JP2010032501A - バイオセンサ、その製造方法、及びそれを備える検出システム - Google Patents

バイオセンサ、その製造方法、及びそれを備える検出システム Download PDF

Info

Publication number
JP2010032501A
JP2010032501A JP2009149042A JP2009149042A JP2010032501A JP 2010032501 A JP2010032501 A JP 2010032501A JP 2009149042 A JP2009149042 A JP 2009149042A JP 2009149042 A JP2009149042 A JP 2009149042A JP 2010032501 A JP2010032501 A JP 2010032501A
Authority
JP
Japan
Prior art keywords
biosensor
recess
substrate
liquid sample
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009149042A
Other languages
English (en)
Other versions
JP5405916B2 (ja
Inventor
Keishi Takahara
佳史 高原
Noriyoshi Terajima
則善 寺島
Takamasa Fujii
孝昌 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009149042A priority Critical patent/JP5405916B2/ja
Publication of JP2010032501A publication Critical patent/JP2010032501A/ja
Application granted granted Critical
Publication of JP5405916B2 publication Critical patent/JP5405916B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】使用者にとって使いやすく、製造コストを抑制し、かつ良好な検知精度という三つの要求をともに満足させることが可能なバイオセンサおよびその製造方法、ならびにそれを備える検出システムを提供する。
【解決手段】バイオセンサ1は、液体試料内に含まれる対象物質の存在を検出するセンサであって、基板101上に、2つの電極111a及び111b、試薬層120が配置された凹部102が形成されている。この凹部102は、基板101の一部の厚みを周囲よりも薄くすることにより形成される。
【選択図】図1

Description

本発明は、液体試料中の特定成分を検出したり、定量したりするために用いられるバイオセンサに関する。特に、再現性に優れた高精度な測定を可能とするバイオセンサ、その製造方法、及びそれを用いる検出システムに関する。
代表的なバイオセンサの1つである血糖値測定用のバイオセンサは、主に電気化学的な反応を利用して血液中のグルコースを簡易に定量することができ、2つ以上の電極とグルコースと反応する試薬、さらにはその反応を円滑に進めるための電子伝達物質等により構成されている。
近年の血糖値測定用のバイオセンサの技術動向によると、測定時における患者の使いやすさを向上させるために測定時間の短縮化が進められると共に、穿刺時の痛み低減のために測定に必要な血液量の微量化が進められている。実際、最近の技術によれば、測定時間が5秒、測定血液量が0.3μLのバイオセンサも可能である。
一方、近年における全世界的な糖尿病患者の増加に伴う医療費の増加は、血糖値測定用のバイオセンサへの数量の増加と価格低下とをもたらしている。しかし、その結果として、市販されている血糖値測定用のバイオセンサの中には、価格抑制のため性能を犠牲にしたものも存在する。また、測定時間の短縮及び血液量の微量化が優先されることで、測定性能が犠牲にされる場合もある。
以上のような状況から、現在、市場では、さらに改良された血糖値測定用バイオセンサとして、測定性能を犠牲にすることなく、糖尿病患者の使いやすさの向上と痛みの低減とを実現すると共に、安価なバイオセンサが求められている。
液体試料中の特定成分を定量化するためのバイオセンサは周知のものとなっているが、技術の進歩や発明者により使用する用語が異なり非常に理解し難いため、従来技術との違いをできる限り明確にするため、本来の真意を外れない範囲で同一の用語を使いる。
バイオセンサ技術の歴史は古く、1956年にLeland C. Clarkによって、溶液中の酸素を測定することが出来る酸素電極が、バイオセンサに応用可能であると示唆されたところまで遡ることが出来る(特許文献1、非特許文献1参照。)。
Leland C. Clarkは、その後1962年に透析膜を使ってグルコース酸化酵素をClark型酸素電極に封入することで、アンペロメトリックグルコース酸素電極が作製できると説明した(非特許文献2参照。)。
1967年には、UpdikeとHicksが、実際に酸素電極表面に酸化酵素をポリアクリルアミドゲルで固定化し、その固定化層内で、酸素が基質の酸化反応に依存して消費され、測定される電流値が低減することで、溶液中の基質を測定できる「酵素電極」を発表した(特許文献3、非特許文献4参照。)。
上述のClark型酸素電極は、通常、プラチナ作用電極と銀/塩化銀参照電極(対極)との二電極式電解セルである。Clark型酸素電極による大きな技術的発展として、次の2点が挙げられる。すなわち、プラチナ電極上にガス透過膜が密着されていることによって、測定系と電極系とが分離されているので、電流応答は安定で測定妨害物質の混入が無い点、及び、固定化した酸化酵素やミトコンドリアのようなオルガネラ、あるいは好気的細胞(例えば微生物)といった酸素消費型の生体認識能を利用し、基質特異的な反応の結果として減少した液体試料中の溶存酸素を定量することで、任意の基質を測定できる点である(例えば、特許文献2、4、5、8、非特許文献3、6参照。)。
しかし、Clark型酸素電極の応用によるバイオセンサは、液体試料中の溶存酸素量によって測定できる範囲が限られているという欠点があった。そこで、1975年にThomas等は、酵素‐電極間の電子伝達物質として補酵素の酸化型ニコチンアミドアデニンジヌクレオチド(以降、NAD)を採用することが、Clark型酸素電極の測定可能範囲に関する上記欠点を補える点で非常に優れている、と発表した。この発明によると、乳酸脱水素酵素(以降、LDH)の活性レベルは、補酵素の還元型ニコチンアミドアデニンジヌクレオチド(以降、NADH)の酸化電流の結果と相関関係を有することが証明された。このような相関関係が生じるのは、auxiliaryと2本のリファレンス電極との計3本の電極を用いてポテンショスタットで定電圧を印加することによって、基質濃度依存的にNADHが増加していくことから、NADHからNADに変換されていく様子が、電気化学反応の結果として観察されるからである(非特許文献7参照。)。
また、上記発明を応用したバイオセンサについては、酵素及び補酵素を固定化するなど、さらに実効性の高いものとして研究開発が進んだ(例えば、特許文献11、13を参照。)。
Clark型酸素電極の応用によるバイオセンサについて、測定範囲が限られているという上記欠点の一部は、酸化酵素による反応で生成する過酸化水素をアンペロメトリック検出する方法によって解決された。これは、酸素を測定する方法と異なり、酵素反応が進むごとに過酸化水素が増大するからである。しかし、過酸化水素を測定する方法においても、血液を液体試料とした場合、その印加電圧(+0.7V対Ag/AgCl付近)によっては、アスコルビン酸や尿酸などの血中の様々な干渉物質が、その濃度によって、測定結果に影響を与えるという欠点が存在する。
アンペロメトリック検出による上記干渉物質の影響を解決する方法として、Newman等は、過酸化水素のみを選択的にセルロース膜などで電極まで透過して、アンペロメトリック法にて過酸化水素のみを測定するという方法を紹介している(特許文献9、10参照。)。
これらの研究成果を受けて、1975年には、セルロース膜などで選択的に過酸化水素を透過し、かつアンペロメトリック法にて過酸化水素を測定する方法を採用した大型グルコースバイオセンサが、アメリカ合衆国、オハイオ州のYellow Spring Insutrument社によって市販化された。
また、現在は市販されていないが、Clemens等によって開発されたグルコースバイオセンサを採用してベッドサイドで使用する大型人工膵臓を、アメリカ合衆国、イリノイ州のMiles社が、Biostatorと言う商品名で1976年に市販した(特許文献12参照。)。
このように、Leland C. Clarkによって発明され、現在では第一世代バイオセンサと呼ばれる酸素電極応用のバイオセンサは、様々な酸化酵素を固定化することで研究され続けてきた。そして、その研究応用対象は、医療分野から環境分野や食品分野へと大きく発展し、数は少ないながら研究成果は製品化もされた。
しかしながら、現在に至っても、上述の企業や製品は大きな商業的成功を実現していない。その理由として、これまで例を挙げてきたような技術的問題に加え、第一世代バイオセンサが、ガラス細工で作製されているので、大量生産が難しく、高価な製造コストと電解液を蓄える容器やガス透過膜の作製を加味すると、センサのサイズが大きく使用時の使い勝手が悪いという問題を抱えていることが挙げられる。
そこで、Karube等は、1990年に製造上の問題を解決すべく、ガラスの代わりにシリコンを基板として採用し、異方性エッチングにより形成した溝に非液体性の水性電解液含有体を封じ込め、ガス透過性膜を付加したマイクロバイオセンサを発明した(特許文献23参照。)。
ところが、第一世代バイオセンサの欠点を克服する上述のような発明がなされても、これらの発明を適用したバイオセンサは、未だ市販にはいたっていない。これは、おそらく製造コストと使い勝手の問題が解決できていないためであると思われる。
1992年には、Kawaguri等およびNankai等は、簡易型バイオセンサを実現するための技術について報告した。彼らは、測定極及び対極を、その端部が露出するように絶縁性の基板に埋め込み、酵素を含ませた多孔体を電極の露出部を覆うように設置した(特許文献89、26参照。)。これにより、使用者の操作手順が簡略化されたが、この技術を用いたバイオセンサは、家庭で簡易に血糖値を測定できる小型装置としては普及しなかった。これは、製造コストの問題及び使い勝手の問題が解決できていなかったためであると思われる。
以上に述べた第一世代バイオセンサの問題点を解決するため、酸素や過酸化水素を電子受容体とせず、酸化還元酵素の一種である脱水素酵素と、可逆的な酸化還元電子受容体と、を組み合わせた次世代バイオセンサ(以降、第二世代バイオセンサ)の研究が進められた(例えば、非特許文献5、8、9参照。)。
1976年、Mindt等の研究成果を元に、スイスのRoche社が、第二世代バイオセンサ技術を応用した乳酸分析装置LA640を開発した。この装置には、電極と乳酸脱水素酵素との間で電子の行き来を媒介する溶解性電子伝達物質として、hexacyanoferrateが利用された(特許文献6、7参照。)。
しかし、この装置は使い勝手が悪いため、医学的な臨床用途で使われなかった。そのため、この装置による商業的な成功は叶わなかった(非特許文献11、14参照。)。
1978年には、Nankai等が、酸化還元酵素と電子伝達物質の組み合わせで酵素電極を作製する方法を開示し、さらに使い捨てバイオセンサに有用な電子伝達物質を複数種特定した。これによって使い捨てバイオセンサに応用可能と示されたフェリシアン化カリウムは、現在市販されているほぼ全ての血糖値測定用のバイオセンサに使用されている(特許文献14参照。)。
Nankai等の発明以降、1980年から2000年にかけて、使い捨てバイオセンサの研究開発は飛躍的に進んだ。1984年には、Case等やHiggins等が電子伝達物質としてferroceneを採用し、その誘導体を電極内に練りこみ固定することで、この誘導体を用いたバイオセンサを実用化できると発表した(特許文献20、非特許文献10、13参照。)。
初の小型の血糖値測定装置用アンペロメトリックバイオセンサの登場は、1987年に米国MediSense社がスクリーン印刷によって酵素電極を作製したことで実現された(特許文献19、28参照。)。
しかし、これらの技術は電子機器技術の応用であり、電子部品を搭載するプリント基板を製造する製造装置及び方法をそのまま応用したものであった。つまり、非導電性の基板に複数の電線を形成し、反応試薬を搭載しただけのものであり、一般的な消費者が使うバイオセンサとしては使い勝手がよいものではなかった。なお、CaseやHiggins等の発明以前に、Paceはイオン選択センサとして、Papadakisはガスセンサとして、センサの構成を開示している(特許文献16、18参照。)。
CaseやHiggins等のバイオセンサの使い勝手が悪い理由として、具体的には、測定に必要とされる血液の量が非常に多いこと、さらに、その製造方法とバイオセンサの構成上、センサとしての測定精度に大きな問題があることが挙げられる。
そこで、Nankai等は、絶縁基板上に主に炭素で電極を形成し、その上に絶縁層を印刷し電極面積を正確に規定することで、センサ精度を向上させるとともに、電極上に反応層とスペーサとカバーとを配したバイオセンサを発明した(例えば、特許文献21、27、29、37参照。)。スペーサとカバーによって測定に必要な血液量を劇的に減らすことができるようになった。最終的に、実際の製品として、必要な血液量が2.5μLであるセンサが開発され、全世界で販売されている。
このようにスペーサとカバーとで液体試料室を形成する方法は、非常に革新的であり、現在はほぼ全ての血糖値測定用使い捨てバイオセンサに採用されている。また、Nankai等によって完成された液体試料室付バイオセンサは、使い勝手と精度向上を目指して更なる進化を遂げている(例えば、非特許文献15参照。)。
1993年に、Yoshioka等は、バイオセンサにおいて、基板上のカーボン電極表面を有機溶媒で処理することで、カーボン電極への試薬層の密着性が向上することを報告した。この試薬層には、酵素、電子伝達物質、及び親水性高分子が含まれている(特許文献30参照。)。この発明によれば、使い捨てバイオセンサの大量生産時に起きる問題、すなわち、製造ロット内又は製造ロット間に生じる品質の差を小さく抑えることが可能であることが見出された。これをきっかけにして、大量生産されたバイオセンサにおいても、測定精度が重要視され始めた。
1993年、Yoshioka等は、基板上に配され、作用極及び対極からなる主電極システムを備えると共に、主電極システムに接触するように、又はその近傍(in th
e vicinity)に配された反応層を備えるバイオセンサを発表した。この主電極システムには酸化還元酵素が含まれている。このバイオセンサにおいては、主電極システムと距離を保つように、副電極システムが参照極として配置されている。このバイオセンサでは、この参照極が検知するインピーダンスの変化によって、液体試料の供給がセンサに十分されたことを検知することができる(特許文献32参照。)。
この発明によって、バイオセンサの扱いに不慣れな糖尿病患者でも、測定に必要十分な血液を間違いなく電極上に供給することが可能となった。これにより、十分量の血液を測定することに伴う性能の向上が期待できるし、測定エラーが激減することで患者への負担は大幅に軽減されることが考えられる(例えば、非特許文献20参照。)。
ところが、この発明においても次のような問題があった。この発明においては、試薬孔は、電極を配置した基板の上に、貫通穴を持った基板が取り付けられることで形成されている。しかし、測定に必要な血液量を削減することのできる液体試料室は採用されていない。そのため、糖尿病患者に痛みを与えることになり、使い勝手において問題がある。また、反応が終わるまで(After this reaction is complete)測定結果を得ることが出来ないことも、糖尿病患者にとっては使い勝手が悪いといえる。
また、この文献では、バイオセンサに、グルコース酸化酵素だけではなく、グルコース脱水素酵素等の還元酵素を採用することができる点についても、わずかながら例示されている。脱水素酵素は溶存酸素の影響をほとんど受けないという利点がある。特にグルコース脱水素酵素は、1990年代後半から製造されたバイオセンサの多くに採用されており、臨床意義も非常に高いことが知られている(例えば、非特許文献12、17、18、19参照。)。
1995年、Kuhn等は、電気化学を利用して全血のヘマトクリットレベルを測定するためのバイオセンサを開示した。このバイオセンサは、作用極、対極、及び、これらの電極から空間的に間をおいて配置され、電子伝達物質を含有する多孔性の膜からなる。全血がこの多孔性の膜に添着されると、電子伝達物質と血液との混合物ができる。電極上に混合物が到達すると、電極が、電子伝達物質を酸化させるか還元させるかに十分な電位を印加して、電流を発生させる。この電流は測定され、測定結果からヘマトクリットレベルを検出することができる(特許文献38参照。)。
この発明は、血液を液体試料にする場合に妨害物質として問題となるヘマトクリット値への対応策である。しかし、過剰な脂質などにより血液の粘性が非常に高い場合は、この発明が有効な手段になるかは疑問である。また、この発明によると、血液の点着から測定終了までの時間が長くなることが予測され、さらに、必要な血液量が比較的多量となる傾向にある。
1995年、White等は、生体試料中の分析対象物の量を測定するバイオセンサ用測定器として、2つの測定器を開示した。1つは、生体試料が反応域内に有る時の周辺温度に応じて分析対象物の量を決定するアルゴリズムを備えたバイオセンサ用測定器であり、もう1つは、バイオセンサかチェックチップを挿入できるバイオセンサ用測定器である(特許文献39、40参照。)。
上述の1995年のWhite等の発明が示すように、バイオセンサの研究開発は、使用者の使い勝手及び測定精度の両方を向上させる方向に向かうことになった。これは、1993年に発表されたDiabetes Control and Complications Trialの結果により、血糖値管理を厳格に行わないと合併症になりやすいことが確認されたことによって、より臨床医学的にバイオセンサシステムを採用した簡易血糖値測定システムへの認識が高まったことに起因すると考えられる。この認識の高まりにより、糖尿病患者への簡易血糖値測定システムの処方が盛んになり、これまで自己血糖測定をしたことの無かった患者達の間でも、自己血統測定に対する関心が増大した(非特許文献20参照。)。
1996年、Hill等は、スクリーン印刷を伴うストリップ電極について開示している。このストリップは、長尺の支持部を備えており、この支持部は、該支持部に沿ってそれぞれ延在する第一及び第二導体を含む。また、Hill等のバイオセンサにおいては、活性電極が、液状混合物及び第一導体に接触するように配置されている。この活性電極には、反応に触媒作用を及ぼすことが可能な酵素と電子伝達物質とが堆積されている。参照電極は、混合物及び第二導体と接触するように配置されている(例えば、特許文献41、52、54、60参照。)。
製品間のばらつきが無く、測定精度の良いバイオセンサを製造するためには、反応試薬をバイオセンサ上の所定の位置に精度良く配置することが非常に重要である。そこで、1980年にPace等が、1994年にPollman等が、それぞれ、反応試薬が乾燥するまでの間、バイオセンサ上の所定の位置に反応試薬を保持または固定するための壁を含む試薬孔(the Reagent well)を形成するために、抜き打ち加工技術を用いることを提案している(特許文献15、35参照。)。
しかしながら、このようなバイオセンサの製造方法は概して部材点数を増やしており、各部材について、精密な加工精度が求められる。その結果、製造工程が複雑化すると共に、製造効率が低下し、コストが高騰する、といった問題が生じていた。
1990年および1991年には、Weetall等が、基板に設けたウェルの中に電極と反応試薬を配置したウェル式バイオセンサを報告している(特許文献22、24参照。)。
このバイオセンサは、ウェルの深さ方向に対して垂直に液体試料を滴下する方式であり、使用者にとっては使い方が難しい。また、電極および反応試薬層の構成が複雑であるので、コストが高くなり、大量生産に向かないという不利な点がある。
1996年には、Yoshioka等が、製品間のばらつきが小さく、さらに高精度な測定が行えるバイオセンサを製造するための、より簡便な方法として、次のような方法を提案している。すなわち、絶縁性基板、作用極、及び対極を備るバイオセンサの製造において、電極形状を略円形状に形成することより、反応試薬を塗布する際に、より簡便かつ高精度に、電極上の所望の位置に試薬層を形成できるというものである。この方法は、測定システム自体の精度の向上と、製造工程の簡便さの実現を目指している(特許文献42参照。)。
2001年には、Winarta等が、バイオセンサ上に反応試薬を配置する電極領域を規定する技術について、報告している。彼らは、炭酸ガスレーザにより長方形、正方形または円形の切取部を形成した基板を、最下部基板上に積層することにより、電極領域を規定している。さらに、彼らは、切取部により規定された電極領域に反応試薬を保持させている(特許文献67参照。)。
しかし、この方法も、先のPace等およびPollmann等の方法と同様に、必要部材点数が増えると共に、各部材の高度な加工精度が求められるものである。そのため、この方法も、製造工程が複雑化すると共に、製造効率が悪化し、コストが高騰するといった問題を有している。
バイオセンサ上の反応試薬の位置および反応試薬分布を規定する方法として、ウェルを用いない別の方法も報告されている。その一例として、Bhullar等は、以下のようなバイオセンサを提案している(特許文献71、74、79、82、85参照。)。すなわち、このバイオセンサでは、基板上に導電性のトラックが形成されており、このトラックによって電極アレイが形成される。そして、同基板上、電極アレイの近傍に、凹部が形成されている。また、このバイオセンサは、同基板に対して、電極アレイ及び凹部が形成された側の表面に対向するように配されたプレートを備える。
この構成によると、電極アレイ上に置かれた反応試薬は、凹部に到達するまで電極アレイ全体に広がる。反応試薬液が凹部の端に到達すると、電極アレイおよびプレートとのあいだの界面エネルギーが反応試薬液の表面張力よりも下がるので、反応試薬液は電極アレイ上に保持される。さらに、反応試薬液は凹部の両縁に沿って引き寄せられるので、凹部によって電極アレイ上における反応試薬液の拡散を補助する。
Yoshioka等の方法に比べ、Bhullar等の製造方法では、反応試薬の配置場所を規定するために基板に凹部を形成する加工工程が必要である。それゆえ、この方法は、設備が増大すると共に、工程数も増加し、加工精度の要求度も上がるので、安価なバイオセンサを大量に製造することには不向きであると考えられる。
使い捨て型バイオセンサについては、構造についての技術開発だけではなく、測定方法についての技術開発も精力的に行われている。Ikeda等は1996年の報告において、精度向上を目指した測定方法について提示している。この報告では、絶縁性基板と、作用極と、対極と、酵素を含む反応層と、を有するバイオセンサを用いて、液体試料中の特定対象物質の定量を行う方法において、液体試料をバイオセンサに吸引させた後、特定対象物質の測定を行うための電圧を印加する前に、作用極と対極とを短絡させることで、反応層の不均一な溶解による測定誤差を解消して、精度良い測定を行うことが可能であるとされている(特許文献44参照。)。
1996年、Ikeda等は、次のようなバイオセンサについて開示している。すなわち、このバイオセンサは、液体試料室内であって液体試料吸引口から離れた位置に、液体試料検知極を備える。つまり、この液体試料検知極は、液体試料室内に配された電極のうちで最後に液体試料に接する。そのため、液体試料検極で液体試料が検知されるということは、測定上重要な複数の電極(作用極や対極等)には、液体試料が行き渡っているということを意味する。このようにして、このバイオセンサでは、測定に重要な電極に液体試料が行き渡っていることを確認した後、測定を開始できる(例えば、特許文献46、50参照。)。
1997年、Carter等は、電極支持部と、この電極支持部上に配設された参照電極又は対極と、この参照電極又は対極から一定距離をおいて配設された作用電極と、この参照電極及び作用電極を覆う密閉空間を規定すると共に、該密閉空間内にサンプルを受け入れるための開口を有する被覆層と、上記密閉空間において上記被覆層と上記支持部との間に介在した複数の網状層と、を備えた電極片について開示している。この被覆層は、電極から一定距離をおいて設けられたサンプル付与開口を有する。作用電極は、自らの基質に関わる反応に対して触媒作用を及ぼすことが可能な酵素と、酵素触媒作用反応と作用電極との間で電子を運搬することが可能な電子伝達物質とを含む。Carter等は、この装置によって、センサ読取り値に対するヘマトクリットの影響を少なくすることができると述べている。その開示によれば、これは、網状層によって作り出されたサンプル溶液の薄い層と、作用電極に対する参照電極の配置位置との組合せによって成し遂げられる(特許文献49参照。)。
1998年、MacAleer等は、基質と、参照電極と、作用電極と、電気的接続を行うための手段と、を備えた使い捨てグルコース検査ストリップについて開示している。上記作用電極は、導電性の基層と、この導電性基層を覆って設けられた被覆層とを有する。この被覆層は、網状組織を形成する疎水性と親水性のそれぞれの表面領域と、酵素と、電子伝達物質とを有する充填材である。このバイオセンサを用いた測定結果は、実用域の温度範囲において温度の影響を受けず、またヘマトクリットに対して感度を示さない(特許文献53参照。)。
1998年、Henning等は、干渉物質による影響を低減することのできるバイオセンサについて開示している。この装置は、一般に、溶液中の対象物質の濃度を電気化学的に測定するために用いられる電極を備える。該装置は、微粒子炭素と共有結合されると共に、電極と密接に接触した状態でマトリクス内に保持されたペルオキシダーゼ酵素を含む。この装置においては、酵素/微粒子によって、炭素周知の干渉物質による影響が低減されている(特許文献55参照。)。
1998年、Charlton等は、検体と反応して移動可能な電子を生成する電極を表面に備えた絶縁基板を有するバイオセンサについて開示している。この基板は、変形可能な素材からなるカバーと接合し、液体試料が流れ込むことができる液体試料室が形成されるように、平面によって囲まれる凹部領域を有する。蓋の基板に面した側は、高分子材料で覆われており、この高分子材料の働きによって、蓋が基板に接合されると共に、毛細空間の親水性の性質が増大される(特許文献57、59参照。)。
このCharlton等のバイオセンサは、前述のNankai等が開示したスペーサー及びカバーを備えたバイオセンサと働きは同じであるが構成は異なっており、材料と難解な工程が少ない分、安価に大量生産できる可能性がある。しかし、このバイオセンサの製造においては、カバーの材料の選別と製造精度が非常に重要であり、困難を極めることが予想される。
1998年に、Pritchard等は血液サンプルの最小量が約9μLであるバイオセンサについて開示している。このバイオセンサの特徴は、実質的に同じ大きさで同一の導電性物質から成る作用電極及び対極を基板上に持ち、これらの電極上に、試薬孔を形成する切取部を備えた上カバーが被せられている点にある。この切取部は、作用電極よりも対極に対して、より小さい領域を露出させるようになっている。そして、試薬が、試薬孔において露出した作用電極及び対極の領域を、実質的にカバーする。また。界面活性剤を染み込ませたメッシュが、試薬孔の上を覆うと共に、上カバーに装着されている(特許文献58参照。)。しかし、発明が開示された当時でも、9μLは、上述のNankai等の発明の倍の血液量であり、この発明は測定に必要なサンプル量の低減には不向きであった。
1999年、Hoenes等は、比色検出反応の弱点を改善するために、比色測定と電気化学的測定を同時に行う測定方法について報告している。この弱点とは、比色検出反応は、測定対象物質が低濃度の時は有用であるが、高濃度では測定が困難である点である。Hoenes等の方法は、以下のようなものである。測定には、酸化酵素と、該酵素から電子を受容する色原体Aとを用いる。色原体Aを化合物A′に還元した後、物質BXとカップリング反応を行って発色試薬A′Bを形成させる。そして、このA′Bの濃度を測定対象物質の存在または量の尺度として比色測定を行う。また、上記カップリング反応によって、電気化学的に測定可能な原子団X′がBXから開裂するので、このX′の濃度を測定対象物質の量の尺度として、電気化学的に測定する。Hoenes等は、こうして、測定対象物質の比色測定と電気化学的測定を同時に行っている(特許文献61参照。)。
しかしながら、このシステムを実現するためには、バイオセンサおよび測定装置の構成が非常に複雑になることが想像される。そして、その複雑さに見合う充分なメリット(測定の精度等)がもたらされるとはいえない。また、酵素反応に引き続く電子伝達系において、反応試薬組成および反応系が複雑になるため、得られる応答値の応答速度や再現性およびバイオセンサの保存安定性が悪化することが、容易に予想される。
1999年、Crismore等は、液体試料室上に窓を付けたバイオセンサについて開示している。このバイオセンサの特徴は色付きの上カバーに対して透明の窓を液体試料室上に採用することによって使用者が測定に十分な血液が液体試料室内に吸い込まれているか確認できる。また、吸引口の基板にノッチを追加することによって、液体試料の吸引をスムーズに行うことが出来る(特許文献62参照。)。
ただ、発明が開示された時には既に、液体試料室内に液体試料が十分量吸引されていることを測定器が電気化学的に検知するシステムがIkeda等によって報告されている。
1980年代から1990年代にかけては、プリント基板製造技術を応用したスクリーン印刷がバイオセンサの製造方法に採用された。1990年代中頃から1990年代後半にかけては、製造毎のばらつきを低減するため、精緻加工技術が、バイオセンサの製造方法として用いられるようになった。
電極をスクリーン印刷にて形成するバイオセンサでは、印刷時の導電性ペーストのにじみによって測定電極の面積にばらつきが発生し、応答特性に影響を与える問題がある。Fujiwara等は、スクリーン印刷に代わり、作製が簡単で精度の良いバイオセンサの製造方法について報告している。この製造方法は、絶縁性の基板の一表面全面に形成した金属膜にスリットを形成して分割し、これら分割された金属膜にて、液体試料が適用される測定電極および対電極、並びにこれら両電極に電圧を印加するためのリード部を形成するようカバーを設け、測定電極および対電極上を試薬層で覆う、というものである(特許文献63、69参照。)。
Fujiwara等の方法では、絶縁性の基板上に蒸着やスパッタリングあるいは金属箔を接着して形成した金属膜に、レーザなどによりスリットを形成して測定電極と対電極を作成している。そのため、スクリーン印刷のように印刷のにじみなどが無く、電極の面積を精確に規定することができる。このためセンサごとの応答特性のばらつきが低減され、精度の良いバイオセンサを実現できる。
レーザ加工技術は、製造工程や要求される設備が複雑ではなく、製造再現性が良い等の利点があり、バイオセンサの製造において非常に有用である。また絶縁体上の金属膜の加工方法は、バイオセンサ以外にも多く適応されており、その有効性は多くの報告により実証されている(例えば、特許文献25、43、45、47、56参照。)。
また、2000年以降は、バイオセンサ製造技術において、レーザによる精緻加工技術を適用した報告がなされるようになってきた。それらは、絶縁基板上の金属層をレーザ加工することで電極を形成する方法などである(特許文献81、84、87参照。)。
現在までに、より精度の良い測定を行うためのシステムの開発に関する報告が、数多くなされてきた。それらは、バイオセンサの構造に関するものや、製造方法に関するものや、測定方法に関するものである。しかしながら、現在のバイオセンサには種々の欠点が未だ存在する。
これらの欠点の一つは、液体試料中に存在し、測定対象と同一の電位で酸化することが可能な、他の物質によって引き起こされるバイオセンサ読取り値への干渉である。これらは本明細書の中では干渉物質として表記され、一般的なものとしてはアスコルビン酸や尿酸およびアセトアミノフェンが挙げられる。これら及びその他の干渉物質が酸化すると、それらの酸化によって生じた電流が測定対象由来の電流に上乗せされ、測定対象由来の電流と区別できなくなってしまい、その濃度を過剰に見積もってしまう。その結果、液体試料中の測定対象物質の定量化の精度が悪化する。
2001年のIkeda等の報告では、干渉物質の影響を低減させる方法が提案されている。Ikeda等のバイオセンサは、干渉物質がもたらす測定精度悪化を低減するために、作用極と対極と試薬層を有し、さらに試薬層と接しない第三の電極を有する。Ikeda等は、この第三の電極を干渉物質検知極として用いることで、干渉物質の影響を低減させることを目指している(特許文献65参照。)。
血液を液体試料とするバイオセンサにおけるもう一つの欠点として、赤血球によってもたらされる干渉(ヘマトクリット影響)である。この干渉は、低いヘマトクリットレベルに対して、見かけ上高い反応率をもたらしたり、逆に、高いヘマトクリットレベルに対して見かけ上低い反応率をもたらしたりする傾向がある。
ヘマトクリット影響を低減するための技術として、1984年、Vogel等により、ガラス繊維を堆積させたバイオセンサが報告された。このバイオセンサは、堆積されたガラス繊維に血液を通過させることで、血液中の赤血球を分離させようとするものである(特許文献17参照)。通常は遠心分離により赤血球を分離もしくは除去していたのに対し、この方法であれば前処理無しに赤血球を分離できるが、ガラス繊維を堆積させることによる材料費と製造費の高騰および製造精度の悪化が予想される。加えて、赤血球を分離させるほどの口径を持つ繊維に血液を通過させるので、試料を吸引する速度が遅く、使い勝手の悪化を招くものと考えられる。
また、2001年、Winarta等により、測定対象物質と反応する反応試薬の組成について報告がなされている。この報告では、反応試薬に酵素と電子伝達物質に加えて高分子安定化剤、結合剤、界面活性剤を混合している(特許文献66参照。)。
しかしながら、反応試薬にこれらの物質を添加することは、試薬の調製工程が複雑になったり、反応試薬粘度が増すことで試薬層の形成工程が困難になったり、乾燥工程において不利な影響を与えたり、反応試薬の反応効率の低下を招いたり、反応試薬の長期保存安定性を悪化させるなどの要因となる。
上述した欠点に加えて、先行技術の更なる欠点は、それらの直線範囲が限定されていること、及び、相対的に多量のサンプルを必要とすることである。更に、これらの装置は、読取り値が得られる前の定常応答が明らかになるまでに、比較的長い待ち時間を必要とする。これらの欠点のそれぞれは、個々に、あるいは一つ以上の他の欠点と組み合わされて、分析において、間違った測定読取り値を生じさせる原因となる可能性がある。本発明の発明者によって行われた予備検査では、グルコース読取り値に対するヘマトクリットの影響を減じることを主張した先行技術は、低いグルコース濃度に限られると共に、低いグルコース濃度においてのみ作用することが示された。実際の糖尿病患者が示しうる高血糖状態では、その期待通りの効果を発揮するものではない。
使用者の使い勝手の向上を目指すために、測定に必要な液体試料の容量を低減することを目指した技術が、これまでにも報告されている。例えば、センサの構造、特に液体試料室の構造や電極の配置、反応試薬組成および添加物、測定手法等について、種々の検討がなされている(例えば、特許文献68、70、72、75、77、78参照。)。
しかし、液体試料の最小必要量を減らしても、結局は使用者の痛みを伴う穿刺行為を無くすことはできない。また、最小必要量を減らすあまり、液体試料室内の空間が試薬層でいっぱいになると、液体試料の吸い込みが悪化することが予想される。また、最小必要量を減らすために単に液体試料室を小さくすると、電極面積および試薬層も同時に小さくなるので、測定時に得られる応答値も小さくなり、その結果、シグナル/ノイズの比率(S/N比)が悪くなって測定精度が悪化する。
近年のバイオセンサの開発では、使い勝手および精度の両方を向上させるための取り組みが多くなされている。そのなかでも、使い勝手の向上については、測定に必要な液体試料の量の削減と測定時間の短縮化に重点がおかれている。
ところで、バイオセンサの測定では、乾燥状態で配置された反応試薬が、血液などの液体試料により再溶解する必要がある。そこで、測定時間の短縮化のためには、迅速な反応性が必要となり、反応試薬の再溶解性が高い方が有利であるといえる。しかしながら、再溶解性に優れた反応試薬に関しては、液体試料の吸引時に吸引方向へ押し流されてしまうという問題が生じる。反応試薬が押し流されると、反応領域上の反応試薬濃度が低下するために、測定値が真値よりも低値を示す。また、ヘマトクリット値および使用者の手技により吸引速度が変化した場合は、反応領域上の反応試薬濃度が変化してしまうので、測定再現性が著しく悪化する。
この問題は、近年のバイオセンサの開発が進むにつれて顕著に表面化してきたものである。押し流されない反応試薬層の形成方法として、ポリマーまたはゾル―ゲルマトリックスを用いて電極上に反応試薬を固定化する方法が報告されている(特許文献31、33、34、36、48、51参照。)。
これらの報告では、非浸出性または非拡散性の電子伝達物質を利用している。しかしながら、反応試薬に高分子を添加したり、共有結合により固定化したり、ゾル―ゲルマトリックス中に反応試薬を担持させて反応試薬の浸出性や拡散性を抑制すると、限られた時間内で迅速な反応を行うことが不可能となってくる。このことは、測定時間の短縮化を目指すという近年のバイオセンサの開発動向に逆行するものである。
2004年にBhullar等は吸引口先端の基板部を加工して微細構造体を形成することで、適切にコントロールされた液体試料の流れを与えることを目指した報告をしている(特許文献80、83参照。)。
この報告では、液体試料吸引時の毛細管力によって、液体試料の流れを調整している。しかし、液体試料の流れる方向を制御できたとしても、吸引速度を制御することはできず、反応試薬が押し流されるのを防ぐことは難しい。また、この報告では、レーザアブレーションにより基板を加工しているが、提案されている程度の微細構造体を形成させるには高度な加工技術が必要であり、相応の設備が要求される。これらの理由により、この技術を実際に運用するには困難が多いと考えられる。
基板を溝状に加工した例として、Say等の報告がある。彼らの報告は、患者の皮下の間質組織に埋め込まれるバイオセンサを目指したものであり、基板を溝状に加工し、形成された溝内に導電性物質を配して埋め込み型の電極を形成している(特許文献64、73、86参照。)。
この埋め込み型の電極上に反応試薬を配置したバイオセンサの基本構造は、従来の埋め込み型の電極の構造と大差がないために、液体試料吸引による反応試薬の押し流され具合の制御という課題は解決に至らないと考えられる。また、様々な条件化での使用が予測されるバイオセンサにおいて、このバイオセンサの基板が有する柔軟性は、使用環境の影響を受けやすいと予測され、実用化に問題が生じると思われる。
2003年のFeldmanらの報告の中の実施の形態で、基板をエンボシング加工することで溝を形成したバイオセンサについて示されている(特許文献76参照。)。
この場合、エンボシングにより溝状に形成された基板の反対の面は山状に加工されてしまう。この部分は使用者がバイオセンサを測定器に装着する際に直接触れる部分であるので、山状に加工されている形状では明らかに使用感が悪い。また、使用者が触れた際や輸送の際に山状に突き出した部分が変形してしまうと、溝部の形状や体積が変化してしまい、測定精度に大きく悪影響をもたらす可能性がある。さらに、エンボシング加工を施すためには材料の選定も注意深く行う必要がある。以上の理由により、バイオセンサに求められる測定精度と使い勝手の向上を両立させるには、この技術では課題が残されていると考えられる。
2006年、Huangは、基板に凹面を設けることで液体試料室を形成した埋め込み電極型のバイオセンサについて報告した(特許文献88参照。)。
このバイオセンサは、基板の孔に電極を埋め込んだものであり、基板にスペーサを積層して液体試料室を形成するのではなく、基板に凹面を設けることで液体試料室を形成している。これにより製造部材点数を減らすことはできるが、凹面形状が液体試料室の体積と形状を規定するため凹面形成において高い精度が求められる。また、液体試料室の基本構造が従来のものと大差がないため、液体試料吸引による反応試薬の押し流され具合の制御という課題は解決に至らないと考えられる。
これらバイオセンサは、微生物、酵素、抗体、核酸などの生物材料の分子認識能力を応用したセンサである。すなわち、微生物の呼吸による酸素の消費、酵素反応、発色試薬による呈色など、生物材料が目的の特定成分を認識した時に起こる各種の生化学反応を利用したものである。特に、酵素を利用したバイオセンサの研究、応用は進んでおり、医療分野や食品分野において実用化されている。その中でも医療分野のバイオセンサは糖尿病患者が自己血糖値測定するために用いられており、全世界で販売されている。
以下に、本明細書において引用された米国特許文献、日本国特許文献、及び引用された非特許文献を記す。
米国特許第2913386号明細書 Nov. 1959 Clark 米国特許第3539455号明細書 Nov. 1970 Clark 米国特許第3542662号明細書 Nov. 1970 Hicks等 米国特許第3770607号明細書 Nov. 1973 William 米国特許第3788950号明細書 Jan. 1974 Hicks等 米国特許第3836003号明細書 Sep. 1974 Mindt等 米国特許第3838033号明細書 Sep. 1974 Mindt等 米国特許第3948745号明細書 Apr. 1976 Guilbault等 米国特許第3979274号明細書 Sep. 1976 Newman等 米国特許第4073713号明細書 Feb. 1978 Newman等 米国特許第4085009号明細書 Apr. 1978 Pace 米国特許第4092233号明細書 May. 1978 Clemens等 米国特許第4100029号明細書 Jul. 1978 Prosper 米国特許第4224125号明細書 Sep. 1978 Nankai等 米国特許第4225410号明細書 Sep. 1980 Pace等 米国特許第4454007号明細書 Jun. 1984 Pace 米国特許第4477575号明細書 Oct. 1984 Vogel等 米国特許第4534356号明細書 Aug. 1985 Papadakis 米国特許第4545382号明細書 Oct. 1985 Higgins等 米国特許第4711245号明細書 Dec. 1987 Higgins等 米国特許第4897173号明細書 Jan. 1990 Nankai等 米国特許第4963245号明細書 Oct. 1990 Weetall等 米国特許第4975175号明細書 Dec. 1990 Karube等 米国特許第5066372号明細書 Nov. 1991 Weetall等 米国特許第5104480号明細書 Apr. 1992 Wojnarowski等 米国特許第5120420号明細書 Jun. 1992 Nankai等 米国特許第5120420号明細書 Jun. 1992 Nankai等 米国特許第5126034号明細書 Jun. 1992 Carter等 米国特許第5185256号明細書 Feb. 1993 Nankai等 米国特許第5229282号明細書 Jul. 1993 Yoshioka等 米国特許第5262035号明細書 Nov. 1993 Gregg等 米国特許第5264103号明細書 Nov. 1993 Yoshioka等 米国特許第5264104号明細書 Nov. 1993 Gregg等 米国特許第5264105号明細書 Nov. 1993 Gregg等 米国特許第5288636号明細書 Feb. 1994 Pollmann等 米国特許第5320725号明細書 Jun. 1994 Gregg等 米国特許第5320732号明細書 Jun. 1994 Nankai等 米国特許第5385846号明細書 Jan. 1995 Kuhn等 米国特許第5405511号明細書 Apr. 1995 White等 米国特許第5438271号明細書 Aug. 1995 White等 米国特許第5509410号明細書 Apr. 1996 Hill等 米国特許第5512159号明細書 Apr. 1996 Yoshioka等 米国特許第5512489号明細書 Apr. 1996 Girault等 米国特許第5565085号明細書 Oct. 1996 Ikeda等 米国特許第5576073号明細書 Nov. 1996 Kickelhain等 米国特許第5582697号明細書 Dec、 1996 Ikeda等 米国特許第5593739号明細書 Jan. 1997 Kickelhain等 米国特許第5593852号明細書 Jan. 1997 Heller等 米国特許第5628890号明細書 May. 1997 Carter等 米国特許第5650062号明細書 Jul、 1997 Ikeda等 米国特許第5665222号明細書 Sep. 1997 Heller等 米国特許第5682884号明細書 Nov. 1997 Hill等 米国特許第5708247号明細書 Jan. 1998 MacAleer等 米国特許第5727548号明細書 Mar. 1998 Hill等 米国特許第5755953号明細書 May. 1998 Henning等 米国特許第5758398号明細書 Jun. 1998 Rijnbeek等 米国特許第5759364号明細書 Jun. 1998 Charlton等 米国特許第5762770号明細書 Jun. 1998 Pritchard等 米国特許第5798031号明細書 Aug. 1998 Charlton等 米国特許第5820551号明細書 Oct. 1998 Hill等 米国特許第5858691号明細書 Jan. 1999 Hoenes等 米国特許第5997817号明細書 Dec. 1999 Crismore等 米国特許第6004441号明細書 Dec. 1999 Fujiwara等 米国特許第6103033号明細書 Aug. 2000 Say等 米国特許第6212417号明細書 Apr. 2001 Ikeda等 米国特許第6258229号明細書 Jul. 2001 Winarta等 米国特許第6287451号明細書 Sep. 2001 Winarta等. 米国特許第6299757号明細書 Oct. 2001 Feldman等 米国特許第6309526号明細書 Oct. 2001 Fujiwara等 米国特許第6338790号明細書 Jan. 2002 Feldman等 米国特許第6447657号明細書 Sep. 2002 Bhullar等 米国特許第6461496号明細書 Oct. 2002 Feldman等 米国特許第6484046号明細書 Nov. 2002 Say等 米国特許第6540890号明細書 Apr. 2003 Bhullar等 米国特許第6576101号明細書 Jun. 2003 Heller等 米国特許第6592745号明細書 Jul. 2003 Feldman等 米国特許第6616819号明細書 Sep. 2003 Liamos等 米国特許第6618934号明細書 Sep. 2003 Feldman 米国特許第6645359号明細書 Nov. 2003 Bhullar等 米国特許第6755949号明細書 Jun. 2004 Bhullar等 米国特許第6767440号明細書 Jul. 2004 Bhullar等 米国特許第6814843号明細書 Nov. 2004 Bhullar等 米国特許第6814844号明細書 Nov. 2004 Bhullar等 米国特許第6866758号明細書 Mar. 2005 Bhullar等 米国特許第6911621号明細書 Jun. 2005 Bhullar等 米国特許第7003340号明細書 Feb. 2006 Say等 米国特許第7073246号明細書 Jul. 2006 Bhullar等 米国特許出願公開第2006/0175199号明細書 Aug.2006 Huang 日本国特許公告平4−6907号公報(特開昭59−166852号公報) Feb. 1992 Kawaguri等
L.C.Clark,Jr. "Monitor and control of blood and tissue oxygenation" Trans.Am.Soc.Artif.Intern.Organs,1956 2,41. L.C.Clark,Jr. "Electrode system for continuous monitoring in cardiovascula" surgery.Ann.NY Acad.Sci.1962 102:29/45. Voss DO "A new oxygen electrode model for the polarographic assay of cellular and mitochondrial respiration" Anal Biochem.1963 Sep;6:211−222. Updike SJ. et al., "The enzyme electrode" Nature 1967 Jun 3;214(5092):986−988. Fujihira et al., "Reversible redox titrations of cytochrome c and cytochrome c oxidase using detergent solubilized electrochemically generated mediator−titrations" Biochemical and Biophysical Research Communications 1974 61(2):538−543. Divies C. "Remarks on ethanol oxidation by an "Acetobacter xylinum" microbial electrode" Ann Microbiol(Paris).1975 Feb−Mar;126(2):175−86.(元はフランス語論文で、当題名は著者による英訳。) L.C.Thomas et al., "Voltammetric measurement of reduced Nicotinamide−Ademine Nucleotides and application to amperometric measurements of enzyme reactions" Analytica Chemica Acta 1975 78 271−276. Yagi et al., "A new assay method for hydrogenase based on an enzymic electrode reaction.The enzymic electric cell method" J Biochem.1975 Sep;78(3):443−454. Johnson JM. et al., "Metal complex as mediator−titrants for electrochemical studies of biological systems" Anal.Biochem.1983 Aug;133(1):186−189. Cass et al., "Ferrocene−mediated enzyme electrode for amperometric determination of glucose" Ana.Chem.1984 Apr;56(4):667−671. Denis C. et al., "Use of the LA 640 for a simple method of measuring the concentration of muscle lactate" J Physiol.1985;80(3):168−172. D‘Costa,E.J. et al., "Quinoprotein glucose dehydrogenase and its applicationsin an amperometric glucose sensor" Biosensors 1986 2:71−87. Cass et al., "Biosensors: Fundamentals and Applications" Oxford University Press,1987 & 1989. Denis C. et al., "Effects of endurance training on hyperammonaemia during a 45−min constant exercise intensity" Eur J Appl Physiol Occup Physiol.1989;59(4):268−272. Morris,N.A. et al., "Electrochemical capillary fill device for the analysis of glucose incorporating glucose oxidase and ruthenium (III) hexamine as mediator" Electroanalysis.1992 4:1−9. The Diabetes Control and Complications Trial Research Group "The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long−Term Complications in Insulin−Dependent Diabetes Mellitus" New England Journal of Medicine.1993 Sep.30 329(14) 977−986. Loughran,M.G. et al., "Amperometric detection of histamine at a quinoprotein dehydrogenase enzyme electrode" Biosensors and Bioelectronics.1995 10:569−576. Loughran,M.G. et al., "Ammonium requirement and stability of methanol dehydrogenase TTF.TCNQ electrodes" The Analyst.1996 121:1711−1715. Loughran,M.G. et al., "Development of apyrroloquinoline quinone (PQQ) mediated glucose oxidase enzyme electrode fordetection of glucose in fruit juice" Electroanalysis.1996 8(10) 870−875. Newman JD. et al., "Home blood glucose biosensors: a commercial perspective" Biosens Bioelectron.2005 Jun 15;20(12):2435−2453.
上述したように、近年、血糖値測定用バイオセンサの技術開発において、使用者の使い勝手および測定精度の向上が重視されている。
なかでも、使い勝手の向上には、測定時間を短縮化することが重要である。しかしながら、測定時間を短縮化するために反応試薬の溶解性を向上させると、液体試料を液体試料吸引口に吸引させた際に反応試薬が吸引方向へ押し流されて、測定精度が悪化するおそれがある。
これまでに、反応試薬を電極表面へ留める方法として、反応試薬の電極への固定化や、反応試薬に高分子化合物を添加する等が試みられた。しかし、このような方法は高い製造技術が必要になり、製造コストが高騰する。加えて、このような反応試薬は、液体試料による再溶解性が低下するので、拡散速度が小さくなる。測定環境での反応効率は拡散律速であるので、拡散速度が小さくなることで反応効率は低下し、測定時間を短縮することができないという結果になる。さらに、電極表面への反応試薬の固定化や反応試薬への高分子化合物の添加は、バイオセンサの保存安定性を低下させることがある。
また、切取部を形成した基板を最下部基板上に積層することにより反応試薬収容層を設けたバイオセンサでは、製造に必要な部材点数が増えると共に、各部材の高度な加工精度が求められる。その結果、製造工程が複雑化し、製造効率が悪化したり、コストが高騰したりするといった問題がある。
また、反応試薬の位置および反応試薬分布を規定する方法として、基板上の反応試薬を配置する領域に導電性のトラックを形成することで、電極アレイを形成し、この電極アレイの近傍に凹部を形成する方法が試みられている。しかしながら、この方法では、反応試薬の配置精度の向上は期待できるが、液体試料吸引時の反応試薬の流動性を制御することはできない。
一方、エンボシング加工により、基板の厚みを減らすことなく溝を形成する方法が報告されている。この方法では、溝に対して基板の裏側が山状に突き出す形状に加工される。この部分は、使用者がバイオセンサを測定器に装着する際に直接触れる部分であるので、この形状では明らかに使用感が悪い。また、使用者が触れた際、又は輸送の際に、山状に突き出した部分が変形してしまう虞がある。この部分が変形すると、溝部の形状や体積が変化してしまうため、測定精度に大きく悪影響をもたらす。さらに、エンボシング加工を施すためには材料の選定も注意深く行う必要があると予想される。そのため、この技術では、測定精度及び使い勝手の良さへの要求を充分に満たすことができていなかった。
このように、使用者にとって使いやすいこと(特に対象物質の検出にかかる時間の低減)、製造コストの増加の抑制、良好な検知精度の三つの要求をともに満足させることは困難であり、これら三者の間にはジレンマが存在する。これまでのバイオセンサの開発において、このジレンマに対する直接的な取り組みは皆無であり、解決には至っていない。
本発明は、上記従来の課題に鑑みてなされたものであり、上述の3つの要求を満たすことのできるバイオセンサ、その製造方法、及びそれを備える検出システムを提供することを目的とする。
第1の発明に係るバイオセンサは、液体試料内に含まれる対象物質の存在を検出するバイオセンサであって、周囲よりも厚みが薄い部分に形成された凹部を有する絶縁性の基板と、少なくともいずれか一方が上記凹部内に配置された作用電極及び対電極と、上記凹部内に配置され、液体試料中の特定の物質と反応する反応試薬と、を備える。
このバイオセンサは、基板が凹部を有し、この凹部内に反応試薬が配されるので、反応試薬が基板上から流れ出すことを効果的に防ぐことができる。それゆえ、反応試薬の溶解性を高めても対象物質の検出が可能となり、検出にかかる時間の短縮が可能である。このように、検出にかかる時間が短いことで、このバイオセンサは、使用者の使い勝手を向上させることができる。
また、絶縁性の基板の一部の厚みが調整されることで凹部が形成されているため、凹部を形成するのに基板以外の部材を必要ない。よって、部材の増加が抑制され、製造コストの増大が抑制され得る。
さらに、基板の一部の厚みが薄く形成ことにより凹部が形成されているため、基板の裏面側に凹凸がない。よって、使用者等が基板の裏面側に触れた場合でも、凹部の容積が変化しにくいため、良好な測定精度を実現することができる。
第2の発明に係るバイオセンサは、第1の発明に係るバイオセンサであって、凹部が、基板の厚み方向に凹む凹構造、若しくは基板の厚み方向に突出する凸構造のいずれか一方又は両方の組合せを備える。
このバイオセンサは、凹構造および凸構造の少なくとも一方を備えることによって、反応試薬が流れるのを防ぐための凹部を容易に形成することができる。
第3の発明に係るバイオセンサは、第2の発明に係るバイオセンサであって、凹構造が、底部に近づくほど幅が狭くなる谷形状を含む。
また、第4の発明に係るバイオセンサは、第2又は第3の発明に係るバイオセンサであって、凸構造は、先端に近づくほど細くなる山形状を含む。
凹構造及び凸構造が、このような形状を含むように形成されているため、反応試薬が流れるのを防ぐための凹部を容易に形成することができる。
凹構造又は凸構造の形状は、以下のような構造とすることができる。
例えば、第5の発明に係るバイオセンサは、第2〜第4の発明のいずれかに係るバイオセンサであって、基板の平面方向における凹構造又は凸構造の形状が、ドット形状、直線形状、方形状、および曲線形状の少なくとも1つ、又はこれらのうちの2つ以上の形状の組み合わせである。
第6の発明に係るバイオセンサは、第2〜第4の発明のいずれかに係るバイオセンサであって、凹部は、外縁が円形状であり、凹部の底面に、凹構造及び凸構造が、外縁の同心円状を描くように、かつ交互に設けられている。
第7の発明に係るバイオセンサは、第2〜第4の発明のいずれかに係るバイオセンサであって、凹部は、外縁が円形状であり、凹部の底面に、凹構造が格子状に設けられており、かつ、凹構造に囲まれた部分が凸構造になっている。
第8の発明に係るバイオセンサは、第2〜第4の発明のいずれかに係るバイオセンサであって、凹部は、外縁が矩形状であり、凹部の底面に、凹構造が格子状に設けられており、かつ凹構造に囲まれた部分が凸構造になっている。
第9の発明に係るバイオセンサは、第1〜第8の発明のいずれかに係るバイオセンサであって、基板の厚み方向において、凹部の上方に液体試料を保持する液体試料室をさらに備える。
このように、バイオセンサが液体試料室を有することにより、検出に必要な液体試料の量が低減可能である。
また、第10の発明に係るバイオセンサは、第9の発明に係るバイオセンサであって、液体試料室の外部から内部へ、毛細管現象により液体試料を供給するための吸引口をさらに備える。
このように、バイオセンサが吸引口を備えることで、毛細管現象を利用して液体試料室に速やかに液体試料が供給可能である。
第11の発明に係るバイオセンサは、第9又は第10の発明に係るバイオセンサであって、液体試料室の内部から外部へ空気を排出する通気口をさらに備える。
このように、バイオセンサが通気口を備えることで、液体試料室内が液体試料で速やかに満たされることができる。
第12の発明に係るバイオセンサは、第1〜第11の発明のいずれかに係るバイオセンサであって、凹部の側面の少なくとも一部が、基板の平面方向に対して非垂直となっている。「基板の平面方向」とは、「吸引口から液体試料室に向かう方向」であってもよい。
このバイオセンサによると、吸引口から供給される液体試料が、凹部まで速やかに移動可能である。
第13の発明に係るバイオセンサは、第1〜第12の発明のいずれかに係るバイオセンサであって、凹部の少なくとも一部を露出させるように基板上に配されるスペーサと、スペーサから露出した凹部を覆うように、スペーサの上に配される上カバーと、をさらに備える。
第14の発明に係るバイオセンサは、第1〜第13の発明のいずれかに係るバイオセンサであって、作用電極及び対電極と、バイオセンサの電流値から対象物質の存在を検出する検出装置とを、電気的に接続する端子を、さらに備える。
第15の発明に係るバイオセンサは、第1〜第14の発明のいずれかに係るバイオセンサであって、反応試薬は、作用電極及び対電極上に配置されている。
第16の発明に係るバイオセンサは、第1〜第15の発明のいずれかに係るバイオセンサであって、作用電極及び対電極の少なくとも一方が導電性物質を含む。
第17の発明に係るバイオセンサは、第16の発明に係るバイオセンサであって、導電性物質が無機導電性物質を含む。
第18の発明に係るバイオセンサは、第17の発明に係るバイオセンサであって、作用電極および対電極の少なくとも一方がパラジウムを含む。
第19の発明に係るバイオセンサは、第16〜第18の発明のいずれかに係るバイオセンサであって、導電性物質が有機導電性物質を含む。
第20発明に係るバイオセンサは、第19の発明のいずれかに係るバイオセンサであって、作用電極および対電極の少なくとも一方が導電性高分子を含む。
第21の発明に係るバイオセンサは、第1〜第20の発明のいずれかに係るバイオセンサであって、凹部内に配置された酵素を有する。
第22の発明に係るバイオセンサは、第21の発明に係るバイオセンサであって、凹部内に配置されたオキシダーゼ又はデヒドロゲナーゼを有する。
これらの酵素は、反応試薬として好適である。
第23の発明に係るバイオセンサは、第22の発明に係るバイオセンサであって、凹部内に配置され、グルコースを基質とするオキシダーゼ又はデヒドロゲナーゼを有する。
これらの酵素は、反応試薬として好適である。
第24の発明に係るバイオセンサは、第1〜第23の発明のいずれかに係るバイオセンサであって、凹部内に配置された電子伝達物質を有する。
電子伝達物質は、バイオセンサにおける電気化学反応により発生したシグナルを伝達することができる。
第25の発明に係るバイオセンサは、第24の発明に係るバイオセンサであって、凹部内に配置されたヘキサシアノ鉄(III)カリウムを有する。
ヘキサシアノ鉄(III)カリウムは、電子伝達物質として好適である。
第26の発明に係るバイオセンサは、第1〜第25の発明のいずれかに係るバイオセンサであって、反応試薬が乾燥状態である。
このようなバイオセンサは、反応試薬の保存性が高い。
第27の発明に係るバイオセンサは、第1〜第26の発明のいずれかに係るバイオセンサであって、作用電極及び対電極が、液体試料中の血球成分を測定する電極である。
第28の発明に係るバイオセンサは、第1〜第26の発明のいずれかに係るバイオセンサであって、作用電極及び対電極は、液体試料中の易酸化性物質を測定する電極である。
第29の発明に係るバイオセンサは、第1〜第26の発明のいずれかに係るバイオセンサであって、作用電極及び対電極は、液体試料の吸引を検知する電極である。
第30の発明に係るバイオセンサは、第1〜29の発明のいずれかに係るバイオセンサであって;絶縁性であって、凹部を有する第1基板と、絶縁性であって、第1の基板に対向するように配置された第2基板と、を備え;作用電極又は対電極のうち一方の電極及び反応試薬は、第1基板の凹部内に配置され;作用電極又は対電極のうち他方の電極は、第2基板上に配置される。
第31の発明は、バイオセンサの製造方法であって、絶縁性の基板の厚みを減らすことで凹部を形成する工程と、凹部内に作用電極及び対電極の少なくとも一方を配置する工程と、凹部内に対象物質と反応する反応試薬を配置する工程と、凹部の少なくとも一部を露出させるように基板上にスペーサを配置する工程と、スペーサから露出した凹部を覆うようにスペーサ上に上カバーを配置する工程と、を含む。
この製造方法は、第1〜第30の発明のバイオセンサの製造方法として好適である。
第32の発明は、第1〜第30のいずれかの発明に係るバイオセンサと、バイオセンサの作用電極と対電極との間の電流から、液体試料中の対象物質の存在を検出する検出装置と、を備える検出システムである。
この検出システムは、上述したバイオセンサのいずれかを含むので、検出時間が短く、使用者の使い勝手を向上させることが可能であって、部材の増加を抑制して製造コストの増大を抑制し、かつ凹部の容積変化が小さく良好な測定精度を実現することができるという効果を実現可能である。
本発明によると、使用者にとって使いやすく、製造コストの増加を抑制することができ、かつ良好な検知精度を有するバイオセンサを提供することができる。
本発明の実施の一形態に係るバイオセンサの分解斜視図である。 図1のA−A矢視断面図である。 バイオセンサにおける電気化学反応の一例を示す図面である。 バイオセンサにおける凹部の位置等を示す平面図である。 バイオセンサの電極の他の形態を示す断面図である。 電極のさらに他の形態を示す断面図である。 バイオセンサの基板の他の形態を示す断面図である。 (a)及び(b)は、バイオセンサの他の形態を示す分解平面図である。 (a)〜(c)は、バイオセンサの他の形態を示す分解平面図である。 図9(a)に示すバイオセンサの凹部の位置等を示す平面図である。 バイオセンサの製造工程における凹部形成前の絶縁板を示す斜視図である。 バイオセンサの製造工程における凹部が形成された基板を示す斜視図である。 バイオセンサの製造における電極セットが形成された基板を示す斜視図である。 バイオセンサの製造における試薬層が配置された基板を示す斜視図である。 図12のB‐B矢視断面図である。 導電層が形成された基板の断面図である。 図13のCC矢視断面図である。 図14のD‐D矢視断面図である。 測定システム10の概要を示す斜視図である。 測定システム10の要部構成を示すブロック図である。 実施例1に係るバイオセンサの基板表面の一部を示す図面である。 グルコース濃度に対する実施例1のバイオセンサの応答電流値を示すグラフである。 実施例1のバイオセンサの再現性を評価した際の正規分布図である。 グルコース濃度に対する比較例のバイオセンサの応答電流値を示すグラフである。 比較例のバイオセンサの再現性を評価した際の正規分布図である。 実施例2に係るバイオセンサの基板表面の一部を示す図面である。 実施例3に係るバイオセンサの基板表面の一部を示す図面である。 他の実施形態に係るバイオセンサの断面図である。
以下、本発明に係るバイオセンサ、バイオセンサの製造方法、及びバイオセンサを用いた測定システムについて、この順に、図面を参照して説明する。但し、本発明は以下の実施形態に限定されるものではなく、特許請求の範囲において記載され、定義されている本発明の意図および精神の範囲内で変更および修正が可能である。図面中、視認性を良くする為に、縮尺は現物を反映していない場合がある。
<A.バイオセンサ>
〔1〕バイオセンサ1
(1−1)構造の概要
バイオセンサの実施の一形態であるバイオセンサ1の構造について、図1及び図2を参照して説明する。図1は、バイオセンサ1の要部構成を示す分解斜視図である。図2は図1のバイオセンサ1のA‐A矢視断面図である。
バイオセンサ1は、液体試料中の特定物質を検出するバイオセンサの一例であり、所謂アンペロメトリック式バイオセンサである。図1及び図2に示すように、バイオセンサ1は、絶縁性基板、作用電極、対電極、及び試薬層の一例として、基板101、2つの電極(作用電極と対電極)111a及び111b、及び試薬層120をそれぞれ備える。具体的には、バイオセンサ1は、基板101、導電層110、試薬層120、スペーサ130、及び上カバー140を備え、これらの部材はこの順に重ねられている。
(1−2)基板101
図1に示すように、基板101は長方形の板状の部材である。以下では、基板101の長辺と平行な方向をX方向、短手方向と平行な方向(つまり、基板101の面方向に平行かつX方向に垂直な方向)をY方向、基板101の面方向に垂直な方向(つまり基板101の厚み方向)をZ方向とする。基板101の2つの面のうち一方では、その1部分がZ方向に凹むことで、凹部102となっている。以下、基板101の2つの面のうち、凹部102が設けられている面を第1の面103、その逆側の面を第2の面104と称する。
基板101は絶縁性を有する。基板101を構成する材料は、非導電性物質であればよく、特に限定されるものではない。非導電性と望ましい構造特性をもたらす材料としては、ポリエチレンテレフタレート、ビニルポリマ、ポリイミド、ポリエステル、スチレニクス等の樹脂、ガラス、及びセラミックス等が挙げられる。
凹部102の形態、すなわち、凹部102の形状、X−Y平面における凹部102の大きさ、Z方向における深さ、及び底面構造等は、後述の液体試料室150、電極111a及び111b、及び試薬層120等の大きさ、これらの部材との位置関係、並びに対象となる液体試料の特性等によって、適宜設定されるものであり、具体的な構成に限定されるものではない。例えば、X−Y平面における凹部102の形状は、図1に示すように円形であってもよいが、矩形等他の形状であってもよい。凹部102の形態の詳細については、後述する。
(1−3)導電層110
図1及び図2に示すように、導電層110は、基板101の第1の面103上に略均一な厚みに形成されており、2つの電極111a及び111bと、2つの端子112a及び112bと、2つの導電トラック114a及び114bとを備える。
各電極111a及び111bの一部は、凹部102内に配されている。つまり、凹部102内に、2つの電極111a及び111bの両方が配置されている。なお、後述するように、凹部102は複数設けられてもよいが、凹部が複数存在する場合は、2つの電極が各凹部内で対向するように設けられる。凹部102内では、電極111a及び111bは、凹部102の形状に沿って、凹んだ形状となっている。また、電極111a及び111bは、山部105及び谷部106からなる凹凸形状にも沿うように形成されている。
電極111a及び111bは、凹部102内に電場を作ると共に、試薬層120内の反応試薬と対象物質との反応により生じた電気信号を受け取ることができる。電極111a及び111bは、反応試薬と対象物質の反応により生じた電気信号以外にも、例えば、液体試料中の血球成分、易酸化性物質、液体試料の吸引に伴って発生する電気信号などを受け取ることが出来る(図示せず)。
導電トラック114a及び114bは、基板101の長方形状の長手方向に長く延びた形状である。一方の導電トラック114aは、一方の電極111aと端子112aとを電気的に接続し、他方の導電トラック114bは、他方の電極111bと端子112bとを電気的に接続する。この構成は、一方の導電トラック114aの一端が電極111a、他端が端子112aとなっており、他方の導電トラック114bの一端が電極111b、他端が端子112bとなっている、と言い換えることができる。また、電極、端子、及び導電トラックは、電極セットを構成しているともいえる。2本の導電トラック114a及び114b間は、非導電トラック113によって絶縁状態が保たれている。
電極セットは、印刷等によって導電性材料を電極セットの各部の形状に形成してもよいし、基板101を導電性材料で覆った後、レーザアブレーション等で非導電トラック113を形成することで形成してもよい。
なお、導電層110の構成材料は、導電性材料(導電性物質)であればよく、特に限定されるものではない。導電性材料としては、金属、金属混合物、合金、金属酸化物、または金属化合物に代表される無機導電性物質等が挙げられる。より具体的には、パラジウム、アルミニウム、コバルト、銅、ガリウム、金、インジウム、イリジウム、鉄、鉛、マグネシウム、水銀、ニッケル、ニオブ、オスミウム、白金、レニウム、ロジウム、セレン、ケイ素、銀、タンタル、スズ、チタン、タングステン、ウラン、バナジウム、亜鉛、若しくはジルコニウム、またはこれらの混合物若しくは合金、又はこれらの酸化物、又は、これらの化合物が挙げられる。
また、他には、炭化水素系導電性ポリマーやヘテロ原子含有系導電性ポリマーなどの有機導電性物質も、導電性材料として用いられる。有機導電性物質としては、炭素、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン、又はポリナフタレンの有機導電性物質が挙げられる。なかでも、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセン系導電性ポリマーは実用的な材料である。以上に挙げた以外にも、種々の導電性高分子を用いることができる。
例えば、ナガセケムテックス株式会社が導電性ポリマーとして製造するDenatron P−502Sは、ポリチオフェン系導電性高分子であり、ポリチオフェン主鎖に生成したバイポーラロン(ジカチオン)が、分子内を移動し、さらに分子間をホッピングすることで電気が流れる電子伝導型のメカニズムを持ち、安定した導電性を示すので、電極材料として適している。
また、導電性材料として、これら無機導電性物質および有機導電性物質を組み合わせて用いてもよい。
(1−4)試薬層120
図1及び図2に示すように、試薬層120は、凹部102内に、2つの電極111a及び111bの両方に接するように配されている。試薬層120は、検出対象である物質と反応する反応試薬を含み、電極111a及び111bと共に、バイオセンサ1の活性部107として機能する。活性部107とは、電気化学的に活性な領域であって、液体試料中の特定の物質に反応し、電気信号を生じる部分である。
反応試薬は、対象物質によって適宜変更可能であり、特定の物質に限定されるものではないが、対象物質と反応して電気信号を生じるものが用いられる。反応試薬としては、例えば、検出の対象となる1つまたは複数の物質を基質とする酵素を用いることができる。酵素の中でも、酸化還元酵素が特に好適に用いられる。このような酵素の例としては、対象物質がブドウ糖である場合は、グルコースオキダーゼ、又はグルコースデヒドロゲナーゼが、対象物質が乳酸である場合には、乳酸オキシダーゼ、又は乳酸デヒドロゲナーゼが、対象物質がコレステロールである場合には、コレステロールエステラーゼ、又はコレステロールオキシダーゼが、対象物質がアルコールである場合には、アルコールオキシダーゼが、対象物質がビリルビンである場合にはビリルビンオキシダーゼ等が挙げられる。反応試薬として用いられる酵素は、これらに限定されるものではなく、対象物質に応じて適宜選択される。なお、対象物質としてはこれ以外に、トリグリセリド、尿素等が挙げられる。
また、試薬層120には、酵素と共に、電子伝達物質が含まれることが好ましい。電子伝達物質とは、一般的に「メディエータ」とも呼ばれ、直接または別の電子伝達物質と協働して、ある種の還元体の電子もしくは金属などの自由電子が別のある種の酸化体もしくは金属へ移動する電子移動を媒介する物質である。メディエータは、電極上で可逆的に酸化体および還元体となることのできる物質である。
図3を参照して、電子伝達物質の働きについて説明する。図3は、基質(対象物質)を酸化させる酸化酵素を用いる場合の活性部107における反応の流れについて説明する図面である。
図3に示すように、試薬層120内の酵素は、酸化酵素であるので、基質を酸化すると共に、基質から電子を受け取って酸化体から還元体になる。酸化体である電子伝達物質は、還元体になった酵素から電子を受け取って、酵素を酸化体に戻すと共に、自身は還元体となる。そして、還元体となった電子伝達物質は、電極111a又は111bに電子を与えて、自身は酸化体となる。このようにして、電子伝達物質は、酵素と電極間の電子移動を媒介する。
電子伝達物質に求められる特性としては、酵素と電極間の電子移動をスムーズに行えること、反応試薬中で長期間安定的に酸化体を形成可能であること、溶解性が高いこと、安価であること等が挙げられる。それらに加え、酸化還元電位が低いことも、電子伝達物質に求められる重要な特性の1つである。なぜならば、測定に用いられる液体試料中には、易酸化性物質であるアスコルビン酸、尿酸、及びアセトアミノフェンなど、潜在的な還元性の干渉物質(電界の存在下で干渉電流を発生しうる化学物質)が含まれる場合があるからである。これらの干渉物質の共存下でアンペロメトリック測定を行うと、電極上で、還元型電子伝達物質の酸化と同時に、干渉物質の酸化が行われるので、不所望の信号を測定してしまう。これらの干渉物質による影響を低減させるためには、酸化還元電位が低い電子伝達物質が用いられる。これにより、測定中の電極電位を比較的低くすることができ、干渉物質の電極での酸化において電位律速を生じさせることで速度を遅らせることができる。しかしながら、電位が低い電子伝達物質は、不安定で、解け難く、合成が困難であり高価である場合が多い。好ましい電子伝達物質としては、金属錯体などの無機系電子伝達物質、キノン誘導体のような有機系電子伝達物質が挙げられる。
多くの場合、酵素だけでは、酵素と電極との間の電子移動速度が充分に大きくないために、限られた測定時間内で測定に必要な強度の信号を得ることが難しい。これに対して、本実施形態では、酵素と共に電子達物質を試薬層120に共存させることで、測定可能な強度の電気信号を得ることができる。
なお、試薬層120は、反応試薬以外の他の成分を含んでいてもよい。反応試薬以外の成分としては、試薬層120が凹部102内に付着しやすくしたり、反応試薬の保存性を高めたり、反応試薬と対象物質との反応性を高めたりすることができる種々の物質が用いられる。このような成分として、例えば緩衝剤が挙げられる。これらの成分は、反応試薬の液体試料への溶解を妨げないことが好ましい。
(1−5)スペーサ130及び上カバー140
図1及び図2に示すように、スペーサ130は、上カバー140と導電層110との間に空隙を設けるための部材である。
具体的には、スペーサ130は、板状の部材であって、凹部102、2つの端子112a及び112bを除いて、導電層110の全体を覆うようになっている。スペーサ130は、スペーサ130の1短辺から凹部102までを露出させる矩形の切り欠き131を備える。スペーサ130がこの切り欠き131を備えることで、導電層110と上カバー140とで囲まれた液体試料室150が形成される。
このように、スペーサ130は、液体試料室150の側壁を提供し、さらに液体試料室150の長さ、幅、高さ等を規定することができる。
液体試料室150は、その開口部である吸引口151から毛細管現象によって液体試料を吸引し、活性部107上に保持する。このときの吸引方向を、図1中にd1で示す。吸引方向d1とは、吸引口151から液体試料室150へと向かう方向である。本実施形態においては、吸引方向d1は、X軸方向、つまり基板101の長手方向に平行である。
図1及び図2に示すように、上カバー140は長方形の板状の部材であって、表面から裏面まで貫通する孔を備える。この孔は、液体試料室150から外部に通じる通気口152として機能する。通気口152は、液体試料が液体試料室150に吸引される際、液体試料室150内の気体を液体試料室外へ排出するための排気孔である。
つまり、吸引口151及び通気口152は、液体試料室150の外部から内部にまで通じていればよく、その位置や形状は、特に限定されるものではない。ただし、通気口152は、吸引口151から離れた位置に、つまり、吸引口151から見て液体試料室150の奥に設けられることが好ましい。吸引口151がこのように配置されることで、液体試料が、吸引口151から液体試料室150の奥まで、速やかに移動することができる。
(1−6)凹部102の構成の詳細
一般に、バイオセンサの液体試料室への液体試料の吸引速度を、常に一定になるように調整することは困難である。特に、液体試料が血液である場合、血液のヘマトクリット値、総コレステロール量、及び総タンパク質量等の影響により、血液の提供者によって液体試料の粘度に大きな差異が生じるため、吸引速度にも大きな差異が生じる。さらに、使用者がバイオセンサの使用に熟練しているかどうかも、吸引速度のばらつきに影響を与える。未熟な使用者によると、毎回の測定ごとに、吸引速度にばらつきが生じやすい。
近年のバイオセンサ、特に血糖値センサは、小型化、測定時間の短時間化が急激に加速している。バイオセンサの小型化に伴って、液体試料の吸引口も小さくなり、使用者にとっては見辛いものが多い。それゆえ、使用者が液体試料をバイオセンサに付与する際、測定ごとの吸引速度のばらつきが、さらに生じやすくなってきている。
また、近年、測定時間の短縮化を実現するために、液体試料と反応試薬とが触れ合った際に反応試薬がすばやく再溶解できるように、再溶解性の高い反応試薬が用いられることが多い。このように再溶解性の高い反応試薬が用いられると、液体試料中に再溶解した反応試薬は、電極上から液体試料の吸引方向へ押し流されやすい。ここで、液体試料の吸引速度のばらつきが大きくなることによって、電極上での反応試薬の濃度のばらつきが大きくなる。その結果、測定精度が悪化し、測定結果に対する信頼性が低下する。
これに対して、本実施形態では、図2に示すように、活性部107は、凹部102内に形成されている。つまり、試薬層120は、凹部102を覆うように配されることにより、基板101の第1の面103に対して凹んだ位置に配される。それゆえ、バイオセンサ1は、再溶解した反応試薬の流れを制御することができる。つまり、バイオセンサ1において、反応試薬は、電極111a及び111b上から吸引方向d1へ押し流されにくく、電極111a及び111b上における反応試薬の濃度のばらつきが小さく抑えられる。その結果、測定精度を良好に保つことができる。
凹部102の構造について、より詳細に説明する。
図1及び図2に示すように、凹部102は、基板101の厚みが、周囲よりも薄いことによって形成されている。つまり、基板101の第2の面104において、凹部102の裏側に該当する部分は、突出していない。それゆえ、使用者の指や後述の装着部201等が第2の面104に触れても、凹部102が変形しにくく、凹部102内の体積が変化しにくいという利点がある。本実施形態では第2の面104は平らな形状であるものとするが、第2の面104が、凹部102の裏側に該当する部分が周囲より凹んだ形状になっていても、同様の利点を得ることができる。
また、図2に示すように、凹部102は、底面108及び側面109を備え、底面108は、山部105及び谷部106を備える。
山部とは、山形状、すなわち先端に近づくほど細くなる凸形状を有する部分であり、谷部とは、山形状とは逆の谷形状、すなわち、深くなるほど狭くなる凹形状である。なお、山部及び谷部は、Y方向又はX方向のいずれかで山形及び谷形であればよい。つまり、山形状とは一方向に連続して延びた尾根形状であってもよい。谷形状も同様である。
バイオセンサ1の凹部102内に設けられる山部105及び谷部106の数並びに具体的な形状等は、特に限定されるものではなく、凹部102の大きさ及び形状、試薬層120の組成、試薬層120に含まれる反応試薬の種類、対象物質の種類、又は液体試料の粘度等の特性等に応じて適宜設定される。
上述の効果をより高めるために、山部105及び谷部106の数は、吸引方向d1において、それぞれ1以上であることが好ましく、5以上であることがより好ましく、10以上であることがさらに好ましく、20以上であることがさらに好ましい。つまり、凹部102内に反応試薬を留めるように、複数の山部105及び谷部106が吸引方向d1を横切るようになっていることが好ましい。山部105及び谷部106がこのように配置されていることにより、液体試料吸引時に、反応試薬が、電極111a及び111bから外れた位置まで移動することを防ぐことができる。
また、凹部102において、山部105及び谷部106は、例えば、ドット形状、直線状、方形状、若しくは曲線状、又はこれらの重複若しくは組合せとすることができる。なお、「重複」とは、同じ形状が複数繰り返されることであり、「組合せ」とは、異なる形状が組み合わされつまり、X−Y平面方向における凹部102の底面構造のパターンは、特に限定されるものではない。ただし、山部105又は谷部106の少なくとも一方が、吸引方向d1を横切る形状であることが好ましい。言い換えると、山部105又は谷部106の少なくとも一方が、吸引方向d1に非平行な形状であることが好ましい。
また、反応試薬の流れを制御するという観点からは、山部105の頂点の深さD1は、1μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがさらに好ましい。また、谷部106の最深部の深さD2は、1000μm以下であることが好ましく、300μm以下であることがより好ましく、100μm以下の範囲であることがさらに好ましい。より具体的には、バイオセンサ1の凹部102の深さは、1μm以上1000μm以下であることが好ましく、5μm以上300μm以下であることがより好ましく、10μm以上100μm以下であることがさらに好ましい。
また、反応試薬の流れを制御するという観点からは、深さD1は、高さH1の1%以上であることが好ましく、5%以上であることがさらに好ましく、10%以上であることがさらに好ましい。同様に、深さD2は、高さH1の300%以下であることが好ましく、200%以下であることがより好ましく、100%以下であることがさらに好ましい。具体的には、凹部102の底面108の深さが、高さH1の1〜300%であることが好ましく、5〜200%であることがより好ましく、10〜100%であることがさらに好ましい。
なお、図2に示すように、深さD1及びD2はそれぞれ、凹部102のリップ16と山部105の頂点とのZ方向における距離、及び、リップ16と谷部106の最深部との、Z方向における距離である。
また、本実施形態においては、Z方向に平行な断面において、凹部102の側面109は、X‐Y平面に非垂直になっている。これは液体試料吸引時に液体試料が側面に沿って引き込まれる効果を得るためである。側面109がX‐Y平面に非垂直であることで、液体試料が側面に沿って引き込まれやすくなるために、液体試料吸引時に液体試料室内に気泡が残る可能性が低くなる。また、X‐Y平面に非垂直である場合は、液体試料が側面に沿って引き込まれやすいために、液体試料をスムーズに吸引することができる、という効果も得られる。このように、側面が非垂直になっていることで、吸引口151から吸引された液体試料が凹部102内に引き込まれやすいという効果が得られる。本形態では、図2に示すように、第2の面104に近づくほど、X−Y方向における凹部102の幅が小さくなっており、このような形態によると、特に効果が高い。
また、本実施形態においては、電極111a及び111bは均一な厚さの導電層からなるので、底面108の形状(山部105及び谷部106の形状、深さ等)、及び側面109の形状等、凹部102の構造について述べた事項は全て、凹部102内の電極111a及び111bについても当てはまる。
また、バイオセンサ1の凹部102に配された2つの電極111a及び111bのうち、いずれか一方、好ましくは両方において、一部又は全部の厚みT1は1000μm以下であることが好ましく、15μm以下であることがより好ましく、0.05μm以下であることがさらに好ましい。特に、電極111a及び111bのうち、凹部102内に配された部分の厚みが、この範囲内にあることが好ましい。
このように、凹部102内の電極の厚みが薄く設定されていることによって、電極を含めた凹部の大きさ及び形状と、電極が配置されていない、基板101の凹部102のみの大きさ及び形状とが、近似する。それゆえ、電極を含めた凹部の構造を正確に規定することができる。
(1−7)凹部102の大きさ等
特に以下では、バイオセンサ1を例に挙げて、図4(a)及び図4(b)を参照して説明するが、他のバイオセンサにも、以下の構成を同様に適用可能である。図4(a)及び図4(b)は、バイオセンサ1における凹部102の位置、及び凹部102と液体試料室150との大きさの関係を示す平面図である。なお、説明の便宜上、図中では液体試料室150を点線で示す。
[長さL1とL2との関係]
図4(a)及び図4(b)に示すように、吸引方向d1における凹部102の最大長をL1、同方向d1における液体試料室150の最大長をL2とする。検出に必要な液体試料の量をさらに低減すると共に、吸引によって液体試料を活性部107まで速やかに移動させるには、長さL1は長さL2の0.1〜99%であることが好ましく、0.5〜90%であることがより好ましく、1〜85%であることがさらに好ましい。
これは、図4(a)の例のように、吸引方向d1において、凹部102全体が液体試料室150に露出している場合であっても、図4(b)のように、凹部102の一部が、スペーサ130に覆われて液体試料室150に露出していない場合であっても、同様である。本形態では、凹部102のリップ16が円形状なので、どちらの場合も、長さL1はリップ16の直径と同一となる。
[凹部の底面積と液体試料室に露出した基板の面積との関係]
検出に必要な液体試料の量をさらに低減するために、凹部102の底面積は、液体試料室150に露出された基板101の表面積に比して、0.1〜99%であることが好ましく、0.5〜90%であることがより好ましく、1〜85%であることがさらに好ましい。
なお、ここで、凹部102の「底面積」とは、凹部の底面108が平面であると仮定したときの面積である。つまり、ここでいう「底面積」は、山部105及び谷部106の存在を考慮しない、底面108のX−Y方向のみの大きさを指す。
また、液体試料室150に露出された基板101の「表面積」とは、凹部102が存在せず、基板の第1の面103が平らであると仮定したときの面積である。つまり、図4(a)及び図4(b)において、液体試料室150として点線で示す矩形全体の面積が、「表面積」となる。本形態においては、液体試料室150は直方体なので、X−Y平面方向における液体試料室150の面積が、この「表面積」に該当する。
[凹部の容量と液体試料室の容量との関係]
検出に必要な液体試料の量をさらに低減するために、凹部102の容量は、液体試料室150の容量に比して、0.1〜99%であることが好ましく、0.3〜70%であることがさらに好ましく、0.5〜50%であることがさらに好ましい。
なお、凹部102の容量とは、基板の第1の面103よりも凹んでいる部分の全体の容量である。
また、液体試料室150の容量とは、基板の第1の面103又は電極111a及び111bより上側の容量であって、凹部102の容量を含むものである。液体試料室150の容量は、例えば、基板の第1の面103もしくは電極111a及び111bとスペーサ130と上カバー140により囲まれた部分の容量を合計することによって算出される。
[凹部の容量]
検出に必要な液体試料の量をさらに低減するために、凹部102の容量は、1μL以下であることが好ましく、0.7μL以下であることがより好ましく、0.5μL以下であることがさらに好ましい。凹部102の容量の下限は、特に限定されるものではなく、上述したように液体試料室150の容量との関係で設定される。
[凹部の位置]
検出に必要な液体試料の量をさらに低減すると共に、吸引によって液体試料を活性部107まで速やかに移動させるには、図4(a)及び図4(b)に示すように、基板101の四辺のいずれか、特に吸引口151が設けられた側の辺と、凹部102との最短距離L3が、5mm以下であることが好ましく、3mm以下であることがより好ましく、1.5mmであることがさらに好ましい。より具体的には、吸引口151から凹部102までの距離が、この範囲であることが好ましい。
〔2〕バイオセンサの実施形態2
バイオセンサ1は、電極111a及び111bに代えて、図5に示す電極211a〜211dを備えてもよい。図5は、本実施形態の基板、電極、及び試薬層を示す断面図である。なお、既に説明した部材等については、図中で同符号を付し、その説明を省略することがある。
図5に示すように、本形態では、基板101上に、無機導電性物質からなる無機電極211a及び211bが設けられており、各無機電極の上に、有機導電性物質からなる有機電極211c及び211dがそれぞれ設けられている。
本実施形態では、凹部102内には無機電極211a及び211bは設けられておらず、有機電極211c及び211dのみが設けられているが、これに限らず、凹部102内においても、無機電極211a及び211b及び有機電極211c及び211dが積層されていてもよい。
なお、本実施形態において、電極が積層されている以外は、上記〔1〕欄に述べた構成が適用される。
〔3〕バイオセンサの実施形態3
バイオセンサ1は、電極111a及び111bに代えて、図6に示す電極311a及び311bを備えてもよい。図6は、本形態に係る基板及び電極を示す断面図である。なお、電極の構成以外は、上記〔1〕欄に述べた構成を用いることができる。既に説明した部材等については図中で同符号を付してその説明を省略することがある。
図6に示すように、本形態では、電極311a及び電極311bは、カーボンや導電性ポリマーなどの有機導電性物質を含む導電層であると共に、所望の測定を行うための反応試薬(酵素及び電子伝達物質を含む)を含む。電極311a及び311bも、バイオセンサ1の電極と同様に、印刷により形成してもよいし、塗布により導電性材料及び反応試薬で基板101を覆った後、レーザアブレーション等で非導電トラック113を形成することで形成してもよい。このように、電極材料に反応試薬成分を含有させ、電極を反応試薬含有電極とすることで、製造工程数の減少が可能になり、安価な製造が可能となる。
なお、本実施形態において、電極が反応試薬を含有する以外は、上記〔1〕欄に述べた構成が適用される。
〔4〕バイオセンサの実施形態4
バイオセンサ1において、基板101に代えて、図7に示す基板401を用いてもよい。図7は、本形態に係る基板及び電極を示す断面図である。なお、基板の構成以外は、上記〔1〕欄に述べた構成を用いることができる。既に説明した部材等については図中で同符号を付してその説明を省略することがある。
図7に示すように、基板401は、第1の面103の全体が粗くざらついた形状である。つまり、基板401の第1の面103の全体が、山部105と谷部106とが交互に配置された形状である。電極111a及び111bは、第1の面103の一部に、このざらつきの形状に沿うように配置される。さらに、電極111a及び111b上に、試薬層120が配置される。
基板401においては、複数の谷部106が集合して、図2等に示す凹部102と同様の機能を発揮することができる。つまり、本実施形態の基板401を採用したバイオセンサも、実質的に、電極111a及び111bを有する凹部の底面を覆うように試薬層120が配置された構成となるので、本発明の実施の一態様であることは容易に理解される。
なお、本実施形態において、特に言及しなかった構成については、上記〔1〕欄に述べた構成が適用される。
〔5〕バイオセンサの実施形態5
バイオセンサのさらに他の形態について、図8(a)を参照して説明する。図8(a)は、本実施形態のバイオセンサ51の構成を示す図面であり、基板(電極及び試薬層を含む)スペーサ、及び上カバーを示す平面図である。なお、既に説明した部材と同様の機能を有する部材については図中で同符号を付して、説明を省略することがある。
図8(a)に示すように、本実施形態のバイオセンサにおいて、基板501は、凹部102に代えて矩形の凹部502を備える。2つの電極111a及び111bはこの凹部502に沿うように凹んだ形状である。試薬層120は、凹部502内に、凹部502の矩形に内接する円形状に配置されている。このように、試薬層は、凹部の全体を覆う必要はない。
基板501の表面にはスペーサ530が装着される。スペーサ530は、第1スペーサ531、第2スペーサ532、第3スペーサ533の、3つの長方形状のスペーサに分かれている。
第1スペーサ531は、4辺が基板501の4辺とそれぞれ平行になるように、かつ、凹部502と端子112a及び112bとの間の導電部分を覆うように配される。
第2スペーサ532及び第3スペーサ533は、基板501の短手方向において、凹部502を挟むように配される。つまり、第2スペーサ532及び第3スペーサ533は、その長手方向が、基板501の長手方向に平行になるように、かつ、第1スペーサ531、第2スペーサ532、及び第3スペーサ533によって、凹部502の三方を囲むように配置される。また、第2スペーサ532及び第3スペーサ533は、第1スペーサ531との間にそれぞれ隙間をあけて配される。
このようにスペーサ530が配されることで、端子112a及び112b及び凹部502はスペーサ530から露出した状態となる。
スペーサ530の上にはさらに上カバー540が配される。上カバー540と基板501との間には、スペーサ530により間隙が形成される。こうして、基板501、スペーサ530、及び上カバー540によって囲まれた液体試料室150が形成される。また、第2スペーサ532と第3スペーサ533との間隙は、吸引口151として機能する。通気口は上カバー540に貫通孔として設けられるのではなく、第2スペーサ532と第1スペーサ531との間隙、及び第3スペーサ533と第1スペーサ531との間隙が、上述の通気口152として機能する。
このようなバイオセンサでは、バイオセンサ1と同様に、液体試料の吸引方向は、電極111a及び111bから端子112a及び112bに向かう方向、すなわちバイオセンサの長手方向と平行である。
〔6〕バイオセンサの実施形態6
上記〔5〕欄のバイオセンサにおいて、スペーサ530に代えて、図8(b)に示すスペーサ630を用いてもよい。
図8(b)に示すように、スペーサ630は、第1スペーサ631と第2スペーサ632とからなる。第1スペーサ631は、図8(a)に示す凹部502と端子112a及び112bとの間に配され、第2スペーサ632は第1スペーサ631との間に、基板501の短手方向に平行な間隙を設けるように配される。この間隙において、凹部502が露出される。
このようなスペーサ630が設けられることで、液体試料室150は、凹部502の上方を通って、基板501の一方の長辺から他方の長辺まで、基板501をその長手方向に垂直に横切る形状となる。本形態によると、液体試料室150は、基板501の両長辺側に、2つの端部(開口)を備える。この2つの開口のどちらも、液体試料室150内に液体試料を吸引させる吸引口151として機能することができる。いずれの開口から吸引されても、液体試料の吸引方向は、バイオセンサの長手方向に対して垂直となる。また、液体試料室150の2つの開口のうち、一方が吸引口151として機能するときは、他方が通気口152として機能し、一方が通気口152として機能するときは、他方が吸引口151として機能する。
このように吸引口が2箇所に存在する場合、凹部502は、基板501の四辺のうち、吸引口が配された2つの辺のいずれか一方からの距離が、上述の距離L3と同様の範囲にあることが好ましい。
〔7〕バイオセンサの実施形態7
バイオセンサのさらに他の形態について、図9(a)を参照して説明する。図9(a)は、本実施形態のバイオセンサ71の構成を示す図面であり、基板(電極及び試薬層を含む)スペーサ、及び上カバーを示す平面図である。なお、既に説明した部材と同様の機能を有する部材については図中で同符号を付して、説明を省略することがある。
図9(a)に示すように、バイオセンサは、試薬層と電極とが配された複数の凹部を備えてもよい。具体的には、本実施形態の基板701は、2箇所の凹部7021及び7022を備え、各凹部内には、試薬層120と、2つの電極111a及び111bとがそれぞれ配される。各電極111a及び111bは、端子112a及び112bにそれぞれ接続されている。凹部7021及び7022は、基板701の長手方向に沿って、端子112a及び112bに近い側から、この順に配されている。
スペーサ730は、2つの凹部7021及び7022を露出させるように、連続した1つの切り欠き731を備える。また、スペーサ730は、端子112a及び112bを露出させる形状になっている。このスペーサ730によって、切り欠き731内に、上カバー740と基板701との間の液体試料室150が形成される。切り欠き731の端部は吸引口151として機能する。
上カバー740としては、上述の上カバー140と同型の部材を用いることができる。つまり、上カバー740は長方形の板状部材であって、液体試料室150に通じるように、貫通孔である1つ以上の通気口152を備える。
このように、バイオセンサ71では、1つの液体試料室150中に2つの反応部(電極111a及び111b及び試薬層120)が配される。それゆえ、バイオセンサ71では、2つのセンシングを行うことができる。また、同様の構成によって、3以上の反応部を設けることもできる。
なお、2つの凹部7021及び7022の形状及び形成方法は、互いに同一でもよいし、異なっていてもよい。
また、各凹部7021及び7022に配置される試薬層120内の反応試薬は、同一の対象物質を検出する同一の組成であってもよいし、同一の対象物質を検出する異なる組成であってもよいし、異なる対象物質を検出する異なる組成であってもよい。
同一の対象物質に対する複数の反応部を備えることによって、1つのバイオセンサで同一の対象物質に対する測定を複数回行うことができるので、測定精度の信頼度を向上させることができる。また、異なる対象物質と反応する反応部を複数備えることで、1つのバイオセンサで同時に複数の対象物質を検出及び測定することができるので、使用者にとっては利便性が高い。
さらに、使用者は準備された測定項目のなかから状況に応じて必要な測定項目を選択することも可能である。また、図示していないが、複数の液体試料室を有する場合、各々の液体試料室の配置は、バイオセンサを構成する基板の同一平面上であってもよいし、異なる平面上に各々を配置してもよい。
また、本実施形態のように、1つの基板上に複数の凹部を備えるバイオセンサにおいても、上記(1−7)欄で述べた各部の大きさ等は、好適に適用される。
すなわち、本形態では、図4(a)及び(b)を参照して説明した長さL1とL2との関係において、長さL1を、一方の凹部7021の長さL11、及び他方の凹部7022の長さL12に置き換えることができる。つまり、長さL2との関係において、長さL11及びL12のそれぞれが、長さL1について述べた範囲と同様の範囲にあることが好ましい。凹部が3以上である場合も同様に、液体試料室に露出する個々の凹部の長さが、液体試料室の長さに対して、上述の範囲であることが好ましい。
また、本形態では、上述の凹部102の底面積と液体試料室150に露出した基板101の面積との関係において、上述の凹部102の底面積を、2つの凹部7021及び7022の底面積を合計した総底面積に置き換えることができる。凹部が3以上である場合も同様に、1の液体試料室に露出するすべての凹部の底面積の総和が、この液体試料室に露出した基板の面積に対して、上述の範囲であることが好ましい。
また、本形態では、上述の凹部102の容量と液体試料室150の容量との関係において、上述の凹部102の容量を、2つの凹部7021及び7022の容量を合計した総容量に置き換えることができる。凹部が3以上である場合も同様に、1つの液体試料室に露出する全ての凹部の容量の総和が、1つの液体試料室の容量に対して、上述の範囲であることが好ましい。
また、凹部7021及び7022の容量の総和が、1μL以下であることが好ましく、0.7μL以下であることがより好ましく、0.5μL以下であることがさらに好ましい。凹部が3つ以上である場合も同様に、複数の凹部の容量の総和が、この範囲であることが好ましい。
また、図4(a)及び(b)を参照して説明した距離L3は、吸引口151により近い方の凹部7022について適用される。つまり、吸引口151から、つまり基板701の四辺のうち吸引口151が設けられた辺から、凹部7022までの距離がL3となる。凹部が3つ以上設けられた場合についても同様である。
〔8〕バイオセンサの実施形態8
上記〔7〕欄のバイオセンサにおいて、スペーサ730及び上カバー740に代えて、図9(b)に示すスペーサ830及び図9(c)に示す上カバー840を、それぞれ用いることができる。
図9(b)に示すように、スペーサ830は、第1スペーサ831、第2スペーサ832、及び第3スペーサ833の3つの長方形状のスペーサからなる。第1スペーサ831は端子112a及び112bと凹部7021との間に配され、第2スペーサ832は一方の凹部7021と他方の凹部7022との間に配され、第3スペーサ833は、他方の凹部7022よりも端子112a及び112bから遠い位置に配される。各スペーサ831〜833は、互いに間隔をあけて配される。
図9(c)に示すように、上カバー840は長方形状であって、端子112a及び112bを露出させ、かつスペーサ830を覆うように配置される。
各スペーサ831〜833間の2つの間隙によって、上カバー840と基板701とで囲まれた2つの液体試料室150が形成される。2つの液体試料室150は、2つの凹部7021及び7022の上方をそれぞれ通って、長方形の基板701の一方の長辺から他方の長辺まで、基板701をその長手方向に垂直に横切る形状である。
この形態によると、各液体試料室150は、基板701の両長辺上に、2つの端部(開口)を備える。この2つの開口のどちらも、液体試料室150内に液体試料を吸引させることができる。いずれの開口から吸引されても、液体試料の吸引方向は、バイオセンサの長手方向に対して垂直となる。
また、各液体試料室150において、2つの開口のうち、一方が吸引口151として機能するときは、他方が通気口152として機能し、一方が通気口152として機能するときは、他方が吸引口151として機能する。
〔9〕その他の実施形態
(9−1)
上述の各実施形態では、基板上に設けられた凹部(凹部102等)は、内部に山部105と谷部106とを有するが、基板の形状はこれに限定されるものではなく、凹部を備え、この凹部の裏側にあたる部分が周囲より突出していなければよい。
(9−2)
上記凹部の形状は、上述の各実施形態のように、山部105及び谷部106を備える形状に限定されるものではなく、底面の一部または全部が平面形状となっていてもよい。
(9−3)
上記凹部は、底面に凸構造又は凹構造を備えることが好ましい。凸構造とは、基板の厚さ方向において突出する形状であり、凹構造とは、基板の厚さ方向において凹む形状である。このように凹部に凸構造又は凹構造が設けられていることで、液体試料吸引時の反応試薬の流れを制御しやすいという利点がある。つまり、上述の実施形態における山部105及び谷部106は、凸構造及び凹構造の一例である。
すなわち、図2の凹部102において、山部105は、山形状以外の凸構造に置換可能であるし、谷部106も谷形状以外の凹構造に置換可能である。但し、凸構造及び凹構造が、上述の谷形状及び山形状である場合、この効果が高い。また、図2に示す形態のように、凹部内に山形状と谷形状との重複パターンが形成されている場合は、この効果が特に高い。
(9−4)
上記〔1〕欄において、山部105及び谷部106の数並びに深さについて、好ましい範囲を述べたが、この範囲は、山形状及び谷形状以外の凸構造及び凹構造についても適用される。
(9−5)
上述したいずれの実施形態においても、電極111a及び111b、導電トラック114a及び114b、端子112a及び112bは、全てが同一基板上に形成される必要は無く、異なる基板(第1基板と第2基板)上に形成されていても良い。
このような構成について、図28を参照して説明する。なお、図28では、既に説明した部材及び部位については、同符号を付してその説明を省略する。
図28に示すように、バイオセンサ81では、電極111a及び試薬層120が、基板101の凹部102内に配置されており、上カバー140の下面(すなわち、基板101との対向面)に、電極111bが配置されている。すなわち、バイオセンサ81は、基板101を第1基板、上カバー140を第2基板として備える。
なお、電極111a及び電極111bは、どちらが作用電極として機能してもよく、対電極として機能してもよい。
上カバー140、スペーサ130、並びに電極111a及び111b等の各部の構成は、各実施形態において述べたように変更可能である。すなわち、電極の数も、2に限定されるものではなく、変更可能である。
(9−6)
上記〔1〕欄〜〔8〕欄の構成をそれぞれ組み合わせて得られるバイオセンサ、及び、上記(9−1)〜(9−5)の構成をさらに組み合わせて得られるバイオセンサも、本発明の実施の形態に含まれる。例えば、図8(a)又は図9(a)に示すバイオセンサ51及び71において、凹部502、7021及び7022に、図5〜図7に示す構造を適用することができる。
<B.バイオセンサの製造方法>
図1及び図2に示すバイオセンサ1の製造方法について説明する。なお、以下の製造方法は、上述した各実施形態に係るバイオセンサの製造方法として使用可能である。また、以下の製造方法は、バイオセンサの構成を限定するものではない。
(1)基板の作製
凹部102を有する基板101を作製する方法としては、第2の面104を突出させず、かつ他の部材を付加することなく凹部102を形成することができる方法であればよく、特に限定されるものではない。
例えば、平らな絶縁板を加工することで凹部102を形成してもよいし、液状の絶縁性材料を鋳型に流し込み、鋳型内でこの絶縁性材料を固化させることによって、凹部102を形成してもよい。
凹部102の具体的な形成方法としては、レーザアブレーション、プレス加工、異方性エッチング、刃物による切除、及び成型が挙げられ、さらにこれらを組合せて用いることもできる。レーザアブレーションに用いられるレーザ種は、エキシマ、YAG、炭酸ガス等である。
基板101を構成する材料については、既に述べた通りである。
(2)電極の形成
基板101上に、電極111a及び111b、並びに端子112a及び112b等の導電部分を設ける方法としては、スパッタリングを初めとする蒸着や、印刷、浸漬、塗布、又は接着等を用いることができ、さらに、これらの手技を組み合わせてもよい。具体的には、蒸着や塗布等により基板101上に略均一に導電性物質を積層した後、レーザアブレーション等で導電性物質を除去することで非導電トラック113を形成し、これによって電極及び端子等を形成してもよい。また、予め電極及び端子等の形状に合わせて導電性物質を基板101上に積層することで、電極及び端子の形成を行うこともできる。
電極及び端子等を構成する材料については、既に述べた通りである。
また、電極の形成条件により、電極の表面抵抗率は調節可能である。
例えば、有機導電性物質の具体例であるDenatron P−502Sは、摂氏25℃において、30mPa・s未満の粘度を有する液状となる。基板101としてポリエチレンテレフタレート(東レ株式会社が販売するルミラーT60)を用い、この基板101上に、液状のDenatron P−502Sを倍率1.5倍で希釈した溶液を、膜厚9μmで塗布後、摂氏100℃で1分間乾燥させることで、膜厚0.2μmの高分子膜を形成することができる。この高分子膜は1MΩ/□の表面抵抗率を示す電極となる。
(3)試薬層の形成
試薬層120は、例えば、反応試薬(酵素、電子伝達物質を含む)及びその他の組成を溶媒に溶解又は拡散させてできた反応液を、凹部102内で電極111a及び111b上に配し、これを乾燥させて作製することができる。反応液を凹部102内に配する方法としては、印刷、塗布、及び浸漬等が挙げられ、さらにこれらを組み合わせて用いてもよい。
(4)スペーサ及び上カバーの配置
上記(1)欄で作製した基板の凹部102の少なくとも一部を露出するように、スペーサ130を基板101上に固定し、スペーサ130から露出している凹部102の少なくとも一部を覆うように、上カバー140をスペーサ130上に固定する。
スペーサ130及び上カバー140を基板101上に配置する手段は、特に限定されるものではない。特に、基板101とスペーサ130との間、及びスペーサ130と上カバー140との間は、各々、接着されていることが望ましく、市販の接着剤を用いてもよいし、超音波や熱により接着されてもよい。
(5)製造方法の具体例
次に、図11〜図18を参照して、図1及び図2のバイオセンサ1の製造方法のより具体的な例について説明する。図11〜図14及び図15〜図18は、それぞれ、製造過程の各ステップにおけるバイオセンサ1の斜視図及び断面図である。
本例では、図11〜図12及び図15に示すように、平板である絶縁板1001に、炭酸ガスレーザアブレーションによって凹部102を形成することで、第1の面103に凹部102を備える基板101を作製する。このとき、レーザ照射のパターンによって、凹部102のリップの形状及び底面の形状等を適宜変更可能である。レーザが所定のピッチで照射されることで、レーザが照射された部分は基板材料が除去されるので谷部106となり、ピッチ間はレーザが照射されないので山部105となる。
次に、図16に示すように、導電性材料を、基板101の第1の面103全体に、スパッタリングによって蒸着することで、導電層110を形成する。
その後、図13及び図17に示すように、導電層110表面にYAGレーザを照射することによって、導電層110の一部を除去して、非導電トラック113を形成する。このように非導電トラック113を形成することで、電極111a及び111b、端子112a及び112b、導電トラック114a及び114bを形成する。
次に、図14及び図18に示すように、凹部102の底面の少なくとも一部を覆うように、反応試薬を含む液体を塗布し、乾燥させることで、試薬層120を作製する。
この後、スペーサ130及び上カバー140を配置することで、バイオセンサ1が完成する。
<C.検出システム>
上記<A.>欄で述べた各バイオセンサは、検出システムに適用可能である。例えば、検出システムは、バイオセンサの電流値から、液体試料中の対象物質の存在を検出する検出装置を備える。
以下、検出システムの一例として、測定システム10を挙げ、図19及び図20を参照して説明する。測定システム10は、二電極式アンペロメトリック法によって、液体試料内の対象物質の濃度を測定することができる。図19は測定システム10の外観を示す斜視図であり、図20は測定システム10の要部構成を示すブロック図である。
[測定システム10の概要]
図19及び図20に示すように、測定システム10は、上述のバイオセンサ1及び測定装置2を備える。測定装置2は、バイオセンサが装着する装着部201と、液晶表示パネル等を有し、測定結果等の種々の情報を使用者に提示する表示部202と、を備えると共に、2つの接続部203a及び接続部203b、切替回路204、基準電圧源205、電流/電圧変換回路206、A/D変換回路207、CPU(Central Processing Unit)208、ROM(Read Only Memory)209、並びにタイマー210をさらに備える。
2つの接続部203a及び203bは、装着部201内に配置される。そして、それぞれ、装着部201に装着されたバイオセンサ1の2つの端子112a及び112bと接触する。
切替回路204は、接続部203a及び203bと基準電圧源205との間の接続と、接続部203a及び203bと電流/電圧変換回路206との間の接続と、を切り替える。
基準電圧源205は、接続部203aと接続部203bとの間に電圧を印加する。
電流/電圧変換回路206は、バイオセンサ1からの電流を、接続部203a及び203bを介して受け取り、電圧に変換して、A/D変換回路207に出力する。
A/D変換回路207は、電流/電圧変換回路206からの出力値(アナログ値)をパルス(デジタル値)に変換する。
CPU208は、ROM209に格納されている検量線や補正テーブルに基づいて、A/D変換回路207からのパルスから、特定成分の濃度を算出する。なお、この検量線や補正テーブルを記憶する手段は特に限定されるものではなく、RAM(Random Access Memory)等の他の記憶媒体を用いてもよい。こうして算出された濃度は、表示部202に表示される。
タイマー210は、測定開始から終了までの時間を計測する。
[測定システム10による濃度測定]
以下、測定システム10による濃度測定について説明する。
バイオセンサ1が装着部201に差し込まれると、接続部203a及び203bが、端子112a及び112bにそれぞれ接触する。そして、装着部201内のスイッチ(図示せず)がバイオセンサ1に押下されると、CPU208はバイオセンサ1が装着されたと判断し、測定装置2を液体試料吸引待機状態とする。液体試料吸引待機状態とは、CPU208の制御の下、基準電圧源205が接続部203a及び203bへの電圧印加を開始し、かつ電流/電圧変換回路206が電流測定を開始した後であって、液体試料がまだ測定に供されていない状態である。
その後、使用者が、バイオセンサ1の吸引口151に液体試料を付着させると、毛細管現象によって、吸引口151から液体試料室150に液体試料が引き込まれる。
液体試料としては、例えば、血液、汗、尿等の生体由来の液体試料や、環境由来の液体試料、食品由来の液体試料等が用いられる。例えば、バイオセンサ1を血糖値センサとして用いる場合、使用者は、自身の指、掌、又は腕等を穿刺して、少量の血液を搾り出し、この血液を液体試料として、バイオセンサ1での測定に供する。
CPU208は、電流/電圧変換回路206を介して受け取る電流値の変化から、液体試料がバイオセンサ2に吸引されたと判断する。こうして液体試料の吸引が検知されると、測定が開始される。バイオセンサ1は、このように液体試料の吸引の検知に用いられる電極をさらに備えていてもよい。
測定中は、タイマー210が測定時間の計測を行い、タイマー210の計測時間に基づいて切替回路204が規定のタイミングで回路を切り替えることで、電流/電圧変換回路206へ流れた電流は電圧へ変換される。そして、この電圧はA/D変換回路207によりさらにパルスへと変換される。CPU208は、このパルスから、特定成分の濃度を算出する。CPU208により算出された値は、表示部202に表示される。その際、使用者へのその他の情報が共に表示されることもある。
測定終了後は、使用者はバイオセンサ1を装着部201から取り外すことができる。
なお、基準電圧源205は、2つの電極111a及び111b間に、目的の電気化学反応を起こすのに十分な電圧を与えられるようになっている。この電圧は主に、利用する化学反応および電極により決定される。一般的には、活性部107での電気化学反応速度が拡散律速となるように、電極電位が電位律速以上の電位を示すような電圧が印加される。ただし、上述したように、測定される液体試料中には種々の干渉物質が含まれている場合がある。それゆえ、二電極間に高い電圧を印加して電極電位を上げすぎると、目的の反応に加えて干渉物質由来の反応が起き、これによって対象物質に由来しない電気信号が生じ、誤検知の原因となる。よって、二電極間に与えられる印加電圧は、干渉物質の存在及び目的の化学反応に応じて、適宜設定される。
以下、実施例を示して、本発明についてさらに具体的に説明するが、本発明はこれに限定されるものではない。
〔実施例1〕
(1−a)バイオセンサの作製
上記<B.>の(5)欄にて説明した方法を用いて、バイオセンサを作製した。このバイオセンサの基板の表面の写真を、図21に示す。
具体的には、絶縁板1101として、非導電性物質であるポリエチレンテレフタレートからなる厚さ188μmの平板を用いて、基板101を作製した。具体的には、絶縁板1101に、炭酸ガスレーザアブレーションによって、最大直径が2100μm、最小直径が100μmになるように、半径を50μmずつ変化させて複数の同心円を描くようにレーザ照射を行うことで、凹部102として、円形の凹部1102を形成した。
図21に示すように、凹部1102のリップ16の直径R1は2200μmであり、谷部106の最深部の深さが80μm、山部105の頂点が20〜40μmの深さを有し、50μmピッチで谷部106と山部105とが繰り返される、重複パターンで構成されていた。特に、谷部106と山部105とは、同心円を描く形状であった。
次いで、スパッタリングによるパラジウムの蒸着によって、導電層110を形成した。そして、導電層110の一部をYAGレーザにて除去することで、非導電トラック113を形成し、電極111a及び111b並びに端子112a及び112bを形成した。
その後、試薬層120の塗布、乾燥、スペーサ130及び上カバー140の接着等を行い、バイオセンサを作製した。試薬層120は、酵素としてグルコースデヒドロゲナーゼ、電子伝達物質としてヘキサシアノ鉄(III)酸カリウムを含むものとした。
(1−b)血糖の測定
上記(1−a)で作製したバイオセンサを用いて、電極111a及び111b間に電圧を印加したときの電流値を測定した。液体試料内のグルコース濃度に対する応答電流値を図22に示す。図22の横軸はグルコース濃度、縦軸は応答電流値を示す。液体試料としては、血液を用いた。
図22に示すように、本実施例のバイオセンサによって得られた電流値は、グルコース濃度と良好な直線関係を示した。
(1−c)測定結果の再現性の確認
上記(1−a)で作製したバイオセンサを用いて、液体試料吸引速度が変化する場合の再現性を評価する測定を行った。液体試料吸引速度を変化させながら測定した結果について、正規分布図(図23)を作成した。図23の横軸は真値からの乖離度(%)を示し、縦軸は正規累積分布(%)を示す。
図23に示すように、本実施例のバイオセンサによれば、測定結果の再現性が非常に良く、測定毎にばらつく液体試料の吸引速度によっても、測定結果にばらつきが生じにくいという結果が得られた。
これは、電極111a及び111b及び試薬層120が凹部1102内に設けられているために、液体試料吸引時に反応試薬が移動しにくいからであると考えられる。つまり、本実施例のバイオセンサによると、液体試料吸引速度がばらついても、凹部1102内の反応試薬の濃度がばらつきにくいので、液体吸引速度が変化しても、精度良く対象物質の濃度を検出することができる。
〔比較例1〕
凹部1102を持たない、平らな絶縁板を基板として有する以外は、実施例1のバイオセンサと同一の構成であるバイオセンサを用いて、上記(1−b)と同様にグルコース濃度に対する応答電流値を測定した。測定結果を図24に示す。また、上記(1−c)と同様に、測定結果の再現性を確認した。結果を図25に示す。
図25に示すように、本比較例のバイオセンサによると、測定値が真値から著しく乖離した。また、各々の測定値もばらつき、測定結果の再現性が実施例1のバイオセンサと比較して著しく低い。このように測定精度が低いのは、本比較例のバイオセンサが凹部を備えないために、反応試薬が液体試料によって流され、しかも、液体試料の吸引速度のばらつきに伴って流された反応試薬の分布にばらつきが生じたからであると考えられる。
〔実施例2〕
絶縁板に、直径2100μmの円形状を描くように炭酸ガスレーザを照射すると共に、その円形状中に格子状に150μmピッチで炭酸ガスレーザを照射することで、凹部1102に代えて凹部2102を形成した以外は、実施例1と同様の手順によって、バイオセンサを作製した。このバイオセンサの基板の上面の写真を、図26に示す。
図26に示すように、凹部2102は円形状であって、リップ16の直径R2は2200μmであった。凹部2102は、谷部106の最深部の深さが80μm、山部105の頂点の深さは20〜40μmであった。谷部106は、凹部2102の円形状内全体に設けられ、140μmピッチの直線状であり、谷部106同士が交差する格子形状であった。谷部106によって囲まれた部分が山部105となっており、凹部2102は、山部105と谷部106とが組み合わさった重複パターンを有した。
〔実施例3〕
円形の凹部2102に代えて、正方形の凹部3102を形成した以外は、実施例2と同様の手順によって、バイオセンサを作製した。このバイオセンサの基板の上面の写真を、図27に示す。
具体的には、炭酸ガスレーザを、絶縁板に、四辺の長さが2100μmの正方形状に照射すると共に、その正方形状内に150μmピッチで長さ2100μmの直線を格子状に描くように、炭酸ガスレーザを照射した。
図27に示すように、凹部3102は、リップ16が2200μmの四辺R3を有する正方形であり、凹部3102の底面構造は、谷部106は、その最深部の深さが80μmであり、140μmピッチの格子状である。山部105は、谷部106に囲まれた部分であり、山部105の頂点の深さは20〜40μmであった。
本発明のバイオセンサは、グルコースを始めとして種々の物質を検出する測定システムに、利用可能である。また、本発明の製造方法は、上記バイオセンサを製造するのに好適に利用される。また、本発明の測定システムは、上記バイオセンサを用いて対象物質の濃度を測定するために好適に利用される。
1、51、71、81 バイオセンサ
101、401、501、701 基板
102、1102、2102、3102、502、7021、7022 凹部
103 第1の面
104 第2の面
105 山部
106 谷部
107 活性部
108 底面
109 側面
110 導電層
1101 絶縁板
111a、111b、311a、311b 電極
112a、112b 端子
113 非導電トラック
114a、114b 導電トラック
120 試薬層
130、530、630、730、830 スペーサ
131、731 切り欠き
140、540、740、840 上カバー
150 液体試料室
151 吸引口
152 通気口
16 リップ
201 装着部
211a、211b 無機電極
211c、211d 有機電極
d1 吸引方向
D1、D2 凹部の深さ
H1 スペーサの厚み
R1、R2 リップの直径
R3 リップの四辺の長さ
T1 電極の厚み
L1、L11、L12 吸引方向における凹部の長さ
L2 吸引方向における液体試料室の長さ
L3 吸引口から凹部までの距離
2 測定装置
10 測定システム

Claims (32)

  1. 液体試料内に含まれる対象物質の存在を検出するバイオセンサであって、
    周囲よりも厚みが薄い部分に形成された凹部を有する絶縁性の基板と、
    少なくともいずれか一方が上記凹部内に配置された作用電極及び対電極と、
    上記凹部内に配置され、液体試料中の特定の物質と反応する反応試薬と、
    を備えるバイオセンサ。
  2. 上記凹部は、上記基板の厚み方向に凹む凹構造、若しくは上記基板の厚み方向に突出する凸構造のいずれか一方、又は両方の組合せを備える、
    請求項1に記載のバイオセンサ。
  3. 上記凹構造は、底部に近づくほど幅が狭くなる谷形状を含む、
    請求項2に記載のバイオセンサ。
  4. 上記凸構造は、先端に近づくほど細くなる山形状を含む、
    請求項2又は3に記載のバイオセンサ。
  5. 上記基板の平面方向における上記凹構造又は凸構造の形状が、ドット形状、直線形状、方形状、若しくは曲線形状のいずれか1つ、又はこれらのうちの2つ以上の形状の組み合わせである、
    請求項2〜4のいずれか1項に記載のバイオセンサ。
  6. 上記凹部は、外縁が円形状であり、
    上記凹部の底面に、上記凹構造及び凸構造が、上記外縁の同心円状を描くように、かつ交互に設けられている、
    請求項2〜4のいずれか1項に記載のバイオセンサ。
  7. 上記凹部は、外縁が円形状であり、
    上記凹部の底面に、上記凹構造が格子状に設けられており、かつ、上記凹構造に囲まれた部分が上記凸構造になっている、
    請求項2〜4のいずれか1項に記載のバイオセンサ。
  8. 上記凹部は、外縁が矩形状であり、
    上記凹部の底面に、上記凹構造が格子状に設けられており、かつ上記凹構造に囲まれた部分が上記凸構造になっている、
    請求項2〜4のいずれか1項に記載のバイオセンサ。
  9. 上記基板の厚み方向において上記凹部の上方に、上記液体試料を保持する液体試料室をさらに備える、
    請求項1〜8のいずれか1項に記載のバイオセンサ。
  10. 上記液体試料室の外部から内部へ毛細管現象により液体試料を吸引する吸引口をさらに備える、
    請求項9に記載のバイオセンサ。
  11. 上記液体試料室の内部から外部へ空気を排出する通気口をさらに備える、
    請求項9又は10に記載のバイオセンサ。
  12. 上記凹部の側面の少なくとも一部が、上記基板の平面方向に対して非垂直となっている、
    請求項1〜11のいずれか1項に記載のバイオセンサ。
  13. 上記凹部の少なくとも一部を露出させるように上記基板上に配されるスペーサと、
    上記スペーサから露出した上記凹部を覆うように、上記スペーサの上に配される上カバーと、
    をさらに備える請求項1〜12のいずれか1項に記載のバイオセンサ。
  14. 上記作用電極及び対電極と、バイオセンサの電流値から対象物質の存在を検出する検出装置とを電気的に接続する端子を、さらに備える、
    請求項1〜13のいずれか1項に記載のバイオセンサ。
  15. 上記反応試薬は、上記作用電極及び上記対電極上に配置されている、
    請求項1〜14のいずれか1項に記載のバイオセンサ。
  16. 上記作用電極及び上記対電極の少なくとも一方が導電性物質を含む、
    請求項1〜15のいずれか1項に記載のバイオセンサ。
  17. 上記導電性物質が無機導電性物質を含む、
    請求項16に記載のバイオセンサ。
  18. 上記作用電極及び上記対電極の少なくとも一方がパラジウムを含む、
    請求項17に記載のバイオセンサ。
  19. 上記導電性物質が有機導電性物質を含む、
    請求項16〜18のいずれか1項に記載のバイオセンサ。
  20. 上記作用電極および上記対電極の少なくとも一方が導電性高分子を含む、
    請求項19に記載のバイオセンサ。
  21. 上記凹部内に配置された酵素を有する、
    請求項1〜20のいずれか1項に記載のバイオセンサ。
  22. 上記凹部内に配置されたオキシダーゼ又はデヒドロゲナーゼを有する、
    請求項21に記載のバイオセンサ。
  23. 上記凹部内に配置され、グルコースを基質とするオキシダーゼ又はデヒドロゲナーゼを有する、
    請求項22に記載のバイオセンサ。
  24. 上記凹部内に配置された電子伝達物質を有する、
    請求項1〜23のいずれか1項に記載のバイオセンサ。
  25. 上記凹部内に配置されたヘキサシアノ鉄(III)カリウムを有する、
    請求項24に記載のバイオセンサ。
  26. 上記反応試薬は、乾燥状態である
    請求項1〜25のいずれか1項に記載のバイオセンサ。
  27. 上記作用電極及び対電極は、液体試料中の血球成分を測定する電極である、
    請求項1〜26のいずれか1項に記載のバイオセンサ。
  28. 上記作用電極及び対電極は、液体試料中の易酸化性物質を測定する電極である、
    請求項1〜26のいずれか1項に記載のバイオセンサ。
  29. 上記電極は、液体試料の吸引を検知する電極である、
    請求項1〜26のいずれか1項に記載のバイオセンサ。
  30. 絶縁性であって、上記凹部を有する第1基板と、
    絶縁性であって、上記第1の基板に対向するように配置された第2基板と、
    を備え、
    上記作用電極又は対電極のうち一方の電極及び上記反応試薬は、上記第1基板の上記凹部内に配置され、
    上記作用電極又は対電極のうち他方の電極は、上記第2基板上に配置される
    請求項1〜29のいずれか1項に記載のバイオセンサ。
  31. 絶縁性の基板の厚みを減らすことで凹部を形成する工程と、
    上記凹部内に作用電極及び対電極の少なくとも一方を配置する工程と、
    上記凹部内に、対象物質と反応する反応試薬を配置する工程と、
    上記凹部の少なくとも一部を露出させるように、上記基板上にスペーサを配置する工程と、
    上記スペーサから露出した上記凹部を覆うように、上記スペーサ上に上カバーを配置する工程と、
    を含むバイオセンサの製造方法。
  32. 請求項1〜30のいずれか1項に記載のバイオセンサと、
    上記バイオセンサの上記作用電極と上記対電極との間の電流から、液体試料中の対象物質の存在を検出する検出装置と、
    を備える検出システム。
JP2009149042A 2008-06-24 2009-06-23 バイオセンサ、その製造方法、及びそれを備える検出システム Active JP5405916B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149042A JP5405916B2 (ja) 2008-06-24 2009-06-23 バイオセンサ、その製造方法、及びそれを備える検出システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008164562 2008-06-24
JP2008164562 2008-06-24
JP2009149042A JP5405916B2 (ja) 2008-06-24 2009-06-23 バイオセンサ、その製造方法、及びそれを備える検出システム

Publications (2)

Publication Number Publication Date
JP2010032501A true JP2010032501A (ja) 2010-02-12
JP5405916B2 JP5405916B2 (ja) 2014-02-05

Family

ID=41446091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149042A Active JP5405916B2 (ja) 2008-06-24 2009-06-23 バイオセンサ、その製造方法、及びそれを備える検出システム

Country Status (2)

Country Link
US (1) US9046479B2 (ja)
JP (1) JP5405916B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058168A (ja) * 2010-09-13 2012-03-22 Dainippon Printing Co Ltd バイオセンサ及びその製造方法
JP2012073147A (ja) * 2010-09-29 2012-04-12 Gunze Ltd 計測表示装置
WO2012172772A1 (ja) * 2011-06-16 2012-12-20 パナソニック株式会社 センサおよびこれを備えたセンサシステム
JP2016500447A (ja) * 2012-12-21 2016-01-12 アリーア スウィッツァランド ゲーエムベーハー 電気化学分析用検査装置
US9351676B2 (en) 2010-10-29 2016-05-31 Arkray, Inc. Electrochemical sensor, lancet, and bodily fluid measuring apparatus
JP2016105106A (ja) * 2010-09-30 2016-06-09 パナソニックヘルスケアホールディングス株式会社 センサ及びセンサシステム
JP2016200588A (ja) * 2015-04-06 2016-12-01 アークレイ株式会社 ヘマトクリット値測定用電極を備えたバイオセンサ
JP2016200589A (ja) * 2015-04-06 2016-12-01 アークレイ株式会社 ヘマトクリット値測定用電極を備えたバイオセンサ
JP6963267B1 (ja) * 2020-11-02 2021-11-05 エレファンテック株式会社 ウェルプレート
JP6963268B1 (ja) * 2020-10-24 2021-11-05 エレファンテック株式会社 フローセル

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020806A1 (en) * 2009-03-31 2011-01-27 The Regents Of The University Of California Rapid DNA Sequencing by Peroxidative Reaction
CN102791196B (zh) * 2010-03-09 2015-09-30 爱科来株式会社 电化学传感器
DE102011083989B4 (de) * 2011-10-04 2023-03-23 Texplor Austria GmbH Sensormodul sowie Elektrode für ein Sensormodul
KR101363020B1 (ko) * 2011-10-31 2014-02-26 주식회사 세라젬메디시스 다중 반응 바이오센서
WO2015195352A1 (en) * 2014-06-20 2015-12-23 Abbott Diabetes Care Inc. Test strip, meter, and method for assaying enzyme activity
WO2017145420A1 (ja) * 2016-02-25 2017-08-31 パナソニックヘルスケアホールディングス株式会社 バイオセンサ
US20180200932A1 (en) * 2017-01-14 2018-07-19 Cheng-Feng CHIANG Method of manufacturing an electrochemical test strip
TWI663396B (zh) * 2018-06-29 2019-06-21 昇陽國際半導體股份有限公司 電化學感測器之工作電極製作方法及其產品
TWI675201B (zh) * 2019-01-23 2019-10-21 昇陽國際半導體股份有限公司 電化學感測器之工作電極製作方法及其產品
TWI768560B (zh) * 2020-11-25 2022-06-21 五鼎生物技術股份有限公司 生化試片

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963245A (en) * 1986-05-02 1990-10-16 Ciba Corning Diagnostics Corp. Unitary multiple electrode sensor
JP2000097899A (ja) * 1998-09-24 2000-04-07 エヌ・ティ・ティ・アドバンステクノロジ株式会社 微少量オンラインバイオセンサー及びその製造方法
JP2002541453A (ja) * 1999-04-06 2002-12-03 オールメディカス コーポレイション 電気化学的バイオセンサー試験片、その製造方法および電気化学的バイオセンサー
WO2003025558A1 (fr) * 2001-09-14 2003-03-27 Arkray, Inc. Procédé, outil et dispositif de mesure d'une concentration
JP2003207475A (ja) * 2001-10-09 2003-07-25 F Hoffmann La Roche Ag バイオセンサー
JP2004226358A (ja) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd バイオセンサ
JP2004325184A (ja) * 2003-04-23 2004-11-18 Arkray Inc 円形検体分析用具
JP2005249530A (ja) * 2004-03-03 2005-09-15 Yamaha Corp 酵素センサおよびそれを用いた分析装置、酵素センサの製造方法、ならびにアミラーゼ活性測定方法
JP2007507711A (ja) * 2003-09-30 2007-03-29 アボット・ラボラトリーズ バイオセンサ
WO2007053497A2 (en) * 2005-10-31 2007-05-10 Abbott Diabetes Care, Inc. Analyte sensor and method of making it
WO2007133457A2 (en) * 2006-05-08 2007-11-22 Bayer Healthcare Llc Electrochemical test sensor with reduced sample volume
WO2007136980A2 (en) * 2006-05-17 2007-11-29 Home Diagnostics, Inc. Diagnostic test media and methods for the manufacture thereof
JP2007330510A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 血液検査装置
WO2008047842A1 (fr) * 2006-10-19 2008-04-24 Panasonic Corporation Procédé de mesure de valeur hématocrite de prélèvement sanguin, procédé de mesure de concentration d'analyte dans un prélèvement sanguin, puce de capteur et unité de détection
WO2008051407A2 (en) * 2006-10-24 2008-05-02 Abbott Diabetes Care, Inc. Embossed cell analyte sensor and methods of manufacture

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913386A (en) 1956-03-21 1959-11-17 Jr Leland C Clark Electrochemical device for chemical analysis
US3539455A (en) 1965-10-08 1970-11-10 Leland C Clark Jr Membrane polarographic electrode system and method with electrochemical compensation
US3542662A (en) 1967-04-18 1970-11-24 Du Pont Enzyme electrode
US3770607A (en) 1970-04-07 1973-11-06 Secretary Glucose determination apparatus
US3788950A (en) 1970-08-05 1974-01-29 Du Pont Enzyme gel and use therefor
CH559912A5 (ja) 1971-09-09 1975-03-14 Hoffmann La Roche
US3836003A (en) * 1973-04-09 1974-09-17 Blakeslee & Co G S Rotating feed table for dishware and the like
US3948745A (en) 1973-06-11 1976-04-06 The United States Of America As Represented By The Department Of Health, Education And Welfare Enzyme electrode
IT1039756B (it) 1975-07-10 1979-12-10 Snam Progetti Procedimento per migliopare l at tivita di enzimi ossidoriduttasici inglobati in strutture filamentose
US3979274A (en) 1975-09-24 1976-09-07 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
US4092233A (en) 1975-12-18 1978-05-30 Miles Laboratories, Inc. Membrane apparatus
US4085009A (en) 1976-07-28 1978-04-18 Technicon Instruments Corporation Methods for determination of enzyme reactions
JPS5912135B2 (ja) 1977-09-28 1984-03-21 松下電器産業株式会社 酵素電極
US4225410A (en) 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
DE3029579C2 (de) 1980-08-05 1985-12-12 Boehringer Mannheim Gmbh, 6800 Mannheim Verfahren und Mittel zur Abtrennung von Plasma oder Serum aus Vollblut
EP0078636B2 (en) 1981-10-23 1997-04-02 MediSense, Inc. Sensor for components of a liquid mixture
US4534356A (en) 1982-07-30 1985-08-13 Diamond Shamrock Chemicals Company Solid state transcutaneous blood gas sensors
US4454007A (en) 1983-01-27 1984-06-12 E. I. Du Pont De Nemours And Company Ion-selective layered sensor and methods of making and using the same
JPS59166852A (ja) 1983-03-11 1984-09-20 Matsushita Electric Ind Co Ltd バイオセンサ
WO1984003562A1 (en) 1983-03-11 1984-09-13 Matsushita Electric Ind Co Ltd Biosensor
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
US5509410A (en) 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
CA1219040A (en) 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
US5185256A (en) 1985-06-21 1993-02-09 Matsushita Electric Industrial Co., Ltd. Method for making a biosensor
DE3687646T3 (de) 1985-06-21 2001-05-31 Matsushita Electric Ind Co Ltd Biosensor und dessen herstellung.
US5066372A (en) 1986-05-02 1991-11-19 Ciba Corning Diagnostics Corp. Unitary multiple electrode sensor
DE3875149T2 (de) * 1987-03-27 1993-02-11 Isao Karube Miniaturisierter biofuehler mit miniaturisierter sauerstoffelektrode sowie sein herstellungsverfahren.
WO1989009397A1 (en) 1988-03-31 1989-10-05 Matsushita Electric Industrial Co., Ltd. Biosensor and process for its production
GB8817421D0 (en) 1988-07-21 1988-08-24 Medisense Inc Bioelectrochemical electrodes
US5262035A (en) 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5264105A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5320725A (en) 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
DE69025134T2 (de) 1989-11-24 1996-08-14 Matsushita Electric Ind Co Ltd Verfahren zur Herstellung eines Biosensors
GB8927377D0 (en) 1989-12-04 1990-01-31 Univ Edinburgh Improvements in and relating to amperometric assays
KR0171222B1 (ko) 1989-12-15 1999-02-18 스티브 올드함 산화 환원 조정시약 및 바이오센서
US5320732A (en) 1990-07-20 1994-06-14 Matsushita Electric Industrial Co., Ltd. Biosensor and measuring apparatus using the same
US5104480A (en) 1990-10-12 1992-04-14 General Electric Company Direct patterning of metals over a thermally inefficient surface using a laser
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
JP3084877B2 (ja) 1992-01-21 2000-09-04 松下電器産業株式会社 グルコースセンサの製造方法
US5385846A (en) 1993-06-03 1995-01-31 Boehringer Mannheim Corporation Biosensor and method for hematocrit determination
CA2153883C (en) 1993-06-08 1999-02-09 Bradley E. White Biosensing meter which detects proper electrode engagement and distinguishes sample and check strips
US5405511A (en) 1993-06-08 1995-04-11 Boehringer Mannheim Corporation Biosensing meter with ambient temperature estimation method and system
US5762770A (en) 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
DE4417245A1 (de) 1994-04-23 1995-10-26 Lpkf Cad Cam Systeme Gmbh Verfahren zur strukturierten Metallisierung der Oberfläche von Substraten
JP3061351B2 (ja) 1994-04-25 2000-07-10 松下電器産業株式会社 特定化合物の定量法およびその装置
EP0727925A1 (de) 1995-02-14 1996-08-21 Lpkf Cad/Cam Systeme Gmbh Verfahren zur strukturierten Metallisierung der Oberfläche von Substraten
US5582697A (en) 1995-03-17 1996-12-10 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5650062A (en) 1995-03-17 1997-07-22 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
DE19521019A1 (de) 1995-06-13 1996-12-19 Boehringer Mannheim Gmbh Verfahren und Mittel zur gleichzeitigen kolorimetrischen und elektrochemischen Messung eines Analyten
JPH10505463A (ja) 1995-06-27 1998-05-26 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 多層電子素子製造方法
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5665222A (en) 1995-10-11 1997-09-09 E. Heller & Company Soybean peroxidase electrochemical sensor
US5755953A (en) 1995-12-18 1998-05-26 Abbott Laboratories Interference free biosensor
JP3365184B2 (ja) 1996-01-10 2003-01-08 松下電器産業株式会社 バイオセンサ
US5708247A (en) 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
ATE227844T1 (de) 1997-02-06 2002-11-15 Therasense Inc Kleinvolumiger sensor zur in-vitro bestimmung
US5759364A (en) 1997-05-02 1998-06-02 Bayer Corporation Electrochemical biosensor
US5798031A (en) 1997-05-12 1998-08-25 Bayer Corporation Electrochemical biosensor
US6309526B1 (en) 1997-07-10 2001-10-30 Matsushita Electric Industrial Co., Ltd. Biosensor
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
JP3874321B2 (ja) * 1998-06-11 2007-01-31 松下電器産業株式会社 バイオセンサ
JP3267936B2 (ja) 1998-08-26 2002-03-25 松下電器産業株式会社 バイオセンサ
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6258229B1 (en) 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
US6287451B1 (en) 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
US6645359B1 (en) 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
US7073246B2 (en) 1999-10-04 2006-07-11 Roche Diagnostics Operations, Inc. Method of making a biosensor
US6767440B1 (en) 2001-04-24 2004-07-27 Roche Diagnostics Corporation Biosensor
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
JP2001159618A (ja) * 1999-12-03 2001-06-12 Matsushita Electric Ind Co Ltd バイオセンサ
US20030146113A1 (en) * 2000-02-21 2003-08-07 Volker Unkrig Electrochemical sensor for determining blood clotting, corresponding system for measuring blood clotting and method for determining blood clotting
US6540890B1 (en) 2000-11-01 2003-04-01 Roche Diagnostics Corporation Biosensor
US6814843B1 (en) 2000-11-01 2004-11-09 Roche Diagnostics Corporation Biosensor
US6447657B1 (en) 2000-12-04 2002-09-10 Roche Diagnostics Corporation Biosensor
US6814844B2 (en) 2001-08-29 2004-11-09 Roche Diagnostics Corporation Biosensor with code pattern
US6866758B2 (en) 2002-03-21 2005-03-15 Roche Diagnostics Corporation Biosensor
DE10221435B4 (de) * 2002-05-14 2004-10-28 Isabella Dr. Moser Enzymelektrodenanordnung, ein Verfahren zu deren Herstellung sowie eine diese Enzymelektrodenanordnung umfassende Biosensoranordnung
US7556724B2 (en) 2005-02-10 2009-07-07 Bionime Corporation Electrochemical sensor strip and manufacturing method thereof
US8435773B2 (en) * 2005-05-10 2013-05-07 Board Of Trustees Of Michigan State University Customizable and renewable nanostructured interface for bioelectronic applications
US20090000947A1 (en) * 2005-06-06 2009-01-01 Nikkiso Co., Ltd. Biosensor and Biosensor Cell
KR100812691B1 (ko) * 2007-03-19 2008-03-13 영동제약 주식회사 전극을 이용한 질병진단용 바이오센서

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963245A (en) * 1986-05-02 1990-10-16 Ciba Corning Diagnostics Corp. Unitary multiple electrode sensor
JP2000097899A (ja) * 1998-09-24 2000-04-07 エヌ・ティ・ティ・アドバンステクノロジ株式会社 微少量オンラインバイオセンサー及びその製造方法
JP2002541453A (ja) * 1999-04-06 2002-12-03 オールメディカス コーポレイション 電気化学的バイオセンサー試験片、その製造方法および電気化学的バイオセンサー
WO2003025558A1 (fr) * 2001-09-14 2003-03-27 Arkray, Inc. Procédé, outil et dispositif de mesure d'une concentration
JP2003207475A (ja) * 2001-10-09 2003-07-25 F Hoffmann La Roche Ag バイオセンサー
JP2004226358A (ja) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd バイオセンサ
JP2004325184A (ja) * 2003-04-23 2004-11-18 Arkray Inc 円形検体分析用具
JP2007507711A (ja) * 2003-09-30 2007-03-29 アボット・ラボラトリーズ バイオセンサ
JP2005249530A (ja) * 2004-03-03 2005-09-15 Yamaha Corp 酵素センサおよびそれを用いた分析装置、酵素センサの製造方法、ならびにアミラーゼ活性測定方法
WO2007053497A2 (en) * 2005-10-31 2007-05-10 Abbott Diabetes Care, Inc. Analyte sensor and method of making it
WO2007133457A2 (en) * 2006-05-08 2007-11-22 Bayer Healthcare Llc Electrochemical test sensor with reduced sample volume
JP2009536734A (ja) * 2006-05-08 2009-10-15 バイエル・ヘルスケア・エルエルシー 少ない標本量の電気化学試験センサ
WO2007136980A2 (en) * 2006-05-17 2007-11-29 Home Diagnostics, Inc. Diagnostic test media and methods for the manufacture thereof
JP2009537825A (ja) * 2006-05-17 2009-10-29 ホーム ダイアグナスティックス,インコーポレーテッド 診断検査媒体及びその製造方法
JP2007330510A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 血液検査装置
WO2008047842A1 (fr) * 2006-10-19 2008-04-24 Panasonic Corporation Procédé de mesure de valeur hématocrite de prélèvement sanguin, procédé de mesure de concentration d'analyte dans un prélèvement sanguin, puce de capteur et unité de détection
WO2008051407A2 (en) * 2006-10-24 2008-05-02 Abbott Diabetes Care, Inc. Embossed cell analyte sensor and methods of manufacture
JP2010507805A (ja) * 2006-10-24 2010-03-11 アボツト・ダイアビーテイス・ケア・インコーポレイテツド エンボス加工されたセル検体センサおよび製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036047A1 (ja) * 2010-09-13 2012-03-22 大日本印刷株式会社 バイオセンサ及びその製造方法
JP2012058168A (ja) * 2010-09-13 2012-03-22 Dainippon Printing Co Ltd バイオセンサ及びその製造方法
US9222909B2 (en) 2010-09-13 2015-12-29 Dai Nippon Printing Co., Ltd. Biosensor and method for producing the same
JP2012073147A (ja) * 2010-09-29 2012-04-12 Gunze Ltd 計測表示装置
JP2016105106A (ja) * 2010-09-30 2016-06-09 パナソニックヘルスケアホールディングス株式会社 センサ及びセンサシステム
US9351676B2 (en) 2010-10-29 2016-05-31 Arkray, Inc. Electrochemical sensor, lancet, and bodily fluid measuring apparatus
JPWO2012172772A1 (ja) * 2011-06-16 2015-02-23 パナソニックヘルスケア株式会社 センサおよびこれを備えたセンサシステム
WO2012172772A1 (ja) * 2011-06-16 2012-12-20 パナソニック株式会社 センサおよびこれを備えたセンサシステム
US9733205B2 (en) 2011-06-16 2017-08-15 Panasonic Healthcare Holdings Co., Ltd. Sensor and sensor system equipped with same
JP2016500447A (ja) * 2012-12-21 2016-01-12 アリーア スウィッツァランド ゲーエムベーハー 電気化学分析用検査装置
JP2016200588A (ja) * 2015-04-06 2016-12-01 アークレイ株式会社 ヘマトクリット値測定用電極を備えたバイオセンサ
JP2016200589A (ja) * 2015-04-06 2016-12-01 アークレイ株式会社 ヘマトクリット値測定用電極を備えたバイオセンサ
JP6963268B1 (ja) * 2020-10-24 2021-11-05 エレファンテック株式会社 フローセル
WO2022085206A1 (ja) * 2020-10-24 2022-04-28 エレファンテック株式会社 フローセル
JP6963267B1 (ja) * 2020-11-02 2021-11-05 エレファンテック株式会社 ウェルプレート
WO2022091424A1 (ja) * 2020-11-02 2022-05-05 エレファンテック株式会社 ウェルプレート

Also Published As

Publication number Publication date
US9046479B2 (en) 2015-06-02
JP5405916B2 (ja) 2014-02-05
US20090321257A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
JP5405916B2 (ja) バイオセンサ、その製造方法、及びそれを備える検出システム
US11091790B2 (en) Determining analyte concentration from variant concentration distribution in measurable species
JP6150262B2 (ja) 分析物バイオセンサシステム
ES2223185T5 (es) Detector de analitos in vitro de pequeño volumen usando un mediador redox difusible o no lixiviable.
JP5738914B2 (ja) 改善された安定性およびヘマトクリット性能(performance)を有するバイオセンサー系
US8852422B2 (en) Concentration determination in a diffusion barrier layer
AU2010286789B2 (en) Small volume test strips with large sample fill ports, supported test strips, and methods of making and using same
WO2007000596A1 (en) Electrode preconditioning
CA3181804A1 (en) Analyte sensors featuring one or more detection-facilitating enhancements
AU2003271369A1 (en) Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5405916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250