application granted granted Critical
Publication of JP5554479B2 publication Critical patent/JP5554479B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】層構造を有するリチウム遷移金属酸化物を主成分とするリチウム遷移金属酸化物粉体に関し、塗工性の優れたリチウム遷移金属酸化物粉体を提供する。
【解決手段】一般式Li1+x1-x2-δ(M:Mn、Co及びNiの3元素を含む)で表わされるリチウム遷移金属酸化物を主成分とするリチウム遷移金属酸化物粉体であって、リチウム遷移金属酸化物粉体を水中へ投入し、40mL/secの流速中、40wattsの超音波をかけて10分後に、超音波をかけながら測定した超音波停止直前の平均粒径(D50)に対する、超音波を停止させてから10分経過後に測定した平均粒径(D50)の割合である再凝集率が100%≦再凝集率<113%であることを特徴とするリチウム遷移金属酸化物粉体を提案する。
【選択図】なし

Description

本発明は、リチウム電池の正極活物質として用いることができ、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載する電池の正極活物質として優れた性能を発揮し得る、層構造を有するリチウム遷移金属酸化物を主成分とするリチウム遷移金属酸化物粉体に関する。
リチウム電池 、特にリチウム二次電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器などの電源として用いられており、最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池にも利用されている。
リチウム二次電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極材料の電位に起因することが知られている。
リチウム二次電池の正極活物質としては、スピネル構造をもつリチウムマンガン酸化物(LiMn24)のほか、層構造をもつLiCoO2、LiNiO2などのリチウム遷移金属酸化物粉体が知られている。例えばLiCoO2は、リチウム原子層とコバルト原子層が酸素原子層を介して交互に積み重なった層構造を有しており、充放電容量が大きく、リチウムイオン吸蔵脱蔵の拡散性に優れているため、現在、市販されているリチウム二次電池の大半は、正極活物質として4Vの高電圧を有するLiCoO2が用いられている。しかし、Coが極めて高価であるため、LiCoO2の代替材料となり得る、層構造を有するリチウム遷移金属酸化物粉体(LiMx2、M:遷移金属)の開発が求められている。
従来、層構造を有するリチウム遷移金属酸化物粉体(LiMx2)として、特許文献1には、マンガンとニッケルの混合水溶液中にアルカリ溶液を加えてマンガンとニッケルを共沈させ、水酸化リチウムを加え、ついで焼成することによって得られる、式:LiNixMn1-x2(式中、0.7≦x≦0.95)で示される活物質が開示されている。
特許文献2には、3種の遷移金属を含む酸化物の結晶粒子からなり、前記結晶粒子の結晶構造が層構造であり、前記酸化物を構成する酸素原子の配列が立方最密充填である、Li[Lix(APQR1-x]O2(式中、A、BおよびCはそれぞれ異なる3種の遷移金属元素、−0.1≦x≦0.3、0.2≦P≦0.4、0.2≦Q≦0.4、0.2≦R≦0.4)で表される正極活物質が開示されている。
特許文献3には、高嵩密度を有する層状リチウムニッケルマンガン複合酸化物粉体を提供するべく、粉砕及び混合された少なくともリチウム源化合物とニッケル源化合物とマンガン源化合物とを、ニッケル原子〔Ni〕とマンガン原子〔Mn〕とのモル比〔Ni/Mn〕として0.7〜9.0の範囲で含有するスラリーを、噴霧乾燥により乾燥させ、焼成することにより層状リチウムニッケルマンガン複合酸化物粉体となした後、該複合酸化物粉体を粉砕する層状リチウムニッケルマンガン複合酸化物粉体の製造方法が開示されている。
特許文献4には、バナジウム(V)及び/又はボロン(B)を混合することにより、結晶子径を大きくしてなるリチウム遷移金属複合酸化物、すなわち、一般式LiZ−δ(式中、Mは遷移金属元素であるCo又はNiを示し、(X/Y)=0.98〜1.02、(δ/Z)≦0.03の関係を満たす)で表されるリチウム遷移金属複合酸化物を含むとともに、リチウム遷移金属複合酸化物を構成する遷移金属元素(M)に対して、((V+B)/M)=0.001〜0.05(モル比)のバナジウム(V)及び/又はボロン(B)を含有し、その一次粒子径が1μm以上、結晶子径が450Å以上、かつ格子歪が0.05%以下である物質が開示されている。
特許文献5においては、高い嵩密度や電池特性を維持し、割れが起きる心配のない1次粒子からなる非水系二次電池用正極活物質を提供することを目的として、Co、Ni、Mnの群から選ばれる1種の元素とリチウムとを主成分とする単分散の1次粒子の粉体状のリチウム複合酸化物であって、平均粒径(D50)が3〜12μm、比表面積が0.2〜1.0m/g、嵩密度が2.1g/cm以上であり、かつ、クーパープロット法による体積減少率の変曲点が3ton/cmまで現れないことを特徴とする非水系二次電池用正極活物質が提案されている。
また、特許文献6に係る発明は、次のような提案をしている。
正極活物質の凝集の度合い、すなわち凝集粒の大きさや凝集の強さが、前記電極を作成する塗布工程で塗工面のスジや凸部が生じる等の不具合の原因となるばかりか、電池特性をばらつかせる原因となることに着目し、凝集を抑制して塗布性を高めた正極活物質を提供する目的で、リチウムイオンの吸蔵放出可能なリチウム含有複合酸化物からなる正極活物質において、その正極活物質を溶媒中へ分散させて超音波をかけた場合と、かけない場合のレーザー回折によって求めた正極活物質のメジアン径D50の比(D50(超音波なし)/D50(超音波あり)の値)が1以上、2以下であることを特徴とするリチウム二次電池用正極活物質を提案している。
特開平8−171910号公報 特開2003−17052号公報 特開2003−34536号公報 特開2004−253169号公報 特開2004−355824号公報 特開2005−150102号公報の請求項1及び段落[0007]
電気自動車やハイブリッド自動車に搭載される電池は、ビデオカメラやノート型パソコン、携帯電話機などの民生品用電池のように充放電深度の限界域間で充放電される電池とは異なり、主に充放電深度の中心領域(例えばSOC20−80%)で充放電されるため、当該中心領域で使用される場合に優れた電池特性、例えば寿命特性(サイクル特性)や出力特性を発揮することが求められる。
その一方、いくら性能の高い正極活物質であっても、電極への塗工性が劣っていたのでは、優れた電池特性を安定して得ることは難しい。特に電気自動車やハイブリッド自動車に搭載される大型の電池に関しては、正極活物質の塗工性を高めることは必須の課題である。中でも、電極塗工時の凝集による粗大粒子の発生(所謂ダマの発生)は、電池性能に影響するため、特に注意する必要がある。
このような正極活物質の塗工性に関しては、前記の如く特許文献6に係る発明が、正極活物質を溶媒中へ分散させて超音波をかけた場合と、かけない場合の正極活物質のメジアン径D50の比(D50(超音波なし)/D50(超音波あり)の値)が1以上、2以下であるリチウム二次電池用正極活物質を提案している。
しかし、電極塗工時の凝集による粗大粒子の発生は、正極材料が微粉であることやスラリー作製前の凝集の程度が主な原因となるのではなく、凝集を解した後に再凝集することが主な原因となると考えられる。この点については、スラリー作製前の凝集形態が主に分子間力による凝集であれば、スラリー作製時に凝集が解れても再凝集しにくく、きれいな電極塗工が可能であるが、主に焼結(特にスラリー作製時に解れる程度の弱い焼結)による凝集であれば、スラリー作製時に焼結部分の結合が崩れ、活性表面が現れるために再凝集し易くなり、電極塗工時に再凝集による粗大粒子が発生するものと推測される。
また、特許文献6に記載されている製法について調査を進めた結果、多くの正極活物質については確かにD50(超音波なし)/D50(超音波あり)の値が大きいほど、凝集し易いことが確認できたものの、特許文献6に記載されている製法とは異なる製法、例えば焼成後に400℃を上らない低温の熱処理を行ったり、或いは熱処理を全く行わなかったりする製法で得られたリチウム遷移金属酸化物粉体に関しては、D50(超音波なし)/D50(超音波あり)の値だけでは、凝集し易さ、特に一旦分散させた後の再凝集のし易さを正しく評価することができず、正極活物質の塗工性を正確に判別できないことが分かってきた。
そこで本発明は、層構造を有するリチウム遷移金属酸化物を主成分とするリチウム遷移金属酸化物粉体に関し、塗工性の優れたリチウム遷移金属酸化物粉体を提供せんとするものである。
本発明は、一般式Li1+x1-x2-δ(M:Mn、Co及びNiの3元素を含む)で表わされるリチウム遷移金属酸化物を主成分とするリチウム遷移金属酸化物粉体であって、リチウム遷移金属酸化物粉体を水中へ投入し、40mL/secの流速中、40wattsの超音波をかけて10分後に、超音波をかけながら測定した超音波停止直前の平均粒径(D50)に対する、超音波を停止させてから10分経過後に測定した平均粒径(D50)の割合である再凝集率が100%≦再凝集率<113%であることを特徴とする、層構造を有するリチウム遷移金属酸化物粉体を提案する。
一般式Li1+x1-x2-δ(M:Mn、Co及びNiの3元素を含む)で表わされるリチウム遷移金属酸化物を主成分とするリチウム遷移金属酸化物粉体の再凝集率が100%≦再凝集率<113%であれば、電極塗工時の凝集による粗大粒子の発生(所謂ダマの発生)を効果的に抑制することができ、塗工性の優れたリチウム遷移金属酸化物粉体を提供することができる。
リチウム遷移金属酸化物粉体は凝集粒子の集合であり、超音波をかけることにより凝集粒子が分散するが、超音波を停止すると再び凝集するようになる。本発明は、この再凝集の程度によってリチウム遷移金属酸化物粉体を特定した発明である。
リチウム2次電池は、有機溶媒を使用して正極活物質をスラリー化させて正極合剤を作製するため、特許文献6に示されるように、正極活物質を有機溶媒中に分散させた場合の分散度を評価することが考えられるが、本発明の場合には水に分散させた場合の再凝集率を特定することにより、塗工性に優れた正極活物質を提供することができる点にも特徴がある。
また、焼成後に400℃を上らない低温の熱処理を行うか、或いは熱処理を全く行わない製法で得られたリチウム遷移金属酸化物粉体に関しても、凝集し易さ、特に一旦分散させた後の再凝集のし易さを低下させることができ、塗工性に優れた正極活物質を安定して提供することができる。
以下、本発明の実施形態について説明するが、本発明が下記実施形態に限定されるものではない。
本実施形態のリチウム遷移金属酸化物粉体(以下「本Li遷移金属酸化物粉体」という)は、一般式Li1+x1-x2-δ(M:Mn、Co及びNiの3元素を含む)で表わされる層構造を有するリチウム遷移金属酸化物を主成分とする粉体である。すなわち、リチウム原子層と遷移金属原子層とが酸素原子層を介して交互に積み重なった層構造を有するリチウム遷移金属酸化物粉体粒子を主成分とする粉体である。
なお、「主成分とする」とは、特に記載しない限り、当該主成分の機能を妨げない限りにおいて他の成分を含有することを許容する意を包含するものである。当該主成分の含有割合を特定するものではないが、少なくとも50質量%以上、特に70質量%以上、中でも90質量%以上、中でも95質量%以上(100%含む)を占める場合を包含する。例えば、本Li遷移金属酸化物粉体は、不純物としてSOを1.0重量%以下、その他の元素をそれぞれ0.1重量%以下であれば含んでいてもよい。この程度の量であれば、本Li遷移金属酸化物粉体の特性にほとんど影響しないと考えられるからである。
一般式Li1+x1-x2-δ(M:Mn、Co及びNiの3元素を含む)において、遷移金属としてMn、Co及びNiの3元素を主成分として含んでいればよく、他の元素を含んでいてもよい。例えば当該Mn、Co又はNiの一部が他の元素、例えば他の遷移元素や典型元素などで置換された組成であってもよい。
これらの中でも、式(1)・・Li1+x(MnαCoβNiγ1-x2-δで表されるリチウム遷移金属酸化物(この場合も、Mn、Co又はNiの一部が他の元素で置換された組成も含む)を主成分とする粉体であるのが特に好ましい。
この際、Mnのモル比率(α)は、0.10≦α≦0.40であるのが好ましく、特に0.19≦α≦0.35、中でも特に0.19≦α≦0.31であるのがより一層好ましい。
Coのモル比率(β)は、0.10≦β≦0.40であるのが好ましく、特に0.19≦β≦0.35、中でも特に0.19≦β≦0.31であるのがより一層好ましい。
Niのモル比率(γ)は、0.30≦γ≦0.75であるのが好ましく、特に0.31≦γ≦0.59、中でも特に0.37≦γ≦0.59であるのがより一層好ましい。
一般式(1)において、Liのモル比率を示す「1+x」は、1.00≦1+x≦1.07であるのが好ましく、1.01≦1+x≦1.07であるのがさらに好ましく、特に1.03≦1+x≦1.07であるのがさらに好ましく、中でも1.05≦1+x≦1.07であるのがさらに好ましい。
また、酸素の原子比は多少の不定比性(例えば2−δで示す)を有してもよいし、酸素の一部がフッ素で置換されていてもよい。
(結晶構造)
本Li遷移金属酸化物粉体の粉体粒子の結晶構造は、空間群R−3mの三方晶(Trigonal)に帰属し、Liイオンは3aサイト、Mn、Co及びNiのイオンは3bサイト、酸化物イオンは6cサイトを占有する。
ここで、「3aサイト」「3bサイト」及び「6cサイト」は、原子位置を示すWyckoff位置の意味である。
(再凝集率)
本Li遷移金属酸化物粉体は、リチウム遷移金属酸化物粉体を水中へ投入し、40mL/secの流速中、40wattsの超音波をかけて10分後に、超音波をかけながら測定した超音波停止直前の平均粒径(D50)に対する、超音波を停止させてから10分経過後に測定した平均粒径(D50)の割合である再凝集率が100%≦再凝集率<113%であることが重要であり、好ましくは再凝集率が100%≦再凝集率≦109%、特に好ましくは100%≦再凝集率≦103%である。
Li遷移金属酸化物粉体の再凝集率を100%≦再凝集率<113%に調整することで、電極塗工時の凝集による粗大粒子の発生(所謂ダマの発生)を効果的に抑制することができる。また、例えば焼成後に400℃を上らない低温の熱処理を行うか、或いは熱処理を全く行わない製法で得られたリチウム遷移金属酸化物粉体を含めて、凝集し易さ、特に一旦分散させた後の再凝集のし易さを低下させることができ、塗工性に優れた正極活物質を安定して提供することができる。例えば焼成後に400℃を超える温度の熱処理を行う製法で得られたリチウム遷移金属酸化物粉体は、超音波により分散させた後の粒子表面には活性表面が現れるため粒子間引力が強く残存していて再凝集し易い状態となるため、超音波を停止した後に経時的に再凝集する傾向が現れるが、焼成後に400℃を上らない低温の熱処理を行うか、或いは熱処理を全く行わない製法で得られたリチウム遷移金属酸化物粉体は、このような傾向が現れないか或いはその傾向が軽微である。よって、このような製法の相違がある場合には、超音波により分散させる前と分散させた直後の平均粒径(D50)とに着目しただけでは、凝集し易さ、特に一旦超音波分散させた後の再凝集のし易さを評価することは困難である。これに対し、本発明が着目した再凝集率は、熱処理の程度及び有無に関係なく、再凝集のし易さ並びに塗工性の良さを正確に評価することができる。
(D50)
本Li遷移金属酸化物粉体のレーザー回折散乱式粒度分布測定法により求められる平均粒径(D50)は、1.0μm≦D50≦4.0μmであることが好ましく、特に1.5μm≦D50≦4.0μm、中でも特に2.0μm≦D50<3.0μmであるのが好ましい。
(結晶子径)
本Li遷移金属酸化物粉体のRietveld法による測定方法(詳しくは、試験例の欄に記載)により求められる結晶子径は、特に限定するものではないが、0.01μm〜0.50μmであるのが好ましく、特に0.05μm〜0.40μm、中でも特に0.05μm〜0.30μm、その中でも特に0.07μm〜0.23μmであるのが好ましい。
本Li遷移金属酸化物粉体の結晶子径は、例えば遷移金属の組成比率(例えばMn:Co:Ni比、Li:Mn比等の組成比率)や、原料粒度や焼成条件などによって調整可能である。
(結晶子径/D50)
本Li遷移金属酸化物粉体においては、レーザー回折散乱式粒度分布測定法で求められる平均粒径(D50)に対する、Rietveld法による測定方法(詳しくは試験例の測定条件参照)によって求められる結晶子径の比率(結晶子径/D50)は、0.03〜0.13であることが好ましく、特に好ましくは0.03〜0.12、中でも特に好ましくは0.03〜0.11である。
このように平均粒径(D50)に対する結晶子径の比率(結晶子径/D50)が0.03〜0.13であるLi遷移金属酸化物粉体を電池の正極活物質として使用すれば、電気自動車やハイブリッド自動車に搭載される電池の使用状態、すなわち充放電深度の中心領域(例えばSOC(;State Of Charge)20−80%)で充放電される使用状態において、特に優れた寿命特性(サイクル特性)及び出力特性(低温容量確試験3で評価されている特性)を発揮することができる。
ここで、「結晶子」とは、単結晶とみなせる最大の集まりを意味し、XRD測定を行いリートベルト解析を行なうことにより求めることができる。
複数の結晶子によって構成され、SEM(例えば3000倍)で観察した際、粒界によって囲まれた最も小さな単位の粒子を、本発明では「1次粒子」という。したがって、1次粒子には単結晶及び多結晶が含まれる。
また、複数の1次粒子がそれぞれの外周(粒界)の一部を共有するようにして凝集し、他の粒子と孤立した粒子を、本発明では「2次粒子」又は「凝集粒子」という。
ちなみに、レーザー回折散乱式粒度分布測定法は、凝集した粉粒を一個の粒子(凝集粒子)として捉えて粒径を算出する測定方法であり、平均粒径(D50)は、50%体積累積粒径、すなわち体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の細かい方から累積50%の径を意味する。
同様に、90%積算径(D90)は、90%体積累積粒径、すなわち体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の細かい方から累積90%の径を意味する。
(1次粒子の平均粒径)
本Li遷移金属酸化物粉体の1次粒子の平均粒径は、特に限定するものではなく、0.5μm〜5.0μmであるのが好ましく、特に0.7μm〜4.0μm、中でも特に1.0μm〜3.0μmであるのが好ましい。
1次粒子の平均粒径は、走査電子顕微鏡(HITACHI S‐3500N)を使用し、加速電圧20kV、倍率3000倍にて観察し、電子顕微鏡写真の1次粒子像を画像解析ソフト(OLYMPUS製 analysis FIVE)を用いて算出して求めることができる。
(D90)
本Li遷移金属酸化物のレーザー回折散乱式粒度分布測定法により求められる90%積算径(D90)は、2.0μm〜10.0μmであるのが好ましく、特に2.5μm〜8.0μm、中でも特に3.0μm〜6.0μmであるのが好ましい。
90%積算径(D90)を2.0μm〜10.0μmに調整する、すなわち、粗粉の粒径を2.0μm〜10.0μmの範囲に細かく調整することにより、正極活物質の結晶の外側に存在する粗大異物粒子、特に鉄やニッケル、クロム、亜鉛等の金属性粗大異物粒子を除去することができ、微小短絡の発生を抑制することができる。よって、本Li遷移金属酸化物を正極活物質として電池を構成した時に、前記粗大異物粒子が正極から溶出し、負極上に偏析析出してセパレータを突き破って内部短絡することを防ぐことができる。
なお、正極活物質の結晶の内側に不純物が存在しても微小短絡の発生に影響しないことが確認されており、D90を2.0μm〜10.0μmに調整することにより、正極活物質の結晶の外側に存在する粗大異物粒子を除去して微小短絡の発生を防止するという考え方は、所謂トータル鉄量を低減するという考え方とは全く異なるものである。
(粒度分布のチャート)
また、本Li遷移金属酸化物粉体は、レーザー回折散乱式粒度分布測定装置を用いて体積基準粒度分布のチャートを求めた際、粒度分布曲線(ヒストグラム曲線)が一山となるものが好ましい。
(製造方法)
次に、本Li遷移金属酸化物粉体の製造方法について説明する。
本Li遷移金属酸化物粉体は、原料、例えばリチウム塩化合物、マンガン塩化合物、ニッケル塩化合物及びコバルト塩化合物を混合し、湿式粉砕機等で平均粒径(D50)が2μm以下となるまで粉砕した後、熱噴霧乾燥機等を用いて造粒乾燥させ、焼成し、必要に応じて分級し、そして分級機構付衝突式粉砕機などを用いて平均粒径(D50)と結晶子径との比率が所定範囲内に入るように粉砕し、さらに必要に応じて熱処理し、さらに必要に応じて分級する。そして、再凝集率を測定して再凝集率が100%≦再凝集率<113%である粉体を選別することにより本Li遷移金属酸化物粉体を得ることができる。
以下、この製造方法について詳細に説明するが、本発明のリチウム遷移金属酸化物粉体の製造方法がかかる製造方法に限定されるものではない。例えば所謂共沈法によって焼成に供する造粒粉を作製してもよい。
リチウム塩化合物としては、例えば水酸化リチウム(LiOH)、炭酸リチウム(LiCO)、硝酸リチウム(LiNO3)、LiOH・H2O、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
マンガン塩化合物の種類は、特に限定するものではない。例えば炭酸マンガン、硝酸マンガン、塩化マンガン、二酸化マンガンなどを用いることができ、中でも炭酸マンガン、二酸化マンガンが好ましい。その中でも、電解法によって得られる電解二酸化マンガンが特に好ましい。
ニッケル塩化合物の種類も特に制限はなく、例えば炭酸ニッケル、硝酸ニッケル、塩化ニッケル、オキシ水酸化ニッケル、水酸化ニッケル、酸化ニッケルなどを用いることができ、中でも炭酸ニッケル、水酸化ニッケル、酸化ニッケルが好ましい。
コバルト塩化合物の種類も特に制限はなく、例えば塩基性炭酸コバルト、硝酸コバルト、塩化コバルト、オキシ水酸化コバルト、水酸化コバルト、酸化コバルトなどを用いることができ、中でも、塩基性炭酸コバルト、水酸化コバルト、酸化コバルト、オキシ水酸化コバルトが好ましい。
原料の混合は、水や分散剤などの液媒体を加えて湿式混合してスラリー化させるのが好ましく、得られたスラリーを湿式粉砕機で粉砕するのが好ましい。但し、乾式粉砕してもよい。
そして、平均粒径(D50)が2μm以下、特に平均粒径(D50)0.5μm〜1.0μmとなるように粉砕するのが好ましい。
造粒方法は、前工程で粉砕された各種原料が分離せずに造粒粒子内で分散していれば湿式でも乾式でもよく、押し出し造粒法、転動造粒法、流動造粒法、混合造粒法、噴霧乾燥造粒法、加圧成型造粒法、或いはロール等を用いたフレーク造粒法でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。乾燥方法としては、噴霧熱乾燥法、熱風乾燥法、真空乾燥法、フリーズドライ法などの公知の乾燥方法によって乾燥させればよく、中でも噴霧熱乾燥法が好ましい。噴霧熱乾燥法は、熱噴霧乾燥機(スプレードライヤー)を用いて行なうのが好ましい。
焼成は、焼成炉にて、大気雰囲気下、酸素ガス雰囲気下、酸素分圧を調整した雰囲気下、或いは二酸化炭素ガス雰囲気下、或いはその他の雰囲気下において、850〜1100℃の温度(:焼成炉内の焼成物に熱電対を接触させた場合の温度を意味する。)で0.5〜30時間保持するように焼成するのが好ましい。この際、遷移金属が原子レベルで固溶し単一相を示す焼成条件を選択するのが好ましい。
焼成炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
焼成後の分級は、凝集粉の粒度分布調整とともに異物除去という技術的意義があり、平均粒径(D50)が10μm〜50μmとなるように分級するのが好ましい。
分級後の粉砕は、分級機構付衝突式粉砕機、例えば分級ロータ付カウンタージェットミルなどを用いて、平均粒径(D50)と結晶子径との比率が所定範囲内に入るように微粉砕するのが好ましい。
さらに好ましくは、粉体の粒度分布曲線(ヒストグラム曲線)が一山となるように粉砕するのがよい。すなわち、得られた粉体について、レーザー回折散乱式粒度分布測定法により粒度分布を測定し、得られた体積基準粒度度数分布曲線(ヒストグラム曲線)が一つのピークを有するような粒度分布曲線を示すように粉砕するのが好ましい。この際、体積基準粒度分布曲線(ヒストグラム曲線)における「ピーク」とは、体積基準粒度度数分布(ヒストグラム)を示す度数分布曲線の傾きが、粒度の小さい方から大きい方に見た際に正から負へ変化する点をいう。なお、体積基準粒度度数分布における頻度が0.5%未満のピークトップを有するピークは、仮に存在してもその影響は無視できるから、そのようなピークは本発明が対象とするピークには含めないものとする。
分級機構付衝突式粉砕機で粉砕して得られる粉体粒子は、非真球形となるのが通常である。
必要に応じて行う熱処理は、大気雰囲気下において、例えば400℃を超えない低温で実施すればよく、水分除去の観点からすると200〜300℃程度の低温での熱処理をするのが好ましい。但し、熱処理を行わなくてもよい。
熱処理後の分級は、凝集粉の粒度分布調整とともに異物除去という技術的意義があり、平均粒径(D50)1.0μm〜4.0μmの範囲に分級するのが好ましい。
再凝集率の測定及び選別は、リチウム遷移金属酸化物粉体を水中へ投入し、40mL/secの流速中、40wattsの超音波をかけて10分後に、超音波をかけながら測定した超音波停止直前の平均粒径(D50)に対する、超音波を停止させてから10分経過後に測定した平均粒径(D50)の割合である再凝集率が100%≦再凝集率<113%、好ましくは100%≦再凝集率≦109%、特に好ましくは100%≦再凝集率≦103%であるリチウム遷移金属酸化物粉体を選別すればよい。
再凝集率の調整手段としては、上記の製造方法において、例えば熱処理の程度や、焼成後或いは熱処理後に凝集粒子を解して空気中の水分と接触させる程度などを調整することよって行うことができる。例えば、再凝集率を低下させたい場合には、熱処理の温度を低温にしたり、焼成後或いは熱処理後に凝集粒子を解して空気中の水分と接触させることよって再凝集率を低下させることができる。
なお、リチウム遷移金属酸化物粉体の再凝集率を測定して選別する方法は、リチウム電池の正極活物質、或いは該正極活物質用リチウム遷移金属酸化物粉体の評価方法として利用することができる。
(特性・用途)
本Li遷移金属酸化物粉体は、必要に応じて解砕・分級した後、リチウム電池の正極活物質として有効に利用することができる。
例えば、本Li遷移金属酸化物粉体と、カーボンブラック等からなる導電材と、PVDFバインダー等からなる結着剤とを混合して正極合剤を製造することができる。そしてそのような正極合剤を正極に用い、例えば負極にはリチウムまたはカーボン等のリチウムを吸蔵・脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム2次電池を構成することができる。但し、このような構成の電池に限定する意味ではない。
本Li遷移金属酸化物粉体を正極活物質として備えたリチウム電池は、充放電深度の中心領域(例えばSOC50−80%)で充放電を繰り返して使用した場合に優れた寿命特性(サイクル特性)及び出力特性をともに発揮するから、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載するモーター駆動用電源として用いるリチウム電池の正極活物質の用途に特に優れている。
なお、「ハイブリッド自動車」とは、電気モータと内燃エンジンという2つの動力源を併用した自動車である。
また、「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウム又はリチウムイオンを含有する電池を全て包含する意である。
(用語の説明)
本明細書において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意であり、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意を包含するものである。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」或いは「Y未満であるのが好ましい」旨の意図も包含する。
次に、実施例及び比較例に基づいて、本発明について更に説明するが、本発明が以下に示す実施例に限定されるものではない。
<D50及び再凝集率>
レーザー回折粒度分布測定機用試料循環器(日機装株式会社製「Microtorac ASVR」)を用いて平均粒径(D50)を測定した。
装置が適量範囲と判断する量のリチウム遷移金属酸化物粉体(サンプル)を水中へ投入し、40mL/secの流速中、40wattsの超音波をかけて10分後に、超音波をかけながら超音波停止直前の平均粒径(D50)を測定し、その後、超音波を停止させてから10分経過後に平均粒径(D50)を測定し、超音波停止直前の平均粒径(D50)に対する、超音波を停止させてから10分経過後の平均粒径(D50)の割合(%)を再凝集率として算出した。
<塗工性評価>
正極活物質としてのリチウム遷移金属酸化物粉体(サンプル)8.00gと、導電材としてのアセチレンブラック(電気化学工業社製)1.00gと、N−メチル−2−ピロリドン(NMP)中にポリフッ化ビニリデン(PVDF、キシダ化学社製)12wt%溶解した溶液8.30gと、N−メチル−2−ピロリドン(NMP)5mLとを混合し、遊星式撹拌・脱泡装置(クラボウ製 マゼルスターKK‐50S)を用いて混練しペースト状の正極合剤とした。このペースト状の正極合剤を常温下で24時間放置し、グラインドゲージにて60μm以上のスジが3本以上発生したものを「塗工性不良:×」、スジが3本未満であったものを「塗工性良:○」と評価した。
(実施例1)
平均粒径(D50)8μmの炭酸リチウムと、平均粒径(D50)22μmの電解二酸化マンガンと、平均粒径(D50)25μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.06:0.31:0.31:0.32となるように秤量し、水を加えて混合攪拌して固形分濃度50wt%のスラリーを調製した。
得られたスラリー(原料粉20kg)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の6wt%添加し、湿式粉砕機で1300rpm、29分間粉砕して平均粒径(D50)を0.7μmとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製OC‐16)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数21000rpm、スラリー供給量24kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行なった。
得られた造粒粉を、静置式電気炉を用いて、大気中985℃で20時間焼成した。焼成して得られた焼成粉を目開き75μmの篩で分級し、篩下の粉体を分級機構付衝突式粉砕機(ホソカワミクロン製カウンタージェットミル「100AFG/50ATP」)を用いて、分級ローター回転数:14900rpm、粉砕空気圧力:0.6MPa、粉砕ノズルφ:2.5×3本使用、粉体供給量:4.5kg/hの条件で粉砕を行った後、大気中250℃で10時間熱処理を行い、得られた粉体を目開き250μmの篩で分級し、リチウム遷移金属酸化物粉体(サンプル)を得た。
(実施例2)
焼成温度を965℃に変更した以外は実施例1と同様にして、リチウム遷移金属酸化物粉体(サンプル)を得た。
(実施例3)
焼成温度を965℃に変更すると共に、焼成後の粉砕、熱処理並びに熱処理後の分級を行わなかった以外は実施例1と同様にして、リチウム遷移金属酸化物粉体(サンプル)を得た。
(実施例4)
熱処理及び熱処理後の分級を行わなかった以外は実施例1と同様にして、リチウム遷移金属酸化物粉体(サンプル)を得た。
(実施例5)
焼成温度を965℃に変更して実施例1同様に焼成を行い、焼成して得られた焼成粉を目開き75μmの篩で分級し、篩下の粉体を分級機構付衝突式粉砕機(ホソカワミクロン製カウンタージェットミル「100AFG/50ATP」)を用いて、分級ローター回転数:14900rpm、粉砕空気圧力:0.6MPa、粉砕ノズルφ:2.5×3本使用、粉体供給量:4.5kg/hの条件で粉砕を行い、この際にバグフィルターに回収された超微粉を採取してリチウム遷移金属酸化物粉体(サンプル)とした。
(実施例6)
焼成温度を965℃に変更すると共に、熱処理温度を350℃に変更した以外は実施例1と同様にして、リチウム遷移金属酸化物粉体(サンプル)を得た。
(比較例1)
焼成温度を965℃に変更すると共に、熱処理温度を650℃に変更した以外は実施例1と同様にして、リチウム遷移金属酸化物粉体(サンプル)を得た。
(比較例2)
焼成温度を965℃に変更すると共に、熱処理温度を600℃に変更した以外は実施例1と同様にして、リチウム遷移金属酸化物粉体(サンプル)を得た。
(比較例3)
平均粒径(D50)8μmの炭酸リチウムと、平均粒径(D50)22μmの電解二酸化マンガンと、平均粒径(D50)25μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.06:0.31:0.31:0.32となるように秤量し、水を加えて混合攪拌して固形分濃度50wt%のスラリーを調製した。
得られたスラリー(原料粉20kg)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の6wt%添加し、湿式粉砕機で1300rpm、29分間粉砕して平均粒径(D50)を0.7μmとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製OC‐16)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数21000rpm、スラリー供給量24kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行なった。
得られた造粒粉を、静置式電気炉を用いて、大気中1000℃で4時間焼成した。焼成して得られた焼成粉を目開き63μmの篩で分級し、最大粒径が20μm以下の粒度分布が得られるまでボ−ルミルによる解砕を行い、次に、大気中600℃で4時間熱処理を行い、目開き63μmの振動フルイにて分級し、リチウム遷移金属酸化物粉体(サンプル)を得た。
Figure 2010033785
(考察)
これより、少なくとも一般式Li1+x1-x2-δ(M:Mn、Co及びNiの3元素を含む)で表わされるリチウム遷移金属酸化物を主成分とするリチウム遷移金属酸化物粉体においては、再凝集率が100%≦再凝集率<113%であれば、電極塗工時の凝集による粗大粒子の発生(所謂ダマの発生)を効果的に抑制できることが確認された。
また、焼成後に400℃を上らない低温の熱処理を行うか、或いは熱処理を全く行わない製法で得られたリチウム遷移金属酸化物粉体に関しても、同様の効果が得られることが確認された。
[追加試験]
レーザー回折散乱式粒度分布測定法で求められる平均粒径(D50)に対する、Rietveld法により求められる結晶子径の比率(結晶子径/D50)に関する知見を得るために、以下の試験を行った。
<Rietveld法による結晶子径の測定>
Rietveld法とは、粉末X線回折等により得られた回折強度から、結晶の構造パラメータを精密化する方法である。結晶構造モデルを仮定し、その構造から計算により導かれるX線回折パターンと、実測されたX線回折パターンとができるだけ一致するように、その結晶構造の各種パラメータを精密化する手法である。
本試験例のX線回折パターンの測定には、Cu‐Kα線を用いたX線回折装置(ブルカー・エイエックスエス(株)製D8 ADVANCE)を使用し, FundamentalParameterを採用して解析を行った。回折角2θ=15〜120°の範囲より得られたX線回折パターンを用いて、解析用ソフトウエアTopas Version3を用いて行った。
結晶構造は、空間群R−3mの三方晶(Trigonal)に帰属され、その3aサイトにLi、3bサイトにMn、Co、Ni、そして過剰なLi分x、そして6cサイトにOが占有されていると仮定し、結晶子径(Gauss)を求めた。なお、等方性温度因子(Beq.;isotropic temperature factor)を1と仮定し、Rwp<5.0、GOF<1.3まで精密化を行った。
精密化の手順としては、Beq=1に固定し、結晶子径(Gauss)を変数とした状態で、各変数が変動しなくなるまで繰り返し行なった。
なお、上記のRwpおよびGOFは以下の式により求められる値である(参照:「粉末X線解析の実際」(社)日本分析化学X線分析研究懇談会編.朝倉書店発行.2002年2月10日.p107の表6.2)。
Rwp=[Σiwi{yi-fi(x)2}/Σiwiyi2]1/2
Re=[(N-P)/Σiwiyi2]1/2
GOF=Rwp/Re
但し、wiは統計的重み、yiは観測強度、fi(x)は理論回折強度、Nは全データ点数、Pは精密化するパラメータの数を示している。
その他測定・Rietveld法解析に使用した機器仕様・条件等は以下の通りである。なお、解析に当っては、三方晶に帰属するリチウム遷移金属酸化物を、六方晶に帰属するものと仮定して解析を行った。
Sample disp(mm):Refine
Generate Bond-lengths/errors:Refine
Detector:PSD
Detector Type:VANTEC−1
High Voltage:5616V
Discr. Lower Level:0.45V
Discr. Window Width:0.15V
Grid Lower Level:0.075V
Grid Window Width:0.524V
Flood Field Correction:Disabled
Primary radius:250mm
Secondary radius:250mm
Receiving slit width:0.1436626mm
Divergence angle:0.3°
Filament Length:12mm
Sample Length:25mm
Receiving Slit Length:12mm
Primary Sollers:2.623°
Secondary Sollers:2.623°
Lorentzian,1/Cos:0.01630098Th
Det.1 voltage:760.00V
Det.1 gain:80.000000
Det.1 discr.1 LL:0.690000
Det.1 discr.1 WW:1.078000
Scan Mode:Continuous Scan
Scan Type:Locked Coupled
Spinner Speed:15rpm
Divergence Slit:0.300°
Start:15.000000
Time per step:1s
Increment:0.01460
♯steps:7152
Generator voltage:35kV
Generator current:40mA
<平均粒径(D50)、90%積算径(D90)の測定>
サンプル(粉体)の粒度分布を次のようにして測定した。
レーザー回折粒度分布測定機用試料循環器(日機装株式会社製「Microtorac ASVR」)を用い、サンプル(粉体)を水溶性溶媒に投入し、40mL/secの流速中、40wattsの超音波を360秒間照射した後、日機装株式会社製レーザー回折粒度分布測定機「HRA(X100)」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD50及びD90を求めた。
なお、測定の際の水溶性溶媒には60μmのフィルターを通した水を用い、溶媒屈折率を1.33、粒子透過性条件を反射、測定レンジを0.122〜704.0μm、測定時間を30秒とし、2回測定した平均値を測定値として用いた。
なお、レーザー回折散乱式粒度分布測定法で求められる平均粒径(D50)は、少なくとも本発明のようなリチウム遷移金属酸化物粉体の場合には、SEM画像のような画像データからその値を推定することが可能である。ここで、試験例1で得られたサンプル(平均粒径D50=2.3μm)のレーザー回折粒度分布測定機で測定して得られた体積基準粒度分布の粒度分布チャート及びそのSEM画像(倍率:1万倍)を図2及図3に示し、比較試験例2で得られたサンプル(平均粒径D50=0.9μm)のレーザー回折粒度分布測定機で測定して得られた体積基準粒度分布の粒度分布チャート及びそのSEM画像(倍率:1万倍)を図4及図5に示す。これら図2−5を比較すると分かるように、SEM像で確認できる最も大きな一次粒子の粒子径が、レーザー回折粒度分布測定機から求められる平均粒径(D50)と略一致する。よって、レーザー回折散乱式粒度分布測定法で求められる平均粒径(D50)は、SEM像において最も大きな一次粒子の粒子径を測定することで、代わりに求めることができる。
また、電極から採取したサンプルの場合、導電材等を含む混合物となっているが、前述したように、超音波を360秒或いはそれ以上かけて十分に分散させた場合には、レーザー回折粒度測定機を用いて測定して得られる体積基準粒度分布のチャートのピークトップの粒径が、使用されているリチウム遷移金属酸化物粉体の平均粒径(D50)とほぼ一致することが確認されている。
<電池評価>
試験例及び比較試験例で得られたサンプル(粉体)8.0gと、導電材としてのアセチレンブッラク(電気化学工業社製)1.0gと、バインダーとしてのPVDF1.0gとを乳鉢に入れて混合し、N−メチル−2−ピロリドン(NMP)5mLを混ぜて遊星式撹拌・脱泡装置(クラボウ製 マゼルスターKK‐50S)を用いて混練しペースト状とした。
このペーストを、アルミニウム箔上にクリアランス350μmとしたベーカー式アプリケーターを用いて塗布して乾燥させ、14mmφのポンチで打ち抜いた後、4t/cm2の圧力でプレスし、正極板とした。なお、正極板重量、アルミニウム箔のみを14mmφのポンチで打ち抜いたものの重量を引き、上記混合重量比からサンプル重量を算出したところ、1枚の正極板中のサンプル重量は0.04gであった。
負極には、Φ16mm×厚さ0.5mmのLiメタルを用い、電解液には1M-LiPF6/EC+DMC(3:7vol比)を用いて、図1のコインセル電池を作製して下記サイクル試験を行なった。
サイクル試験1では、45℃において、電極電位が3.0V〜4.3Vの範囲で充放電を30回繰り返した。3サイクル目の放電容量に対する30サイクル後の放電容量の比率をサイクル維持率とし、比較試験例1のサイクル維持率を100とした場合の相対値で評価した。充放電は0.2Cレートに相当する一定の電流値で実施した。なお、Cレートというのは、電池の全容量を1時間かけて充放電する電流値を1Cレートとし、その何倍の電流値で充放電しているかを表したものである。0.2Cレートは、1Cレートの0.2倍の電流値で充放電することを意味し、全電池容量を5時間で充放電する電流値を示す。
サイクル試験2では、45℃において、SOC:50〜80%の範囲で充放電を30回繰り返した。3サイクル目の放電容量に対する30サイクル目の放電容量の比率をサイクル維持率とし、比較試験例1のサイクル維持率を100とした場合の相対値で評価した。ここで、SOCとは充電深度を意味し、SOC80%とは25℃において開放電圧から4.1Vまでを0.2Cの電流値で充電し、その後4.3Vの定電圧で充電した時の充電容量の80%の充電量状態を意味する。
低温容量確認試験3では、0℃において、1Cレートの定電流にて3.0〜4.3Vの範囲で充放電する充放電サイクルを繰り返し、その3サイクル目の放電容量を測定し、比較試験例1の前記3サイクル目の放電容量を100とした場合の相対値で評価した。
図1のコインセル電池について説明する。
耐有機電解液性のステンレンス鋼製の正極ケース11の内側に、同じくステンレス鋼製の集電体13がスポット溶接されている。この集電体13の上面には前記正極合材からなる正極15が圧着されている。この正極15の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ16が配置されている。前記正極ケースの開口部には、下方に金属Liからなる負極14を接合した封口板12がポリプロピレン製のガスケット17をはさんで配置され、これにより電池は密封されている。前記封口板12は負極端子をかね、正極ケースと同様ステンレス製である。
電池の直径は20mm、電池の総高は3.2mmとした。電解液は、エチレンカーボネートと1,3−ジメトキシカーボネートを体積比で3:7の割合で混合したものを溶媒とし、これに溶質としてLiPF6を1moL/L溶解させたものを用いた。
(試験例1)
平均粒径(D50)8μmの炭酸リチウムと、平均粒径(D50)22μmの電解二酸化マンガンと、平均粒径(D50)25μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.06:0.31:0.31:0.32となるように秤量し、水を加えて混合攪拌して固形分濃度50wt%のスラリーを調製した。
得られたスラリー(原料粉20kg)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の6wt%添加し、湿式粉砕機で1300rpm、29分間粉砕して平均粒径(D50)を0.7μmとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製OC‐16)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数21000rpm、スラリー供給量24kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行なった。
得られた造粒粉を、静置式電気炉を用いて、大気中975℃で20時間焼成した。焼成して得られた焼成粉を目開き75μmの篩で分級し、篩下の粉体を分級機構付衝突式粉砕機(ホソカワミクロン製カウンタージェットミル「100AFG/50ATP」)を用いて、分級ローター回転数:14900rpm、粉砕空気圧力:0.6MPa、粉砕ノズルφ:2.5×3本使用、粉体供給量:4.5kg/hの条件で粉砕を行い、リチウム遷移金属酸化物粉体(サンプル)を得た。
得られたリチウム遷移金属酸化物粉体(サンプル)について、上記の如くレーザー回折粒度分布測定機(日機装株式会社製「Microtorac ASVR・HRA(X100)」)を用いて体積基準粒度分布のチャートを求めたところ、粒度分布は一山であった。すなわち、微分変曲点は一点であった。
なお、各原料の平均粒径(D50)は、上記の如くレーザー回折粒度分布測定機(日機装株式会社製「Microtorac ASVR・HRA(X100)」)を用いて得られた体積基準粒度分布のチャートから得たD50の値である。
(試験例2)
試験例1で得られたリチウム遷移金属酸化物粉体を、大気中650℃の環境下に10時間置いて熱処理し、目開き250μmの篩で分級し篩下を回収してリチウム遷移金属酸化物粉体(サンプル)を得た以外は、試験例1と同様に処理を行った。
得られたリチウム遷移金属酸化物粉体(サンプル)について、上記の如くレーザー回折粒度分布測定機(日機装株式会社製「Microtorac ASVR・HRA(X100)」)を用いて体積基準粒度分布のチャートを求めたところ、粒度分布は一山であった。
(試験例3)
平均粒径(D50)8μmの炭酸リチウムと、平均粒径(D50)22μmの電解二酸化マンガンと、平均粒径(D50)25μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.07:0.30:0.32:0.31となるように秤量し、焼成温度を960℃とした以外は、試験例2と同様に処理を行い、リチウム遷移金属酸化物粉体(サンプル)を得た。
得られたリチウム遷移金属酸化物粉体(サンプル)について、上記の如くレーザー回折粒度分布測定機(日機装株式会社製「Microtorac ASVR・HRA(X100)」)を用いて体積基準粒度分布のチャートを求めたところ、粒度分布は一山であった。
(試験例4)
平均粒径(D50)8μmの炭酸リチウムと、平均粒径(D50)22μmの電解二酸化マンガンと、平均粒径(D50)25μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.05:0.31:0.32:0.32となるように秤量し、焼成温度を950℃、熱処理温度を600℃とした以外は、試験例2と同様に処理を行い、リチウム遷移金属酸化物粉体(サンプル)を得た。
得られたリチウム遷移金属酸化物粉体(サンプル)について、上記の如くレーザー回折粒度分布測定機(日機装株式会社製「Microtorac ASVR・HRA(X100)」)を用いて体積基準粒度分布のチャートを求めたところ、粒度分布は一山であった。
(試験例5)
平均粒径(D50)8μmの炭酸リチウムと、硫酸マンガン・5水和物と、硫酸ニッケル・6水和物と、硫酸コバルト・7水和物とを、モル比でLi:Mn:Ni:Co=1.01:0.33:0.33:0.33となるように秤量した。
攪拌機付きの10Lの密閉容器(オイルジャケット付き)に市水を2.5L入れ、これに上記硫酸マンガン・5水和物、硫酸ニッケル・6水和物、硫酸コバルト・6水和物を加えて溶解させ、4Lとなるように水を加え調整した。
その中に25wt%のアンモニア水(アガタ薬品工業社製)を加え、この溶液を攪拌しながら6moL/Lの苛性ソーダ水溶液を加え、pH計を用いてpH11.5に調整した。浴温は45℃に保ち12時間攪拌した。攪拌後の沈殿物を上澄みの導電率が1mS以下となるまでデカンテーション洗浄を繰り返し、その後反応溶液をろ過により固液分離し、固形分を120℃で10時間乾燥し、金属水酸化物原料を得た。
得られた金属水酸化物原料に上記炭酸リチウムを加えてボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中900℃で20時間焼成し、焼成粉を得た。
得られた焼成粉を目開き75μmの篩で分級し、篩下の粉体を、分級機構付衝突式粉砕機(ホソカワミクロン製カウンタージェットミル「100AFG/50ATP」)を用いて、分級ローター回転数14900rpm、粉砕空気圧力0.6MPa、粉砕ノズルφ2.5×3本使用、粉体供給量4.5kg/hの条件で粉砕を行った。
得られた粉体を、大気中650℃の環境下に10時間置いて熱処理し、目開き250μmの篩で分級し篩下を回収してリチウム遷移金属酸化物粉体(サンプル)を得た。
(比較試験例1)
炭酸リチウムと、硫酸マンガン・5水和物と、硫酸ニッケル・6水和物と、硫酸コバルト・6水和物とを、モル比でLi:Mn:Ni:Co=1.01:0.33:0.33:0.33となるように秤量し、その後は分級機構付衝突式粉砕機を用いた粉砕を行なわなかった以外、試験例5と同様に焼成、分級、熱処理、分級を行なってリチウム遷移金属酸化物粉体(サンプル)を得た。
(比較試験例2)
平均粒径(D50)8μmの炭酸リチウムと、平均粒径(D50)22μmの電解二酸化マンガンと、平均粒径(D50)25μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.07:0.31:0.31:0.31となるように秤量し、その後は分級機構付衝突式粉砕機の代わりに東京奈良製造製ピンミルを用いて粉砕を行なった以外、試験例1と同様に湿式粉砕、乾燥造粒、焼成および分級を行ってリチウム遷移金属酸化物粉体(サンプル)を得た。
(比較試験例3)
平均粒径(D50)8μmの炭酸リチウムと、平均粒径(D50)22μmの電解二酸化マンガンと、平均粒径(D50)25μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.05:0.31:0.32:0.32となるように秤量し、その後は分級機構付衝突式粉砕機を用いた粉砕を行なわなかった以外、試験例1と同様に湿式粉砕、乾燥造粒、焼成および分級を行ってリチウム遷移金属酸化物粉体(サンプル)を得た。
Figure 2010033785
(考察)
表2の結果、試験例1〜5のいずれも、サイクル試験1では従来品(比較試験例1)に比べて優れた性能を示さなかったものの、充放電深度の中心領域(例えばSOC50−80%)で充放電を繰り返したサイクル試験2の結果をみると、試験例1〜4はいずれも従来品(比較試験例1)に比べて優れた性能を示し、試験例5についても従来品(比較試験例1)とほぼ同等の結果を得ることができた。また、低温容量確認試験3、すなわち、出力特性を調べるための試験をみると、試験例1〜5のいずれも、従来品(比較試験例1)に比べて格別に優れた性能を示した。
この結果すると、レーザー回折散乱式粒度分布測定法で求められる平均粒径(D50)に対する、Rietveld法によって求められる結晶子径の比率は0.03〜0.13であることが重要であることが分かった。
結晶子径/平均粒径(D50)の比率と、充放電深度の中心領域で使用した場合の電池特性(寿命特性及び出力特性)とがどのように関係しているかについては、各種試験等により確認できている訳ではないが、層構造を有するリチウム遷移金属酸化物において、結晶子径/平均粒径(D50)の比率を規定することにより、粒子内の活性点が少なく構造が安定化し、さらに充放電中のリチウムイオンの内部拡散が良好になり、また、2次粒子径が小さく比表面積も大きいため、電解液との反応面積が大きくなり、電解液との界面近傍の粒子表面の電流密度が緩和されていることが影響していると考えられる。また、充放電による体積変化が伝播され難いことなどによりリチウムイオンの吸蔵脱蔵による体積膨張・収縮に対する抵抗が少なく保たれることにより安定化することなども関係しているものと考えられる。
このような追加試験の結果は、平均粒径(D50)が1.0μm〜4.0μmのリチウム遷移金属酸化物については、少なくとも同様に考えることができると推察される。
試験例及び比較試験例で得られたサンプルの電池特性を評価するために作成した2032型コイン型電池の構成を示した図である。 試験例1で得られたリチウム遷移金属酸化物粉体(サンプル)の体積基準粒度分布のチャートである。 試験例1で得られたリチウム遷移金属酸化物粉体(サンプル)のSEM写真である。 比較試験例2で得られたリチウム遷移金属酸化物粉体(サンプル)の体積基準粒度分布のチャートである。 比較試験例2で得られたリチウム遷移金属酸化物粉体(サンプル)のSEM写真である。

Claims (3)

  1. 一般式Li1+x1-x2-δ(M:Mn、Co及びNiの3元素を含む)で表わされるリチウム遷移金属酸化物を主成分とするリチウム遷移金属酸化物粉体であって、
    リチウム遷移金属酸化物粉体を水中へ投入し、40mL/secの流速中、40wattsの超音波をかけて10分後に、超音波をかけながら測定した超音波停止直前の平均粒径(D50)に対する、超音波を停止させてから10分経過後に測定した平均粒径(D50)の割合である再凝集率が100%≦再凝集率<113%であることを特徴とするリチウム遷移金属酸化物粉体。
  2. 請求項1に記載のリチウム遷移金属酸化物粉体を正極活物質として備えたリチウム電池。
  3. 請求項1に記載のリチウム遷移金属酸化物粉体を正極活物質として備えた電気自動車又はハイブリッド電気自動車用のリチウム電池。
JP2008192869A 2008-07-25 2008-07-25 リチウム遷移金属酸化物粉体 Active JP5554479B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192869A JP5554479B2 (ja) 2008-07-25 2008-07-25 リチウム遷移金属酸化物粉体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192869A JP5554479B2 (ja) 2008-07-25 2008-07-25 リチウム遷移金属酸化物粉体

Publications (2)

Publication Number Publication Date
JP2010033785A true JP2010033785A (ja) 2010-02-12
JP5554479B2 JP5554479B2 (ja) 2014-07-23

Family

ID=41738028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192869A Active JP5554479B2 (ja) 2008-07-25 2008-07-25 リチウム遷移金属酸化物粉体

Country Status (1)

Country Link
JP (1) JP5554479B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934593A (zh) * 2015-05-22 2015-09-23 郑州德朗能微波技术有限公司 一种微波烧结制备LiNi1/3Co1/3Mn1/3O2材料的方法和装置
JP2018129140A (ja) * 2017-02-07 2018-08-16 日立金属株式会社 リチウムイオン二次電池用正極活物質の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092158A1 (fr) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Oxyde composite de metal de transition de lithium
JP2004012373A (ja) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd スラリーの評価方法及びスラリーの調製方法
JP2005150102A (ja) * 2003-10-24 2005-06-09 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP2005259512A (ja) * 2004-03-11 2005-09-22 Japan Storage Battery Co Ltd 非水電解質二次電池用正極スラリーおよびそれを用いて作製した正極を備えた非水電解質二次電池
JP2005276597A (ja) * 2004-03-24 2005-10-06 Mitsubishi Chemicals Corp リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体、リチウム二次電池正極及びリチウム二次電池
JP2006151707A (ja) * 2004-11-25 2006-06-15 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物製造用水酸化リチウム無水物、並びにその製造方法、およびそれを用いたリチウム遷移金属複合酸化物の製造方法
JP2006247484A (ja) * 2005-03-09 2006-09-21 Ngk Spark Plug Co Ltd セラミック原料の造粒方法とその装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092158A1 (fr) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Oxyde composite de metal de transition de lithium
JP2004012373A (ja) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd スラリーの評価方法及びスラリーの調製方法
JP2005150102A (ja) * 2003-10-24 2005-06-09 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP2005259512A (ja) * 2004-03-11 2005-09-22 Japan Storage Battery Co Ltd 非水電解質二次電池用正極スラリーおよびそれを用いて作製した正極を備えた非水電解質二次電池
JP2005276597A (ja) * 2004-03-24 2005-10-06 Mitsubishi Chemicals Corp リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体、リチウム二次電池正極及びリチウム二次電池
JP2006151707A (ja) * 2004-11-25 2006-06-15 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物製造用水酸化リチウム無水物、並びにその製造方法、およびそれを用いたリチウム遷移金属複合酸化物の製造方法
JP2006247484A (ja) * 2005-03-09 2006-09-21 Ngk Spark Plug Co Ltd セラミック原料の造粒方法とその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934593A (zh) * 2015-05-22 2015-09-23 郑州德朗能微波技术有限公司 一种微波烧结制备LiNi1/3Co1/3Mn1/3O2材料的方法和装置
JP2018129140A (ja) * 2017-02-07 2018-08-16 日立金属株式会社 リチウムイオン二次電池用正極活物質の製造方法

Also Published As

Publication number Publication date
JP5554479B2 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
JP4213768B2 (ja) 層構造を有するリチウム遷移金属酸化物
KR101964726B1 (ko) 구형 또는 구형-유사 리튬 이온 배터리 캐소드 재료 및 이의 제조 방법 및 적용
JP5451228B2 (ja) 層構造を有するリチウム遷移金属酸化物
JP4316656B1 (ja) 層構造を有するリチウム遷移金属酸化物
JP5204913B1 (ja) 層構造を有するリチウム金属複合酸化物
JP5847352B2 (ja) リチウム金属複合酸化物粉体
US10312508B2 (en) Lithium metal composite oxide powder
KR102170482B1 (ko) 리튬 이온 전지용 양극 재료
JP5308600B1 (ja) 層構造を有するリチウム金属複合酸化物
WO2015053357A1 (ja) リチウム過剰型層状リチウム金属複合酸化物の製造方法
JP4299065B2 (ja) リチウム二次電池用正極材およびその製造方法
JP5572268B1 (ja) スピネル型リチウムマンガンニッケル含有複合酸化物
JP5606654B2 (ja) リチウム金属複合酸化物
JP6586220B2 (ja) 層構造を有するリチウム金属複合酸化物
Peralta et al. Submicronic LiNi1/3Mn1/3Co1/3O2 synthesized by co-precipitation for lithium ion batteries-Tailoring a classic process for enhanced energy and power density
JP5951518B2 (ja) 層構造を有するリチウム金属複合酸化物の製造方法
JP2004192846A (ja) リチウム二次電池用正極活物質及びその製造方法
JP5554479B2 (ja) リチウム遷移金属酸化物粉体
JP6200932B2 (ja) 層構造を有するリチウム金属複合酸化物の製造方法
JP6546582B2 (ja) 層状結晶構造を有するリチウム金属複合酸化物の製造方法
JP2002274853A (ja) リチウムマンガン複合酸化物及びその製造方法、並びにその用途

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R150 Certificate of patent or registration of utility model

Ref document number: 5554479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250