JP2010004008A - 光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法 - Google Patents

光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法 Download PDF

Info

Publication number
JP2010004008A
JP2010004008A JP2008273660A JP2008273660A JP2010004008A JP 2010004008 A JP2010004008 A JP 2010004008A JP 2008273660 A JP2008273660 A JP 2008273660A JP 2008273660 A JP2008273660 A JP 2008273660A JP 2010004008 A JP2010004008 A JP 2010004008A
Authority
JP
Japan
Prior art keywords
light
optical
illumination
pattern
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008273660A
Other languages
English (en)
Inventor
Osamu Tanitsu
修 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008273660A priority Critical patent/JP2010004008A/ja
Publication of JP2010004008A publication Critical patent/JP2010004008A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70108Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Abstract

【課題】 光学部材の交換を伴うことなく瞳強度分布を調整することのできる照明光学装置。
【解決手段】 光学ユニットは、二次元的に配列されて個別に制御される複数の光学要素を有する空間変調素子が配置され得る第1光路と、表面に所定の固定パターンを有する角度分布付与素子が挿入されるための機構を有する第2光路と、前記第1光路および前記第2光路の双方を経た光の光路である第3光路と、を備える。角度分布付与素子が前記第2光路に挿入されたときには、当該角度分布付与素子に入射した光に基づいて射出される光に角度分布が付与される。
【選択図】 図2

Description

本発明は、光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法に関する。さらに詳細には、本発明は、半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等のデバイスをリソグラフィー工程で製造するための露光装置に好適な照明光学装置に関するものである。
この種の典型的な露光装置においては、光源から射出された光束が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「瞳強度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。
二次光源からの光束は、コンデンサーレンズにより集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは高集積化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。
露光装置では、何らかの理由により所望の瞳強度分布を得ることができず、ひいては投影光学系が所望の結像性能を発揮することができなくなることがある。そこで、本出願人は、照明瞳面に濃度フィルタを配置することにより瞳強度分布を補正(調整)する技術を提案している(特許文献1を参照)。
特開2004−247527号公報
特許文献1に開示された従来技術では、所定の濃度分布(透過率分布)を有するフィルタを照明瞳面に配置するため、濃度フィルタを交換しない限り瞳強度分布を調整することができないという不都合があった。
本発明は、前述の課題に鑑みてなされたものであり、光学部材の交換を伴うことなく瞳強度分布を調整することのできる照明光学装置を提供することを目的とする。また、本発明は、瞳強度分布を調整することのできる照明光学装置を用いて、所望の照明条件のもとで良好な露光を行うことのできる露光装置および露光方法を提供することを目的とする。
前記課題を解決するために、本発明の第1実施形態では、二次元的に配列されて個別に制御される複数の光学要素を有する空間変調素子が配置され得る第1光路と、表面に所定の固定パターンを有する角度分布付与素子が挿入されるための機構を有する第2光路と、前記第1光路および前記第2光路の双方を経た光の光路である第3光路と、を備え、前記角度分布付与素子が前記第2光路に挿入されたときには、当該角度分布付与素子に入射した光に基づいて射出される光に角度分布が付与されることを特徴とする光学ユニットを提供する。
本発明の第2実施形態では、光源からの光に基づいて被照射面を照明する照明光学装置において、第1実施形態の光学ユニットと、前記空間光変調器及び前記角度分布付与素子を介した光束に基づいて、前記照明光学装置の照明瞳に所定の光強度分布を形成する分布形成光学系とを備えていることを特徴とする照明光学装置を提供する。
本発明の第3形態では、所定のパターンを照明するための第2実施形態の照明光学装置を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。
本発明の第4実施形態では、第3実施形態の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、前記パターンが転写された前記感光性基板を現像し、前記パターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法を提供する。
本発明の第5実施形態では、光源からの光に基づいて所定のパターンを感光性基板に露光する露光方法において、前記光源からの光を角度分布付与素子へ導いて所定の瞳強度分布を照明瞳に形成する第1工程と、前記光源からの光を第1光束と、前記角度分布付与素子へ向かう、該第1光束とは異なる第2光束とに分割する第2工程と、前記第1光束を、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器へ導く第3工程と、前記空間光変調器を介した第1光束を前記照明瞳の位置へ導く第4工程と、前記照明瞳を介した光により前記所定のパターンを照明する第5工程と、前記照明された前記所定のパターンからの光に基づいて前記感光性基板を露光する第6工程とを含むことを特徴とする露光方法を提供する。
本発明の第6実施形態では、第5実施形態の露光方法を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、前記パターンが転写された前記感光性基板を現像し、前記パターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とする電子デバイス製造方法を提供する。
本発明の照明光学装置では、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器を介した光束と、例えば回折光学素子のような角度分布付与素子を介した光束とに基づいて、照明瞳に所定の光強度分布を形成する。したがって、角度分布付与素子により照明瞳に固定的に形成される光強度分布を、空間光変調器により照明瞳に可変的に形成される光強度分布により補正することにより、所望の瞳強度分布を得ることができる。
すなわち、本発明の照明光学装置では、光学部材の交換を伴うことなく瞳強度分布を調整することができる。また、本発明の露光装置では、瞳強度分布を調整することのできる照明光学装置を用いて、所望の照明条件のもとで良好な露光を行うことができ、ひいては良好なデバイスを製造することができる。
本発明の露光方法では、光源からの光を例えば回折光学素子のような空間光変調器へ導いて所定の瞳強度分布を照明瞳に形成する。その一方で、光源からの光を角度分布付与素子へ向かう第1光束と、第1光束とは異なる第2光束とに分割し、この第2光束を、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器へ導く。空間光変調器を介した第2光束は照明瞳の位置へ導かれ、所定の光強度分布を照明瞳に形成する。照明瞳を介した光により所定のパターンを照明し、照明された所定のパターンからの光に基づいて感光性基板を露光する。
こうして、角度分布付与素子により照明瞳に固定的に形成される光強度分布を、空間光変調器により照明瞳に可変的に形成される光強度分布により補正することにより、所望の瞳強度分布を得ることができる。その結果、本発明の露光方法においても、所望の照明条件のもとで良好な露光を行うことができ、ひいては良好な電子デバイスを製造することができる。
本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。図2は、空間光変調ユニットの構成を概略的に示す図である。図1において、感光性基板であるウェハWの法線方向に沿ってZ軸を、ウェハWの面内において図1の紙面に平行な方向にY軸を、ウェハWの面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。
図1を参照すると、本実施形態の露光装置には、光源1からの露光光(照明光)が供給される。光源1として、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。光源1から射出された光は、整形光学系2により所要の断面形状の光束に拡大された後、空間光変調ユニット3に入射する。
空間光変調ユニット3は、図2に示すように、斜面が対向するように配置された一対の直角プリズム31および32と、この直角プリズム対(31,32)から光軸AX方向に間隔を隔て且つ斜面が対向するように配置された一対の直角プリズム33および34と、2組の直角プリズム対(31,32)および(33,34)に近接して配置された平行平面板35と、平行平面板35に近接して配置された空間光変調器36とを備えている。
空間光変調ユニット3では、直角プリズム31の入射面31aに光軸AXに沿って入射した光が、直角プリズム31の内部を伝播した後、直角プリズム31と32との間に形成された分離膜(ビームスプリッター)37に入射する。分離膜37は、入射光束を反射光束と透過光束とに振幅分割する機能を有する。分離膜37で反射された光は、直角プリズム31および平行平面板35の内部を伝播した後、空間光変調器36に入射する。
空間光変調器36は、二次元的に配列された複数のミラー要素(一般には光学要素)36aと、複数のミラー要素36aの姿勢を個別に制御駆動する駆動部36bとを有する。駆動部36bは、制御部4からの指令にしたがって、複数のミラー要素36aの姿勢を個別に制御駆動する。なお、空間光変調器36のさらに詳細な構成および作用については後述する。
空間光変調器36の複数のミラー要素36aにより反射された光は、平行平面板35および直角プリズム33の内部を伝播した後、直角プリズム33と34との間に形成された分離膜38に入射する。分離膜38も、分離膜37と同様に、入射光束を反射光束と透過光束とに振幅分割する機能を有する。分離膜38で反射された光は、直角プリズム33の内部を伝播した後、その射出面33aから空間光変調ユニット3の外部へ射出される。
空間光変調器36のすべてのミラー要素36aの反射面がXY平面に沿って位置決めされた基準状態では、空間光変調ユニット3に光軸AXに沿って入射して空間光変調器36を経た光は、空間光変調ユニット3から光軸AXに沿って射出される。なお、空間光変調器36を経て分離膜38を透過した光は、直角プリズム34の内部を伝播した後、不要光として照明光路の外部へ導き出される。
一方、直角プリズム31の入射面31aに光軸AXに沿って入射して分離膜37を透過した光は、直角プリズム32の内部を伝播した後、直角プリズム対(31,32)と(33,34)との間の照明光路中に配置された回折光学素子5に入射する。回折光学素子5は、照明光路に対して挿脱自在に構成され、ファーフィールド(遠視野領域)に異なる光強度分布を形成する他の回折光学素子と交換可能に構成されている。
回折光学素子5の照明光路に対する挿脱は、制御部4からの指令にしたがって行われる。一般に、回折光学素子は、基板に露光光(照明光)の波長程度のピッチを有する段差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有する。以下、露光装置の基本的な動作の理解を容易にするために、空間光変調器36の作用を無視するとともに、回折光学素子5として輪帯照明用の回折光学素子が配置されているものとする。
回折光学素子5を経た光は、直角プリズム34の内部を伝播した後、分離膜38に入射する。回折光学素子5を経て分離膜38を透過した光は、直角プリズム33の内部を伝播した後、その射出面33aから空間光変調ユニット3の外部へ射出される。すなわち、空間光変調ユニット3に光軸AXに沿って入射して回折光学素子5を経た光は、空間光変調ユニット3から光軸AXに沿って射出される。なお、回折光学素子5を経て分離膜38で反射された光は、直角プリズム34の内部を伝播した後、不要光として照明光路の外部へ導き出される。
このように、空間光変調ユニット3において、直角プリズム31と32との間に形成された分離膜37は、入射光束を2つの光束(一般には複数の光束)に分割する光分割器を構成している。また、直角プリズム33と34との間に形成された分離膜38は、空間光変調器36を介した光束と角度分布付与素子としての回折光学素子5を介した光束とを合成する光合成器を構成している。空間光変調ユニット3から射出された光は、アフォーカルレンズ6に入射する。
ここで、分離膜37から分離膜38までの光路であって、空間光変調ユニット36のミラー要素36aを介する光路を第1光路とする。分離膜37から分離膜38までの光路であって、回折光学素子5が挿入されるための機構を有する光路を第2光路とする。分離膜38から射出された光の光路であって、第1光路及び第2光路の双方を経た光の光路を第3光路とする。図2に示されるように、第2光路の回折光学素子5が挿入されるための機構は、回折光学素子5が挿入されるための空間を有する。なお、光路とは、使用状態において、光が通ることが意図されている経路をいう。
輪帯照明用の回折光学素子5は、矩形状の断面を有する平行光束が入射した場合に、この光束を波面分割すると共にファーフィールド(またはフラウンホーファー回折領域)に輪帯状の光強度分布を形成する機能を有する。アフォーカルレンズ6は、その前側焦点位置と空間光変調器36のミラー要素36aの位置および回折光学素子5の位置とがほぼ一致し且つその後側焦点位置と図中破線で示す所定面7の位置とがほぼ一致するように設定されたアフォーカル系(無焦点光学系)である。
したがって、回折光学素子5に入射したほぼ平行光束は、アフォーカルレンズ6の瞳面に輪帯状の光強度分布を形成した後、輪帯状の角度分布でアフォーカルレンズ6から射出される。
このように、回折光学素子5は、表面に所定の固定パターンを有する角度分布付与素子として機能することができる。すなわち、回折光学素子5が第2光路に挿入されたときには、回折光学素子5に入射した光に基づいて射出される光に角度分布が付与される。回折光学素子の所定の固定パターンは、遮光性または減光性パターン等の明暗パターン、あるいは表面の段差パターン等の位相パターンを用いることができる。
アフォーカルレンズ6の前側レンズ群6aと後側レンズ群6bとの間の光路中においてその瞳面の位置またはその近傍の位置には、円錐アキシコン系8が配置されている。円錐アキシコン系8の構成および作用については後述する。
アフォーカルレンズ6を介した光束は、σ値(σ値=照明光学装置のマスク側開口数/投影光学系のマスク側開口数)可変用のズームレンズ9を介して、ビームスプリッター10に入射する。ビームスプリッター10を透過した光は、照明光路に沿って、シリンドリカルマイクロフライアイレンズ11に入射する。一方、ビームスプリッター10で反射された光は、照明光路の外へ導かれ、照明瞳分布計測部12に入射する。
照明瞳分布計測部12は、例えばシリンドリカルマイクロフライアイレンズ11の入射面と光学的に共役な位置に配置された撮像面を有するCCD撮像部を備え、シリンドリカルマイクロフライアイレンズ11の入射面に形成される光強度分布をモニターする。すなわち、照明瞳分布計測部12は、照明瞳または照明瞳と光学的に共役な面で瞳強度分布を計測する機能を有する。照明瞳分布計測部12の計測結果は、制御部4に供給される。照明瞳分布計測部12の詳細な構成および作用については、例えば特開2006−054328号公報や米国特許公開第2008/0030707号公報を参照することができる。
シリンドリカルマイクロフライアイレンズ11は、図3に示すように、光源側に配置された第1フライアイ部材11aとマスク側に配置された第2フライアイ部材11bとから構成されている。第1フライアイ部材11aの光源側の面および第2フライアイ部材11bの光源側の面には、X方向に並んで配列されたシリンドリカルレンズ群11aaおよび11baがそれぞれピッチp1で形成されている。第1フライアイ部材11aのマスク側の面および第2フライアイ部材11bのマスク側の面には、Z方向に並んで配列されたシリンドリカルレンズ群11abおよび11bbがそれぞれピッチp2(p2>p1)で形成されている。
シリンドリカルマイクロフライアイレンズ11のX方向に関する屈折作用(すなわちXY平面に関する屈折作用)に着目すると、光軸AXに沿って入射した平行光束は、第1フライアイ部材11aの光源側に形成されたシリンドリカルレンズ群11aaによってX方向に沿ってピッチp1で波面分割され、その屈折面で集光作用を受けた後、第2フライアイ部材11bの光源側に形成されたシリンドリカルレンズ群11baのうちの対応するシリンドリカルレンズの屈折面で集光作用を受け、シリンドリカルマイクロフライアイレンズ11の後側焦点面上に集光する。
シリンドリカルマイクロフライアイレンズ11のZ方向に関する屈折作用(すなわちYZ平面に関する屈折作用)に着目すると、光軸AXに沿って入射した平行光束は、第1フライアイ部材11aのマスク側に形成されたシリンドリカルレンズ群11abによってZ方向に沿ってピッチp2で波面分割され、その屈折面で集光作用を受けた後、第2フライアイ部材11bのマスク側に形成されたシリンドリカルレンズ群11bbのうちの対応するシリンドリカルレンズの屈折面で集光作用を受け、シリンドリカルマイクロフライアイレンズ11の後側焦点面上に集光する。
このように、シリンドリカルマイクロフライアイレンズ11は、シリンドリカルレンズ群が両側面に配置された第1フライアイ部材11aと第2フライアイ部材11bとにより構成されているが、X方向にp1のサイズを有しZ方向にp2のサイズを有する多数の矩形状の微小屈折面が縦横に且つ稠密に一体形成されたマイクロフライアイレンズと同様の光学的機能を発揮する。シリンドリカルマイクロフライアイレンズ11では、微小屈折面の面形状のばらつきに起因する歪曲収差の変化を小さく抑え、たとえばエッチング加工により一体的に形成される多数の微小屈折面の製造誤差が照度分布に与える影響を小さく抑えることができる。
所定面7の位置はズームレンズ9の前側焦点位置の近傍に配置され、シリンドリカルマイクロフライアイレンズ11の入射面はズームレンズ9の後側焦点位置の近傍に配置されている。換言すると、ズームレンズ9は、所定面7とシリンドリカルマイクロフライアイレンズ11の入射面とを実質的にフーリエ変換の関係に配置し、ひいてはアフォーカルレンズ6の瞳面とシリンドリカルマイクロフライアイレンズ11の入射面とを光学的にほぼ共役に配置している。
したがって、シリンドリカルマイクロフライアイレンズ11の入射面上には、アフォーカルレンズ6の瞳面と同様に、例えば光軸AXを中心とした輪帯状の照野が形成される。この輪帯状の照野の全体形状は、ズームレンズ9の焦点距離に依存して相似的に変化する。シリンドリカルマイクロフライアイレンズ11における波面分割単位としての矩形状の微小屈折面は、マスクM上において形成すべき照野の形状(ひいてはウェハW上において形成すべき露光領域の形状)と相似な矩形状である。
シリンドリカルマイクロフライアイレンズ11に入射した光束は二次元的に分割され、その後側焦点面またはその近傍(ひいては照明瞳)には、入射光束によって形成される照野とほぼ同じ光強度分布を有する二次光源、すなわち光軸AXを中心とした輪帯状の実質的な面光源からなる二次光源(輪帯状の瞳強度分布)が形成される。シリンドリカルマイクロフライアイレンズ11の後側焦点面またはその近傍に形成された二次光源からの光束は、その近傍に配置された開口絞り13に入射する。
開口絞り13は、シリンドリカルマイクロフライアイレンズ11の後側焦点面またはその近傍に形成される輪帯状の二次光源に対応した輪帯状の開口部(光透過部)を有する。開口絞り13は、照明光路に対して挿脱自在に構成され、且つ大きさおよび形状の異なる開口部を有する複数の開口絞りと切り換え可能に構成されている。開口絞りの切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。開口絞り13は、後述する投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定する。
開口絞り13により制限された二次光源からの光は、コンデンサー光学系14を介して、マスクブラインド15を重畳的に照明する。こうして、照明視野絞りとしてのマスクブラインド15には、シリンドリカルマイクロフライアイレンズ11の波面分割単位である矩形状の微小屈折面の形状と焦点距離とに応じた矩形状の照野が形成される。マスクブラインド15の矩形状の開口部(光透過部)を介した光束は、結像光学系16の集光作用を受けた後、所定のパターンが形成されたマスクMを重畳的に照明する。すなわち、結像光学系16は、マスクブラインド15の矩形状開口部の像をマスクM上に形成することになる。
マスクステージMS上に保持されたマスクMを透過した光束は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。こうして、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハステージWSを二次元的に駆動制御しながら、ひいてはウェハWを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが順次露光される。
なお、輪帯照明用の回折光学素子5に代えて、たとえば複数極照明用(2極照明用、4極照明用、8極照明用など)の回折光学素子や円形照明用の回折光学素子のように適当な特性を有する回折光学素子を照明光路中に設定することによって、様々な形態の変形照明を行うことができる。回折光学素子の切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。
円錐アキシコン系8は、光源側から順に、光源側に平面を向け且つマスク側に凹円錐状の屈折面を向けた第1プリズム部材8aと、マスク側に平面を向け且つ光源側に凸円錐状の屈折面を向けた第2プリズム部材8bとから構成されている。そして、第1プリズム部材8aの凹円錐状の屈折面と第2プリズム部材8bの凸円錐状の屈折面とは、互いに当接可能なように相補的に形成されている。また、第1プリズム部材8aおよび第2プリズム部材8bのうち少なくとも一方の部材が光軸AXに沿って移動可能に構成され、第1プリズム部材8aの凹円錐状の屈折面と第2プリズム部材8bの凸円錐状の屈折面との間隔が可変に構成されている。以下、理解を容易にするために、輪帯状または4極状の二次光源に着目して、円錐アキシコン系8の作用およびズームレンズ9の作用を説明する。
第1プリズム部材8aの凹円錐状屈折面と第2プリズム部材8bの凸円錐状屈折面とが互いに当接している状態では、円錐アキシコン系8は平行平面板として機能し、形成される4極状または輪帯状の二次光源に及ぼす影響はない。しかしながら、第1プリズム部材8aの凹円錐状屈折面と第2プリズム部材8bの凸円錐状屈折面とを離間させると、輪帯状または4極状の二次光源の幅(輪帯状の二次光源の外径と内径との差の1/2;4極状の二次光源に外接する円の直径(外径)と内接する円の直径(内径)との差の1/2)を一定に保ちつつ、輪帯状または4極状の二次光源の外径(内径)が変化する。すなわち、輪帯状または4極状の二次光源の輪帯比(内径/外径)および大きさ(外径)が変化する。
ズームレンズ9は、輪帯状または4極状の二次光源の全体形状を相似的(等方的)に拡大または縮小する機能を有する。たとえば、ズームレンズ9の焦点距離を最小値から所定の値へ拡大させることにより、輪帯状または4極状の二次光源の全体形状が相似的に拡大される。換言すると、ズームレンズ9の作用により、輪帯状または4極状の二次光源の輪帯比が変化することなく、その幅および大きさ(外径)がともに変化する。このように、円錐アキシコン系8およびズームレンズ9の作用により、輪帯状または4極状の二次光源の輪帯比と大きさ(外径)とを制御することができる。
本実施形態では、空間光変調器36として、たとえば二次元的に配列された複数のミラー要素36aの向きを連続的にそれぞれ変化させる空間光変調器を用いている。このような空間光変調器として、たとえば特表平10−503300号公報およびこれに対応する欧州特許公開第779530号公報、特開2004−78136号公報およびこれに対応する米国特許第6,900,915号公報、特表2006−524349号公報およびこれに対応する米国特許第7,095,546号公報、並びに特開2006−113437号公報に開示される空間光変調器を用いることができる。
空間光変調器36では、制御部4からの制御信号に応じて作動する駆動部36bの作用により、複数のミラー要素36aの姿勢がそれぞれ変化し、各ミラー要素36aがそれぞれ所定の向きに設定される。空間光変調器36の複数のミラー要素36aによりそれぞれ所定の角度で反射された光は、アフォーカルレンズ6の瞳面、シリンドリカルマイクロフライアイレンズ11の入射面、およびシリンドリカルマイクロフライアイレンズ11の後側焦点面またはその近傍の照明瞳(開口絞り13が配置されている位置)に、所定の光強度分布を形成する。
すなわち、アフォーカルレンズ6、ズームレンズ9、およびシリンドリカルマイクロフライアイレンズ11は、空間光変調器36を介した光束および回折光学素子(角度分布付与素子)5を介した光束に基づいて、照明光学装置(2〜16)の照明瞳に所定の光強度分布を形成する分布形成光学系を構成している。さらに、開口絞り13と光学的に共役な別の照明瞳位置、すなわち結像光学系16の瞳位置および投影光学系PLの瞳位置にも、上記所定の光強度分布に対応する光強度分布が形成される。
露光装置では、マスクMのパターンをウェハWに高精度に且つ忠実に転写するために、パターン特性に応じた適切な照明条件のもとで露光を行うことが重要である。この目的のため、照明光学装置(2〜16)の照明瞳に、ひいては投影光学系PLの瞳面に、所望の光強度分布を形成することが求められる。しかしながら、前述したように、露光装置では、何らかの理由により所望の瞳強度分布を得ることができず、ひいては投影光学系PLが所望の結像性能を発揮することができなくなることがある。
一例として、図4に示すように、回折光学素子5により形成される輪帯状の瞳強度分布41の形状および大きさが所望の形状および大きさであっても、A−A断面に沿った強度が一様ではなく不均一になることがある。本実施形態では、照明瞳分布計測部12が、回折光学素子5により形成される輪帯状の瞳強度分布41に対応する光強度分布を計測し、計測結果(形状、大きさ、強度の不均一性など)を制御部4に供給する。
制御部4は、照明瞳分布計測部12からの計測結果に基づいて、空間光変調ユニット3中の空間光変調器36を制御する制御信号を、空間光変調器36の駆動部36bに供給する。駆動部36bは、制御部4からの指令にしたがって、複数のミラー要素36aの姿勢をそれぞれ変化させ、各ミラー要素36aをそれぞれ所定の向きに設定する。こうして、空間光変調器36の作用により、回折光学素子5が形成した輪帯状の瞳強度分布41の強度の不均一性を補正し、所望の瞳強度分布42を得ることができる。この構成によれば、照明光学装置(2〜16)内の光学部材(光透過部材、反射部材)の劣化や汚れ等に起因する瞳強度分布の不均一性の経時的変化や、光源1からの光の光強度分布の経時的変化があっても、所望の瞳強度分布42を安定的に得ることができる。
以上のように、本実施形態の照明光学装置(2〜16)では、二次元的に配列されて個別に制御される複数のミラー要素(複数の光学要素)36aを有する空間光変調器36を介した光束と、回折光学素子(角度分布付与素子)5を介した光束とに基づいて、照明瞳に所定の光強度分布を形成する。したがって、回折光学素子5により照明瞳に形成される光強度分布を、空間光変調器36により照明瞳に可変的に形成される光強度分布により補正することにより、所望の瞳強度分布を得ることができる。
すなわち、本実施形態の照明光学装置(2〜16)では、例えば濃度フィルタを交換する従来技術とは異なり、光学部材の交換を伴うことなく、瞳強度分布を所望の状態に調整することができる。また、本実施形態の露光装置(2〜WS)では、瞳強度分布を所望の状態に調整することのできる照明光学装置(2〜16)を用いて、所望の照明条件のもとで良好な露光を行うことができる。
また、本実施形態では、空間光変調器36の基準状態において、光分割器として機能する分離膜37に入射する入射光束の進行方向と、光合成器として機能する分離膜38から射出される射出光束の進行方向とは平行(一致を含む)である。換言すれば、空間光変調器36の基準状態において、空間光変調ユニット3への入射光束および空間光変調ユニット3からの射出光束の進行方向は、照明光学装置の光軸AXと一致している(または平行である)。このように、空間光変調ユニット3の上流と下流とで光路が同軸(または平行)になるので、例えば瞳強度分布の形成のために回折光学素子を用いる従来の照明光学装置と光学系を共用することができる。
また、本実施形態では、空間光変調器36の複数のミラー要素36aが平行平面板35に近接して配置されている。この場合、平行平面板35が複数のミラー要素36aのカバー部材の役目を果たすことになり、空間光変調器36の耐久性の向上を図ることができる。
なお、上述の説明では、実施形態の作用効果の理解を容易にするために、回折光学素子5により形成される瞳強度分布41が所望の形状および大きさを有する単純な例を示している。しかしながら、これに限定されることなく、回折光学素子5により形成される瞳強度分布の形状、大きさ、強度の不均一性などを、空間光変調器36により照明瞳に可変的に形成される光強度分布により補正(調整)することができる。この場合、必要に応じて、瞳強度分布の形状を積極的に変形させたり、瞳強度分布の強度の均一性を積極的に崩して不均一にしたりすることもできる。
また、上述の説明では、空間光変調器36が照明瞳に可変的に形成する光強度分布により、回折光学素子5により照明瞳に形成される光強度分布を補正している。しかしながら、これに限定されることなく、回折光学素子5が照明瞳の第1領域に形成する光強度分布と、空間光変調器36が照明瞳の第2領域(第1領域とは別の領域)に形成する光強度分布とからなる瞳強度分布を形成することもできる。
具体的には、例えば図5(a)に示すように、回折光学素子5が照明瞳に形成する2極状の光強度分布42a,42bと、空間光変調器36が照明瞳に形成する2極状の光強度分布42c,42dとからなる4極状の瞳強度分布42を形成することができる。あるいは、例えば図5(b)に示すように、回折光学素子5が照明瞳に形成する4極状の光強度分布43a〜43dと、空間光変調器36が照明瞳に形成する中心単極状の光強度分布43eとからなる5極状の瞳強度分布43を形成することもできる。
ここで、照明瞳の第1領域に形成される回折光学素子5による光強度分布と、照明瞳の第2領域に形成される空間光変調器36による光強度分布とが一部だけ重畳していても良い。すなわち、第1領域と第2領域とが一部だけ重畳していても良い。
また、上述のような空間光変調器36による瞳強度分布の変更は、たとえばスキャン露光を行う際にマスクM上の位置に応じて変更しても良い。すなわち、マスクM上に複数のパターン領域がある場合に、所定のパターン領域を照明する際には、例えば図5(a)の瞳強度分布42で照明し、その所定のパターン領域とは異なるパターン領域を照明する際に、図5(b)の瞳強度分布43で照明しても良い。空間光変調器36による瞳強度分布の変更は極短時間(ほぼ一瞬)で行うことができるため、スループットを低下させることなくマスクM上の複数のパターン領域毎に最適な照明条件を与えることができる。
また、上述の説明では、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器として、二次元的に配列された複数の反射面の向き(角度:傾き)を個別に制御可能な空間光変調器を用いている。しかしながら、これに限定されることなく、たとえば二次元的に配列された複数の反射面の高さ(位置)を個別に制御可能な空間光変調器を用いることもできる。このような空間光変調器としては、たとえば特開平6−281869号公報及びこれに対応する米国特許第5,312,513号公報、並びに特表2004−520618号公報およびこれに対応する米国特許第6,885,493号公報の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、二次元的な高さ分布を形成することで回折面と同様の作用を入射光に与えることができる。なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、たとえば特表2006−513442号公報およびこれに対応する米国特許第6,891,655号公報や、特表2005−524112号公報およびこれに対応する米国特許公開第2005/0095749号公報の開示に従って変形しても良い。
また、上述の説明では、複数のミラー要素を有する反射型の空間光変調器を用いているが、これに限定されることなく、たとえば米国特許第5,229,872号公報に開示される透過型の空間光変調器を用いても良い。
また、上述の説明では、空間光変調ユニット3中の照明光路に対して交換可能に挿入される空間光変調器として、光透過性基板の表面に位相型または振幅型の回折パターンが形成された透過型回折光学素子を用いている。しかしながら、これに限定されることなく、透過型回折光学素子に代えて、反射型回折光学素子、透過型屈折光学素子、反射型光学素子などを用いることもできる。
反射型の回折光学素子では、基板表面に位相型または振幅型の回折パターンが形成されている。ちなみに、透過型回折光学素子の振幅型回折パターンは光透過性基板表面の遮光パターンとなり、反射型回折光学素子の振幅型回折パターンは基板表面の反射パターンとなる。透過型屈折光学素子では、光透過性基板の表面に、レンズ面やプリズム面等の所定形状を持つ屈折面が形成されている。一方、反射型屈折光学素子では、基板表面に曲面状やクサビ状のミラー面が形成されている。
図8に、反射型の回折光学手段5Aの構成を示す。図8に示されるように、反射型の回折光学手段5Aは、プリズム51と反射型回折光学素子52とを備える。回折光学手段5Aは、例えば図1において回折光学素子5の代わりに第2光路に挿入することが可能なように構成される。すなわち、図8に示されるように、分離膜37を透過した光がプリズム51の反射面51aで反射した後、反射型回折光学素子52に入射する。反射型回折光学素子52で反射された光は、プリズム51の反射面51bで反射して、分離膜38に入射する。
なお、上述の実施形態では、2組の直角プリズム対(31,32;33,34)と平行平面板35と空間光変調器36とにより、空間光変調ユニット3を構成している。しかしながら、これに限定されることなく、空間光変調ユニット3の具体的な構成については様々な形態が可能である。
また、上述の実施形態では、光束を振幅分割する分離膜37が光分割器として機能し、光束を振幅分割する分離膜38が光合成器として機能している。しかしながら、これに限定されることなく、光分割器および光合成器として偏光分離膜を用いることも可能である。この場合、回折光学素子5が照明瞳に形成する第1偏光状態(例えばS偏光)の第1光強度分布と、空間光変調器36が照明瞳に形成する第2偏光状態(例えばP偏光)の第2光強度分布とからなる瞳強度分布が形成される。
なお、上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。このような可変パターン形成装置を用いれば、パターン面が縦置きでも同期精度に及ぼす影響を最低限にできる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含むDMD(デジタル・マイクロミラー・デバイス)を用いることができる。DMDを用いた露光装置は、例えば特開2004−304135号公報、国際特許公開第2006/080285号パンフレットに開示されている。また、DMDのような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。なお、パターン面が横置きの場合であっても可変パターン形成装置を用いても良い。
このように、本実施形態の露光方法では、光源1からの光を空間光変調器としての回折光学素子5へ導いて所定の瞳強度分布を照明瞳に形成する。その一方で、光源1からの光を回折光学素子5へ向かう第1の光束と、第1の光束とは異なる第2の光束とに分割し、この第2の光束を、二次元的に配列されて個別に制御される複数のミラー要素36aを有する空間光変調器36へ導く。空間光変調器36を介した第2の光束は照明瞳の位置へ導かれ、所定の光強度分布を照明瞳に形成する。
照明瞳を介した光によりマスクMのパターンを照明し、照明されたマスクMのパターンからの光に基づいて感光性基板としてのウェハWを露光する。こうして、回折光学素子5により照明瞳に固定的に形成される光強度分布を、空間光変調器36により照明瞳に可変的に形成される光強度分布により補正することにより、所望の瞳強度分布を得ることができる。その結果、本実施形態の露光方法においても、所望の照明条件のもとで良好な露光を行うことができる。
本実施形態の露光方法では、上述したように、照明瞳に形成される所定の光強度分布を計測し、この計測結果に基づいて空間光変調器36による光変調を制御することができる。また、感光性基板としてのウェハWに露光された被露光パターンを計測して、被露光パターンが許容範囲内か否かを判断し、被露光パターンが許容範囲外であると判断した場合に、空間光変調器36による光変調を制御することもできる。
この場合、具体的には、レジスト(感光性材料)が塗布されたウェハWに実際の露光を行い、露光されたウェハWを現像し、現像されたレジストパターンを計測する。あるいは、レジストパターンをハードマスクとしてウェハWの表面を加工し、加工されたウェハW上のパターンを計測する。この加工には、例えばウェハWの表面のエッチング及び金属膜等の成膜の少なくとも一方が含まれる。
その後、被露光パターン(レジストパターンおよび加工されたウェハW上のパターンの少なくとも一方のパターン)が、得ようとする実デバイスパターンに対して許容範囲内か否かを判断する。ここで、許容範囲は、得ようとする実デバイスパターンと被露光パターンとの形状誤差の許容範囲としても良い。また、露光工程に引き続いて行われるウェハWの表面への加工処理時の誤差等を考慮して許容範囲を決定するために、被露光パターンとして、加工されたウェハW上のパターンを用いても良い。
上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことができる。
次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図6は、半導体デバイスの製造工程を示すフローチャートである。図6に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の投影露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。
ここで、レジストパターンとは、上述の実施形態の投影露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の投影露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。
図7は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図7に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。
ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。
ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源などに対して本発明を適用することもできる。
また、上述の実施形態では、露光装置においてマスクを照明する照明光学装置に対して本発明を適用しているが、これに限定されることなく、マスク以外の被照射面を照明する一般的な照明光学装置に対して本発明を適用することもできる。
また、上述の実施例では、回折光学素子を用いているが、回折光学素子に限定されるものはなく、例えば欧州特許公開第1970943号公報に開示される屈折光学素子のようなものであってもよい。
また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンプレットに開示されているような局所的に液体を満たす手法や、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10−303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。上述の実施例において、米国特許公開第2006/0170901号公報及び米国特許公開第2007/0146676号公報に開示されるいわゆる偏光照明方法を適用することも可能である。
なお、上述の実施形態では、オプティカルインテグレータとして、シリンドリカルマイクロフライアイレンズ11を用いているが、その代わりに、内面反射型のオプティカルインテグレータ(典型的にはロッド型インテグレータ)を用いても良い。この場合、ズームレンズ9の後側にその前側焦点位置がズームレンズ9の後側焦点位置と一致するように集光レンズを配置し、この集光レンズの後側焦点位置またはその近傍に入射端が位置決めされるようにロッド型インテグレータを配置する。このとき、ロッド型インテグレータの射出端がマスクブラインド15の位置になる。ロッド型インテグレータを用いる場合、このロッド型インテグレータの下流の結像光学系16内の、投影光学系PLの開口絞りの位置と光学的に共役な位置を照明瞳面と呼ぶことができる。また、ロッド型インテグレータの入射面の位置には、照明瞳面の二次光源の虚像が形成されることになるため、この位置およびこの位置と光学的に共役な位置も照明瞳面と呼ぶことができる。このとき、ズームレンズ9と集光レンズとの間に、照明瞳分布計測部12へ光を導くためのビームスプリッター10を配置することができる。
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。また、上記実施形態の各構成要素等は、いずれの組み合わせ等も可能とすることができる。
本発明の実施形態にかかる露光装置の構成を概略的に示す図である。 空間光変調ユニットの構成を概略的に示す図である。 シリンドリカルマイクロフライアイレンズの構成を概略的に示す斜視図である。 本実施形態において形成される輪帯状の瞳強度分布およびその調整を模式的に示す図である。 (a)は回折光学素子と空間光変調器とにより4極状の瞳強度分布を、(b)は回折光学素子と空間光変調器とにより5極状の瞳強度分布を形成する例を模式的に示す図である。 半導体デバイスの製造工程を示すフローチャートである。 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。 反射型の回折光学素子の概略構成を示す図である。
符号の説明
1 光源
3 空間光変調ユニット
4 制御部
5 回折光学素子(第2空間光変調器)
6 アフォーカルレンズ
9 ズームレンズ
11 シリンドリカルマイクロフライアイレンズ
12 照明瞳分布計測部
14 コンデンサー光学系
15 マスクブラインド
16 結像光学系
31〜34 直角プリズム
36 空間光変調器
36a 空間光変調器の複数のミラー要素
37,38 分離膜
M マスク
PL 投影光学系
W ウェハ

Claims (20)

  1. 二次元的に配列されて個別に制御される複数の光学要素を有する空間変調素子が配置され得る第1光路と、
    表面に所定の固定パターンを有する角度分布付与素子が挿入されるための機構を有する第2光路と、
    前記第1光路および前記第2光路の双方を経た光の光路である第3光路と、を備え、
    前記角度分布付与素子が前記第2光路に挿入されたときには、当該角度分布付与素子に入射した光に基づいて射出される光に角度分布が付与されることを特徴とする光学ユニット。
  2. 前記第2光路の前記機構は、前記角度分布付与素子が挿入されるための空間を有することを特徴とする請求項1に記載の光学ユニット。
  3. 前記角度分布付与素子は、前記所定の固定パターンを有する基板を備えていることを特徴とする請求項1又は2に記載の光学ユニット。
  4. 前記空間光変調器は、二次元的に配列された複数のミラー要素と、該複数のミラー要素の姿勢を個別に制御駆動する駆動部とを有することを特徴とする請求項1〜3の何れか一項に記載の光学ユニット。
  5. 前記駆動部は、前記複数のミラー要素の向きを連続的に変化させることを特徴とする請求項4に記載の光学ユニット。
  6. 入射光束を複数の光束に分割する光分割器をさらに備え、
    前記第1光路は、前記光分割器によって分割された前記複数の光束のうちの第1光束の光路であり、
    前記第2光路は、前記光分割器によって分割された前記複数の光束のうちの第2光束の光路であることを特徴とする請求項1〜5の何れか一項に記載の光学ユニット。
  7. 前記第1及び第2光束を合成する光合成器をさらに備え、
    前記第3光路は、前記光合成器によって合成された前記第1及び第2光束の光路であることを特徴とする請求項1〜6の何れか一項に記載の光学ユニット。
  8. 前記光分割器は、前記入射光束を、前記第1光束としての反射光束と、前記第2光束としての透過光束とに分離する分離膜を有することを特徴とする請求項6又は7に記載の光学ユニット。
  9. 前記光合成器は、前記空間光変調器を介した前記第1光束を、所要光束としての反射光束と、不要光束としての透過光束とに分離する分離膜を有することを特徴とする請求項6〜8の何れか一項に記載の光学ユニット。
  10. 前記光分割器に入射する前記入射光束の進行方向と、前記光合成器から射出される射出光束の基準状態での進行方向とは平行であることを特徴とする請求項6〜9の何れか一項に記載の光学ユニット。
  11. 前記光学ユニットは、光源からの光に基づいて被照射面を照明する照明光学装置に用いられ、
    前記第3光路は、前記照明光学装置の光軸と一致または平行であることを特徴とする請求項1〜10の何れか一項に記載の光学ユニット。
  12. 前記光学ユニットは、光源からの光に基づいて被照射面を照明する照明光学装置に用いられ、
    前記射出光束の前記基準状態での進行方向は、前記照明光学装置の光軸と一致または平行であることを特徴とする請求項10に記載の光学ユニット。
  13. 光源からの光に基づいて被照射面を照明する照明光学装置において、
    請求項1乃至12のいずれか1項に記載の光学ユニットと、
    前記空間光変調器及び前記角度分布付与素子を介した光束に基づいて、前記照明光学装置の照明瞳に所定の光強度分布を形成する分布形成光学系とを備えていることを特徴とする照明光学装置。
  14. 前記照明瞳に形成される所定の光強度分布を、前記照明瞳または前記照明瞳と光学的に共役な面で計測する照明瞳分布計測部と、該照明瞳計測部による計測結果に基づいて、前記光学ユニット中の前記空間光変調器を制御する制御部とをさらに備えていることを特徴とする請求項13に記載の照明光学装置。
  15. 所定のパターンを照明するための請求項13または14に記載の照明光学装置を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。
  16. 請求項15に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
    前記パターンが転写された前記感光性基板を現像し、前記パターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
    前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法。
  17. 光源からの光に基づいて所定のパターンを感光性基板に露光する露光方法において、
    前記光源からの光を角度分布付与素子へ導いて所定の瞳強度分布を照明瞳に形成する第1工程と、
    前記光源からの光を第1光束と、前記角度分布付与素子へ向かう、該第1光束とは異なる第2光束とに分割する第2工程と、
    前記第1光束を、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器へ導く第3工程と、
    前記空間光変調器を介した第1光束を前記照明瞳の位置へ導く第4工程と
    前記照明瞳を介した光により前記所定のパターンを照明する第5工程と、
    前記照明された前記所定のパターンからの光に基づいて前記感光性基板を露光する第6工程とを含むことを特徴とする露光方法。
  18. 前記照明瞳に形成される所定の光強度分布を計測する第7工程と、
    該第7工程の計測結果に基づいて前記空間光変調器による光変調を制御する第8工程とをさらに含むことを特徴とする請求項17に記載の露光方法。
  19. 前記感光性基板に露光された被露光パターンを計測する第9工程と、
    前記被露光パターンが許容範囲内か否かを判断する第10工程と、
    前記第10工程で前記被露光パターンが許容範囲外であると判断した場合に、前記空間光変調器による光変調を制御する第11工程とをさらに含むことを特徴とする請求項17または18に記載の露光方法。
  20. 請求項17乃至19の何れか一項に記載の露光方法を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
    前記パターンが転写された前記感光性基板を現像し、前記パターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
    前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とする電子デバイス製造方法。
JP2008273660A 2007-10-31 2008-10-24 光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法 Pending JP2010004008A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273660A JP2010004008A (ja) 2007-10-31 2008-10-24 光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007282539 2007-10-31
JP2008135020 2008-05-23
JP2008273660A JP2010004008A (ja) 2007-10-31 2008-10-24 光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2010004008A true JP2010004008A (ja) 2010-01-07

Family

ID=40445528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273660A Pending JP2010004008A (ja) 2007-10-31 2008-10-24 光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法

Country Status (7)

Country Link
US (2) US20090185154A1 (ja)
EP (1) EP2206018B1 (ja)
JP (1) JP2010004008A (ja)
KR (1) KR20100099140A (ja)
CN (1) CN101681120B (ja)
TW (1) TW200935181A (ja)
WO (1) WO2009057822A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128327A (ja) * 2008-11-28 2010-06-10 Hamamatsu Photonics Kk 光変調装置
JP2011133530A (ja) * 2009-12-22 2011-07-07 Ricoh Co Ltd 光偏向装置、光偏向アレー、画像投影表示装置
US9285579B2 (en) 2008-11-28 2016-03-15 Hamamatsu Photonics K.K. Light modulating device and laser processing device
JP2017146496A (ja) * 2016-02-18 2017-08-24 三菱電機株式会社 照明用光源
JP2018519535A (ja) * 2015-05-21 2018-07-19 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影装置を作動させる方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124179B1 (ko) 2003-04-09 2012-03-27 가부시키가이샤 니콘 노광 방법 및 장치, 그리고 디바이스 제조 방법
TWI474132B (zh) 2003-10-28 2015-02-21 尼康股份有限公司 照明光學裝置、投影曝光裝置、曝光方法以及元件製造方法
TWI612338B (zh) * 2003-11-20 2018-01-21 尼康股份有限公司 光學照明裝置、曝光裝置、曝光方法、以及元件製造方法
TWI395068B (zh) 2004-01-27 2013-05-01 尼康股份有限公司 光學系統、曝光裝置以及曝光方法
TWI360837B (en) 2004-02-06 2012-03-21 Nikon Corp Polarization changing device, optical illumination
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
CN101681125B (zh) * 2007-10-16 2013-08-21 株式会社尼康 照明光学系统、曝光装置以及元件制造方法
WO2010016288A1 (ja) * 2008-08-08 2010-02-11 株式会社ニコン 照明光学系、露光装置、およびデバイス製造方法
KR101624009B1 (ko) * 2009-07-31 2016-05-24 칼 짜이스 에스엠티 게엠베하 광학 빔 편향 소자 및 조정 방법
US20110205519A1 (en) * 2010-02-25 2011-08-25 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
JP2012004465A (ja) 2010-06-19 2012-01-05 Nikon Corp 照明光学系、露光装置、およびデバイス製造方法
JP7040453B2 (ja) * 2016-10-04 2022-03-23 株式会社ニコン ビーム走査装置、パターン描画装置、およびパターン描画装置の精度検査方法
CN109426091B (zh) 2017-08-31 2021-01-29 京东方科技集团股份有限公司 曝光装置、曝光方法及光刻方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US522872A (en) * 1894-07-10 Garden-hoe
US5312513A (en) * 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
EP1109067B1 (en) * 1999-12-13 2006-05-24 ASML Netherlands B.V. Illuminator
SE0100336L (sv) * 2001-02-05 2002-08-06 Micronic Laser Systems Ab Adresseringsmetod och apparat som använder densamma tekniskt område
US7015491B2 (en) * 2001-06-01 2006-03-21 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby, control system
KR100576746B1 (ko) * 2001-06-01 2006-05-03 에이에스엠엘 네델란즈 비.브이. 리소그래피장치, 디바이스제조방법, 그 디바이스,제어시스템, 컴퓨터프로그램, 및 컴퓨터프로그램물
US6672722B2 (en) * 2001-06-19 2004-01-06 Intel Corporation Projection engine
US6900915B2 (en) * 2001-11-14 2005-05-31 Ricoh Company, Ltd. Light deflecting method and apparatus efficiently using a floating mirror
US20050095749A1 (en) * 2002-04-29 2005-05-05 Mathias Krellmann Device for protecting a chip and method for operating a chip
US6958806B2 (en) * 2002-12-02 2005-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6891655B2 (en) * 2003-01-02 2005-05-10 Micronic Laser Systems Ab High energy, low energy density, radiation-resistant optics used with micro-electromechanical devices
US7095546B2 (en) * 2003-04-24 2006-08-22 Metconnex Canada Inc. Micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays
KR101159867B1 (ko) * 2003-09-12 2012-06-26 칼 짜이스 에스엠티 게엠베하 마이크로리소그래피 투사 노출 장치용 조명 시스템
DE10343333A1 (de) * 2003-09-12 2005-04-14 Carl Zeiss Smt Ag Beleuchtungssystem für eine Mikrolithographie-Projektionsbelichtungsanlage
TWI360837B (en) * 2004-02-06 2012-03-21 Nikon Corp Polarization changing device, optical illumination
JP4599936B2 (ja) * 2004-08-17 2010-12-15 株式会社ニコン 照明光学装置、照明光学装置の調整方法、露光装置、および露光方法
WO2006035775A1 (ja) * 2004-09-27 2006-04-06 Hamamatsu Photonics K.K. 空間光変調装置、光学処理装置、カップリングプリズム、及び、カップリングプリズムの使用方法
US20060138349A1 (en) * 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI453796B (zh) * 2005-01-21 2014-09-21 尼康股份有限公司 偏光變更單元以及元件製造方法
KR101240130B1 (ko) * 2005-01-25 2013-03-07 가부시키가이샤 니콘 노광 장치, 노광 방법, 및 마이크로 디바이스 제조 방법
US7548302B2 (en) * 2005-03-29 2009-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317506B2 (en) * 2005-03-29 2008-01-08 Asml Netherlands B.V. Variable illumination source
US7804603B2 (en) * 2006-10-03 2010-09-28 Asml Netherlands B.V. Measurement apparatus and method
US8937706B2 (en) * 2007-03-30 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and method
US20080259304A1 (en) * 2007-04-20 2008-10-23 Asml Netherlands B.V. Lithographic apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128327A (ja) * 2008-11-28 2010-06-10 Hamamatsu Photonics Kk 光変調装置
US9285579B2 (en) 2008-11-28 2016-03-15 Hamamatsu Photonics K.K. Light modulating device and laser processing device
JP2011133530A (ja) * 2009-12-22 2011-07-07 Ricoh Co Ltd 光偏向装置、光偏向アレー、画像投影表示装置
JP2018519535A (ja) * 2015-05-21 2018-07-19 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影装置を作動させる方法
JP2017146496A (ja) * 2016-02-18 2017-08-24 三菱電機株式会社 照明用光源

Also Published As

Publication number Publication date
US20090185154A1 (en) 2009-07-23
EP2206018B1 (en) 2013-01-16
KR20100099140A (ko) 2010-09-10
CN101681120B (zh) 2013-03-13
TW200935181A (en) 2009-08-16
US20110261342A1 (en) 2011-10-27
CN101681120A (zh) 2010-03-24
EP2206018A1 (en) 2010-07-14
WO2009057822A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5626433B2 (ja) 照明光学系、露光装置、光学素子およびその製造方法、並びにデバイス製造方法
JP2010004008A (ja) 光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法
JP5935852B2 (ja) 光学ユニット、照明光学装置、露光装置、およびデバイス製造方法
JP5326259B2 (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP5500454B2 (ja) オプティカルインテグレータ、照明光学装置、露光装置、露光方法、およびデバイス製造方法
JP5688672B2 (ja) 光伝送装置、照明光学系、露光装置、およびデバイス製造方法
JP5182588B2 (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP5366019B2 (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
JP5353408B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
WO2009128293A1 (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5187631B2 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2011222841A (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5604813B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5682799B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2008021767A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP2012028543A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2010182703A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2010225954A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2009117672A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2011134763A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2011009317A (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110404

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110412