JP2010019185A - 内燃機関の吸気系制御装置 - Google Patents

内燃機関の吸気系制御装置 Download PDF

Info

Publication number
JP2010019185A
JP2010019185A JP2008181255A JP2008181255A JP2010019185A JP 2010019185 A JP2010019185 A JP 2010019185A JP 2008181255 A JP2008181255 A JP 2008181255A JP 2008181255 A JP2008181255 A JP 2008181255A JP 2010019185 A JP2010019185 A JP 2010019185A
Authority
JP
Japan
Prior art keywords
passage
purge
opening
flow rate
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008181255A
Other languages
English (en)
Inventor
Hisatoshi Shibuya
央利 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008181255A priority Critical patent/JP2010019185A/ja
Publication of JP2010019185A publication Critical patent/JP2010019185A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

【課題】低コスト化の要求を満たしながら、簡単な制御で、アイドル運転時の吸気流量とエバポガスのパージ流量を調整できるようにする。
【解決手段】流路切換機構42は、スロットルバルブ16の駆動力で、パージ通路39を遮断してバイパス吸気通路40を導入通路41に連通させるバイパス吸気通路開放状態と、バイパス吸気通路40を遮断してパージ通路39を導入通路41に連通させるパージ通路開放状態とが切り換えられる。バイパス吸気通路開放状態のときにアイドル回転速度を目標アイドル回転速度に一致させるように流量調整弁43を制御してバイパス吸気通路40から導入通路41を流れるバイパス吸気流量を調整するアイドル回転速度制御を実行する。一方、パージ通路開放状態のときにエンジン運転状態に応じて流量調整弁43を制御してパージ通路39から導入通路41を流れるエバポガスのパージ流量を調整するパージ制御を実行する。
【選択図】図1

Description

本発明は、内燃機関のスロットルバルブをバイパスする吸入空気の流量や吸気系にパージするエバポガス(燃料蒸発ガス)の流量を調整する機能を備えた内燃機関の吸気系制御装置に関する発明である。
従来より、内燃機関のアイドル回転速度制御システムは、スロットルバルブをバイパスするバイパス吸気通路の途中にアイドル回転速度制御弁を設け、アイドル運転中に内燃機関のアイドル回転速度を目標アイドル回転速度に一致させるようにアイドル回転速度制御弁の開度をフィードバック制御してアイドル運転時の吸入空気流量(バイパス吸気流量)を調整するようにしたり、或は、アイドル運転時にスロットルバルブの開度を制御してアイドル運転時の吸入空気量をフィードバック制御するようにしたものがある。
また、内燃機関のエバポガスパージシステムは、燃料タンク内の燃料が蒸発して生じたエバポガスをキャニスタ内に吸着し、このキャニスタと内燃機関の吸気系(例えばスロットルバルブ下流側の吸気通路等)とを連通するパージ通路にパージ制御弁を設け、内燃機関の運転状態に応じてパージ制御弁の開度を制御して吸気系にパージするエバポガスのパージ流量を調整するようにしたものがある。
更に、システムの簡素化を目的として、特許文献1(特開平9−100751号公報)に記載されているように、バイパス吸気通路とパージ通路のうちの一方を選択的にスロットルバルブ下流側の吸気通路に接続するための通路切換弁を設けると共に、この通路切換弁を通過してスロットルバルブ下流側の吸気通路に流入する気体の流量を調整する流量調整弁を設け、内燃機関の運転条件に応じて通路切換弁と流量調整弁を制御することで、1つの流量調整弁でバイパス吸気流量とエバポガスのパージ流量の両方を調整できるようにしたものがある。
特開平9−100751号公報(第2頁、図5等)
しかし、上記特許文献1の技術では、内燃機関の運転条件に応じて通路切換弁と流量調整弁の両方を制御する必要があるため、制御が複雑化して制御回路の演算負荷が増大すると共に、通路切換弁と流量調整弁の両方を制御回路によって電気的に制御可能な電磁駆動弁等で構成する必要があり、近年の重要な技術的課題である低コスト化の要求を満たすことができない。
本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、低コスト化の要求を満たしながら、簡単な制御で、アイドル運転時のスロットルバルブのバイパス吸気流量とエバポガスのパージ流量を調整することができる内燃機関の吸気系制御装置を提供することにある。
上記目的を達成するために、請求項1に係る発明は、内燃機関の吸気通路のうちのスロットルバルブの上流側に接続されたバイパス吸気通路と、吸気通路のうちのスロットルバルブの下流側に接続された導入通路と、燃料タンク内の燃料が蒸発して生じたエバポガスを吸気系にパージするためのパージ通路と、スロットルバルブの駆動力によってパージ通路を遮断してバイパス吸気通路を導入通路に連通させるバイパス吸気通路開放状態とバイパス吸気通路を遮断してパージ通路を導入通路に連通させるパージ通路開放状態とが切り換えられる流路切換機構とを設け、導入通路を流れる気体の流量を流量調整弁により調整するようにしたものである。
この構成では、流路切換機構がバイパス吸気通路開放状態のときには、吸入空気がバイパス吸気通路から導入通路を通ってスロットルバルブの下流側の吸気通路に流れるため、流量調整弁の開度を制御することで、スロットルバルブをバイパスするバイパス吸気流量を調整することができる。一方、流路切換機構がパージ通路開放状態のときには、エバポガスがパージ通路から導入通路を通ってスロットルバルブの下流側の吸気通路に流れるため、流量調整弁の開度を制御することで、吸気通路にパージするエバポガスのパージ流量を調整することができる。これにより、1つの流量調整弁でバイパス吸気流量とエバポガスのパージ流量の両方を調整することができる。この場合、流量調整弁は、制御回路によって電気的に制御可能な電磁駆動弁等で構成する必要があるが、流路切換機構は、スロットルバルブの駆動力によって切り換わるため、電気的に制御可能な電磁駆動弁等で構成する必要がなく、近年の重要な技術的課題である低コスト化の要求を満たすことができる。また、流路切換機構を制御回路によって制御する必要がなく、流量調整弁のみを制御回路によって制御すれば良いため、制御を簡単化することができる。
この場合、請求項2のように、流路切換機構は、スロットルバルブの開度が少なくともアイドル運転に相当する開度領域のときにバイパス吸気通路開放状態に保持され、スロットルバルブの開度がアイドル運転に相当する開度領域よりも大きい開度領域のときにパージ通路開放状態に保持されるように構成すると良い。このようにすれば、スロットルバルブの開度がアイドル運転に相当する開度領域(つまりスロットルバルブの開度が全閉又はその付近の比較的小さい開度領域)のときには、流路切換機構がバイパス吸気通路開放状態に保持されるため、流量調整弁でバイパス吸気流量を調整してアイドル回転速度を制御することができる。一方、スロットルバルブの開度がアイドル運転に相当する開度領域よりも大きい開度領域(つまりスロットルバルブの開度が比較的大きくてアイドル回転速度制御を行う必要がない領域)のときには、流路切換機構がパージ通路開放状態に保持されるため、流量調整弁でエバポガスのパージ流量を制御することができる。
また、請求項3のように、流路切換機構がバイパス吸気通路開放状態のときには、アイドル回転速度制御手段によって内燃機関のアイドル回転速度を目標アイドル回転速度に一致させるように流量調整弁の開度を制御して、スロットルバルブをバイパスする吸入空気の流量を調整するようにすると良い。このようにすれば、流量調整弁を用いてアイドル回転速度を精度良く制御することができる。
更に、請求項4のように、流路切換機構がパージ通路開放状態のときには、パージ制御手段によって内燃機関の運転状態に応じて流量調整弁の開度を制御して、吸気通路にパージするエバポガスのパージ流量を調整するようにすると良い。このようにすれば、流量調整弁を用いてエバポガスのパージ流量を精度良く制御することができる。
また、請求項5のように、流路切換機構をトグル機構を用いて構成し、前記スロットルバルブの開度に応じて該トグル機構によってバイパス吸気通路開放状態とパージ通路開放状態に切れ換えて保持するように構成すると良い。この構成では、スロットルバルブの開度領域を、アイドル回転速度制御を行う開度領域とパージ制御領域を行う開度領域に区分して、それぞれの開度領域でトグル機構によってバイパス吸気通路開放状態又はパージ通路開放状態に保持するように構成することができるため、アイドル回転速度制御を行う開度領域内でスロットルバルブの開度が変化しても、トグル機構によって流路切換機構をバイパス吸気通路開放状態に保持してアイドル回転速度制御を実行することが可能となり、同様に、パージ制御を行う開度領域内でスロットルバルブの開度が変化しても、トグル機構によって流路切換機構をパージ通路開放状態に保持してパージ制御を実行することが可能となる。但し、本発明は、トグル機構を用いた構成に限定されないことは言うまでもない。
また、請求項6のように、スロットルバルブを内蔵したスロットルボディに、バイパス吸気通路と導入通路と流路切換機構と流量調整弁とを設けて、これらを一体化するようにしても良い。このようにすれば、車両を製造する際に、スロットルバルブ、バイパス吸気通路、導入通路、流路切換機構、流量調整弁等を予め一体化したスロットルボディを組み付けるだけで良く、車両の組付部品点数を削減して組付工数を削減することができ、車両の製造コストを低コスト化することができる。
以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12(吸気通路)の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、アクセルペダル(図示せず)と機械的に連動するスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。
一方、エンジン11の排気管23には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。
また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキング振動を検出するノックセンサ29が取り付けられている。また、クランク軸27の外周側には、クランク軸27が所定クランク角回転する毎にパルス信号を出力するクランク角センサ28が取り付けられ、このクランク角センサ28の出力信号に基づいてクランク角やエンジン回転速度が検出される。
燃料を貯溜する燃料タンク30内には、燃料を汲み上げる燃料ポンプ31が設けられている。この燃料ポンプ31から吐出される燃料は、燃料配管32を通してデリバリパイプ33に送られ、このデリバリパイプ33から各気筒の燃料噴射弁21に分配される。燃料配管32のうちの燃料ポンプ31付近には、燃料フィルタ34とプレッシャレギュレータ35が接続され、このプレッシャレギュレータ35によって燃料ポンプ31の吐出圧が所定圧力に調圧され、その圧力を越える燃料の余剰分が燃料戻し配管36により燃料タンク30内に戻されるようになっている。
また、燃料タンク30には、エバポ通路37を介してキャニスタ38が接続されている。このキャニスタ38内には、エバポガス(燃料蒸発ガス)を吸着する活性炭等の吸着体(図示せず)が収容されている。キャニスタ38には、キャニスタ38内の吸着体に吸着されているエバポガスをエンジン吸気系にパージ(放出)するためのパージ通路39が接続されている。
一方、吸気管12には、スロットルバルブ16の上流側から分岐するバイパス吸気通路40と、スロットルバルブ16の下流側に合流する導入通路41とが接続されている。尚、導入通路41は、サージタンク18又は吸気マニホールド20に接続するようにしても良い。また、パージ通路39とバイパス吸気通路40は、後述する流路切換機構42を介して導入通路41に接続され、導入通路41には、該導入通路41を流れる気体(エバポガス又は吸入空気)の流量を調整する流量調整弁43が設けられている。この流量調整弁43は、電気的に制御可能な電磁駆動弁で構成されている。
スロットルバルブ16とスロットル開度センサ17は、スロットルボディ44に設けられ、このスロットルボディ44に、バイパス吸気通路40、導入通路41、流路切換機構42、流量調整弁43等が設けられて、これらが一体化されている。
上述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)45に入力される。このECU45は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。
次に、図2を用いて流路切換機構42の構成について説明する。
流路切換機構42は、アクセルペダルと機械的に連動するスロットルバルブ16の駆動力によって作動するトグル機構(図示せず)を用いて構成され、図2(a)に示すようにパージ通路39を遮断してバイパス吸気通路40を導入通路41に連通させるバイパス吸気通路開放状態と、図2(b)に示すようにバイパス吸気通路40を遮断してパージ通路39を導入通路41に連通させるパージ通路開放状態とに切り換えられて保持されるように構成されている。
具体的には、流路切換機構42の本体ハウジング46に、パージ通路39とバイパス吸気通路40と導入通路41がそれぞれ接続され、この本体ハウジング46内に、ニードルバルブ47がスライド移動可能に配置されている。図2(a)に示すように、ニードルバルブ47がバイパス吸気通路開放位置に移動すると、ニードルバルブ47によってパージ通路39を遮断すると共に、ニードルバルブ47に形成された貫通孔48によってバイパス吸気通路40が導入通路41に連通するバイパス吸気通路開放状態となる。一方、図2(b)に示すように、ニードルバルブ47がパージ通路開放位置に移動すると、ニードルバルブ47によってバイパス吸気通路40を遮断すると共に、ニードルバルブ47に形成された貫通孔48によってパージ通路39が導入通路41に連通するパージ通路開放状態となる。
また、ニードルバルブ47の近傍には、ニードルバルブ47を駆動するための揺動片49が設けられている。この揺動片49は、スロットルバルブ16の回転伝達系と機械的に連結されて、スロットル開度(スロットルバルブ16の開度)に応じて揺動するようになっている(図2では、スロットル開度が大きくなると、揺動片49が時計回り方向に揺動する)。更に、ニードルバルブ47は、トグル機構(図示せず)によってバイパス吸気通路開放位置に近い領域ではバイパス吸気通路開放位置側に付勢され、パージ通路開放位置に近い領域ではパージ通路開放位置側に付勢されるようになっている。
スロットル開度が第1の所定開度θ1 (例えば全閉付近の比較的小さい開度)よりも小さい領域では、図2(a)に実線で示すように、揺動片49がニードルバルブ47から離れて、トグル機構(図示せず)によってニードルバルブ47がバイパス吸気通路開放位置に保持されて、流路切換機構42がバイパス吸気通路開放状態に保持される(図3参照)。本実施例では、スロットル開度が第1の所定開度θ1 よりも小さい領域が、アイドル運転を行う開度領域(又はアイドル運転と減速運転を行う開度領域)となるように設定されている。
その後、スロットル開度が第1の所定開度θ1 以上になると、図2(a)に二点鎖線で示すように、揺動片49がニードルバルブ47の押圧部47aを押圧してニードルバルブ47をパージ通路開放位置へ向かう方向(図2では右方向)へ移動させる(図3参照)。この際、ニードルバルブ47の移動量が所定量に到達するまでは、トグル機構(図示せず)の付勢力がニードルバルブ47をバイパス吸気通路開放位置へ戻す方向に作用するが、ニードルバルブ47の移動量が所定量を越えると、トグル機構の付勢力の方向が反転してニードルバルブ47をパージ通路開放位置へ押す方向にトグル機構の付勢力が作用する。これにより、図2(b)に示すように、ニードルバルブ47がパージ通路開放位置まで移動して、流路切換機構42がパージ通路開放状態に切り換えられて保持される。
スロットル開度が第2の所定開度θ2 (第1の所定開度θ1 よりも少し大きい開度)よりも大きい領域では、図2(b)に実線で示すように、揺動片49がニードルバルブ47から離れて、トグル機構の付勢力によりニードルバルブ47がパージ通路開放位置に保持されて、流路切換機構42がパージ通路開放状態に保持される(図3参照)。従って、第1の所定開度θ1 と第2の所定開度θ2 との中間でトグル機構の付勢力が反転するように設定されている。
その後、スロットル開度が第2の所定開度θ2 以下になると、図2(b)に二点鎖線で示すように、揺動片49がニードルバルブ47の押圧部47bを押圧してニードルバルブ47をバイパス吸気通路開放位置へ向かう方向(図2では左方向)へ移動させる(図3参照)。この際、トグル機構等によって、ニードルバルブ47の移動量が所定量に到達するまでは、ニードルバルブ47をパージ通路開放位置へ戻す方向に力が作用するが、ニードルバルブ47の移動量が所定量を越えると、力の方向が逆になってニードルバルブ47をバイパス吸気通路開放位置へ押す方向に力が作用する。これにより、図2(a)に示すように、ニードルバルブ47がバイパス吸気通路開放位置まで移動して、流路切換機構42がバイパス吸気通路開放状態に切り換わる。
このようにスロットルバルブ16の駆動力によって流路切換機構42が切換動作することで、スロットル開度が第1の所定開度θ1 よりも小さい領域、つまり、アイドル運転を行う開度領域(又はアイドル運転と減速運転を行う開度領域)のときには、流路切換機構42がバイパス吸気通路開放状態に保持される。流路切換機構42がバイパス吸気通路開放状態のときには、吸入空気がバイパス吸気通路40から導入通路41を通ってスロットルバルブ16の下流側の吸気管12に流れるため、流量調整弁43の開度をデューティ制御等により制御することで、スロットルバルブ16をバイパスする吸入空気の流量(バイパス吸気流量)を調整することができる。
一方、スロットル開度が第2の所定開度θ2 よりも大きい領域、つまり、アイドル運転を行う開度領域(又はアイドル運転と減速運転を行う開度領域)よりも大きい開度領域のときには、流路切換機構42がパージ通路開放状態に保持される。流路切換機構42がパージ通路開放状態のときには、エバポガスがパージ通路39から導入通路41を通ってスロットルバルブ16の下流側の吸気管12に流れるため、流量調整弁43の開度をデューティ制御等により制御することで、吸気管12にパージするエバポガスのパージ流量を調整することができる。
そこで、ECU45は、後述する図4の吸気系制御ルーチンを実行することで、流路切換機構42がバイパス吸気通路開放状態のときに、エンジン11のアイドル回転速度を目標アイドル回転速度に一致させるように流量調整弁43の開度をデューティ制御等により制御してバイパス吸気流量を調整するアイドル回転速度制御を実行する。一方、流路切換機構42がパージ通路開放状態のときに、エンジン運転状態に応じて流量調整弁43の開度をデューティ制御等により制御してエバポガスのパージ流量を調整するパージ制御を実行する。
以下、ECU45が実行する図4の吸気系制御ルーチンの処理内容を説明する。
図4に示す吸気系制御ルーチンは、ECU45の電源オン中に所定周期で繰り返し実行される。本ルーチンが起動されると、まず、ステップ101で、スロットル開度が第1の所定開度θ1 よりも小さいか否かを判定する。このステップ101で、スロットル開度が第1の所定開度θ1 よりも小さいと判定された場合には、流路切換機構42がバイパス吸気通路開放状態であると判断して、ステップ103に進み、エンジン11のアイドル回転速度を目標アイドル回転速度に一致させるように流量調整弁43の開度をデューティ制御等により制御してバイパス吸気流量を調整するアイドル回転速度制御を実行する。このステップ103の処理が特許請求の範囲でいうアイドル回転速度制御手段としての役割を果たす。
一方、上記ステップ101で、スロットル開度が第1の所定開度θ1 以上であると判定された場合には、ステップ102に進み、スロットル開度が第2の所定開度θ2 よりも大きいか否かを判定する。このステップ102で、スロットル開度が第2の所定開度θ2 よりも大きいと判定された場合には、流路切換機構42がパージ通路開放状態であると判断して、ステップ104に進み、エンジン運転状態(例えば、エンジン回転速度、エンジン負荷等)に応じて流量調整弁43の開度をデューティ制御等により制御してエバポガスのパージ流量を調整するパージ制御を実行する。このステップ104の処理が特許請求の範囲でいうパージ制御手段としての役割を果たす。
また、上記ステップ101でスロットル開度が第1の所定開度θ1 以上であると判定され、且つ、上記ステップ102でスロットル開度が第2の所定開度θ2 以下であると判定された場合には、流路切換機構42がバイパス吸気通路開放状態とパージ通路開放状態との間の切換動作中であると判断して、ステップ105に進み、徐変制御を実行する。この徐変制御では、例えば、流路切換機構42がバイパス吸気通路開放状態からパージ通路開放状態へ切換動作中の場合には、流量調整弁43の開度をアイドル回転速度制御用の目標開度からパージ制御用の目標開度へ徐々に変化させる。一方、流路切換機構42がパージ通路開放状態からバイパス吸気通路開放状態へ切換動作中の場合には、流量調整弁43の開度をパージ制御用の目標開度からアイドル回転速度制御用の目標開度へ徐々に変化させる。
尚、徐変制御を省略して、スロットル開度が増加する際に第1の所定開度θ1 以上になった時点(又は第2の所定開度θ2 以上になった時点)で、アイドル回転速度制御からパージ制御に切り換え、スロットル開度が減少する際に第2の所定開度θ2 以下になった時点(又は第1の所定開度θ1 以下になった時点)で、パージ制御からアイドル回転速度制御に切り換えるようにしても良い。
以上説明した本実施例の吸気系制御の実行例を図5を用いて説明する。
エンジン始動後、アクセルオフ(アクセル開度=0)でスロットル全閉(スロットル開度=0)の期間は、流路切換機構42がバイパス吸気通路開放状態に保持されて、エンジン11のアイドル回転速度を目標アイドル回転速度に一致させるように流量調整弁43の開度を制御してバイパス吸気流量を調整するアイドル回転速度制御を実行する。
その後、アクセルペダルが踏み込まれてアクセル開度が増加すると、それに連動してスロットル開度が増加するが、スロットル開度が第1の所定開度θ1 に到達する時点t1 までは、トグル機構によって流路切換機構42がバイパス吸気通路開放状態に保持されて、アイドル回転速度制御を継続する。
その後、スロットル開度が第1の所定開度θ1 に到達した時点t1 からスロットル開度が第2の所定開度θ2 に到達するまでの間に、トグル機構の付勢力が反転して流路切換機構42がバイパス吸気通路開放状態からパージ通路開放状態に切り換わり、この流路切換機構42の切換動作中は、流量調整弁43の開度をアイドル回転速度制御用の目標開度からパージ制御用の目標開度へ徐々に変化させる徐変制御を実行する。
その後、スロットル開度が第2の所定開度θ2 に到達した時点t2 以降は、トグル機構によって流路切換機構42がパージ通路開放状態に保持されて、エンジン運転状態に応じて流量調整弁43の開度を制御してエバポガスのパージ流量を調整するパージ制御を実行する。
以上説明した本実施例では、スロットルバルブ16の駆動力によって流路切換機構42をバイパス吸気通路開放状態とパージ通路開放状態との間で切り換え、バイパス吸気通路開放状態のときには、流量調整弁43の開度を制御してバイパス吸気流量を調整し、パージ通路開放状態のときには、流量調整弁43の開度を制御してエバポガスのパージ流量を調整するようにしたので、1つの流量調整弁43でバイパス吸気流量とエバポガスのパージ流量の両方を調整することができる。この場合、流路切換機構42は、スロットルバルブ16の駆動力によって切り換わるため、電気的に制御可能な電磁駆動弁等で構成する必要がなく、近年の重要な技術的課題である低コスト化の要求を満たすことができると共に、流路切換機構42をECU45によって制御する必要がなく、流量調整弁43のみをECU45によって制御すれば良いため、制御を簡単化することができる。
また、本実施例では、アイドル運転を行うスロットル開度領域(又はアイドル運転と減速運転を行う開度領域)のときには、流路切換機構42がバイパス吸気通路開放状態に保持されて、エンジン11のアイドル回転速度を目標アイドル回転速度に一致させるように流量調整弁43の開度を制御してバイパス吸気流量を調整するアイドル回転速度制御を実行するようにしたので、流量調整弁43を用いてアイドル回転速度を精度良く制御することができる。
更に、本実施例では、アイドル運転を行うスロットル開度領域(又はアイドル運転と減速運転を行う開度領域)よりも大きい開度領域のときには、流路切換機構42がパージ通路開放状態に保持されて、エンジン運転状態に応じて流量調整弁43の開度を制御してエバポガスのパージ流量を調整するパージ制御を実行するようにしたので、流量調整弁43を用いてパージ流量を精度良く制御することができる。
しかも、本実施例では、スロットルバルブ16の開度に応じてトグル機構によって流路切換機構42をバイパス吸気通路開放状態とパージ通路開放状態に切れ換えて保持するように構成したので、スロットルバルブ16の開度領域を、アイドル回転速度制御を行う開度領域とパージ制御領域を行う開度領域に区分して、それぞれの開度領域でトグル機構によってバイパス吸気通路開放状態又はパージ通路開放状態に保持することができる。これにより、アイドル回転速度制御を行う開度領域内でスロットルバルブ16の開度が変化しても、トグル機構によって流路切換機構42をバイパス吸気通路開放状態に保持してアイドル回転速度制御を実行することが可能となり、同様に、パージ制御を行う開度領域内でスロットルバルブ16の開度が変化しても、トグル機構によって流路切換機構42をパージ通路開放状態に保持してパージ制御を実行することが可能となる。但し、本発明は、トグル機構を用いた構成に限定されないことは言うまでもない。
また、本実施例では、スロットルボディ44に、バイパス吸気通路40、導入通路41、流路切換機構42、流量調整弁43等を設けてこれらを一体化するようにしたので、車両を製造する際に、スロットルバルブ16、スロットル開度センサ17、バイパス吸気通路40、導入通路41、流路切換機構42、流量調整弁43等を予め一体化したスロットルボディ44を組み付けるだけで良く、車両の組付部品点数を削減して組付工数を削減することができ、車両の製造コストを低コスト化することができる。
しかしながら、本発明は、スロットルボディ44に、バイパス吸気通路40、導入通路41、流路切換機構42、流量調整弁43の全てを一体化する構成に限定されず、バイパス吸気通路40、導入通路41、流路切換機構42、流量調整弁43のうちの一部の部品のみを一体化するようにしても良い。或は、バイパス吸気通路40、導入通路41、流路切換機構42、流量調整弁43の全てをスロットルボディ44と別体で設けるようにしても良い。更に、流路切換機構42は、上記実施例で説明した構成に限定されず、適宜変更しても良い。
また、上記実施例では、アクセルペダルと機械的に連動するスロットルバルブ16を備えたシステム(機械式スロットルシステム)に本発明を適用したが、DCモータ等の電気アクチュエータによって回動駆動されるスロットルバルブを備えたシステム(電子スロットルシステム)に本発明を適用しても良い。
その他、本発明は、図1に示すような吸気ポート噴射式エンジンに限定されず、筒内噴射式エンジンや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式のエンジンにも適用して実施できる。
本発明の一実施例におけるエンジン制御システム全体の概略構成図である。 (a)は流路切換機構のバイパス吸気通路開放状態を示す断面図であり、(b)は流路切換機構のパージ通路開放状態を示す断面図である。 流路切換機構の動作を説明する図である。 吸気系制御ルーチンの処理の流れを説明するフローチャートである。 吸気系制御の実行例を説明するタイムチャートである。
符号の説明
11…エンジン(内燃機関)、12…吸気管(吸気通路)、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管、30…燃料タンク、37…エバポ通路、38…キャニスタ、39…パージ通路、40…バイパス吸気通路、41…導入通路、42…流路切換機構、43…流量調整弁、44…スロットルボディ、45…ECU(アイドル回転速度制御手段,パージ制御手段)、46…本体ハウジング、47…ニードルバルブ、48…貫通孔、49…揺動片

Claims (6)

  1. 内燃機関の吸気通路のうちのスロットルバルブの上流側から分岐するバイパス吸気通路と、
    前記吸気通路のうちのスロットルバルブの下流側に合流する導入通路と、
    燃料タンク内の燃料が蒸発して生じたエバポガスを吸気系にパージするためのパージ通路と、
    前記スロットルバルブの駆動力によって前記パージ通路を遮断して前記バイパス吸気通路を前記導入通路に連通させるバイパス吸気通路開放状態と前記バイパス吸気通路を遮断して前記パージ通路を前記導入通路に連通させるパージ通路開放状態とが切り換えられる流路切換機構と、
    前記導入通路を流れる気体の流量を調整する流量調整弁と
    を備えていることを特徴とする内燃機関の吸気系制御装置。
  2. 前記流路切換機構は、前記スロットルバルブの開度が少なくともアイドル運転に相当する開度領域のときに前記バイパス吸気通路開放状態に保持され、前記スロットルバルブの開度が前記アイドル運転に相当する開度領域よりも大きい開度領域のときに前記パージ通路開放状態に保持されるように構成されていることを特徴とする請求項1に記載の内燃機関の吸気系制御装置。
  3. 前記流路切換機構が前記バイパス吸気通路開放状態のときに、内燃機関のアイドル回転速度を目標アイドル回転速度に一致させるように前記流量調整弁の開度を制御して前記スロットルバルブをバイパスする吸入空気の流量を調整するアイドル回転速度制御手段を備えていることを特徴とする請求項1又は2に記載の内燃機関の吸気系制御装置。
  4. 前記流路切換機構が前記パージ通路開放状態のときに、内燃機関の運転状態に応じて前記流量調整弁の開度を制御して前記吸気通路にパージするエバポガスのパージ流量を調整するパージ制御手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の内燃機関の吸気系制御装置。
  5. 前記流路切換機構は、トグル機構を用いて構成され、前記スロットルバルブの開度に応じて該トグル機構によって前記バイパス吸気通路開放状態と前記パージ通路開放状態に切れ換えられて保持されるように構成されていることを特徴とする請求項1乃至4のいずれかに記載の内燃機関の吸気系制御装置。
  6. 前記スロットルバルブを内蔵したスロットルボディに、前記バイパス吸気通路と前記導入通路と前記流路切換機構と前記流量調整弁とが設けられてこれらが一体化されていることを特徴とする請求項1乃至5のいずれかに記載の内燃機関の吸気系制御装置。
JP2008181255A 2008-07-11 2008-07-11 内燃機関の吸気系制御装置 Pending JP2010019185A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008181255A JP2010019185A (ja) 2008-07-11 2008-07-11 内燃機関の吸気系制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181255A JP2010019185A (ja) 2008-07-11 2008-07-11 内燃機関の吸気系制御装置

Publications (1)

Publication Number Publication Date
JP2010019185A true JP2010019185A (ja) 2010-01-28

Family

ID=41704337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181255A Pending JP2010019185A (ja) 2008-07-11 2008-07-11 内燃機関の吸気系制御装置

Country Status (1)

Country Link
JP (1) JP2010019185A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163238A1 (ja) * 2018-02-23 2019-08-29 株式会社ミクニ スロットル装置及び燃料蒸発ガス回収システム
WO2022085117A1 (ja) * 2020-10-21 2022-04-28 株式会社ミクニ スロットル装置及びその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163238A1 (ja) * 2018-02-23 2019-08-29 株式会社ミクニ スロットル装置及び燃料蒸発ガス回収システム
CN111356830A (zh) * 2018-02-23 2020-06-30 株式会社三国 节流装置及燃料蒸发气体回收系统
CN111356830B (zh) * 2018-02-23 2021-10-19 株式会社三国 节流装置及燃料蒸发气体回收系统
WO2022085117A1 (ja) * 2020-10-21 2022-04-28 株式会社ミクニ スロットル装置及びその制御方法
JP7458499B2 (ja) 2020-10-21 2024-03-29 株式会社ミクニ スロットル装置

Similar Documents

Publication Publication Date Title
US7284541B1 (en) Purge system for internal combustion engine
US9163590B2 (en) Vaporized-fuel processing system
US7472679B2 (en) Valve control device and valve control method for internal combustion engine
JPH08226355A (ja) 内燃機関の蒸発燃料処理装置
JP2615285B2 (ja) 内燃エンジンの蒸発燃料制御装置
JP2021099036A (ja) エンジン装置
WO2019058705A1 (ja) エンジンシステム
JP2010019185A (ja) 内燃機関の吸気系制御装置
JP2019027296A (ja) エンジンシステム
JP2010203326A (ja) 内燃機関の制御装置
JP2010265751A (ja) エンジンの空燃比制御装置
JP2004183643A (ja) 蒸発燃料処理系のリークを判定する装置
JP2004084513A (ja) 内燃機関の制御装置
JP3955142B2 (ja) 内燃機関のエバポパージ制御方法
JPH09324672A (ja) リーンバーンエンジンの燃料噴射時期制御装置
JP2004156626A (ja) 筒内噴射式内燃機関の制御装置
JP7472764B2 (ja) エンジン装置
JP5510649B2 (ja) 内燃機関の空燃比制御装置
JP2006046179A (ja) 空燃比センサの故障診断装置
JP2019049219A (ja) エンジンシステム
JP4986168B2 (ja) ブローバイガス処理装置
JP2012117415A (ja) 内燃機関の制御装置
JP2021088967A (ja) キャニスタ及びキャニスタシステム
JP4449849B2 (ja) 残留燃料除去装置
JPH0612238Y2 (ja) エンジンのスロツトル開度検出装置