JP2010007492A - 排気温度推定方法及び排気温度推定装置 - Google Patents

排気温度推定方法及び排気温度推定装置 Download PDF

Info

Publication number
JP2010007492A
JP2010007492A JP2008164838A JP2008164838A JP2010007492A JP 2010007492 A JP2010007492 A JP 2010007492A JP 2008164838 A JP2008164838 A JP 2008164838A JP 2008164838 A JP2008164838 A JP 2008164838A JP 2010007492 A JP2010007492 A JP 2010007492A
Authority
JP
Japan
Prior art keywords
intake air
temperature
exhaust gas
air amount
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008164838A
Other languages
English (en)
Inventor
Hideyuki Handa
英之 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008164838A priority Critical patent/JP2010007492A/ja
Publication of JP2010007492A publication Critical patent/JP2010007492A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】内燃機関からの排気の温度を精度良く推定できる排気温度推定方法及び排気温度推定装置を提供する。
【解決手段】定常運転状態に対応付けられた基準吸入空気量に対するその運転状態での吸入空気量の比率を示す吸入空気量比GNから吸入空気量補正係数Kgaを算出するとともに、その運転状態での図示出力に基づく図示出力補正係数Kkwを算出し、これら吸入空気量補正係数Kgaと図示出力補正係数Kkwとをその運転状態に対応付けられた基準排気温度TEbaseに適用して推定排気温度TEpreを算出する。
【選択図】図5

Description

本発明は、内燃機関の排気温度を運転状態に基づいて推定する排気温度推定方法及び排気温度推定装置に関するものである。
内燃機関に適用される排気浄化装置では、排気浄化触媒の活性化を図るべく排気浄化触媒の上流において排気中へ未燃燃料を添加する処理(燃料添加処理)が実行されている。この燃料添加処理に用いられる方法には、例えば排気浄化触媒の上流に設けられた添加剤噴射バルブから燃料を噴射する方法や筒内用の燃料噴射弁から排気行程中に燃料をポスト噴射する方法等が知られている。
ところで、上述する排気浄化触媒は一般にその浄化能力の経時的な劣化を避け難いものであり、こうした排気浄化触媒を利用する排気浄化装置においては、排気性状を維持する上で長期間使用した排気浄化触媒を新しいものに適宜交換する作業が必要となる。そして、この排気浄化触媒の交換作業を適切なタイミングで実行するためには、上述する排気浄化装置にて排気浄化触媒の劣化度合を正確に把握することが必要となる。
こうした排気浄化触媒の劣化度合いの判定技術としては、排気浄化触媒の下流に設けられた排気温度センサからの排気温度を利用する技術が知られている。一般に上述する燃料添加処理が実行されているときには、未燃燃料の反応熱により触媒床温が上昇するために排気浄化触媒を通過した排気の温度は該反応熱を受けて上昇するようになる。上記未燃燃料の反応熱は排気浄化触媒の劣化度合が低いときほど高くなるために、排気浄化触媒を通過した排気の温度は排気浄化触媒の劣化度合と相関を有して変化することになる。これによって上記排気温度センサからの排気温度に基づいて排気浄化触媒における反応熱の大きさを推定することができ、この反応熱の大きさに基づいて触媒の劣化度合を判定することができる。
一方、上述のように排気温度センサからの排気温度は、排気浄化触媒の劣化度合と相関を有するものの、その相関の大きさは排気温度センサ近傍の排気流量によって変化してしまう。例えば、排気流量が非常に少ない場合には、排気の流れが不均一であるために排気温度センサの取り付け位置や排気通路の形状等によっては、排気浄化触媒の反応熱によって排気が温度上昇しても、その排気が排気温度センサの検出部に接触せずに通過してしまい、排気温度を正確に検出できないことがある。こうした場合には、排気浄化触媒における反応が良好に行われて実際の触媒床温が十分に上昇しているにも関わらず、排気温度センサによって検出される排気温度が上昇しにくくなるため、検出値である排気温度と排気浄化触媒の劣化度合との相関が得難くなり排気浄化触媒が劣化している旨の誤判定がなされるおそれがある。そこで、上述する排気浄化装置においては、こうした排気温度センサによる誤判定を避けるべく、従来から排気温度を高い精度の下で推定する技術が提案されている(例えば、特許文献1)。
特開2006‐291828号公報
ところで、上述する排気温度推定方法では、基準となる排気温度(基準排気温度TEbase)を得るために、まずは同基準排気温度TEbaseを運転状態に対応付けたマップが利用されて、実際の運転状態における燃料噴射量及びエアフロメータの検出値をそのマップに適用することで基準排気温度TEbaseが算出される。そして、吸気温度セン
サの検出値である吸入空気温検出値TImsと前記基準排気温度TEbaseとを用いることにより、排気温度の推定値である推定排気温度TEpreが式(1)に基づいて算出される。
TEpre←(TEbase−TIms)×Kga+TIms…(1)
式(1)における吸入空気量補正係数Kgaは、エアフロメータの検出値に応じて基準排気温度TEbaseを補正すべく設定された補正係数である。一般には、上記エアフロメータの検出値と上記マップを構築した際の吸入空気量である基準吸入空気量との間には実際の運転状態に応じた誤差を生じるために、この誤差を補正すべく、前記基準吸入空気量に対するエアフロメータの検出値の比率(吸入空気量比GN)に基づいて前記吸入空気量補正係数Kgaが算出される。そして、この吸入空気量補正係数Kgaが推定排気温度TEpreに対して適用されることにより、実際の吸入空気量と基準吸入空気量との差により生じる誤差が軽減されている。
図8は、上述する推定排気温度TEpreの精度を高めるべく本発明者による実施された試験研究等に基づくものであり、上記吸入空気量比GNと吸入空気量補正係数Kgaとの関係を示すグラフである。図8に示されるように、吸入空気量補正係数Kgaは吸入空気量比GNが増大するに連れて減少する傾向を示す一方で、その吸入空気量比GNごとの減少率は、低出力(破線)と高出力(実線)との差に認められるように図示出力に応じて大きく異なる。それゆえ、上述するように基準排気温度TEbaseを吸入空気量補正係数Kgaで補正しただけの推定値では、図示出力が一定であれば高い精度が得られるものの、一般には図示出力が燃料噴射量等に応じて大きく異なるためにその値に大きな誤差を招くおそれがあり、ひいては排気浄化触媒の劣化度合を正確に判定できないおそれがある。
本発明は、上記実状に鑑みてなされたものでありその目的は、内燃機関からの排気の温度を精度良く推定できる排気温度推定方法及び排気温度推定装置を提供することにある。
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、内燃機関の定常運転状態に対応付けられた基準排気温度をその運転状態に基づいて補正することにより排気温度を推定する排気温度推定方法であって、前記運転状態に対応付けられた基準吸入空気量に対する前記運転状態での吸入空気量の比率を示す吸入空気量比と、前記運転状態での図示出力とに基づく補正係数により前記基準排気温度を補正して推定排気温度を算出することを要旨とする。
内燃機関からの排気の温度は、例えば定常運転状態の吸入空気量比が高くなるほど低くなる傾向を示し、これに加えて同運転状態の図示出力が高くなるほど前記吸入空気量比に対する変化率が大きくなる。この発明によれば、定常運転状態に対応付けられた排気温度がその運転状態における吸入空気量比及び図示出力に基づき補正されるために、吸入空気量比が及ぼす推定値への誤差に加えて、図示出力の違いが及ぼす推定値への誤差までもが軽減できる。それゆえ、図示出力が燃料噴射量等に応じて大きく異なる場合であっても、その運転状態に応じた排気温度を精度良く推定することができる。
請求項2に記載の発明は、前記運転状態での吸入空気温度と前記基準排気温度との差分に対して前記補正係数を適用することを要旨とする。
内燃機関からの排気が有する熱量とは、吸入空気がそもそも有する熱量と、機関燃焼により同吸入空気が得る熱量とを加えたものである。この発明において吸入空気量比及び図示出力に基づく補正係数は、基準排気温度から吸入空気温度を差し引いた温度、言い換えれば機関燃焼により吸入空気が得る熱量に対して適用される。それゆえ、そもそも機関燃
焼に関わる補正である吸入空気量比及び図示出力に基づく補正が同機関燃焼に関わる熱量に対してのみ施されることから、運転状態に応じた排気温度をより精度良く推定することができる。
請求項3に記載の発明は、前記吸入空気量比に対応した吸入空気量補正係数と前記図示出力に相関する燃料噴射量に対応した図示出力補正係数とにより前記基準排気温度を補正することを要旨とする。
内燃機関における図示出力は一般に燃料噴射量に相関する相関値であることから、この燃料噴射量により規定された図示出力補正係数を用いることにより、上述するように図示出力が燃料噴射量に応じて大きく異なる場合であっても、その運転状態に応じた排気温度を精度良く推定することができる。
請求項4に記載の発明は、内燃機関の定常運転状態に対応付けられた基準排気温度をその運転状態に基づいて補正することにより排気温度を推定する排気温度推定装置であって、前記運転状態に対応付けられた基準吸入空気量に対する前記運転状態での吸入空気量の比率を示す吸入空気量比と、前記運転状態での図示出力とに基づく補正係数を算出し、その算出した補正係数を用いて前記基準排気温度を補正することにより推定排気温度を算出することを要旨とする。
内燃機関からの排気の温度は、上述するように定常運転状態における吸入空気量比及び図示出力に応じて変動する。この発明によれば、定常運転状態の排気温度がその運転状態における吸入空気量比及び図示出力に基づき補正されるために、吸入空気量比が及ぼす推定値への誤差に加えて、図示出力の違いが及ぼす推定値への誤差までもが軽減できる。それゆえ、図示出力が燃料噴射量等に応じて大きく異なる場合であっても、その運転状態の排気温度を精度良く推定することができる。
請求項5に記載の発明は、前記運転状態での吸入空気温度と前記基準排気温度との差分に対して前記補正係数を適用することを要旨とする。
内燃機関からの排気が有する熱量とは、上述するように吸入空気がそもそも有する熱量と、機関燃焼により同吸入空気が得る熱量とを加えたものである。この発明によれば、温度検出手段の検出値である吸入空気温度と基準排気温度との差分、言い換えれば機関燃焼により吸入空気が得る熱量に対して補正が適用されるために、そもそも機関燃焼に関わる補正である吸入空気量比及び図示出力に基づく補正が同機関燃焼に関わる熱量に対してのみ施される。それゆえ、定常運転状態の排気温度をより精度良く推定することができる。
請求項6に記載の発明は、前記運転状態を取得する運転状態取得手段を備え、前記運転状態取得手段が取得した前記図示出力に相関する相関値と前記吸入空気量比とに基づいて前記補正係数を算出することを要旨とする。
内燃機関における燃料噴射量は一般に図示出力に相関する相関値であることから、その燃料噴射量に基づく補正係数を用いることにより、上述するように図示出力が大きく異なる場合であっても、同運転状態の排気温度を精度良く推定することができる。
請求項7に記載の発明は、前記運転状態取得手段が取得した回転速度及び燃料噴射量に対応した前記基準吸入空気量を算出するとともに、その算出した基準吸入空気量と前記運転状態取得手段が取得した吸入空気量とから前記吸入空気量比を算出し、前記運転状態取得手段が取得した回転速度及び燃料噴射量に対応した前記基準排気温度を、前記吸入空気量比に対応した吸入空気量補正係数と、前記相関値である燃料噴射量に対応した図示出力補正係数とを用いて前記基準排気温度を補正することを要旨とする。
この発明によれば、基準吸入空気量及び基準排気温度が共通するパラメータである回転速度及び燃料噴射量に基づいて算出されるために、これら基準吸入空気量及び基準排気温度が異なるパラメータに対応付けられる場合に比べて、その運転状態に即した値をより簡便な構成の下で精度良く算出することができる。そして、図示出力に相関する相関値である燃料噴射量を利用して図示出力補正係数を算出するために、上記基準吸入空気量及び基準排気温度を算出するためのパラメータと同じパラメータの下で図示出力補正係数を得ることができる。それゆえ、これら基準吸入空気量、基準排気温度及び図示出力補正係数を異なるパラメータから算出する場合に比べて、複数のパラメータに起因する誤差を軽減させることができ、ひいては運転状態に即した推定排気温度をより簡便な構成の下で精度良く算出することができる。
以下、本発明にかかる排気温度推定装置を車載ディーゼルエンジンに適用した一実施形態について図1〜図7を参照して説明する。図1は、本実施形態にかかるディーゼルエンジとその排気浄化装置の概略構成を模式的に示す図である。
図1に示されるように、ディーゼルエンジン10が有する複数の気筒11は共通するシリンダヘッド12で覆われており、そのシリンダヘッド12には各気筒11の内部である燃焼室11aへ燃料を噴射するための複数の燃料噴射弁13が気筒11毎に搭載されている。複数の燃料噴射弁13には高圧燃料を貯留するコモンレール14が共通に接続されており、そのコモンレール14には燃料タンク15からの燃料を高圧燃料にして吐出する燃料ポンプ16が接続されている。燃料ポンプ16からコモンレール14へ供給される高圧燃料は、図示しないクランクシャフトの回転角に基づく燃料噴射弁13の開弁により該燃料噴射弁13から対応する燃焼室11aへ噴射される。
シリンダヘッド12には、各燃焼室11aに吸入空気を導入するためのインテークマニホールド17が設けられており、インテークマニホールド17には燃焼室11a毎に吸入空気を導入するための図示しない吸気弁が設けられている。またインテークマニホールド17には吸気通路20が接続されており、その吸気通路20の途中には吸気の上流側から順にエアクリーナ21と、ターボチャージャ22のコンプレッサーホイール22aと、吸気を冷却するためのインタークーラ23と、吸入空気量を調整するための電動式の吸気絞り弁24とが配設されている。吸気通路20を通してインテークマニホールド17へ吸入される吸気は、図示しないクランクシャフトの回転角に基づく吸気弁の開弁により該吸気弁から対応する燃焼室11aへ導入される。
シリンダヘッド12には、各燃焼室11aにおける燃焼ガスを排出するためのエキゾーストマニホールド18が設けられており、エキゾーストマニホールド18には燃焼室11a毎に燃焼ガスを排気するための図示しない排気弁が設けられている。各燃焼室11aにおける燃焼ガスは、図示しないクランクシャフトの回転角に基づく排気弁の開弁によりエキゾーストマニホールド18へ排気される。そのエキゾーストマニホールド18には排気再循環装置(EGR装置:Exhaust Gas Recirculation)30と排気浄化装置40とが接続されている。
EGR装置30には、インテークマニホールド17とエキゾーストマニホールド18との間を連通する連通管31が設けられており、その連通管31の途中にはエキゾーストマニホールド18の側から順にEGRクーラ32と電動式のEGR弁33とが配設されている。EGR装置30はエキゾーストマニホールド18からの排気の一部をEGRクーラ32により冷却してEGR弁33の開度に応じた排気量をインテークマニホールド17へ再循環させる。これにより、EGR装置30では、燃料と吸気とで形成する混合気に対して
その燃焼温度を低下させることができ、ひいては窒素酸化物(NOx)の発生量を低減させることができる。
排気浄化装置40には、エキゾーストマニホールド18に配設されて燃料ポンプ16に接続される添加剤噴射バルブ41が備えられており、その添加剤噴射バルブ41からは排気を浄化するための添加剤である未燃燃料が噴射される。また排気浄化装置40には、エキゾーストマニホールド18に連通する排気通路42が備えられており、その排気通路42の途中にはエキゾーストマニホールド18の側から順にターボチャージャ22のタービンホイール22bと、触媒コンバータ43と、触媒担持型のPMフィルタ44とが配設されている。ターボチャージャ22はタービンホイール22bとコンプレッサーホイール22aとを連結するロータシャフト22cを備えており、排気のエネルギーによるタービンホイール22bの回転をロータシャフト22cの回転へと変換することにより吸気通路20における吸気を加圧してインテークマニホールド17へ送り込む。
触媒コンバータ43には、NOx吸蔵型のNOx触媒が備えられており、流通する排気がリーン状態であるときには該排気に含まれるNOxを吸蔵する一方で、流通する排気がリッチ状態であるときには上記吸蔵したNOxと排気に含まれる炭化水素や一酸化炭素とを反応させてこれらを窒素、二酸化炭素、水にして排気を浄化する。ちなみに、リーン状態とは排気の空燃比が理論空燃比よりも高い状態であり、リッチ状態とは排気の空燃比が理論空燃比よりも小さい状態である。
PMフィルタ44は、例えばモノリス型やペレット型等のフィルタであり、排気に含まれる微粒子状物質(PM:Particulate Matter)を捕集する。このPMフィルタ44にも上述する吸蔵型のNOx触媒が備えられており、PMフィルタ44に捕捉されたPMが該触媒の酸化作用によって酸化されて除去される。そして、排気浄化装置40においては、流通する排気がリーン状態であるときに該排気に含まれるNOxがNOx触媒に吸蔵される。また、添加剤噴射バルブ41からの未燃燃料により排気がリッチ状態になるときにはNOx触媒でNOxが還元されるとともにPMフィルタ44に捕集されたPMが酸化されて排気される。これにより、排気浄化装置40は、排気に含まれるPMやNOx、炭化水素や一酸化炭素の浄化を行う。上述するディーゼルエンジン10の各種制御は電子制御装置(ECU50:図2参照)によって行われる。
図2に示されるように、ECU50には各種センサからの検出信号が入力される入力処理回路50Aと、各種制御に関わるプログラムやデータを記憶するROMやROM等からなる記憶部50Bとが備えられている。またECU50には、各種制御に関わる算出処理を実行するCPU等からなる演算部50Cと、各種装置を駆動するための駆動信号を生成して該駆動信号を各種アクチュエータへ出力する出力処理回路50Dとが備えられている。
ECU50の入力処理回路50Aには、回転速度を検出する回転速度センサ51と、冷却水温を検出する冷却水温センサ52と、吸入空気量を検出するエアフロメータ53と、吸気温度を検出する吸気温度センサ54と、大気圧センサ55とが接続されている。
回転速度センサ51は、図示しないクランクシャフトの近傍に設けられており、クランクシャフトの回転速度に応じた信号を出力する。回転速度センサ51からの検出信号は、ECU50へ入力された後に回転速度検出値として各種制御に用いられる。冷却水温センサ52は、シリンダヘッド12の周囲に設けられており、ウォータージャケット内における冷却水の温度である冷却水温に応じた信号を出力する。冷却水温センサ52からの検出信号は、ECU50へ入力された後に冷却水温検出値として各種制御に用いられる。
エアフロメータ53は、吸気通路20におけるエアクリーナ21とコンプレッサーホイール22aとの間に設けられており、吸気通路20における吸入空気量に応じた信号を出力する。エアフロメータ53からの検出信号は、ECU50へ入力された後に吸入空気量検出値として各種制御に用いられる。吸気温度センサ54は、吸気通路20におけるエアクリーナ21とコンプレッサーホイール22aとの間に設けられており、吸気通路20における吸気の温度である吸入空気温度に応じた信号を出力する。吸気温度センサ54からの検出信号は、ECU50へ入力された後に吸入空気温検出値TImsとして各種制御に用いられる。大気圧センサ55は、吸気通路20におけるエアクリーナ21とコンプレッサーホイール22aとの間に設けられており、吸気通路20における大気圧に応じた信号を出力する。大気圧センサ55からの検出信号は、ECU50へ入力された後に大気圧検出値として各種制御に用いられる。
ECU50の出力処理回路50Dには、各種アクチュデータである燃料噴射弁13、燃料ポンプ16、吸気絞り弁24、EGR弁33、及び添加剤噴射バルブ41が接続されている。出力処理回路50Dは、上記各センサの検出信号から把握される運転状態に基づいて各アクチュエータへの指令値、例えば燃料噴射弁13に対する燃料噴射量や添加剤噴射バルブ41に対する燃料添加量を算出し、該指令値に応じた指令信号を出力処理回路50Dから各アクチュエータへ出力する。ECU50はこうした指令信号を出力することにより燃料噴射弁13を用いた燃料の噴射時期制御や噴射量制御を実行し、また吸気絞り弁24及びEGR弁33を用いた吸入空気量制御やEGR量制御を実行し、さらに排気浄化装置40を用いて排気浄化処理を実行する。
ところで、排気浄化装置40のPMフィルタ44では、PMの堆積量が高くなるに連れてPMフィルタ44での圧力損失が増大してしまう。そこで、ECU50はこうした圧力損失を抑制すべく、排気浄化処理の一環として、堆積したPMを一旦燃焼して浄化するためのPM除去制御処理を実行する。すなわち、ECU50はPMフィルタ44に堆積したPM量が限界値に達したと推定されるときに、添加剤噴射バルブ41を用いて間欠的な燃料添加を繰り返し、排気中や触媒上での燃料の酸化反応を進行させることにより、該酸化反応の反応熱で触媒床温を昇温させる。そして触媒床温を例えば600℃〜700℃まで上昇させることにより堆積したPMを燃焼して浄化する。
また、排気浄化装置40のNOx触媒では、燃料や潤滑油に含まれる硫黄分から生成されたSOxがNOxと共に吸蔵される。NOx触媒におけるNOxの吸蔵量には限界があるために、こうしたSOxの吸蔵量が過度に多くなる場合にはNOxの吸蔵能力を低下させてしまう(S被毒を招いてしまう)。そこで、ECU50はこうしたS被毒を抑制すべく、排気浄化処理の一環として、NOx触媒に吸蔵されているSOxを還元するためのS被毒回復制御処理を実行する。すなわち、ECU50はNOx触媒におけるSOxの吸蔵量が限界値に達したと推定されるときに、添加剤噴射バルブ41を用いて間欠的な燃料添加を繰り返し、排気中や触媒上での燃料の酸化反応を進行させることにより、高温(例えば600℃〜700℃)でリッチ状態にある雰囲気をNOx触媒の周囲に形成する。そしてNOx触媒に吸蔵されているSOxを還元して該NOx触媒から放出させる。
また、排気浄化装置40のNOx触媒では、NOxの吸蔵量に限界があるためにNOxの吸蔵量が限界値に達する前に同NOx触媒に吸蔵されているNOxを還元して放出させる必要がある。そこで、ECU50はNOx触媒に吸蔵されているNOxの量が限界値に達したと推定されるとき、排気浄化処理の一環としてNOx還元制御処理を実行する。すなわち、ECU50は添加剤噴射バルブ41を用いて間欠的な燃料添加を繰り返し、排気中や触媒上での燃料の酸化反応を進行させることにより、高温(例えば250℃〜550℃)でリッチ状態にある雰囲気をNOx触媒の周囲に形成する。そしてNOx触媒に吸蔵されているNOxを還元して該NOx触媒から放出させる。
図3は上述した排気浄化処理の一環をなすPM除去制御処理を示すフローチャートであり、図4及び図5はこのPM除去制御処理に利用する昇温制御処理及び排気温度推定処理を示すフローチャートである。PM除去制御処理の制御ルーチンは、ECU50により一定の時間毎に繰り返し実行される。なお、以降の説明においてはPMフィルタ44の触媒床温をフィルタ触媒床温とし、昇温制御におけるフィルタ触媒床温の目標値を目標触媒床温という。
図3に示されるように、PM除去制御処理において、まずはPMフィルタ44の触媒床温であるフィルタ触媒床温が目標値まで昇温させるための昇温制御処理が実行されているか否かをECU50が判定する(ステップS110)。この昇温制御処理が実行されていないときには(ステップS110:YES)、堆積したPMを除去するための条件であるPM除去制御の実行条件が成立しているか否かを判断する(ステップS120)。そしてPM除去制御の実行条件が成立しているときには、フィルタ触媒床温を目標値まで昇温させるための昇温制御処理を実行して(ステップS121)、その後にPM除去制御処理を一旦終了する。一方、PM除去制御処理において、まず昇温制御処理が実行されているときには(ステップS110:NO)、PM除去制御の終了条件が成立しているか否かを判断する(ステップS130)。そしてPM除去制御の終了条件が成立していないときには(ステップ130:NO)、フィルタ触媒床温を目標値まで昇温させるための昇温制御処理を実行して、その後にPM除去制御処理を一旦終了する(ステップS121)。また、PM除去制御の終了条件が成立しているときには(ステップ130:YES)、PM除去制御処理を一旦終了する(ステップS130:YES)。
上述するPM除去制御の実行条件としては、例えばPMフィルタ44に堆積しているPMの堆積量(PM推定量)が限界値に達していること、又は触媒コンバータ43の触媒床温の推定値が燃料の酸化反応を起こすために必要となる下限温度以上であることが挙げられる。なお、PM推定量が限界値に達していることは、例えばディーゼルエンジン10の運転履歴である吸入空気量や燃料噴射量に基づくPM堆積量が所定値以上であること、あるいはPMフィルタ44の上流における圧力の検出値と下流における圧力の検出値との乖離度が所定値よりも大きいこと等に基づいて判断される。
上記昇温制御処理は一定の時間毎に繰り返し実行されるものであり、図4に示されるように、まずは目標触媒床温の設定が行われたか否かをECU50が判定する(ステップS210)。この目標触媒床温の設定が行われていないときには(ステップS210:NO)、運転状態を示す回転速度検出値や燃料噴射量に基づいてECU50が排気温度推定処理を実行して(ステップS211)、その後に目標触媒床温を算出する(ステップS212)。この目標触媒床温は、触媒コンバータ43の正常時にPMフィルタ44上のPMを燃焼させるために最低限必要とされる触媒床温よりも高い温度であり、例えば回転速度検出値及び燃料噴射量に対応付けられた目標触媒床温を示すマップに基づいて算出される。そして触媒コンバータ43の正常時には、この昇温制御処理を通じてフィルタ触媒床温が目標触媒床温に維持されることにより、堆積しているPMが十分に燃焼されるようになる。
上述のように目標触媒床温の設定が行われると、ECU50は目標触媒床温に基づいて添加剤噴射バルブ41による排気への燃料の添加量である燃料添加量を設定する(ステップS214)。すなわち、排気温度推定処理にて算出される推定排気温度TEpreを用いてフィルタ触媒床温の推定値である推定フィルタ触媒床温を推定し、その推定フィルタ触媒床温と目標触媒床温との差に基づいて、フィルタ触媒床温が上記目標触媒床温を維持するために必要となる量の燃料添加量を算出する。そしてECU50により別途実行される燃料添加制御では、この燃料添加量が設定される毎に燃料同添加量の燃料を添加剤噴射
バルブ41から噴射させるべく同添加剤噴射バルブ41が制御される。こうして、添加剤噴射バルブ41による燃料添加が繰り返して実行されることにより、フィルタ触媒床温が目標触媒床温または同目標触媒床温近傍に維持されるようになる。
上記排気温度推定処理は一定の時間毎に繰り返し実行されるものであり、図5に示されるように、まずは運転状態に関わる燃料噴射量及び回転速度に基づいてECU50が基準排気温度TEbaseを算出する(ステップS310)。基準排気温度TEbaseとは、内燃機関の運転状態の変動が少ない状態である所定の定常運転状態の下で予め得られた排気温度の検出値である。ここでは、燃料噴射量及び回転速度に対応付けられた基準排気温度TEbaseを示す基準排気温度マップが利用されて、ECU50が燃料噴射量の算出値及び回転速度検出値をその基準排気温度マップに適用することにより基準排気温度TEbaseを算出する。基準排気温度マップは、予め実施した試験等に基づいて上記定常運転状態での基準排気温度TEbaseを燃料噴射量及び回転速度に対応付けてマップ化することにより構築される。
なお、ディーゼルエンジン10においては、上記PM除去制御やS被毒回復制御等の実行に応じて燃料供給形態が切り替えられる。混合気の燃焼状態は、それぞれの燃料供給形態により異なるために、ECU50には燃料供給形態毎に基準排気温度マップが設定されている。そして、上記基準排気温度TEbaseの算出に際しては、運転状態における燃料供給形態に応じた基準排気温度マップが選択されることにより、その燃料供給形態に応じた基準排気温度TEbaseが算出される。また、ここでは基準排気温度TEbaseを算出するためのパラメータとして回転速度を採用しているが、回転速度の指標値として吸入空気量を採用することもできる。
基準排気温度TEbaseを算出すると、吸入空気量比GNに基づいて前記基準排気温度TEbaseを補正するための吸入空気量補正係数KgaをECU50が算出する(ステップS311)。
吸入空気量比GNとは、上記基準排気温度マップを構築したときの吸入空気量である基準吸入空気量に対する前記吸入空気量検出値の比率であり、エアフロメータ53の検出値である吸入空気量検出値を用いて前記基準排気温度TEbaseを補正するための比率を示す。ここでは、燃料噴射量及び回転速度に対応付けられた基準吸入空気量を示す基準吸入空気量マップが利用されて、ECU50が燃料噴射量の算出値及び回転速度検出値をその基準吸入空気量マップに適用することにより吸入空気量比GNを算出する。なお基準吸入空気量マップは、予め実施した試験等に基づいて定常運転状態での基準排気温度TEbaseを燃料噴射量及び回転速度に対応付けてマップ化することにより構築される。
吸入空気量補正係数Kgaとは、上記吸入空気量比GNにより規格化された補正係数であり、基準排気温度TEbaseから吸入空気温検出値TImsを差し引いた温度に対して適用される。ここでは、吸入空気量比GNに対応付けられた吸入空気量補正係数Kgaを示す吸入空気量補正係数マップMAPga(図2参照)が利用されて、ECU50が吸入空気量比GNの算出値をその吸入空気量補正係数マップMAPgaに適用することにより吸入空気量補正係数Kgaを算出する。なお、吸入空気量補正係数マップMAPgaは、予め実施した試験等に基づいて吸入空気量補正係数Kgaを吸入空気量比GNに対応付けてマップ化することにより構築されており、例えば図6に示されるように、吸入空気量比GNが増大するに連れて吸入空気量補正係数Kgaが減少する傾向を示す。
燃焼室11aからの排気の温度は、吸入空気がそもそも有する熱量と、機関燃焼により同吸入空気が得る熱量とを加えたものである。上述するように、この吸入空気量補正係数Kgaが、基準排気温度TEbaseから吸入空気温検出値TImsを差し引いた温度、
言い換えれば機関燃焼により吸入空気が得る熱量に対して適用されることから、そもそも機関燃焼に関わる補正である吸入空気量比GNに基づく補正が同機関燃焼に関わる熱量に対してのみ施されるようになる。
吸入空気量補正係数Kgaを算出すると、ECU50は燃料噴射量の算出値に基づいて前記基準排気温度TEbaseを補正するための図示出力補正係数Kgaを算出する(ステップS312)。
図示出力補正係数Kkwとは、機関の図示出力に相関する相関値である単位時間あたりの燃料噴射量により規格化された補正係数であり、上記吸入空気量補正係数Kgaと同じく、基準排気温度TEbaseから吸入空気温検出値TImsを差し引いた温度に対して適用される。図示出力とは、燃料の燃焼により燃焼室11aにてなされた仕事であり、クランクシャフトに出力されるトルクに機械部品等のフリクショントルクや補機類の負荷トルクを加算したものである。ここでは、単位時間あたりの燃料噴射量に対応付けられた図示出力補正係数Kkwを示す図示出力補正係数マップMAPkw(図2参照)が利用されて、ECU50が燃料噴射量の算出値をその図示出力補正係数マップMAPkwに適用することにより図示出力補正係数Kkwを算出する。
図示出力補正係数マップMAPkwは、予め実施した試験等に基づいて図示出力補正係数Kkwを図示出力の相関値に対応付けてマップ化することにより構築されており、例えば図7に示されるように、相関値である燃料噴射量が増大するに連れて図示出力補正係数Kkwが減少する傾向を示す。ちなみに、図示出力に相関する相関値として燃料噴射量を利用するために、上記基準吸入空気量及び基準排気温度を算出するためのパラメータと同じパラメータの下で図示出力補正係数Kkwを得ることができる。それゆえ、これら基準吸入空気量、基準排気温度及び図示出力補正係数を異なるパラメータから算出する場合に比べて、複数のパラメータに起因する誤差を軽減させることができる。なお、図示出力補正係数Kkwを算出するためのパラメータとして単位時間あたりの燃料噴射量を採用しているが、図示出力に相関する相関値としては筒内圧センサの検出値等を採用することもできる。
上述したように燃焼室11aからの排気の温度は、吸入空気がそもそも有する熱量と、機関燃焼により同吸入空気が得る熱量とを加えたものである。上述するようにこの吸入空気量補正係数Kgaが、基準排気温度TEbaseから吸入空気温検出値TImsを差し引いた温度、言い換えれば機関燃焼により吸入空気が得る熱量に対して適用されることから、そもそも機関燃焼に関わる補正である図示出力に基づく補正が同機関燃焼に関わる熱量に対してのみ施されるようになる。
図示出力補正係数Kkwを算出すると、ECU50は基準排気温度TEbase、吸入空気温検出値TIms、吸入空気量補正係数Kga及び図示出力補正係数Kkwを利用して、基準排気温度TEbaseの補正値である推定排気温度TEpreを式(2)に基づいて算出する(ステップS313)。
TEpre←(TEbase−TIms)×Kga×Kkw+TIms…(2)
式(2)においては、機関燃焼に関わる補正係数である吸入空気量補正係数Kga及び図示出力補正係数Kkwが、基準排気温度TEbaseと吸入空気温検出値TImsとの差分に対して適用される。それゆえ、基準排気温度TEbaseの全体に対してこれら吸入空気量補正係数Kga及び図示出力補正係数Kkwを適用する場合に比べて、推定値である推定排気温度TEpreを精度良く得ることができる。この結果、推定排気温度TEpreを利用する上記昇温制御処理においては精度良く推定フィルタ触媒床温を算出することができ、ひいてはフィルタ触媒床温に適した燃料添加量で燃料添加制御を実行するこ
とができる。
以上詳述したように、本実施形態によれば以下の効果が得られる。
(1)定常運転状態に対応付けられた基準排気温度TEbaseがその運転状態における吸入空気量比GN及び図示出力に基づき補正されるために、吸入空気量比GNが及ぼす推定値への誤差に加えて、図示出力の違いが及ぼす推定値への誤差までもが軽減できる。それゆえ、運転状態に応じて図示出力が異なる場合であっても、その運転状態に応じた推定排気温度TEpreを精度良く算出することができる。
(2)吸入空気量補正係数Kga及び図示出力補正係数Kkwが基準排気温度TEbaseから吸入空気温検出値TImsを差し引いた温度、言い換えれば機関燃焼により吸入空気が得る熱量に対して適用される。それゆえ、そもそも機関燃焼に関わる補正である吸入空気量比GN及び図示出力に基づく補正が同機関燃焼に関わる熱量に対してのみ施されることから推定排気温度TEpreをより精度良く算出することができる。
(3)基準吸入空気量及び基準排気温度TEbaseが共通する回転速度及び燃料噴射量に基づいて算出されるために、これら基準吸入空気量及び基準排気温度TEbaseが異なるパラメータに対応付けられる場合に比べて、その運転状態に即した値をより簡便な構成の下で精度良く算出することができる。
(4)しかも図示出力に相関する相関値である燃料噴射量を利用して図示出力補正係数Kkwを算出するために、上記基準吸入空気量及び基準排気温度TEbaseを算出するためのパラメータと同じパラメータの下で図示出力補正係数Kkwを得ることができる。それゆえ、これら基準吸入空気量、基準排気温度TEbase及び図示出力補正係数Kkwを異なるパラメータから算出する場合に比べて、複数のパラメータに起因する誤差を軽減させることができ、ひいては運転状態に即した推定排気温度TEpreをより簡便な構成の下で精度良く算出することができる。
なお、上記実施形態は次のように変更して実施することもできる。
・上記実施形態における推定排気温度TEpreを用いて触媒コンバータ43の触媒床温の推定値である推定コンバータ触媒床温を算出し、S被毒回復制御ではこの推定コンバータ触媒床温を用いて燃料添加量を設定することもできる。ちなみに、ディーゼルエンジン10においては、S被毒回復制御の実行中に燃料添加量が適正値を大きく下回っている場合、SOxが十分に還元されないことによりNOxの吸蔵能力の低下を招くおそれがある。一方で、燃料添加量が適正値を大きく上回っている場合には、コンバータ触媒床温やフィルタ触媒床温が過度に高くなることにより触媒コンバータ43やPMフィルタ44の損傷を招くこともある。上記構成を採用した場合には、燃料添加量が適正値を大きく下回るあるいは上回るといった状態が生じ難くなるために、こうした問題の発生を抑制することができる。
・上記実施形態における推定排気温度TEpreを用いて上記推定コンバータ触媒床温を算出し、NOx還元制御ではこの推定コンバータ触媒床温を用いてコンバータ触媒床温が下限温度未満であるか否かを判定することもできる。ちなみに、ディーゼルエンジン10においては、コンバータ触媒床温が下限温度未満であるにもかかわらず排気中への燃料の添加が行われたとき、触媒コンバータ43において燃料の酸化反応が十分に生じないことに起因して種々の問題を招くおそれがある。上記構成を採用した場合には、適切な判定結果に基づいて添加剤噴射バルブ41による燃料添加が実行されるため、こうした問題の発生を抑制することができる。
・上記実施形態の排気温度推定処理にて、まずは機関運転状態が定常運転状態であるか
否かを判断し、その運転状態が定常運転状態である場合には、上述するように吸入空気量補正係数Kga及び図示出力補正係数Kkwに基づく補正を実施する形態であってもよい。吸入空気量補正係数マップMAPga及び図示出力補正係数マップMAPkwが所定の定常運転状態にて構築されるマップであることから、このような構成にすることにより、運転状態に応じた吸入空気量補正係数Kgaや図示出力補正係数Kkwを精度良く算出することができる。
・上記実施形態の推定排気温度TEpreを算出するに際して、基準排気温度TEbaseを吸入空気量補正係数Kga及び図示出力補正係数Kkwで補正するようにした。これに加えて、冷却水温及び大気圧検出値に応じて基準排気温度TEbaseを補正すべく設定された補正係数を基準排気温度TEbaseに適用して上記推定排気温度TEpreを算出してもよい。すなわち、吸入空気量補正係数マップMAPga及び図示出力補正係数マップMAPkwの構築時における冷却水温及び大気圧と上記補正係数とを対応付けたマップを利用して、冷却水温検出値及び大気圧検出値を同マップに適用して算出した補正係数を基準排気温度TEbaseに適用してもよい。このような構成によれば、各種補正係数に関わるマップ構築時の運転状態と推定時の運転状態との間において、冷却水温及び大気圧の差により生じる誤差をも軽減できる。
・上記実施形態では運転状態取得手段を構成するECU50が図示出力に相関する相関値である単位時間あたりの燃料噴射量を取得し、その取得した燃料噴射量を図示出力補正係数マップMAPkwに適用することで図示出力補正係数Kkwを算出する。これを変更して、図示出力を用いて図示出力補正係数Kkwを算出する場合には、ディーゼルエンジン10に設けられた筒内圧センサの検出値に基づいてECU50が図示出力を算出し、図示出力と図示出力補正係数Kkwとを対応付けたマップにその算出した図示出力を適用することで図示出力補正係数Kkwを算出してもよい。このような構成においても、図示出力に基づく補正を基準排気温度TEbaseに適用する上では、上記実施形態に準じた効果を得ることができる。
・上記実施形態では、基準排気温度TEbaseと吸入空気温検出値TImsとの差分に対して吸入空気量補正係数Kga及び図示出力補正係数Kkwを適用した。これに限らず、吸入空気量比GN及び図示出力に基づく補正により推定値を算出する上では、基準排気温度TEbaseの全体に対して吸入空気量補正係数Kga又は図示出力補正係数Kkwを適用してもよい。
・上記実施形態では内燃機関をディーゼル機関に具体化したが、これに限らず他の内燃機関に適用することもできる。また、そうした場合にあっても上記実施形態の効果に準じた効果を得ることができる。
本発明にかかる排気温度推定装置における一実施形態の構成を示す概略図。 同実施形態の電子制御装置を示すブロック回路図。 同実施形態のPM除去制御処理について処理の流れを示すフローチャート。 同実施形態の昇温制御処理について処理の流れを示すフローチャート。 同実施形態の排気温度推定処理について処理の流れを示すフローチャート。 同実施形態の吸入空気量比と吸入空気量補正係数との関係を示す図。 同実施形態の燃料噴射量と図示出力補正係数との関係を示す図。 従来例にかかる吸入空気量比と吸入空気量補正係数との関係を図示出力ごとに示す図。
符号の説明
GN…吸入空気量比、Kga…吸入空気量補正係数、Kkw…図示出力補正係数、MAPga…吸入空気量補正係数マップ、MAPkw…図示出力補正係数マップ、TEbase…基準排気温度、TEpre…推定排気温度、TIms…吸入空気温検出値、10…ディーゼルエンジン、11a…燃焼室、30…排気再循環装置、40…排気浄化装置、41…添加噴射バルブ、50…電子制御装置。

Claims (7)

  1. 内燃機関の定常運転状態に対応付けられた基準排気温度をその運転状態に基づいて補正することにより排気温度を推定する排気温度推定方法であって、
    前記運転状態に対応付けられた基準吸入空気量に対する前記運転状態での吸入空気量の比率を示す吸入空気量比と、前記運転状態での図示出力とに基づく補正係数により前記基準排気温度を補正して推定排気温度を算出することを特徴とする排気温度推定方法。
  2. 前記運転状態での吸入空気温度と前記基準排気温度との差分に対して前記補正係数を適用する請求項1に記載の排気温度推定方法。
  3. 前記吸入空気量比に対応した吸入空気量補正係数と前記図示出力に相関する燃料噴射量に対応した図示出力補正係数とにより前記基準排気温度を補正する請求項1又は2に記載の排気温度推定方法。
  4. 内燃機関の定常運転状態に対応付けられた基準排気温度をその運転状態に基づいて補正することにより排気温度を推定する排気温度推定装置であって、
    前記運転状態に対応付けられた基準吸入空気量に対する前記運転状態での吸入空気量の比率を示す吸入空気量比と前記運転状態での図示出力とに基づく補正係数を算出し、その算出した補正係数を用いて前記基準排気温度を補正することにより推定排気温度を算出することを特徴とする排気温度推定装置。
  5. 前記運転状態での吸入空気温度と前記基準排気温度との差分に対して前記補正係数を適用する請求項4に記載の排気温度推定装置。
  6. 前記運転状態を取得する運転状態取得手段を備え、
    前記運転状態取得手段が取得した前記図示出力に相関する相関値と前記吸入空気量比とに基づいて前記補正係数を算出することを特徴とする
    請求項4又は5に記載の排気温度推定装置。
  7. 前記運転状態取得手段が取得した回転速度及び燃料噴射量に対応した前記基準吸入空気量を算出するとともに、その算出した基準吸入空気量と前記運転状態取得手段が取得した吸入空気量とから前記吸入空気量比を算出し、
    前記運転状態取得手段が取得した回転速度及び燃料噴射量に対応した前記基準排気温度を、前記吸入空気量比に対応した吸入空気量補正係数と、前記相関値である燃料噴射量に対応した図示出力補正係数とを用いて前記基準排気温度を補正することを特徴とする
    請求項6に記載の排気温度推定装置。
JP2008164838A 2008-06-24 2008-06-24 排気温度推定方法及び排気温度推定装置 Withdrawn JP2010007492A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164838A JP2010007492A (ja) 2008-06-24 2008-06-24 排気温度推定方法及び排気温度推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164838A JP2010007492A (ja) 2008-06-24 2008-06-24 排気温度推定方法及び排気温度推定装置

Publications (1)

Publication Number Publication Date
JP2010007492A true JP2010007492A (ja) 2010-01-14

Family

ID=41588280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164838A Withdrawn JP2010007492A (ja) 2008-06-24 2008-06-24 排気温度推定方法及び排気温度推定装置

Country Status (1)

Country Link
JP (1) JP2010007492A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017832A1 (de) 2011-09-29 2013-04-04 Ngk Spark Plug Co., Ltd. Sensorsteuervorrichtung und Sensorsteuersystem
JP2017223138A (ja) * 2016-06-14 2017-12-21 トヨタ自動車株式会社 内燃機関の排気温度推定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017832A1 (de) 2011-09-29 2013-04-04 Ngk Spark Plug Co., Ltd. Sensorsteuervorrichtung und Sensorsteuersystem
DE102012017832B4 (de) 2011-09-29 2021-11-11 Ngk Spark Plug Co., Ltd. Sensorsteuervorrichtung und Sensorsteuersystem
JP2017223138A (ja) * 2016-06-14 2017-12-21 トヨタ自動車株式会社 内燃機関の排気温度推定装置

Similar Documents

Publication Publication Date Title
JP6032358B2 (ja) 排気浄化装置の異常診断装置
JP6582409B2 (ja) 排気浄化システム
US20180023430A1 (en) Internal combustion engine and exhaust-gas-component estimating method
JP4270155B2 (ja) 排気浄化触媒の熱劣化状態検出装置
JP4044908B2 (ja) 内燃機関の排気浄化装置
JP2008002309A (ja) 内燃機関の排気浄化装置
JP2011157892A (ja) 内燃機関の排気浄化装置
JP4561656B2 (ja) 内燃機関の触媒温度推定装置
JP4412218B2 (ja) 内燃機関の制御装置及び内燃機関の排気温度推定方法
JP6477088B2 (ja) NOx吸蔵量推定装置
JP6515576B2 (ja) 排気浄化システム
JP4973355B2 (ja) 内燃機関の排気浄化システム
JP2010007492A (ja) 排気温度推定方法及び排気温度推定装置
JP4605101B2 (ja) 内燃機関用排出ガス浄化装置
JP5857662B2 (ja) 内燃機関の燃料噴射の異常判定方法と内燃機関
JP5004036B2 (ja) 内燃機関の排気浄化装置
JP4600362B2 (ja) 還元剤添加弁の異常検出装置
CN110945218B (zh) 排气净化系统
JP5366015B2 (ja) 内燃機関の排気浄化装置
JP4450233B2 (ja) 内燃機関の排気空燃比推定装置
JP6424618B2 (ja) 排気浄化システム
JP5790435B2 (ja) 内燃機関の燃焼噴射方法と内燃機関
JP4930018B2 (ja) 還元剤添加弁の異常検出装置
JP4315121B2 (ja) 排気浄化触媒の劣化判定装置
JP2008261271A (ja) 内燃機関の排気還流装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100708

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322