電子デバイスの製造における主な推進力は、より低価格でより有能かつより小さな電子デバイスに対する消費者の要望である。主な推進力は、さらなる小型化および製造効率における改善に対する製造業者の起動力へと形を変える。その結果製造業者は、可能な限り利益を追求する。半導体デバイスの場合、従来の製作設備またはFABは、半導体基板に1つ以上のプロセスを実行するために、本質的に(または編成構造上)別個の処理ツール、例えば集合ツールを有する。したがって従来のFABは、処理ツールの周囲に編成され、半導体基板を所望の電子デバイスに変えるために、所望の構成に配置される場合がある。例えば、処理ツールは、処理ベイの従来のFAB内に配列される場合がある。理解され得るように、ツール内にある間、ツール間で処理中の基板が実質的に同様の清浄度状態を保つように、ツール間で、基板はSMF、FOUR等のキャリア内に保持される。ツール間の連絡は、基板キャリアをFAB内の所望の処理ツールに搬送することができるハンドリングシステム(自動材料ハンドリングシステム(AMHS)等)によって提供されてもよい。ハンドリングシステムと処理ツールとの間の接合部分は、例示目的のために、一般的に2つの部分、キャリアを処理ツールの積載ステーションに積載/積卸するためのハンドリングシステムとツールとの間の接合部分と、キャリアと積載および積卸を可能にするツールまたはキャリアとツールとの間の基板との接合部分(すなわち、別個のまたはグループの)と、を有すると考えてもよい。処理ツールをキャリアおよび材料ハンドリングシステムに接合する数多くの従来の接合システムが既知である。従来の接合システムの多くは、基板を処理ツールに積載および積卸する際のコストを増加する、または効率の悪さの原因となるという望ましくない機構を有する、処理ツール接合部分、キャリアの接合部分、または材料ハンドリングシステム接合部分のうちの1つ以上をもたらす複雑性の問題がある。以下に、従来のシステムの問題を克服する例示的な実施形態をより詳細に記載する。
業界動向は、将来のICデバイスが約45nm以下の構造を有する可能性があることを示している。効率を向上し、作製コストを削減するために、この規模のICデバイスは、可能な限り大きな半導体基板またはウェハを使用して製造されることが望ましい。従来のFABは、一般的に200mmまたは300mmのウェハを取り扱うことができる。業界動向は、将来的に、FABが450mmのウェハ等、300mmより大きいウェハを取り扱うことができることが望ましいことを示している。理解され得るように、より大きなウェハを使用することは、ウェハ当たりの処理時間が長くなるという結果となり得る。したがって、300mm以上のウェハ等、より大きなウェハを採用する場合、FAB内の仕掛品(WIP)を削減するために、ウェハ処理に、より小さなロットサイズを用いることが望ましい場合がある。また、より小さなウェハロットサイズは、任意のサイズのウェハのロット処理、またはいかなる他の基板もしくは例えばフラットスクリーンディスプレイのフラットパネルを含むフラットパネルに特に望ましい場合がある。WIPの削減および効率を特徴とするロット処理は、それらを使用することによって実施可能となるが、FAB内に小さな処理ロットを採用することは、従来のFAB処理量に悪影響を与える可能性がある。例えば、より小さなロットサイズは、より大きなロットサイズと比較した場合、任意の容量の搬送システム(ウェハロットを搬送する)の搬送システム負荷を増大する傾向がある。これを、図51Aに示されるグラフに図示する。図51Aのグラフは、多くの異なるFAB率(月当たり等の所望の期間毎に開始されるウェハとして示される、例えばWSPM)に対するロットサイズと搬送速度との間の関係(1時間当たりの移動として示される)を図示している。また図51Aのグラフは、従来のFABハンドリングシステムの最大容量(例えば、1時間当たり約6000〜7000を移動する)を示す線を示す。したがって、ハンドリングシステム容量線とFAB率曲線との間の交点は、曲線が利用可能なロットサイズに対する表面を同定する。例えば、任意の従来の搬送システムで約24,000WSPMのFAB率を達成するためには、最小ロットサイズは約15ウェハである。より小さなウェハロットを使用すると、FAB率が減少する。したがって、FAB率に悪影響を与えることなく、1つと小さいウェハロットおよび所望の大きさの大きなウェハロットを使用できるように、ウェハキャリア、キャリアと処理ツールとの間の接合部分、およびキャリア搬送システム(FAB内のツール間、ストレージ位置間等でキャリアを搬送する)が中に配置されるシステムを提供することが望ましい。
半導体部品処理システムの例示的な実施形態を提供する。システムは、部品を処理するための少なくとも1つの処理装置と、一次搬送システムと、二次搬送システムと、第1の搬送システムと第2の搬送システムとの間の1つ以上の接合部分と、を有する。一次および二次搬送システムはそれぞれ、等速セクションに通じる待ち行列セクション内に1つ以上の実質的に等速のセクションを有する。
さらに図1を参照すると、部品キャリア200は、チャンバの外部雰囲気から隔離できる環境内で部品Sを運ぶことができるチャンバ202を画定する。図1に示されるキャリア200の形状は、例示に過ぎず、別の実施形態では、キャリアはいかなる他の所望の形状を有してもよい。キャリア200は、示されるように、キャリア内に部品Sを支持するためのカセット210をチャンバ内に収容することができる。一般的にカセット210は、支持体の列または積み重ねを提供するために上に部品支持棚210Vが施された細長い支持体210S(実施形態では、例えば2つが示される)、または示されるように1つ以上の部品が別々に支持される棚を有する。カセットは、以下により詳細に記載されるように、キャリア構造体に搭載されるか、または取り付けられてもよい。別の実施形態では、キャリアはカセットを有さなくてもよく、部品支持体は、一体型であるか、またはキャリア構造体との単一構造として形成されてもよい。部品は、350mm、300mm、200mm、もしくはあらゆる所望の寸法および形状の半導体ウェハ等のフラット/基板要素、またはディスプレイもしくはいかなる他の適した物品のためのレチクル/マスクあるいはフラットパネルとして示される。キャリアは、従来の13または25ウェハキャリアと比較して、低減されたまたは小さなロットサイズのキャリアであってもよい。キャリアは、部品がわずか1つの小さなロットを運ぶように構成されてもよく、または部品が10未満の小さなロットを運ぶように構成されてもよい。キャリア200と類似する低減容量キャリアの好適な実施例は、2005年8月19日に出願された米国特許出願シリアル番号第11/207,231号、名称「Reduced Capacity Carrier and Method of Use」に記載され、示されており、該文献は、参照することによりその全体が本明細書に組み込まれる。キャリア200と類似するキャリアと処理ツール(例えば、半導体製作ツール、ストッカー、分類機等)との間の接合部分および搬送システムの好適な実施例は、2005年8月23日に出願された米国特許出願シリアル番号第11/210,918号、名称「Elevator Bases Tool Loading and Buffering System」、および2005年8月24日に出願されたシリアル番号第11/211,236号、名称「Transportation System」、に記載され、示されており、該両方の文献は、参照することによりその全体が本明細書に組み込まれる。キャリア200と類似する機構を有するキャリアの他の好適な実施例は、2003年10月30日に出願された米国特許出願シリアル番号第10/697,528号、名称「Automated Material Handling System」に記載され、示されており、該文献は、参照することによりその全体が本明細書に組み込まれる。理解され得るように、より小さなロットを形成する部品は、より大きなロットで起こり得るようにその他の部品の処理が完了するのを待つことなく、後続の作業台に即座に(任意の作業台での処理の完了を受けて)搬送されるため、キャリア200と類似するサイズを縮小したキャリアは、FAB内の仕掛品を減少できる。例示的な実施形態の機構は、小容量キャリアを具体的に参照しながら記載され、示されるが、例示的な実施形態の機構は、13もしくは25、またはその他の任意の所望の数の部品を中に収容できるキャリア等、いかなる他の適したキャリアにも同様に適用される。
さらに図1を参照すると、例示的な実施形態では、キャリア200は、部品を垂直(すなわちZ軸)積み重ねで保持するように形状化されてもよい。キャリア200は、底面もしくは上面開口型または底面および上面開口型キャリアであってもよい。示される例示的な実施形態では、上面および底面は、垂直線またはZ軸に沿って配置されるが、別の実施形態では、上面および底面は、その他の軸のいずれかに沿って配向されてもよい。以下により詳細に記載される上面および底面開口部は、キャリアの開口部204(部品Sは、チャンバ202に出し入れされるが、キャリアによって画定される)は、キャリア内に保持される部品の平面とほぼ一直線に並ぶ(本実施形態では、Z軸と実質的に直交する)ことを意味する。以下に示されるように、一般的にキャリア200は、基部および閉締可能または取り外し可能なドアを有するケーシング212を有する。閉締される場合、ドアは、基部に固定され、封止されてもよい。ドアと基部との間の封止は、チャンバ202を外部雰囲気から隔離できるようにしてもよい。隔離されたチャンバ202は、清浄な空気、不活性ガス等のいずれかの所望の隔離された雰囲気を保持してもよく、または真空を保つことができてもよい。ドアは、キャリアから部品を積載/積卸できるように開口されてもよい。例示的な実施形態では、ドアとは、キャリアが開口され、その中の部品支持棚にアクセスする際に、取り外し可能または取り外される部分を意味する。図1に示される例示的な実施形態では、一般的にケーシング200は、中に部品を受け取ることができる、概して陥凹したまたは中空の部分(以下、シェルと称される)214、および壁(キャップ/カバー等)216を有する。以下に記載されるように、壁216またはシェル214の全体は、キャリアドアとして動作してもよい。壁およびシェルは、キャリアを閉締するために結合され、キャリアを開口するために分離される。例示的な実施形態では、シェルおよび壁は、いずれかの適したプロセスで作製されたアルミニウム合金またはステンレススチール等の金属であってもよい。壁またはシェルもしくは両方は、一体部材(単一構造)であってもよい。別の実施形態では、キャリアケーシングは、適した非金属を含むいずれかの他の適した材料で作製されてもよい。カセット210は、壁216に搭載されてもよいが、別の実施形態では、カセットは、シェルに搭載されてもよい。シェルまたはドアのいずれかへのカセットの搭載は、ドアが開口される際に、キャリアから中のカセットまたは基板を取り出す容易性を助長するように選択されてもよい。示される実施形態では、壁216に、シェルの上面上に位置するが、別の実施形態では、キャリアケーシングは、上面上にシェルを有し、底面上に壁を有する構成を有していてもよい。さらに他の実施形態では、シェルは、上面および底面の両方の上に取り外し可能な壁を有してもよい(すなわち上面および底面開口部を有するキャリア)。その他の別の実施形態では、取り外し可能な壁は、キャリアの横方向に置かれてもよい。例示的な実施形態では、ドアは、受動的な構成要素(例えば、以下にさらに記載されるように、ドアとキャリアとの間およびドアとツール接合部分との間の閉締ならびに開口するパーツまたは構成要素の移動が実質的にない)であってもよい。
ここで、図2Aを参照すると、適した処理ツールのツールポート接合部分2010に置かれるキャリア200が示されている。処理ツールは、いかなる所望の種類、例えば分類機、ストッカー、または物質堆積、リソグラフィ、マスキング、エッチング、研磨、メトロロジ等のプロセスを1つ以上実行できるツール、もしくはロードロック等のプロセスモジュールまたはチャンバを1つ以上有するツールであってもよい。処理ツールは、少なくとも部分的に制御雰囲気を有し、ツール接合部分2010が、ツールまたはキャリア200内の制御雰囲気に影響を与えることなく、ツールとキャリア200との間で部品の積載/積卸ができるようにしてもよい。例示的な実施形態では、一般的にポート接合部分2010は、それを通して基板を処理ツールに積載することができるポートまたは開口部2012、およびポートを閉締するドア、カバー、または取り外し可能部分2014を有してもよい。別の実施形態では、取り外し可能部分は、部分的に開口部を閉締してもよい。図2Aでは、ポートドア2014は、例示目的のために、閉締した位置および開口された位置で示される。図2Aに示される実施形態では、キャリア200は、以下に示されるように、ツールポート2012を有する接合部分の下側に積載されてもよい(すなわちZ方向に移動される)。図2Aはキャリア200のドアとして動作する上面壁216を示す。例えば、壁216は、ポートドア2014に接続され、ポートドアの取り外しと同時に、ツールポート接合部分を開口するために、例えばツール内に移動されてもよい。壁216を取り外すことにより、カセット(そこに搭載される)およびその上の部品がキャリアから移動される(部品搬送機/ロボットによるアクセスのために)。再び図1を参照すると、向き合う支持体210Sを有するカセット210の構成は、カセットの2つ以上の側面(例示的な実施形態では2つの側面)上にアクセスエリア210A、210Bを提供し、部品ロボット(図2Aも参照)がカセット棚上に部品を積載/積卸してもよい。別の実施形態では、キャリアは、いかなる所望の数の部品アクセスエリアを有してもよい。アクセスエリアは、キャリアの周辺の周囲に対称に配列されてもよく、または非対称な構成で配置されてもよい。図2Aに示される例示的な実施形態では、ツールは、例えば2つ以上のアクセスエリア210A、210B内の部品Vにアクセスするために、部品ハンドリングロボット2016A、2016Bを2つ以上有してもよい。別の実施形態では、ツールは、より多いまたはより少ない部品搬送ロボットを有してもよい。カセットへの多方面ロボットアクセスにより、カセットでのロボット間の部品の手渡しを可能にしてもよい。また、部品への多方面ロボットアクセスは、キャリアがツールポートに搬送されるまたは接合される際の配向を定める。したがって、キャリア200は、ツール接合部分に対して1つ以上の配向でツール接合部分に結合されてもよい。キャリアは、ポートドアをその閉締位置に戻すことによって閉締され、これは、キャリアの壁216をシェル214に結合するように戻す。
図2Bを参照すると、別の例示的な実施形態による、キャリア200とツールポート接合部分2010’との接合部分が示されている。本実施形態では、キャリアのシェル214は、ドアとして動作してもよい。示される実施形態では、ツールポートドア2014’は、シェルの外側の汚染物質にツールの内部が曝露されることを防ぐために、シェルの周囲を包囲し、封止するように、キャリアシェルに対してほぼ等角な形状を有していてもよい。例示的な実施形態では、キャリア200は、キャリアが搬送システムのオーバーヘッドから下げられている場合等、上側に積載されてもよい(すなわち(−)Z方向に沿って下方に移動される)。キャリア200を開口するには、キャリアからシェル214を取り外すと同時に、ポートドアを例えばツールの内部に下方((−)Z方向)に移動する。ここではキャリアドア(すなわちシェル214)は、底面上に位置し、下方移動によってキャリアを開口することから、これは、キャリアの底面開口型と称される場合がある。キャリアの開口は、壁216に留まるカセット内の部品を露出させる。本実施形態では、ロボット(図2Aのロボット2016A、2016Bと同様の)は、垂直方向に離間するカセット棚またはその中の部品にアクセスするために、Z軸における自由度を有して提供されてもよい。ロボットは、その上にマッパー(図示せず)を有してもよい。別の実施形態では、シェル216は、通過ビームマッパーにより、シェルの取り外しを受けてカセットをマッピングできるようにするような統合マッパーを有してもよい。図2A〜2Bは、上面および底面開口型であってもよいキャリア200を図示する。その他の別の実施形態では、シェルと壁の配向が反転されてもよく(壁の上面上のシェル)、キャリアは、図2Bと類似するが鏡像である上面開口型(すなわちシェルを上げる)、および図2Aと同様な方法だが、反対である底面開口型(すなわち壁を下げる)であってもよい。
再び図1を参照すると、前述されたように、壁216およびシェル214は、作動することによってツールまたはコンテナ内の清浄な空間を汚染する可能性がある固定具等の移動可能な要素のない受動的な構造であってもよい。例えば、壁およびシェルは、磁気で互いに固定されてもよい。例えば磁気固定具は、永久または電磁石要素226、228またはこれらの組み合わせを有してもよく、所望により、壁およびシェルを固定するために、壁216およびシェル214に置かれてもよい。磁気固定具は、例えば、可逆の要素を電荷が通過することによって、切り替えられる(すなわち、開口するまたは閉締するために)可逆の磁気要素を有してもよい。例えば、壁216は、磁気要素228(例えば鉄鋼材)を含んでもよく、シェル214は、壁とシェルを固定するために作動される磁気スイッチ要素226を含んでもよい。図2A、2Bに示される例示的な実施形態では、壁内の磁気要素およびシェル内の動作可能な磁石は、キャリアドア(壁またはシェルのいずれか、図2A〜2Bを参照)をポートドアに固定することにより、キャリアドアがキャリアの残りの部分から解放されるように、ポートドア接合部分2010、2010’内の磁気固定具2028’、2026’と連動できるように構成されてもよい。別の実施形態では、壁とシェルとの間の磁気固定具は、いかなる他の所望の構成を有してもよい。図23に示される例示的な実施形態では、キャリアは、作動ピン、圧力連結具、またはポート接合部分上の結合連結機構2030と嵌合する形状記憶装置等の機械的連結要素230を含み、キャリアをポート接合部分に連結してもよい。例示的な実施形態では、デバイスは、壁部分に位置するように示されるが、別の実施形態では、デバイスは、シェルに固定されてもよい。図24から理解され得るように、作動可能なデバイスは、取り外し可能な壁部分とポートドアとの間の封止された接合部分内に封入され、デバイスが動作することによってその中に生じる場合がある潜在的微粒子を閉じ込めてもよい。受動的なキャリアおよびキャリアドアは、真空適合型である、清浄で洗浄可能なキャリアを提供する。
前述したように、キャリアドアおよび基部(すなわち壁216およびシェル224)は、キャリアチャンバ202を隔離するために封止されてもよい。また、キャリアがツールのポートと接合される場合(例えば積載ポートモジュール)、キャリアドアおよび基部のそれぞれは、キャリアドア(すなわち、図1の壁216またはシェル214)をポートドアに、およびキャリアの基部をポートにそれぞれ封止するために、封止接合部分を有してもよい。さらにポートドアは、ポートとの封止接合部分を有してもよい。
図3A〜3Cは、封止接合部分(221’:キャリアドアとキャリア、222’:キャリアとポート、223’:ポートドアとポート、および224’:ポートドアとキャリアドア)のそれぞれが、便宜上、略X構造(図3Bに最もよく見られる)と称される場合がある一体封止222’を形成する例示的な実施形態による、キャリア200と類似し、ツールポート2220に接合されている、キャリア200’を示す。示される例示的な実施形態では、キャリアの封止接合部分は、例示目的のために上面開口部に示されるが、キャリアが複数の開口部(図1に示される開口部204と類似する)(例えば、上面および底面)を有する別の実施形態では、それぞれの開口部に封止接合部分が提供されてもよい。理解され得るように、略X構造は、封止接合部分表面の略描写のためだけのものであり、別の実施形態では、封止接合部分表面は、例えば封止接合部分表面が湾曲している、いかなる適した配置であってもよい。略X形状の封止構造は、接合部分間に閉じ込められる容量が実質的にゼロ(0)である、複数の封止接合部分(例えば、221’〜222’)を画定する。したがって、いずれの封止された接合部分の開口は、汚染物質が封止接合部分の開口により開かれる空間に解放されるという結果をもたらさない。さらに、その他の別の実施形態では、封止は、いずれの所望の配向(例えば略+パターンで水平または垂直に配向されている封止接合部分)を有してもよい。例示的な実施形態では、例示目的のためにキャリア200’は、上面開口型として図示され(壁216’は、図2Aに図示される実施形態と同様に上方に持ち上げることによって開口されるドアである)、ポート2220は、底面積載(ツールポートをドックするためにリフタがキャリア220’を上方に持ち上げる)するように構成される。本実施形態では、シェル214’は、封止接合部分214I’、および一様に勾配のついた封止面221C’、222C’を有してもよい。シェル上の封止面222C’、221C’は、実質的に平坦に示されるが、別の実施形態では、表面は一様に傾斜しているが、略X形状の封止構造を生じるために、封止を向上するための包括的または排他的角度もしくはその他の形状が封止面に形成されてもよい。本実施形態では、キャリアの壁216’は、一般的に封止面221CD’および224CD’を画定するように配向される(図3Aに示される例示的な実施形態では、勾配をつけて)封止接合部分216I’を有する。図3Aに見られるように、シェルおよび壁の封止面221C’、221CD’のそれぞれは、壁およびシェルが閉締される際に、封止接合部分221’をほぼ補完的に画定する。キャリアの接合部分214’上の面221C’は、シェル上に位置する場合、壁216’にガイドを提供する略V字型を形成する(例えば図3C参照)。また、例示的な実施形態では、キャリアの封止接合部分221’のキャリアドアは、壁216’の重量が接合部分上の封止圧力を向上するように作用するように置かれてもよい。理解され得るように、本実施形態における壁216’で支持されるカセットおよび部品は、キャリアドアとキャリアの封止を助長する。図3A〜3Bに見られるように、封止面222C’および224CD’は、ポート2220およびポートドア2214上のそれぞれの封止面222P’、224PD’を補完するために配置される。図3Bは、ポート2220にドックされ、封止221’、224’が閉締されたキャリア200’を示す。封止222’、224’の閉締は、ツールおよびキャリアの内部/チャンバが汚染される可能性から、すべての露出される表面(すなわちキャリアまたはツール内側の制御されたもしくは隔離されたチャンバの外側の表面)を封止し、隔離する。図3Bに最もよく見られるように、概してX形状の封止220’は、実質的に接合部分の容量損失ゼロと称される場合がある封止を形成することから、最適な清浄度を提供する。前述したように、これは、キャリアドアまたはポートドアのいずれかが開口される際に、封止220’の封止形状が露出される外側表面を有する実質的なポケットまたは空間を生成しない(すなわち内部表面となる)ことを意味する。これは図3Cに最もよく見られるが、ポートドア2214の取り外し、したがってキャリアのドア216’の取り外しは、未封止/外部表面のいずれもキャリア/プロセスツールの内部に露出しない。
図3Cに示されるように、本実施形態では、キャリアドアの上面開口により、結果としてキャリアのチャンバ202’は、壁216’で保持される、上げられたカセットの下に置かれる。キャリアのチャンバ202’は、強制空気循環システム(図示せず)を有する場合があるツールの内部と連通してもよく、これによってキャリアのチャンバ内に一般的なベンチュリ流が生じてもよい。本実施形態では、キャリアのチャンバ内の循環空気流は、上げられたカセット(壁216’からぶら下がる)上の部品の下に位置し、循環により乱された微粒子が堆積する可能性は最小である(上記部品から離れて落ち着く)。図3A〜3Cに示される例示的な実施形態では、キャリア200’は、適した持ち上げ装置LDでポート2220に接合し、ドックするために、上げられてもよい。キャリアおよび持ち上げ装置上に適した登録機構LDRが提供され、キャリアを該装置上に置き、したがってポートに関連してキャリアを置いてもよい。別の実施形態では、キャリアは、いずれかの適した方法でポートに保持されてもよい。キャリアドア216’は、磁気固定、機械的連結(例えばドア間の封止される接合部分に置かれる)またはドア間の封止される接合部分に生成される真空吸引によってポートドア2214に固定されてもよい。ポートドア2214は、所望のマッピングセンサ(図示せず)を通してカセット(図1のカセット210と類似する)をインデクシングすることができる、適したデバイスによって開口/閉締される。
ここで、図4を参照すると、別の例示的な実施形態によるキャリア300が示されており、キャリア300は、概してキャリア200と類似するが反対であり、壁316の上面上にシェル314を有する。キャリア200と同様に、キャリア300は、上面開口型(シェルがドアとして動作する)または底面開口型(壁がドアとして動作する)のいずれかであってよい。示される例示的な実施形態では、キャリア300は、一体型搬送機構成要素300Mを有してもよい。例えば、キャリアのシェル(または壁)314、316は、ローラーまたは空気ベアリング、および駆動部またはモータによって駆動され得る反応部材等の搬送機起動支持体を有してもよく、これによってFAB内のキャリアを自己搬送可能(すなわち独立した搬送運搬車を使用することなく)にしてもよい。図4は、例示目的のために積載ポート3010(概して前述されたポート2010に類似する)に置かれたキャリア300を図示する。示される例示的な実施形態では、キャリア300は、ポート接合部分上に上面積載されてもよい。キャリアドア316は、ポートドア3014に合わせてまたは隣接して(接合部分を形成するように)置かれてもよく、シェル314は、ポート3012と接合してもよい。また、キャリア300とポートの接合部分は、図3Bに示される略X封止220’と類似する、3、4、または5方向“交差”型(または容量損失なし)封止を有してもよい。図4Aは、一実施形態による、封止320の断面図を示す。例示的な実施形態では、封止320は、底面開口型構造の4方向封止であってもよいが、その他の点では、封止220’と概して類似する。
図4Bは、別の例示的な実施形態による、キャリアとポートとの間の接合部分の別の断面、およびその間の封止を示す。本実施形態では、封止320’は、実質的に封止320と類似する。図4Bは、シェルの接合部分314I’が支持フランジ/機構326’、328’を有し得ることをさらに示す。本実施形態では、フランジ326’は、壁316’を操作してもよく、例えば、フランジがキャリアドアの一部分に重なり合い(示される実施形態では、機構はドア接触面を画定するが、別の実施形態では、機構はドアと接触しなくてもよい)、キャリアドアが閉締される場合に壁316’をシェル314’に保持するための磁気固定具326M’を位置付けてもよい。さらに、機構326’は、ポートドア3014内の磁気固定具3040’に重なり合ってもよい。ポートドア内の磁気固定具3040’は、キャリアドアを取り外すために、壁316’をポートドア3014’に固定するように動作してもよい。キャリアのシェルの機構326’を置くことによって、ポートドア固定具3040’(壁316’をポートドアに固定する)を有効化され、例えばほぼ同時に壁316’のシェル314’への固定を、固定解除/無効化してもよい。反対に、ポートドア3014’の閉締を受けて、ポートドア固定具3040’の固定解除/無効化により、壁316’とシェル314’との間の磁気ラッチ326M’が固定されるようにしてもよい。例示的な実施形態では、シェル上の外部機構328’は、置かれる際に、キャリアを位置付けるためにポート3010’の位置付け/センタリング機構3012C’と嵌合してもよい。図4Bに図示される外部機構328’の形状は、例示に過ぎず、別の実施形態では、キャリアは、いかなる所望の位置付け機構を有してもよい。前述されたように、封止320’のX構造は、封止接合部分のパージ容量は実質的にゼロであるため、キャリアドアを開口する前に封止接合部分をパージしなくてもよい。別の実施形態(例えば図4Bを参照)では、ポートは、パージライン3010Aを含んでもよい。パージライン3010Aは、いかなる封止接合部分の上またはその間にあってもよい。図4Cは、別の例示的な実施形態による、キャリアとツールポートの接合部分の別の断面を示す。キャリアとポートの接合部分は、前述された封止320と概して類似する封止320’’を有する。本実施形態では、キャリアのシェル314’’は、ポートドア3014’’を積載することなくキャリア300’’をポート上に置く(すなわち、キャリアの重量をポートドア3014’’上に分散することなく、キャリア300’’をポート上に支持する)ために、キャリアドア(壁)316’’を有する支持体328’’を有してもよい。ポートドアでのキャリアドア封止321’’との封止接触は、キャリアドアを開口および閉締する際、依然としてほぼ一定である。
図5A〜5Cは、別の例示的な実施形態による、ツールポートと結合された、キャリア300と類似するキャリア300Aを図示する。本実施形態ではキャリア300Aは、上面開口型であり、底面積載されてもよい(図5Aの矢印+zで示される方向)。キャリアのシェル316Aは、キャリアドアとして動作してもよい。図5Bに最もよく見られる封止接合部分320Aは、3方向封止(パージまたは損失容量がほぼゼロであり、前述された封止320、220と類似する)と称される場合がある略Y構造(壁とシェルの接合部分321A、壁とポートの接合部分322A、ポート3012Aとポートドア3014Aの接合部分323A)である。本実施形態では、ポートドア3014Aは、シェル316Aに対してほぼ等角であってもよい。例えば、シェル316Aは、ポートドア3014Aに取り付けられてもよい。例示的な実施形態では、シェル316Aおよびポートドア3014Aは、その間の接合部分の容量が最小化されるように嵌め込まれ、置かれる。封止(図示せず)は、間の接合部分を封止するために、シェル316Aとポートドアとの間に提供されてもよい。図5Bに見られるように、本実施形態では3014Aであるポートドアは、ポートドアとキャリアドアの接合部分容量をパージするために真空ポート3010Vを有してもよい。
再び図2A〜2Bを参照すると、さらに他の例示的構成による、キャリアとポートの接合部分が示されている。接合部分220、220’は、図2A、2Bに示される例示的な実施形態とほぼ類似する(それぞれ、底面積載/上面開口型、上面積載/底面開口型)。封止接合部分220、220’は略「交差」またはX構造(壁216とシェル214の接合部分221、シェル214とポートの接合部分222、ポート2012とポートドア2014の接合部分223、およびポートドアと壁216の接合部分224)を有する4方向封止であってもよい。図2Aに見られるように、本実施形態では、封止接合部分222、224は、接合面の相対運動(キャリアを積載中、およびポートドアの閉締中)に対してほぼ平行な方向に(例えば垂直に)置かれてもよい。すなわち、キャリアまたはキャリアドアの閉締位置への移動は、封止閉締を生成しない。本実施形態では、封止接合部分222、224を形成する面の1つ以上は、封止接合部分で実質的な摩擦接触なく封止セクションを作動し、封止接合部を閉締するために、例えば、可膨張式封止、圧力作動封止、または形状記憶部材等の作動可能な封止とともに提供されてもよい。記載される封止構造は、例示に過ぎない。
再び図1を参照すると、キャリアのシェル214は、キャリアをハンドリングするために外部支持体240を有してもよい。支持体240は、例えばハンドルとして示されるが、いかなる適した形状を有してもよい。例示的な実施形態では、支持体240は、キャリアのハンドリング安定性を最適化するために、所望するだけ離れたシェルの反対側に設置されてもよい。別の実施形態では、より多い、またはより少ない支持体が提供されてもよい。ここで、図6Aを参照すると、キャリアのシェル220Aは、シェルの底面に隣接して位置するせん孔したまたは陥凹した部材、薄膜もしくはフィルタ260Aを有して示されている。部材中のせん孔または陥凹部は、キャリアドアが開口される際にシェル内に引き起こされるベンチュリまたは渦流の強度を軽減するまたは低減するような寸法および形状である。別の実施形態では、ベンチュリまたは渦流の軽減要素は、キャリア内のいかなる他の適した場所に設置されてもよい。キャリア200Aは、例示目的のために、底面上にシェルを有して示されるが、別の実施形態では、キャリアは上面上にあってもよい。実質的に滑らか/層流を部品上に維持することを助長するために、さらなる流れ矯正空間および/またはベーン(図示せず)がツールの内部に提供されてもよい。図6Bは、別の例示的な実施形態によるキャリア200Bを示す。キャリア200Bは、チャンバ内の部品を異なる温度、次いで周囲温度に維持するために、熱調整器250を有してもよい。例えば、キャリアのシェルまたは壁214B、216Bは、部品を周囲より高い温度に加熱する/上昇するために、例えばカセット支持体を介して熱的に部品に接続される熱電モジュールを有してもよい。周囲より高い部品温度は、粒子を駆動し、熱泳動によって部品から水分子が離れ、部品がキャリアの外にある場合、またはキャリアドアが開口されている場合の汚染を防ぐ。別の実施形態では、マイクロ波エネルギー等のいずれかの他の所望の熱調整器が使用されてもよい。その他の別の実施形態では、水分子および微粒子による汚染を防ぐために、それぞれの部品の周りに静電界を生成してもよい。
ここで、図1A〜1Bを参照すると、例示的な実施形態では、カセット210(図1も参照)には、棚に360°の陽性保持で部品を支持するために、棚210Vが取り付けられていてもよい。それぞれの棚210Vは、1つ以上の棚席または支持体210Cによって形成されてもよい。図1Aに見られるように、例示的な実施形態では、カセット棚支持体210Cは、支持体が部品をほぼまたぐように設置されてもよい。それぞれの棚210Vは、棚に置かれた部品に対する周囲制限を形成するために、膨らんだ表面を有してもよい。膨らんだ表面には、部品Sを置くための位置付けガイド210Lを形成するために、傾いていてもよい(垂直線に対して)。棚210Vの部品が置かれる表面に傾斜をつけ(部品の底面に対、部品の底面に対して例えば約1°の傾斜角を形成するように)、例えば周囲除外領域内で部品の底面と確実に接触するようにしてもよい。別の実施形態では、部品棚は、受動的な部品抑制を画定するいかなる適した構成を有してもよい。その他の別の実施形態では、棚は、受動的な部品抑制を有さなくてもよい。
ここで、図7A〜7Bを参照すると、別の例示的な実施形態による、図1に示されるキャリア200と類似する、閉締および開口位置にあるキャリア200Cがそれぞれ示されている。本実施形態では、カセット210Bは、高さを変えることができる。キャリア200Bが閉締している場合、カセット210Bは、最小の高さであってもよく、キャリアドア(例えば壁216B)が開口している場合、カセットは最大の高さまで伸張されてもよい。カセットが最小の高さから最大の高さに伸張する場合、カセットの部品/棚間の傾斜が増加し、したがってアクセスされる場合のキャリアの高さが最小となり、部品間の空間が最大となるようにすることができる。本実施形態では、カセットの支持体210SBは、略ベローズ構造を有してもよい。支持体は、例えばアルミニウムシート、またはいずれかの他の適した材料(例えば形状記憶材料)から作製されてもよく、連接接合部なく、十分な柔軟性を与える。示されるように、カセットの支持体は、キャリアの壁216Bの上面で支持されてもよい。キャリアの上面開口(図7Bに示されるように壁216Bを取り外す)または底面開口(図2Bに示されるものと同様にシェル214Bを取り外す)は、カセット(ベローズ)支持体210SBを重力下で拡大する。カセットのベローズは、キャリアドアを閉締することによって圧縮される。図7Cに見られるように、ベローズ210SBは、上に部品が乗る部品支持体210VBを有してもよい。例示的な実施形態では、部品支持体210VBは、ベローズが拡大する/潰れる際に、ベローズの隣接部分210PBに対してほぼ一定の半径位置に留まる(したがって部品と部品席との間の相対的半径が移動するのを避ける)ように、成型されてもよい。理解され得るように、ベローズカセットは、カセット内の部品がベローズの隣接するプリーツセクション210PB間に能動的にクランプされるように、潰されてもよい。理解され得るように、上側クランプ部分は、部品の周辺端部に沿って部品と接触してもよい。図7Bに見られるように、例示的な実施形態では、カセットが伸張される場合に部品Sの位置を判断するために、通過ビームマッパー2060B、もしくはツールまたはキャリア内の他の適したデバイスが提供されてもよい。また部品ロボット(図示せず)は、部品を掴むための適切な位置決めを保証するために、部品の近接を検出するためのセンサを有してもよい。
前述したように、受動的なキャリアドアおよび封止を有するキャリアは、ロードロック等の真空可能チャンバへの直接接合に適している。図8は、別の例示的な実施形態による、真空可能チャンバ(簡便のためにロードロックと称される)400のポートの接合部分4010に直接結合されるキャリア200’(上面開口型)を示す。図8に示されるキャリア200’は、前述されたキャリア200、300と概して類似する。例示的な実施形態では、ロードロックは、ポートドア4014を開口/閉締し、したがってキャリアドア(本実施形態では上面壁216’)を開口/閉締し、カセット210’を上げる/下げるように動作するインデクサ410を有する。例示的な実施形態では、インデクサ410は、Z方向高さが低いまたは最小のロードロックチャンバを提供するように構成されてもよい。例えば、インデクサ410は、ロードロックチャンバ400Cの外側に置かれ、チャンバおよびロードロックの全体の高さを減少するようにロードロックチャンバに沿って配置されてもよい。例示的な実施形態では、インデクサ410は、駆動セクション412および連結セクション414を有してもよい。示される実施形態では、駆動セクション412は、例えばシャトル416を上げる/下げるためのモータ駆動ベルトまたはネジ駆動を有する電気機械駆動システムを有してもよい。例示的な実施形態では、連結セクション414は、駆動セクション上のシャトル416をポートドア4014に連結する磁気連結具であってもよい。ポートドアは、例えば磁石(永久または電磁石)またはその上に位置する磁性体であってもよく、磁気連結具414の内側部分414Iを形成する。また、ドア4014の磁石部分414Iは、ポートドアをポートフレーム4012に固定してもよい。例えば、ポートフレーム4012は、ポートドア上の磁石部分/磁石414Iとともに動作し、ドアが閉締位置にある場合にドアとポートを固定するように配置される適した磁石(図2Bの磁石2028’と類似する)を有してもよい。例示的な実施形態では、ポートフレーム内の磁気固定要素は、ドア4014上の磁気連結部分414Iとともに動作してもよい。別の実施形態では、ドアと駆動部との間の磁気連結具およびドアとフレームとの間の磁気固定具は、任意の適した構成を有してもよい。図8に見られるように、チャンバの壁400Wは、駆動セクション412をチャンバ400Cの内側から隔離する。その他の例示的な実施形態(図18〜19も参照)では、駆動セクション412’は、ポートドア4014’の反応部分414I’で動作し、ポートドアを移動するリニアモータ(例えば線形誘導モータ、LIM)であってもよい。LIMは、チャンバの壁の外側に位置し、チャンバの内側から隔離されてもよい。図18〜19に示される例示的な実施形態では、駆動部は、チャンバへの電力が停止した場合に、ポートドア4014’を開口位置に保持するためのフェ−ルセーフ固定具を形成する磁性体セクション4122’、または永久磁石を含んでもよい。別の実施形態では、ポートドアを閉締位置に下げるための所望の制御を可能にするために、適した緩衝装置が駆動部に接続されてもよい。図8および18〜19から理解され得るように、例示的な実施形態では、ポートドアとポートフレームとの間の封止は、ドアの重量が接合部分の封止を助長するように位置される。
また、図8に示される例示的な実施形態では、磁気連結具のそれぞれのセクション414Iは、ポートドア4014およびキャリアドア216’を互いに固定してもよい。例えば、キャリアドアは、ポートおよびキャリアドアを互いに固定するように作動される際に、連結セクション414I(例えば可変磁場を有する電磁石、または磁石を含んでもよい)と連動するように置かれる、適した磁石(例えば永久磁石)または磁性体228’を含んでもよい。例示的な実施形態では、ポートドアの運動は、同様にチャンバから隔離されるガイドによって誘導されてもよい。例えば、示される実施形態では、ベローズ400Bは、ポートドアとチャンバの壁を接続し、ポートドアの移動ガイド4006をチャンバから隔離する。本実施形態では、一般的にガイドは、テレスコーピングセクションを有する。テレスコーピングガイドは、例示目的のために中空円筒型テレスコーピングセクションから作製されるように示されるが、別の実施形態では、任意の適した構成を有してもよい。その他の別の実施形態では、インデクサは、その他のあらゆる所望の構成を有してもよい。例えば、ポートドアへの機械的誘導なく、ポートドアの制御移動を可能にする、参照することによりその全体が本明細書に組み込まれる2003年7月22日に出願された米国特許出願第10/624、987号に開示されるもの等、適したインデクシングモータがチャンバの壁内に位置してもよいが、チャンバの内側から隔離される。ベローズ400Bは、ポートドアの閉締を助長するために、加圧型であってもよい。また、ベローズは、ポートドアに接続される真空ライン、および電力/信号ライン等のアンビリカルシステムを収容してもよい。例示的な実施形態では、ポートドアは、以下にさらに記載されるように、チャンバのポンプダウンポートを形成する真空源に接続されるポートPD10を有してもよい。
ここで、図9を参照すると、別の例示的な実施形態による、真空チャンバ400’上のキャリア300’が示されている。示される例示的な実施形態では、キャリア300’は、底面開口型キャリア(例えば前述されたキャリア300と類似する、図3も参照)であってもよい。例示的な実施形態では、ポートドア4014’は、開口される際、チャンバ内に下げられてもよい。インデクサ(図示せず)は、図8、18〜19に示されるものと類似するが、ポートドアを下方に移動するように配置される。チャンバおよびポートドアは、閉締位置にあるドアをチャンバフレームに固定するために、磁気固定具4028’、4026’を有してもよい。例示的な実施形態では、ポートフレームは、1つ以上のコイル要素4028’(磁気固定具のフレームの側部と称される場合があるものを画定する)を有してもよい。コイル要素4028’は、所望の位置に置いてもよく、ドア固定具構成要素4026’上で作用する磁場を生成してもよい。ドア上の磁気固定具構成要素4026’は永久磁石であっても磁性体であってもよい。例示的な実施形態では、コイル要素4028’は、例示目的のためにチャンバ内に位置するように示される。別の実施形態では、コイル要素は、外側に位置してもよい。チャンバの壁は、チャンバの内側から隔離される。コイル要素は、フレームに対して固定または静止されてもよい。磁場強度は、磁気固定具内の磁力を低減し、ポートドアの移動を容易にするために、所望により低減されてもよい。別の実施形態では、コイル要素は、可動式であってもよく、例えば駆動システムのシャトルに搭載され、ポートドアとインデクサとの間の磁気連結具の一部を形成してもよい。別の実施形態では、磁気固定具は、前述されたキャリアドアとキャリアを固定するためのものと類似していてもよい。また、フレームに磁気固定するポートドア4014’上の永久磁石または磁性体4026’は、図8に示されるものと同様にインデクサとの連結具を提供してもよい。また、図9に示される実施形態のチャンバも、図8に示されるものと類似するベローズおよびポートドアガイドを有してもよい。ベローズは、特にキャリアドアおよびカセットがポートドア上に置かれる場合、ポートドアの持ち上げを助長し、閉締位置に維持するために、加圧型であってもよい。別の実施形態では、チャンバは、中にポートドアガイドのないベローズを有してもよい。真空器は、ポートドアとキャリアドアの接合部分を通してチャンバをポンプダウンするように、ポートドアに接続されてもよい。したがって、図8に示される例示的な実施形態のように、例示的な実施形態では、チャンバポンプダウンポートは、ポートドア内に置かれてもよい。
再び図8を参照すると、例示的な実施形態では、ロードロックチャンバのポンプダウンは、例えばチャンバポートに接合されるキャリアおよびインデクサ410によって閉締位置から移動されるポートドアとともに機能してもよい。図8から理解され得るように、例示的な実施形態では、ポートドア内の真空ポートPD10を介するロードロックチャンバのポンプダウンは、キャリアドア216’とポートドア4014の接合部分を通過してもよい。キャリアドアとポートドアの接合部分を通るチャンバ/キャリアガスの吸引流は、接合部分に負の圧力を生成し、汚染物質がチャンバ内に不慮に逃げ込むのを防ぐ。図10は、別の例示的な実施形態による、ポートドア5014を通るロードロックチャンバのポンプダウンを図示する。本実施形態では、ポートドアとキャリアドアの空間5430、およびキャリアのチャンバ202のパージは、ロードロックチャンバのポンプダウンの前に行われてもよい。例えば、パージガスは、真空を適用し、ポートドアとポートの封止5223に亀裂を入れる(または適した弁調整)ことによって、空間5430に導入されてもよい。キャリア200は、キャリアドア216に亀裂を入れてロードロックチャンバ5400のガスがキャリアに入れるようにすることによって、またはこの場合もやはり適した弁調整によって、パージされてもよい。例えば、所望のガス種をキャリア200に導入するために、チャンバ(図10のファントム内に示される)からのガス供給がキャリアに提供されてもよい。ポートドアおよびキャリアドアが開口位置に移動されたロードロックチャンバ5400およびキャリア200を図示する図10Aに見られるように、ロードロックチャンバ5400は、ロードロックチャンバを通気するために、所望によりロードロックの壁に配置される通気口(またはガス種供給)5440を有してもよい。したがって、例示的な実施形態では、パージラインは、パージングに使用されてもよく、チャンバの通気は、キャリアドアとポートドアの接合部分から独立して実行されてもよい。
図11は、キャリアドア316Aおよびポートドア6414のそれぞれが、キャリアドアとキャリア3140、およびポートドアとポート6412またはチャンバ6400Dをそれぞれ固定する機械的「フェ−ルセーフ」固定具を有する、例示的な実施形態を図示する。キャリア314D、キャリアドア316D、ポート6412、およびポートドア6414は、受動的(連接固定パーツがない)であってもよい。本実施形態では、インデクサは、ポートドアおよびキャリアドア上の固定タブを嵌合/解放するために、ポートドアのZ軸インデクシングおよびポートドアの回転(例えばZ軸の周囲で)の両方を行うことができてもよい。別の実施形態では、ポートドアのZ軸移動および回転は、異なる駆動軸を介して提供されてもよい。図12A〜12Bは、キャリアのシェル314Dおよびキャリアドア316Dの底面図をそれぞれ示す。図13A〜13Bは、(ロードロック)チャンバ6400およびポートドア6414内のポート6412の上平面図をそれぞれ示す。例示的な実施形態では、キャリアのシェルの下面は、キャリアドア316D上の嵌合面362Dによって嵌合される嵌合タブ/表面360Dを有する。理解され得るように、嵌合面360D、362D間の嵌合/解放は、キャリア314Dに対するキャリアドアの回転によって成立してもよい。キャリアドアの回転は、以下に記載されるように、ポートドア6414によって与えられる。別の実施形態では、ドアとキャリアとの間の嵌合面は、いかなる所望の構成を有してもよい。キャリアドア316Dは、キャリアドア6414T上のトルク連結部材を補う雄/雌トルク連結機構365Dを有してもよい。示される例示的な実施形態では、ポート6412およびポートドア6414は、概してキャリアおよびキャリアドアの嵌合機能と類似するインターロッキングまたは嵌合面を有してもよい。図13A、13Bに最もよく見られるように、ポートは、嵌合面6460(例えば内側に突き出る)を有してもよく、ポートドア6414は、ポート表面6460に重なり、それと嵌合するために、補完嵌合面6462を有してもよい。理解され得るように、例示的な実施形態では、キャリア上の嵌合面3600、3620、およびポート上の嵌合面6460、6462は、互いに関連して位置し、ポートドアが回転される際に、キャリアとキャリアドアおよびポートとポートドアとの間の嵌合/解放を同時に行えるようにする。
図14は、ロードロックチャンバ400E、インデクサ6410E、およびキャリア300Eを図示する。例示的な実施形態では、インデクサは、ロードロックチャンバと直列に実質的に軸方向に位置されてもよい。ポッド200、300、3000と同様に、図4に示される例示的な実施形態では、ポッド300Eは、前述されたものと類似する機構を有する、真空適合型の上面または底面開口ポッドであってもよい。チャンバ6400Eは、前述されたチャンバと類似してもよい。図15は、低減ポンプダウン容量構成を有するロードロックチャンバおよびキャリア300Fを示す。示される例示的な実施形態では、キャリアドア316Fは、キャリアのシェル314Fを封止する上面350Fおよび底面321Fドアを有してもよい。底面封止3270F(例えば、封止221と類似する)は、キャリアドアが閉締される際、図15に示されるように、シェル314Fと嵌合する。上面封止350Fは、キャリアドアが開口される際、キャリアのシェルを封止する(例えば、封止350Fは、キャリアシート表面351Fに置かれ、それを封止してもよい)。上面封止350Fは、キャリアのチャンバをロードロックチャンバから隔離し、したがってポンプでロードロックチャンバを真空にする際のポンプダウン容量を減少する。
図16A〜16Bは、別の例示的な実施形態による、ドック位置および非ドック位置のキャリア300Gおよびロードロックチャンバ6400Gをそれぞれ示す。キャリア300Gは、底面壁316G、環状セクション314G、および上面壁314PDを有する。本実施形態では、環状セクション314Gまたはその1つ以上の部分は、キャリアドアとして動作してもよい。上面および底面壁316G、314PDは、互いに固定されてもよく、ドアを画定する可動式セクション314Gは、上面および底面壁316G、314PDをそれぞれ封止するための封止350G、321Gを上面および底面の両方に有してもよい。ロードロックチャンバ6400Gは、開口ポート6402Gを有してもよく、図16Bに見られるように、キャリア300Gは、そこを通ってロードロックチャンバに置かれてもよい。ロードロックチャンバ6400Gは、キャリアへのアクセスを開くためにキャリアドア314Gを下げるための陥凹部6470Gを有してもよい。キャリアの上面壁314PDは、ロードロックチャンバポートを封止し、それによってロードロックチャンバを封止し、チャンバをポンプダウンできるようにしてもよい。キャリアドア314Gを上げる/下げるために、適したエレベータが提供されてもよい。図17〜17Cは、別の例示的な実施形態による、別の上面封止キャリア300Hおよびロードロックチャンバ6400Hを示す。キャリア300Hは、上面封止フランジ314Hおよび側面開口部304H(部品を積載/積卸するキャリア端部に沿って)を有してもよい。例示的な実施形態では、キャリア上面封止フランジ314Hは、図17Bに最もよく示されるように、チャンバポートの縁6412Hに置かれ、それを封止する。キャリアドア314DRは、図17の矢印0で示される、放射線状に外側に向かう回転運動によって開口されてもよい。キャリア開口部は、ロードロックチャンバ内のスロット弁と並んで配置される。ロードロックチャンバを参照して例示的な実施形態が記載されてきたが、記載される機構は、図18に示されるように、ロードポートチャンバに対しても同等に適用される。ロードポートチャンバの内部は、制御雰囲気を有する場合があるが、分離不可能である場合がある。
図29Aおよび29Bを参照すると、別の例示的な実施形態による、自動材料ハンドリングシステム10、10’の概略平面図が示されている。例えば図29Aおよび29Bに示される自動材料ハンドリングシステム10、10’は、一般的に、1つ以上のイントラベイ搬送システムのセクション15、1つ以上のインターベイ搬送システムのセクション20、ベイ待ち行列セクション35、搬送サイディングまたはシャントセクション25、および部品キャリアまたは搬送機を含む。イントラベイおよびインターベイという用語は、便宜上使用され、搬送システム10110’の配置を制限するものではない(本明細書で使用される場合、インターは、概して多数のグループにわたり延在するセクションを指し、イントラは、概して例えばグループ内に延在するセクションを指す)。搬送システムのセクション15、20、25、35は、互いにネスト化されてもよく(すなわち別の搬送ループ内の1つの搬送ループ)、一般的に、例えば、200mmのウェハ、300mmのウェハ、フラットディスプレイパネル、および類似アイテム等の半導体部品の高速移動、ならびに/または例えば処理設備内の処理ベイ45および関連処理ツール30へ、およびそこからのそれらのキャリアの高速移送を可能にするように配置される。別の実施形態では、適した材料が自動材料ハンドリングシステムで運搬されてもよい。搬送システム10は、部品をある搬送セクションからいずれかの別の搬送セクションに向かせることもできる。インターベイおよびイントラベイの分岐を有する、部品を搬送するための自動材料ハンドリングシステの一実施例は、参照することによりその全体が本明細書に前述のように組み込まれる、名称が「Automated Material Handling System」であり、シリアル番号第10/697,528号の米国特許出願に見られる。
図29Aおよび29Bに示される自動材料ハンドリングシステム10、10’の構成は、代表的な構成であり、自動材料ハンドリングシステム10、10’は、処理設備内の処理ベイおよび/または処理ツールのいかなる所望のレイアウトにも対応するために、いかなる適した構成で配置されてもよい。図29Aに見られるように、例示的な実施形態では、インターベイ搬送セクション15は、1つ以上の側面に位置し、いかなる数の搬送セクション20によって互いに接続され、例えば1つ以上の処理ベイ45に対応してもよい。別の実施形態では、外側または側面搬送セクションは、イントラベイセクションであってもよく、その間を縦走するセクションは、イントラベイセクションをベイ内の処理ツールのグループまたはアレイにリンクしてもよい。例示的な実施形態では、また図29Aのインターベイ搬送セクション15は、クロスシャント50によって接続されてもよく、これは、処理または加工ベイ45を通過することなく、部品搬送機が直接インターベイ搬送セクション15間を移動できるようにする。さらに他の別の実施形態では、搬送セクション15は、追加のイントラベイ搬送セクション(図示せず)によって互いに接続されてもよい。その他の例示的な実施形態では、図29Bに示されるように、インターベイ搬送セクション15は、いかなる数の処理ベイ45間に位置してもよく、したがって、分岐セクション間に、ベイまたはツールのグループ45としての役割をする、例えば概して中央の小島または搬送中央経路を形成してもよい。その他の別の実施形態では、イントラベイ搬送セクションは、周囲に境界線を形成し、いかなる数の処理ベイ45を取り囲んでもよい。さらに他の別の実施形態では、図29Aおよび29Bに示されるようなシステム10または10’等のシステムをN個等、いかなる数のネスト化されたループセクションが存在しもよく、それぞれのインターベイ搬送セクション15を直接接続する搬送セクションによってほぼ平行に接続されてもよい。さらに他の別の実施形態では、搬送セクション15、20、および処理ツールは、いかなる適した構成を有してもよい。さらに、いかなる数のイントラベイ/インターベイシステムがいかなる適した構成でともに結合され、ネスト化された処理アレイを形成してもよい。
例えば、インターベイ搬送セクション15は、いかなる適した部品搬送機の移動を提供するモジュラートラックシステムであってもよい。トラックシステムのそれぞれのモジュールは、適した結合手段(例えばインターロッキングファセット、機械的ファスナー)とともに提供され、モジュールが、イントラベイ搬送セクション15の取り付け中に互いの端部と端部を結合できるようにしてもよい。レールモジュールは、取り付け中のハンドリングおよび構成の柔軟性のために、数フィート等のいかなる適した長さ、または直線または曲線等のいかなる適した形状で提供されてもよい。トラックシステムは、下から部品搬送機を支持してもよく、または別の実施形態では、トラックシステムは、吊るされたトラックシステムであってもよい。部品搬送機がローラー上で大幅な抵抗を受けることなくトラックに沿って移動できるようにするために、トラックシステムは、ローラーベアリングまたはいずれかの他の適したベアリング面を有してもよい。部品コンテナがトラックに沿って移動する際にさらなる方向安定性を提供するために、ローラーベアリングが先細になっていてもよく、またはタックが曲線の内側もしくはトラックの角に向かって角度が付いていてもよい。
イントラベイ搬送セクション15は、コンベヤ系搬送システム、ケーブルおよび滑車または鎖およびスプロケット系搬送システム、車輪駆動システム、もしくは磁気誘導系搬送システムであってもよい。搬送システムを駆動するために使用されるモータは、イントラベイ搬送セクション15に沿って部品コンテナを移動することができ、無限に進行する、いかなる適したリニアモータであってもよい。リニアモータは、移動パーツのない、ソリッドステートのモータであってもよい。例えば、リニアモータは、ブラシ付またはブラシレスACもしくはDCモータ、線形誘導モータ、あるいは線形ステッパーモータであってもよい。リニアモータは、イントラベイ搬送セクション15または部品搬送機、もしくはコンテナ自体に組み込まれてもよい。別の実施形態では、イントラベイ搬送システムを通る部品搬送機を駆動するために、いかなる適した駆動手段が組み込まれてもよい。さらに他の別の実施形態では、イントラベイ搬送システムは、トラックのない車輪付自立型搬送運搬車の通路であってもよい。
以下に記載されるように、一般的にイントラベイ搬送セクション15は、待ち行列セクションおよびシャントを使用することによって、部品搬送機がイントラベイ搬送セクション15の通路に沿って途切れることなく高速に移動するまたは流れることを可能にする。これは、搬送コンテナが追加されるまたは搬送ラインから取り外される際に、材料の流れを停止しなければならない従来の搬送システムと比較し、非常に有利である。
前述されたように、例示的な実施形態では、イントラベイ搬送セクション20は、処理または加工ベイ45を画定してもよく、待ち行列セクション35を通ってインターベイ搬送セクション15に接続されてもよい。待ち行列セクション35は、例えばインターベイまたはイントラベイ搬送セクション15、20のいずれかの側面に位置し、インターベイ搬送セクション15に沿った材料の流れまたはイントラベイ搬送セクション20に沿った材料の流れのいずれも停止もしくは減速することなく、部品または部品コンテナがイントラベイ搬送セクション20に入る/から出ることができるようにしてもよい。例示的な実施形態では、待ち行列セクション35は、搬送セクション15、20からの不連続なセクションとして概略的に示される。別の実施形態では、待ち行列セクション、または搬送セクション15、20間の待ち行列通路は、搬送セクションと一体化して形成されてもよいが、搬送セクション間の搬送通路に不連続な待ち行列を画定する。別の実施形態では、待ち行列は、所望により、インターベイおよびイントラベイセクションに置かれてもよい。進行レーンおよびアクセスまたは待ち行列レーンを有し、進行レーンに障害を与えることなく、進行レーン内外に選択的にアクセスできるようにする搬送システムの一実施例は、名称「Transportation System」、シリアル番号第11/211,236号の米国特許出願に記載され、その全体は、参照することより本明細書に前述のように組み込まれている。イントラベイ搬送セクション20および待ち行列セクション35は、上記のインターベイ搬送セクション15で記載されたものとほぼ類似するトラックシステムを有してもよい。別の実施形態では、イントラおよびインター搬送セクションを結ぶイントラベイ搬送セクションならびに待ち行列セクションは、いかなる適した構成、形状または形態を有してもよく、いかなる適した方法で駆動されてもよい。図29Aに最もよく見られるように、例示的な実施形態では、待ち行列セクション35は、イントラベイおよびインターベイ搬送セクション20、15の移動方向R1、R2に対応する投入セクション35Aならびに取出セクション35Bを有してもよい。例示目的のために使用される本明細書の慣習上、セクション35Aをセクション20への投入口(セクション15から出る)として定義し、セクション35Bをセクション20(セクション15への投入口)からの出口/取出口として定義する。別の実施形態では、所望により、待ち行列セクションの進行方向が確立されてもよい。以下に、より詳細に記載されるように、部品コンテナは、投入セクション35Aを介してインターベイ搬送セクション15から出て、取出セクション35Bを介してインターベイ搬送セクション15へ入ってもよい。待ち行列セクション35は、搬送セクション15、20内外での部品搬送機の出入を可能にする、いかなる適した長さであってもよい。
イントラベイ搬送セクション20は、いかなる数のプロセスツール30と搬送システム10、10’を接続する通路または経路内に延在してもよい。また、イントラベイ搬送セクション20は、図29Aに示され、上記に記載されるように、2つ以上のインターベイ搬送セクション15を互いに接続してもよい。イントラベイ搬送セクション20は、閉締されたループ形状を有するように図29Aおよび29Bに示されるが、しかしながら、別の実施形態では、それらはいかなる適した構成または形状を有してもよく、いかなる製作設備配置にも適用可能であり得る。例示的な実施形態では、イントラベイ搬送セクション20は、待ち行列セクション35と類似してもよい搬送サイディングまたはシャント25によってプロセスツール30に接続されてもよい。別の実施形態では、シャントは、同様な方法でインターベイ搬送セクションに提供されてもよい。シャント25は、部品搬送機を効率的に「オフライン」にし、例えば、図29Aに見られるようなインターベイ搬送セクション20の進行方向R2に対応する投入セクション25Aおよび取出セクション25Bを有する。シャント25は、イントラベイ搬送セクション20上の部品搬送機の実質的に等速な流れをほぼ遮断することなく、投入および取出セクション25A、25Bを通って部品搬送機がイントラベイ搬送セクション20を出る、およびそこに入ることを可能にする。シャント25内にある間、部品コンテナは、例えば、プロセスツールステーション30の位置に対応するツール接合ステーションで停止し、例えば、装置の前工程モジュール、分類機、またはいずれかの他の適した移送ロボット等のいかなる適した移送手段によって、またはそれを介して部品および/またはコンテナ自体が処理ツール積載ポートまたはいずれかの他の適した部品ステージングエリアに移送されてもよい。別の実施形態では、部品搬送機は、任意の搬送セクションの搬送機の並べ替え(例えば入れ替え)を行うために、所望のシャントに向けられてもよい。
異なるセクション15、20、25、35から、およびその間での部品キャリアまたは搬送機の交換は、コントローラ(図示せず)に接続された誘導システム(図示せず)によって制御されてもよい。誘導システムは、セクション15、20、25、35に沿って移動する搬送機の位置を明確にする位置付けデバイスを含んでもよい。位置付けデバイスは、セクション15、20、25、35に沿って、またはそれにわたり延在する光学、磁気、バーコード、または基準ストリップ等の連続または分散デバイス等、いかなる適した種類であってもよい。分散デバイスは、コントローラが搬送機の運動状態の確認に加え、セクション15、20、25、35上の搬送機の位置を定めることができるようにするために、搬送機に設置される適した読み取りデバイスによって読まれる、または調べられてもよい。あるいは、デバイスは、位置/運動を識別するために、搬送機、部品キャリア、または部品上のRFID(高周波認識デバイス:rapid frequency identification device)等の感知アイテムを感知および/または調べてもよい。また、位置付けデバイスは、移動する搬送機の位置を感知することができる分散デバイス、別個の位置付けデバイス(例えばレーザー測距デバイス、超音波測距デバイス、または内部GPSと同種の内部位置付けシステム、もしくは内部逆GPS)の単体、またはこれらの組み合わせを含んでもよい。コントローラは、搬送機からの位置フィードバック情報と誘導システムからの情報を組み合わせ、セクション15、20、25、35に沿う、またはその間の搬送機の搬送経路を確立し、維持してもよい。
別の実施形態では、誘導システムは、溝、レール、トラック、または部品搬送機の機械的誘導機能と連動するための構造的または機械的誘導表面を形成するいずれかの他の適した構造体を含む、もしくは有してもよい。さらに他の別の実施形態では、またセクション15、20、25、35は、部品搬送機に電子誘導を提供する印刷ストリップまたは導線(例えば、搬送機の適した誘導システムによって検出される適した電磁信号を送信する送電線)等の送電線を含んでもよい。
さらに図29Aおよび29Bを参照すると、搬送システム10、10’の例示的な動作が記載されている。例えばシャント25内に置かれた部品コンテナは、搬送システム10、10’に入ってもよい。実質的に途切れのない、概して等速で進行するイントラベイ搬送セクション20の流れを維持するために、部品コンテナは、シャント25を介してインターベイ搬送セクション20にアクセスしてもよい。部品搬送機は、搬送機がイントラベイ搬送セクション20内の材料の流れと同一速度で進行するように、シャント25内で加速する。シャント25は、部品搬送機が加速できるようにし、したがって、流れを妨げる、またはインターベイ搬送セクション20内を進行するいずれかの他の搬送機と衝突することなく、搬送機がイントラベイ搬送セクション20の流れに合流することができる。イントラベイ搬送セクション20との合流において、部品搬送機は、いずれかの他の部品キャリアまたは搬送機と衝突することなく、またはイントラベイセクションを縦走する搬送機の速度を減速させることなく、イントラベイ搬送セクションの流れに自由に入れるように、適した運転間隔だけシャント25内で待機してもよい。部品搬送機は、実質的に等速でイントラベイ搬送セクション20(例えば)に沿って稼動し続け、優先権を持って取出待ち行列エリアまたはセクション35B、例えばインターベイセクション15にスウィッチする。一実施形態では、取出待ち行列セクション35B内にスペースが無い場合、搬送機は、取出待ち行列セクション35Bが使用可能になるまで、優先権を持ってイントラベイ搬送セクション20の周囲を進行し続けてもよい。別の実施形態では、例えば、搬送セクションのループ全体を進行することなく迂回されたステーションに戻るために、搬送セクションの対向する進行通路を接続するためにクロスシャントが提供され、搬送機が搬送通路間を行き来できるようにしてもよい。搬送機は、取出待ち行列セクション35Bのベイで適した運転間隔だけ待機し、次いで加速し、上記に記載されるイントラベイ搬送セクション20の合流と実質的に同様な方法でインターベイ搬送セクション15の概して連続的かつ等速な流れに合流してもよい。搬送機は、例えば概して連続的な速度でインターベイ搬送セクション15に沿って続き、所望のイントラベイセクション20に入るために、繋がった待ち行列投入セクション35Aに移ってもよい。一実施形態では、投入待ち行列セクション35A内にスペースがない場合、搬送機は、前述されたものと同様な方法で、投入待ち行列セクション35Aが使用可能になるまで、イントラベイ搬送セクション15の周囲を進行し続けてもよい。搬送機は、投入待ち行列セクション35Aで適した運転間隔だけ待機し、第2のイントラベイ搬送セクション20に合流するために加速してもよく、この場合もやはり第2のイントラベイ搬送セクション20は、連続的な等速の流れを有する。搬送機は、第2のイントラベイ搬送セクション20から搬送機がプロセスツール30と接合する搬送シャント25に移される。シャント25内の他の搬送機により、シャント25に搬送機のためのスペースがない場合、搬送機は、シャント25が使用可能になるまで、優先権を持ってイントラベイ搬送セクション20の周囲に沿って進行し続けてもよい。インターベイ搬送セクション15およびイントラベイ搬送セクション20内の材料の流れには実質的に途切れがなく、概して等速で進行するため、システムは、処理ベイと処理ツールとの間の部品搬送機の高処理量を維持することができる。
図29Aに示される例示的な実施形態では、搬送機は、待ち行列セクション35、処理ツール、イントラベイ搬送セクション20、またはインターベイ搬送セクション15を互いに直接接続することができるエクステンション40を介して、処理ベイ間を直接進行してもよい。例えば、図29Aおよび29Bに示されるように、エクステンション40は、待ち行列セクション35をともに接続する。別の実施形態では、エクステンション40は、シャント25と同様にそれぞれのツールの搬送シャントを接続することによって、ある処理ツールから別の処理ツールへのアクセスを提供してもよい。さらに他の別の実施形態では、エクステンションは、自動材料ハンドリングシステムの要素のいかなる数またはいかなる組み合わせをもともに直接接続し、短いアクセスルートを提供してもよい。より大きなネスト化されたネットワークでは、エクステンション40によって搬送機の目的地間の通路がより短くなるため、搬送機の進行時間を削減し、さらにシステムの生産性を向上する可能性がある。
さらに他の別の実施形態では、自動材料ハンドリングシステム10、10’の流れは、2方向であってもよい。搬送セクション15、20、25、35、40、50は、それぞれが対向する方向に移動する、対向する進行レーンの周囲をループし、接続する出口ランプおよび入口ランプを有する、並んだ平行レーンを有してもよい。搬送セクションのそれぞれの平行レーンは、任意の進行方向専用であってもよく、個々の平行レーンのそれぞれの進行が搬送積載条件に適合するために、それぞれの平行レーンが搬送アルゴリズムにしたがって反転されるように、別々にまたは同時に切り替えられてもよい。例えば、搬送セクション15、20、25、35、40、50の平行レーンに沿う材料の流れまたは搬送は、それらの別個の方向に流れてもよい。しかしながら、後に、いくつかの部品搬送機が設備内に位置し、現行の流れ方向に対向する方向のこれらの平行レーンに沿って動くためにより効率的な位置に向かい、次いで平行レーンの進行方向が反転される場合があることが予測される。
別の実施形態では、2方向進行レーンが積み重ねられて置かれてもよい(すなわち片方がもう一方の上にある)。プロセスツールと搬送シャント25との間の接合部分は、例えば、時計回りの材料の流れを有するシャントが反時計回りの材料の流れの上に位置するような場合にシャントからプロセスツールの積載ポートに搬送機を上げるまたは下げるために、エレベータ型構成を有してもよい。別の実施形態では、2方向シャントおよびその他の搬送セクションは、いかなる適した構成を有してもよい。
図20は、別の例示的な実施形態による、ツールステーション間でキャリアを搬送するための搬送システムの搬送システムトラック500の部分を示す。トラックは、参照することにより前述のように組み込まれる米国特許出願シリアル番号第10/697,528号に記載されるものと類似する、ソリッドステートのコンベヤシステムを有してもよい。トラックは、キャリアのシェル/ケーシングと一体の反応部分と連動する静止フォーサーセグメントを有してもよい。その結果キャリアは、コンベヤによって直接搬送されてもよい。示される搬送システム500は、非同期搬送システム内にあり、キャリアの搬送機は、その中で搬送システム上の他のキャリアの動きから実質的に分断される。トラックシステムは、その他のキャリアの動きが任意のキャリアの搬送速度に影響を与える決定的因子を削除するように構成される。コンベヤのトラック500は、主搬送通路上の搬送機を妨害することなくルーティング変更および/またはツールステーション(緩衝装置、ストッカー等)と接合するために、主搬送通路から離れてキャリアを送るオン/オフ分岐通路(図297〜298も参照)を有する主搬送通路を採用する。分岐オン/オフ通路を有する搬送システムの適した実施例は、参照することにより前述のように組み込まれる米国特許出願シリアル番号第11/211,236号に開示される。本実施形態では、セグメント500A、C、Dは、A1−Dリニアモータのための巻線セットを有し、主進行通路500M(これは、図20Aに示される)に沿って移動してもよい。セグメント500Bは、アクセス通路500Sと称される場合がある通路へのオフ/出口として、例えば図20に示される。このセグメント内のフォーサーの巻線は、主通路500Mに沿った運動、および望ましい場合は、通路500S(図20B参照)に沿ったキャリアの移動の両方を可能にするために、実際の二次元平面モータを提供するように配置される。モータコントローラは、参照することによりその全体が本明細書に組み込まれる、2005年7月11日に出願された米国特許出願シリアル番号第11/178,615号に記載される分散制御構造と類似する、領域型コントローラであってもよい。本実施形態では、駆動部/モータは、領域型であり、領域間で適切な引渡しを行う領域コントローラによって効率的に制御されてもよい。コンベヤ500は、移動可能にキャリアを支持するために、適したベアリングを有してもよい。例えば、セグメント500A、500C、および500Dでは、ベアリング(例えばローラー、ボール)は、通路500Mに沿ったキャリアの1度の移動自由度を許容してもよい。
セグメント500B内のベアリングは、キャリアの2度の移動自由度を許容してもよい。その他の実施形態では、ベアリングは、キャリア上に提供されてもよい。さらに他の実施形態では、空気ベアリングは、トラック上のキャリアを移動可能に支持するために使用されてもよい。通路500M間のキャリアの誘導および通路500Sへの方向は、図20Bに示されるようなキャリア上の可動または連接車輪、トラック上の連接ガイドレール、または磁気操縦等の適した誘導システムによってもたらされてもよい。
図20Aは、システム500の例示的な搬送要素500Aを図示する。示される例示的な実施形態は、シングル進行レーンまたは通路(例えば通路500M)を有するセグメントを図示する。図20Aに見られるように、例示的な実施形態では、セグメントは、搬送機上の起動支持体のためのリニアモータ部分またはフォーサー502Aおよび支持表面504(A)を有する。前述されたように、別の実施形態では、搬送セグメントは、いかなる他の所望の構成を有してもよい。例示的な実施形態では、ガイドレール506Aは、搬送機を誘導するために使用されてもよい。別の実施形態では、搬送セグメントは、搬送機を誘導するレールの代わりに、磁石または磁気ベアリングを有してもよい。キャリア上の電磁石は、キャリアをトラックから分断するのを助長するために使用されてもよい。図20Bは、別の例示的な実施形態による、搬送システム500の別の搬送セグメントを図示する。セグメント500A’は、複数の進行レーン(例えば図20に示されるセグメント500Bと類似する交差レーン)または間で切り替わるほぼ平行な主進行レーン(通路500Mと類似する)を有してもよい。図20Bに見られるように、例示的な実施形態では、進行レーン(通路500M、500Sと類似する)は、一般的に1−Dモータセクション502A1および対応するキャリア駆動支持表面/エリア504A’によって画定される。進行レーン間の交差または切り替えは、進行レーン500M’、500S’間を縦走するのに望ましい2−D力を搬送機に生成することができる2−Dモータ要素のアレイによって形成される。
図21は、別の例示的な実施形態による搬送システムの交差点またはコンベヤの回転セグメントを示す。示される例示的な実施形態では、搬送セグメント500A’’は、交差する複数の進行レーン500M’’、500S’’を画定する。進行レーンは、概してレーン500M(図20A参照)と類似する。例示的な実施形態では、搬送運搬車は、交差するレーンとほぼ一直線に並ぶまで、任意のレーン500S’’、500M’’を縦走してもよい。一直線に並ぶ際、所望のレーンの1−Dモータは、交差するレーンに沿って搬送機の移動を開始する。別の実施形態では、交差点は、90°の配向でなくてもよい。図20Cは、キャリア1200の底面およびその中の反応要素を示す。理解され得るように、反応要素は、交差点でそれぞれのフォーサーセクション(例えば図21参照)の配向と一致するように配置されてもよい。これは、実質的に停止することなくキャリアがトラックを変更できるようにする。図20Dは、別の例示的な実施形態による、キャリア1200Aの枢軸セクション上に置かれた反応要素1202FAを示し、該反応要素は、所望の位置に回転されてもよい。図22は、トラック脇のストレージ位置500S’’’を有する、概して図21の交差点と類似するトラックセグメント500H’’’を示す。図23〜23Aは、さらに以下に記載されるキャリアリフトまたはシャトルのリフトアーム(図示せず)のためのカットアウトまたは開口部1500Oを有するトラックセグメント500を示す。例示的な実施形態では、開口部1500Oは、コンベヤのトラックからキャリアを底面に掴むために、キャリアに横方からアクセスできるようにする。図24は、フォーサー(リニアモータ等の)2502Aが矢印2500Mによって示されるキャリア/トラックの中心線からずれた位置にあるトラックセグメント2500Aを示す。
図25A〜25Bは、半導体FAB内で基板を搬送するためのリニアモータコンベヤ3500(キャリア3200内に設置されたフォーサーセグメントおよび組み込まれた反応要素を有する)を示す。示される例示的な実施形態では、コンベヤ3500は、直下からキャリアにアクセスできるように反転されてもよい(例えばキャリアは、コンベヤの下から吊り下げられ、コンベヤの下に位置する)。その他の点では、コンベヤ3500は、前述された搬送システムのセグメント500A、500A’’、500A’’’と類似してもよい。例示的な実施形態では、コンベヤ3500とキャリア3200との間の連結を維持するために、磁気保持フォーサー3502が採用されてもよい。この力は、特にこの目的のために提供されるリニアモータコイル(例えばリニア同期設計のもの)から、ならびに/または別個の電磁石および/もしくは永久磁石(図示せず)を介して発生してもよい。キャリアとコンベヤの連結および分断は、迅速であり、パーツ(例えば、電磁石スイッチ)を動かすことなく達成されてもよい。フェ−ルセーフの動作は、キャリアとコンベヤとの間の磁路および/または受動的な機械的保持機構を介して保証されてもよい。
例示的な実施形態では、交差点および分岐点(すなわち、例えば図20のセグメント500Bと類似する合流−分化位置)は、コイルの切り替えによって達成されてもよい。別の実施形態では、コンベヤ3200の進行通路間でキャリアを移送するために、回転台またはその他の回転デバイスが使用されてもよい。
例示的な実施形態では、キャリア3200は、反応要素が上面上にあり、基板がキャリアの底面からアクセスされるように配置されてもよい。例示的な実施形態では、キャリア3200は、コンベヤ3500のフォーサーと連動するように置かれた磁気プラテンを有してもよい。キャリアのプラテン、またはプラテンセクションは、ローラー、ベアリング、または他の起動支持表面(例えばコンベヤ内の空気ベアリングに対する反応表面)を含んでもよい。また、プラテンは、部品コンテナ部分が処理ツール3030に積載される際に、コンベヤと接続されたままでもよいプラテン部分からキャリアのコンテナ部分を分断できるようにする電磁石連結具を含んでもよい。
例示的な実施形態では、ツールを積載するために、コンベヤ3200は、キャリアをツール積載ポートに置き、キャリアをコンベヤの高度からツール3030の(制御環境)積載接合部分3032に下げるために、例えば垂直移送専用メカニズム3040が使用されてもよい(図26A〜26B参照)。また、垂直移送デバイスがインデクサとして使用され、それによってウェハハンドリングロボットでアクセスするためにウェハを置いてもよい。垂直移送デバイスの好適な実施例は、参照することにより前述のように本明細書に組み込まれる、2005年8月25日に出願された米国特許出願シリアル番号第11/210,918号に記載される。
別の実施形態では、コンベヤは、反転配置に置かれたコンベヤを積み上げるエンジン付き車輪であり、コンベヤの車輪上にキャリアを保持するために適した磁気引力を有してもよい。その他の別の実施形態では、コンベヤが積載ポートの下になり、キャリアが上面上に反応機構を有するように、全体配置が反転されてもよい。
図26A〜26Bは、直接キャリアを搬送システムから積載ポート/ツール接合部分に下げる/上げる、その他の実施例を示す。図26A〜26Bに示される例示的な実施形態では、キャリアは、キャリアと一体化する反応プラテンを有してもよい。その他の実施形態では、前述されたように、プラテンは、キャリアから着脱可能であってもよく、例えば、キャリアが取り外される際にコンベヤ上に残留する/コンベヤに連結されたままであってもよい。このような場合では、搬送システム内のそれぞれのプラテンは、FAB内のキャリアと実質的に1:1の関係で対応する。
図27は、別の例示的な実施形態による、コンベヤ運搬車複合型構成を有するキャリア4200を図示する。ペイロード(半導体基板を含むキャリア等)の輸送を自動化するために、キャリア運搬車4200が提供されてもよい。運搬車は、自己推進のための蓄積エネルギー、操舵システム、少なくとも1つのモータエンジン付き駆動車輪、走行距離計測および障害物検出のためのセンサ、ならびに関連する制御電子機器を備えてもよい。さらに、運搬車は、コンベヤシステム500(図20も参照)と類似する、コンベヤ4500の静止リニアモータのフォーサーセグメントと連動することができる反応要素(前述された磁気プラテンと類似する)を1つ以上装備してもよい。
例示的な実施形態では、1つ以上のフォーサーセグメントによって画定される通路(通路500M、500Jと類似する)に沿って運搬車4200が進行する場合、駆動モータが駆動車輪から切断され、運搬車は、コンベヤ4500内の反応要素を有する電磁石連結具によって通路に沿って受動的に促されてもよい。運搬車内の蓄積エネルギーデバイス(例えばバッテリ、超蓄電器、フライホイール等)の充電が必要な場合、リニアモータからのエネルギーを運搬車蓄電に変換するために、軌道に沿ったトラクションホイールの運動が使用されてもよい。電気エネルギー蓄電の場合、これは、適したモニタリングおよび調節電子機器を有するジェネレータとして使用される運搬車駆動モータを再接続することによって達成されてもよい。このような「オンザフライ」充電は、容易化および耐久性の利点を有し、該配置は、大幅な柔軟性および耐障害性をもたらす。例えば、運搬車4200は、自発的に機能していないコンベヤセグメント、障害物の周囲、またはコンベヤが使用できない作業エリア間を通り過ぎて進むことが可能であってもよい(図27A、28B参照)。コンベヤのフォーサーセグメントの数および長さは、インターベイ搬送機のためのコンベヤ等の動作計画に合わせて調整してもよく、例えば、ベイと運搬車の自立運動を使用してもよい。柔軟にルートを選択するために、自立操舵が使用されてもよい。湾曲したフォーサーセグメントを除去するために、自立コーナリングを使用することができる。コンベヤの走行に沿って高速進行が作動してもよく、所望により、安全障壁によって操作者から隔てられてもよい。コンベヤセクションは、隣接FABへのリンク等の長距離走行のために使用されてもよい。コンベヤは、グレード変更に使用され、専用の蓄積エネルギーを使用して、運搬車が直面する問題を軽減してもよい。
図28は、一体化されたキャリアおよび搬送運搬車の別の実施例を示す。運搬車がFAB内で搬送部品キャリアに送り出される従来の運搬車系の半導体自動化と比較し、例示的な実施形態では、それぞれのキャリア5200が運搬車である。例示的な実施形態では、一体化キャリア/運搬車5200は、前述された運搬車4200と類似してもよい。別の実施形態では、キャリア運搬車は、所望の運搬車機構を有してもよい。例示的な実施形態では、運搬車5200は、一体キャリア5202と運搬車5204の一体化部分を含んでもよい。キャリア5202は、例示目的のために、前面/側面開口型として図28に示される。別の実施形態では、キャリアは、上面開口型であってもよく、またはいずれかの他の適した部品移送開口部を有してもよい。運搬車は、部品が移送される積載ポートに直接進んでもよく、または別のツール緩衝装置等の別の自動化構成要素と嵌合してもよい。キャリア5202および運搬車5204をほぼ永久的に固定することによって、ロット移送が望ましい場合に、遊離運搬車が送り出されるのを待つ時間ならびに関連する配送時間差異が削除される。さらに、キャリア運搬車5200は、「空の車」の移動をなくし、したがって搬送ネットワーク上の総交通量を低減し、システム容量を向上することができる。別の実施形態では、キャリアおよび運搬車は、運搬車からキャリアを分離するための連結を有してもよい。システム内の運搬車は、運搬車を待つキャリア搬送における遅延を削除するために、1:1の関係でキャリアに割り当てられてもよいが、限定事象(例えば運搬車または部品キャリアセクションのいずれかの修理/メンテナンス)において分離できるようにするために、適したコントローラのシステム知識を使用してもよい。それ以外では、キャリアおよび運搬車は、搬送中またはFABのツール積載ステーションもしくは他の自動化構成要素と嵌合する際、一体型ユニットのままである。
図29Cは、別の例示的な実施形態による、コンベヤシステム500(またはいずれかの他の所望のキャリア搬送システム)とツールステーション1000との間を接合してもよい、水平に配列された緩衝システム6000の平面図を示す。緩衝システムは、ツールステーションの下方またはその一部、もしくはツールステーションの上方に位置してもよい。緩衝システムは、操作者の進入路から離れて(すなわち下方または上方)置かれてもよい。図30は、緩衝システムの正面図である。図29C〜30は、例示目的のためにコンベヤ500の片側に位置する緩衝システムを示す。緩衝システムは、FABフロアを所望する大きさの部分だけ披覆するために、延在してもよい。示される例示的な実施形態では、操作者の通路は、緩衝システムの上方に持ち上げられてもよい。同様に、緩衝システムは、FABのオーバーヘッド内のどこに延在してもよい。図29C〜30に見られるように、例示的な実施形態では、緩衝システム6000は、少なくとも3次元移動が可能なシャトルシステム6100(適したキャリアリフトまたはインデクサを有してもよい)および緩衝ステーションSTのアレイを含んでもよい。一般的に、シャトルシステムは、誘導システム上で少なくとも2次元移動が可能な1つ以上のシャトル6104に対する誘導システム6102(例えばレール)を含んでもよい。図29C〜30に図示されるシャトルシステムの配置は、例示に過ぎず、別の実施形態では、シャトルシステムは、いかなる他の所望の配置を有してもよい。例示的な実施形態では、シャトルシステムは、コンベヤ500と、緩衝ステーションSTと、ツール積載ステーションLPとの間を往復または接合する(図29C参照)。シャトル6102は、水平に配置されたコンベヤ500(例えばコンベヤのセグメント600間のアクセスレーン602を介して)とツールステーション上の緩衝ストレージSTまたは積載位置LPとの間を縦走してキャリア200を往復させることができる。図30に最もよく見られるように、例示的な実施形態では、シャトル6104は、キャリアを掴む/コンベヤ600上に置くためのインデクサ6106、または緩衝ステーションSTもしくはツール積載ポートLPを含んでもよい。緩衝システムは、モジュラー形態で構成され、システムが容易に拡張または縮小できるようにしてもよい。例えば、それぞれのモジュールは、対応するストレージ位置STおよびシャトルレール、ならびに緩衝システムのその他の取り付けられたモジュールを接合するための連結接合部を有してもよい。別の実施形態では、システムは、緩衝ステーションモジュール(一体緩衝ステーションを1つ以上有する)およびシャトルレールにモジュラーを取り付けられるようにするシャトルレールモジュールを有してもよい。図29Cに見られるように、コンベヤ500のアクセスレーン60Lは、シャトルインデクサがコンベヤレーンを通ってキャリアにアクセスできるようにするシャトル進入路を有してもよい。図31は、コンベヤ500の合流/分化レーンに通じる緩衝システム6000の断面を示す。例示的な実施形態では、緩衝システムのシャトル6104は、コンベヤのアクセスレーンに向けられたキャリアにアクセスしてもよい。停止(または図29Cに示されるレーン602と類似する進入路の不足)は、シャトルがコンベヤの進行レーンにアクセスする、または干渉するのを制限してもよい。図32は、緩衝ステーションの複数の列を示す、さらに別の断面である。緩衝システムは、いかなる所望の列数の所望の数の緩衝ステーションを有してもよい。シャトルの縦走(図32に矢印Yで示される方向への)は、所望により、縦走ガイド61087のモジュラー交換によって調節されてもよい。その他の別の実施形態では、緩衝ステーションは、複数の水平な平面または階層(すなわち、垂直方向に分離された2つ以上の階層(キャリアの高さが階層間を通過することができる))で配列されてもよい。低減容量キャリアとともに多層緩衝が使用されてもよい。図33は、誘導された運搬車キャリアVとの接合部分を有する緩衝システムの別の平面図を示す。図34は、他の点では前述されたツール下緩衝システム6000と類似する、オーバーヘッド緩衝システム7000の正面図を示す。オーバーヘッド緩衝システム7000は、ツール下緩衝システム(システム6000と類似する)とともに使用されてもよい。オーバーヘッドコンベヤ500と接合するオーバーヘッド緩衝システムが示される。別の実施形態では、オーバーヘッドシステムは、フロアコンベヤシステムまたはフロアを基部とする運搬車と接合してもよい。ペイロードの少ないシャトルが水平に縦走するのを防ぐために、適した制御連結(例えば硬い)が提供され、通路の垂直隙間に作用してもよい。吊るされた積載物が通路空間を横切ることを防ぐために、通路上の上部シールドが使用されてもよい。
図35は、環状緩衝システム8000を示す。システムの緩衝ステーションSTは、可動式であってもよく、キャリアがツール接合部分の緩衝ステーションSTおよび積載ステーションLPに積載され得る(例えばオーバーヘッド積載で)積載位置R間の緩衝ステーションSTを動かすトラック8100(例示的な実施形態では、閉じた環状として示される)上に搭載されてもよい。ツール接合部分は、キャリアをツールステーションに積載するためのインデクサを有してもよい。
ここで、図36A〜36Cを参照すると、さらに別の例示的な実施形態による、基板キャリア2000の斜視図、側面図、および底面図がそれぞれ示されている。キャリア2000は、代表的なキャリアであり、例示的構成を有するように示される。示される実施形態におけるキャリア2000は、例示目的のために、底面開口型キャリアとして図示されるが、別の実施形態では、キャリアは、上面開口型、または側面開口型等のいかなる他の所望の構成を有してもよい。図36A〜36Cに示される例示的な実施形態におけるキャリア2000は、図1〜3に示されるキャリア200、200’、300と概して類似してもよく、類似する機構には、類似番号が付けられる。したがってキャリア2000は、開口部2004(例示目的のために、1つの開口部のみが図36A〜36Cに示される)を1つ以上有するシェルまたはケーシング2012を有し、該開口部を通してウェハがキャリアに/キャリアから搬送されてもよい。キャリアのシェルは、個々の開口部2004を閉締する開口部の閉締ドアを形成してもよい移動可能な壁またはセクション2016を有してもよい。前述されたように、示される例示的な実施形態では、シェル2012は、開口部2004を開口および閉締するために移動可能である底面壁2016を有してもよい。別の実施形態では、キャリアのシェルのいずれかの他のセクションまたは壁は、キャリアの内および外へのウェハの搬送を可能にするために、移動可能であってもよい。移動可能なセクション2016は、示され、前述されたものと同様な方法で、残りのケーシング2014に封止されてもよく、ケーシングは、例えば、不活性ガス、周囲雰囲気と異なる圧力または真空の高清浄度の空気等の隔離された雰囲気を保持可能であってもよい。シェル2014および移動可能な壁2016は、前述された壁216およびシェル214と類似する受動的な構造体であってもよく、例えば磁気またはいかなる他の所望の受動的な固定具で互いに固定されてもよい。例示的な実施形態では、壁2016は、磁気要素2016C(例えば鉄鋼材)を含んでもよく、シェル2014は、壁およびシェルを固定ならびに解放するために作動される磁気スイッチ2014Sを有してもよい。壁内の磁気要素およびシェル内の動作可能な磁石2014Sは、キャリアドア(壁またはシェルのいずれか、図36A、36C参照)をポートドアに固定し、キャリアドアをキャリアの他の部分から固定解除するように、ポートドア接合部分(以下にさらに記載されるような)内の磁気固定具と連動できるように構成されてもよい。別の実施形態では、壁とシェルとの間の磁気固定具は、いかなる他の所望の構成を有してもよい。受動的な金属キャリア2000およびキャリアドア2016、2014は、真空に適合する清潔かつ洗浄可能なキャリアを提供する。
図36A〜36Cに示される例示的な実施形態では、キャリア2000は、複数のウェハを運搬するための構成で図示される。別の実施形態では、キャリアは、一体ウェハ緩衝装置を有するまたは有さないシングルウェハ、もしくはいかなる所望の数のウェハを運搬するための所望の寸法であってもよい。前述された例示的な実施形態のキャリア200、200’、300と同様に、キャリア2000は、従来の13〜25ウェハキャリアと比較し、低減または小さなロットサイズのキャリアであってもよい。図36A〜36Bに最もよく見られるように、キャリアのシェルは、搬送システム接合部分セクション2060を有してもよい。キャリア2000の搬送システム接合部分セクション2060は、図20〜30に示されるものと類似するコンベヤシステム等のいかなる所望の搬送システムと接合するように配置されてもよい。例えば、キャリアは、キャリアケーシングに配置または接続され、キャリアをコンベヤに沿って推進するために、コンベヤシステムの搬送機のリニアまたは平面モータのフォーサーセクションと連動することができる、鉄鋼磁性体パッドまたは部材等の反応要素を含んでもよい。キャリアケーシングに接続されるリニアまたは平面モータの反応要素の適した構成の一例は、参照することにより前述のように本明細書に組み込まれる、2003年10月30日に出願された米国特許出願シリアル番号第10/697,528号に記載される。また、図36A〜36Cに示される例示的な実施形態では、キャリアの接合部分セクション2060は、キャリアが搬送システム上を移動するおよび/またはそこに静止している場合に、キャリアを搬送システムから支持するために、搬送システムと接合してもよい、キャリア支持体部材または表面2062を有してもよい。支持表面は、非接触型または接触型支持表面であってもよく、キャリアを搬送システムから安定して支持するために、側面(例えば表面2062S)または底面(例えば表面2062B)上に、もしくはこれらと対向して配置されてもよく、あるいはいずれかの他の所望の位置または対向位置に配置されてもよい。非接触型支持表面は、例えば、実質的に平坦なエリア、表面、またはパッドであってもよく、ケーシングに接続またはその上に配置され、いかなる適した手段で形成され、安定してキャリアを保持できるように(空気ベアリング単独または搬送システムモータによって付与される起動力(例えば磁力)との組み合わせのいずれかに基づいて)、搬送システムの空気ベアリング(図示せず)と相互作用することができる。別の実施形態では、キャリアケーシングは、浮いている(例えば非接触)が、安定してキャリアを搬送システム構造体から支持するために、空気(またはいずれかの他の所望のガス)を(受動的な)搬送システム構造体に向ける(能動的な)空気ベアリングを1つ以上有してもよい。本実施形態では、キャリアの空気ベアリングに送り込むための空気/ガスの適した供給源(例えばファンまたはガスポンプ)がキャリアに接続されてもよい。その他の別の実施形態では、キャリアケーシングおよび搬送システムは、能動的な空気ベアリング面および受動的な空気ベアリング面の両方(例えば搬送システム内の持ち上げ空気ベアリングおよびキャリア内の水平誘導空気ベアリング)を有してもよい。キャリア2000は、その他のハンドリング部材、例えば図36Bに示されるようなハンドリングフランジ2068等のフランジまたは表面を有してもよい。
例示的な実施形態では、キャリア2000は、キャリアを処理ツールの積載セクション(例えば積載ポート)と接合可能にするツール接合部分セクション2070を有してもよい。処理ツールは、いかなる種類のものであってもよい。例示的な実施形態では、接合部分2070は、キャリアの底面上に位置してもよい。別の実施形態では、キャリアは、キャリアのいずれかの他の所望の側面上にツール接合部分を有してもよい。さらに他の別の実施形態では、キャリアは、キャリアを異なる構成でツールと接合できるようにする、複数のツール接合部分(例えば底面および側面)を有してもよい。例示的な実施形態におけるキャリア2000のツール接合部分セクション2070は、図36Cに最もよく見られる。図36Cに示されるツール接合部分セクション2070の構成は、例示に過ぎず、別の実施形態では、キャリアは、いかなる他の所望の構成を有するツール接合セクションを有してもよい。例示的な実施形態では、接合部分セクション2070は、機構を有し、キャリアの適切なSEMI標準(SEMI E.47.1およびE57、ならびにいずれかの他の適切なSEMIまたは他の標準)と概して適合してもよく、これらすべての標準は、参照することによりその全体が本明細書に組み込まれる。したがって、例示的な実施形態では、キャリアの接合部分セクション2070は、従来の積載ポート接合部分に位置する一次および/または二次KCピン(図示せず)を受け入れるために、SEMI標準E.47.1およびE57に準拠して配置される運動学的連結(KC)受け器を含んでもよい。また、キャリアの接合部分2070は、キャリアのSEMI標準に準拠するインフォメーションパッドを1つ以上有するセクションを有してもよい。別の実施形態では、キャリア接合セクションには、1つ以上のSEMI指定の機構が提供されなくてもよい(例えば、接合セクションには、運動学的連結機構が提供されなくてもよい)が、それにもかかわらず、該機構に対応する予備エリアをケーシングの側面接合部分上に有してもよい。したがって、例示的な実施形態では、キャリアの接合部分セクション2070は、従来の処理ツールの従来の積載接合部分にキャリア2000を接合可能であってもよい。理解され得るように、および前述された実施形態に関して記載されるように、キャリアをプロセス環境に連結する積載ポートにキャリアを結合するため(または例えば処理装置内の真空を維持するため)に、キャリア内部が処理環境に対して実質的に封止され、キャリア上の汚れた表面と称される場合がある表面が、処理環境から実質的に隔離され、切り離されるように、キャリアを結合することが望ましい。理解され得るように、キャリア/積載ポートは、前述されたように、キャリアを封止するために接合部分と接触し、キャリアと積載ポートとの間の運動学的連結具は、キャリアと積載ポートとの間に過剰な拘束条件を生じてもよい。過剰な拘束を緩和するために、キャリアと積載ポートとの間の運動学的連結具がコンプライアンスを有し、積載ポート接合部分にキャリアを繰り返し位置付け可能であってもよい。連結コンプライアンスは、積載ポート接合部分からの先行荷重によって起動されてもよい。ここで、図36Eを参照すると、例示的な実施形態による、コンプライアント運動学的連結具2072の代表的な接合部分2272の概略断面図が示されている。一般的に連結接合部分2072には、ピン2274および溝またはデテント2276が配置されてもよく、キャリア上の過剰な拘束をいかなる所望の自由度(例えばキャリアの傾斜、転がり、揺れ)に緩和するために、1つ以上の所望の方向(矢印X、Zで示されるような)におけるコンプライアンスまたは柔軟性が提供されてもよい。一例として、連結ピン2274は、コンプライアンスを有してもよい(バネ荷重、例えば屈曲して搭載された概して球体のピン、弾性的な可撓性材料等から作製されたピンによって等)。また、連結溝2276も整合性を有してもよい(屈曲して搭載する、弾性的な可撓性材料内に溝を形成することによって、先行荷重下で圧縮される場合に溝表面が屈曲するようにする等)。
さらに、例示的な実施形態では、キャリアの接合部分セクション2070は、キャリアと処理ツールの積載接合部分との非接触型連結接合を可能にするために、以下でより詳細に記載されるように、さらに構成されてもよい。
理解され得るように、キャリア2000等のウェハキャリアは、通常、処理するためのプロセスツールに関連して置かれてもよい。ウェハをツールに自動で搬送するために、ウェハキャリアとツールの積載ポートとを近接して配置することが望ましい。従来の位置付け方法は、通常、キャリアの底面と接触する、従来の機械的連結具を使用することができる。例えば、これらの従来の機械的連結は、全位置ズレを補正し、ウェハキャリアを位置合わせした位置に誘導することを助長するリードインまたはカムを提供する。あいにく、この機構は、積載ポートの結合ピンと滑り接触するために、キャリアのリードイン表面に依存し、その結果、摩耗する、および汚染物質を生成する可能性が生じる。従来の機械的連結具の使用における第2の問題は、正常に機能するために、従来の結合の捕捉範囲内においてキャリアをまばらに置くことが望まれるということである。キャリア搬送システムは、搬送システムの複雑性および/または適切な配置にかかる時間(例えば再試行)のいずれかを負荷する原因となる。したがって、キャリア搬送システムは、従来の機械的連結具の捕捉範囲内、または従来の用途では、摩耗を防ぐための名目上位置合わせした位置にキャリアを配置するために、十分繰り返し可能に設計されるべきである。必然的に、キャリア搬送システムは、多数のサイクルにわたり繰り返し性を達成できず、結果的に粒子を生成する滑り接触が生じる。キャリア2000の接合部分は、ウェハキャリアのプロセスツールへの位置付けにおいて同一の繰り返し性を提供し得るが、非接触(例えば磁気)連結を使用する。この機能は、配置許容を緩和し、結果としてキャリアの積載/積卸ステップの速度を向上するリードイン機構を搬送システムが完全に認識できるようにする。第2に、配置誤差を補正するためのすべての運動は、清浄度のために関連するいかなる滑り運動をも除去し、キャリアと積載ポートとの間の物理的接触なく実行されてもよい。
図36Cに見られるように、例示的な実施形態では、キャリアの接合部分セクション2070は、非接触型接合でキャリアと積載ポートを連結するための非接触型連結具2071を有してもよい。非接触型連結具2071は、通常、非接触型支持体またはリフトエリア2072、および非接触型連結セクション2074を含んでもよい。例示的な実施形態では、リフトエリア2072は、積載ポートの空気ベアリング(以下に記載される)と連動し、積載ポート内の空気ベアリングによって制御され、安定してキャリアを上げられるように配置される、実質的に平坦かつ滑らかな表面であってもよい。例示的な実施形態では、キャリアリフトエリアは、受動的であるが、別の実施形態では、キャリアは、キャリアを持ち上げるために、1つ以上の能動的空気/ガスベアリングを有してもよい。再び図36Cを参照すると、例示的な実施形態では、リフトエリア2072は、互いに類似し、積載ポートの空気ベアリングからキャリアを持ち上げる動作が実質的にリフトエリアセクションに作用する空気ベアリングからの圧力によって行われ、結果として生じる持ち上げがキャリアの重心(CG)と実質的に一致するように、キャリアケーシングの接合(例えば底面)側面に分散する3つのセクションを有してもよい。図36Cに示されるリフトエリアセクション2072の形状および数は、例示に過ぎず、別の実施形態では、リフトエリアは、いかなる所望の形状および数を有してもよい。例えば、リフトエリアは、単一の連続するもの(またはキャリアの接合部分の周囲の周りに延在する実質的に途切れのないセクション)であってもよい。例示的な実施形態では、リフトエリアは、SEMI準拠接合機構(例えば運動学的連結受け器、インフォパッド等)を妨げないように、キャリアの接合部分2070上に置かれる。リフトエリア2072は、接合の拘束内で可能な限りCGから離れて置かれてもよく、所望の圧力分布を生成し、キャリアと積載ポートとの間の所望の大きさの並進運動上の(すなわちx−y平面)位置ズレに適合するために所望の寸法であってもよい。例示的な実施形態では、リフトエリア2072は、単一軸(図36Cで軸Xで示される、例えば2軸間基準軸)に対して対象に配置されるが、キャリア接合部分のいずれの他の軸に対しては対象ではない。したがって、キャリアの接合部分2070は、ツール積載接合部分との非接触型接合部分が1つの適切な配向でのみ達成されるように、分裂される。不正な配向でキャリアを配置すると、結果としてキャリアリフトの不安定が生じ、これは、キャリアを配置する搬送システムの適したセンサ、またはキャリア自身もしくは積載ポートによって検出され、不正な配置を呈するために信号が送信されてもよい。また、積載ポートへのキャリアの適切な位置合わせを助長するために、リフトエリア2072は、所望の傾斜またはバイアスを有してもよい。別の実施形態では、キャリアと積載ポートとの間に位置合わせするために空気ベアリングが作用する際、可変の強度および可変の方向の所望の水平合力をキャリアに生成するために、リフトエリアは、機械、電気、圧電、熱、またはいずれかの他の適した手段等によって移動可能または傾斜変更可能であってもよい。
さらに図36Cを参照すると、例示的な実施形態では、非接触型連結セクション074は、1つ以上の永久磁石2074A〜2074C(例示目的のために、3つの磁石2074A〜2074Cが示されるが、別の実施形態では、より多くまたはより少ない磁石が提供されてもよい)を有してもよい。連結磁石2074A〜2074Cは、搬送システムのリニア/平面モータの反応セクションの一部であってもよく、モータ反応セクションから独立してもよい。連結磁石2074A〜2074Cは、キャリアと積載ポートとの間の所望の位置ズレのため、積載ポートの連結磁石(以下に記載される)を披覆するのに十分な寸法であってもよい。示される例示的な実施形態では、連結磁石2074A〜2074Cは、単一軸(図36Cの軸X等)に対して対象に配置されてもよいが、キャリアの接合部分のすべての他の軸に対しては非対称である。したがって、キャリアの非接触型連結セクションは、積載ポートに対してキャリアが所望の配向では無い場合に、キャリアが積載ポートに連結するのを防ぐために、分離される。つまり、キャリアの非接触型連結具は、正しい配向のために、それでもなお積載ポートに「鍵かけ」されてもよく、すべての他の配向は、連結具によって嵌合されず、したがって積載を試みない。積載ポート上にキャリアが不正に置かれ、適切に連結できない場合に、それを検出し、搬送システムに移動させるのに適した信号を送信し、可能な場合、キャリアを適切な配向に置き直すために、積載ポートまたはキャリアに適したセンサが提供されてもよい。別の実施形態では、非接触型連結セクション、および/またはリフトエリアは、キャリアの接合部分の複数の軸に対して対称に配置されてもよい。
ここで、図36Dを参照すると、別の例示的な実施形態による、キャリア2000’の底面図が示されており、キャリア2000’は、前述されたキャリア2000とほぼ類似し、類似機構には、類似番号が付けられている。キャリア2000’は、図36A〜36Cを参照して前述された非接触型連結具2071と概して類似する非接触型連結具2071’を有するキャリアの接合部分セクション2070’を有してもよい。図36Dに示される例示的な実施形態では、非接触型連結セクション2074’は、永久磁石の代わりに、鉄鋼磁性体セクション2074A’、2074B’、2074C’(キャリア内の搬送システムのモータ反応構成要素の一部であっても、それから独立していてもよい)を有してもよい。鉄鋼材セクション2074A’、2074B’、2074C’は、長方形、丸い円筒形、または球体等のいかなる所望の形状であってもよい。2074A’〜2074C’のそれぞれは、互いに類似してもよいが、別の実施形態では、所望の磁気連結具を画定する異なる共有セクションおよび方向特性がそれぞれのセクションで使用されてもよい。セクションは、積載ポート連結点の磁場内に収まり、キャリアが最初に積載ポート上に置かれる際のキャリアと積載ポートとの間の所望の初期位置ズレに適合するために、十分な寸法であってもよい。連結セクション2074A’、2074B’、2074C’は、キャリア上の磁力がキャリアを積載ポートに対して位置合わせした位置に偏らせるような大きさで、キャリアの接合部分上に配置されてもよい。図36Dに見られるように、例示的な実施形態では、連結セクション2074A’、2074B’、2074C’は、対称な単一軸(軸X)を画定するためにキャリアの接合部分上に分布し、したがってキャリアの非接触型連結2071’を鍵かけし、1つの配向においてのみ積載ポートへの連結を可能にしてもよい。別の実施形態では、連結セクションは、いずれかの他の所望の配置を有してもよい。
ここで、図37A〜Dを参照すると、別の例示的な実施形態による、ツール積載ステーションまたは積載ポート2300の斜視図、端部断面図、側面断面図、および上平面図がそれぞれ示されている。示される例示的な実施形態では、積載ポートは、ウェハと接合し、前述されたキャリア2000、200、200’、300と類似する底面開口型キャリアからそれを積載する、およびそこへ積載するための構成を有してもよい。別の実施形態では、積載ポートは、いかなる他の所望の構成を有してもよい。積載ポート2300は、SEMI標準を例とし、適した搭載接合部分を有してもよい。BOLTS接合部分を備え、積載ポートがいかなる所望の処理ツールまたは作業ステーションと結合できるようにする。例えば、積載ポートは、処理ツールのEFEM等(より詳細に記載される)の制御雰囲気セクションに搭載/結合されてもよく、または処理ツール(図14に示される方法と類似した方法で)の雰囲気から隔離されたチャンバ(例えば真空移送チャンバ)または処理ツールの雰囲気に解放されたチャンバに結合されてもよい。本例示的な実施形態における積載ポートは、前述された積載ポートと類似する。積載ポート2300は、通常、キャリア積載接合部分2302、および積載空洞またはチャンバ2304(ウェハが個別にまたはカセットでキャリアから受け取られる、またはキャリアに戻される)を有してもよい。チャンバ2304は、隔離された雰囲気または制御(高清浄度)空気雰囲気を保持可能であってもよい(したがって積載ポートが処理ツールのロードロックとして機能できるようにする)。キャリア積載接合部分2302は、従来の積載ポートとは異なり、積載ポートに接合する際、キャリア配置領域内に実質的に突起がない、キャリアを支持する積載面2302Lを有してもよい。図37Aに見られるように、積載面は、キャリアと積載ポートとの間の相互位置ズレの場合にキャリア移動を抑制するために、キャリア配置領域の外側にバンパーまたはスナバを有してもよい。積載ポートの積載接合部分2302は、積載開口部(またはポート2308)(積載チャンバ2304に通じる)、および前述された積載ポートと類似するポートを閉締するポートドアを有してもよい。例示的な実施形態では、ポートドア2310は、実質的に平坦であり、積載接合部分の積載面と水平であってもよい。ポートドア2310は、図4A〜4Bに示されるものと類似する封止配置においてポート縁で封止されてもよい。理解され得るように、積載ポートの積載ポート接合部分2302に接合および連結される場合、キャリアケーシングおよびキャリアドアは、積載ポート縁2308Rおよびポートドア2310のそれぞれで、「ゼロ容量パージ」封止と称される場合があり、図4A〜4Bに示されるものと類似する配置を有する封止で封止される。別の実施形態では、ポート縁と、ポートドアと、キャリアケーシングと、キャリアドアとの間の封止は、いかなる他の所望の構成を有してもよい。例示的な実施形態では、ポートドア2310は、受動的な磁気連結具またはラッチを用いて、前述されたものとも同様な方法で、ポートに連結されてもよい。例示的な実施形態では、ポートドアとポートとの間の磁気連結/ラッチ要素は、ポートドアとポートとの間のラッチの作動と同時に、キャリアドアとケーシングとの間の受動的な磁気ラッチを作動するように置かれ、構成されてもよい。したがって、例えば、ポートからポートドアを固定解除すると、キャリアからキャリアドアが固定解除され、キャリアドアとキャリアを固定するポートドアが固定される。例示的な実施形態では、積載ポートは、図8〜14に示されるものと類似する、インデクサ2306およびパージ/通気システム2314を含んでもよい。
また、図37Dを参照すると、例示的な実施形態の積載ポートのキャリア積載接合部分は、例えばキャリア2000を積載ポート2300に接合および連結するために、キャリア2000の非接触型接合部分セクション2071と連動してもよい、実質的に非接触型接合部分セクション2371を有してもよい。図3710に示されるように、例示的な実施形態では、接合部分セクション2371は、1つ以上の空気ベアリング2372および非接触型連結セクション2374を有してもよい。積載ポートの空気ベアリング2372は、いかなる適した種類および構成であってもよく、例えば「鍵かけ」配置内に置かれ、通常、キャリアの接合部分上のリフティングエリア2072の配置に対応してもよい。したがって、空気ベアリング2372は、積載ポートに連結される際のキャリア2000の配置を定める参照基準Xに対して対象に配置されてもよい。適した空気/ガスの供給源(図示せず)が空気ベアリングに供給を行う。空気ベアリングへの所望のガスの流れを維持するために、適した調整器(図示せず)を使用してもよい。所望により、空気ベアリングへのガス供給元および調整器が置かれてもよい。例えば、積載ポートの積載チャンバ2304の外部または内部だが、チャンバの内部雰囲気から隔離されてもよい、例えば空気ベアリング2372(図37C参照)へのガス供給源2372Sは、ベローズまたは他の可撓性の封止されたスリーブ内からガス供給源を積載チャンバから隔離する空気ベアリングに延在してもよい。さらなる実施例として、空気ベアリングへのガス供給源は、図14に示されるパージおよび通気ラインと同様な方法でインデクシングデバイスを隔離するベローズ封止内に延在してもよい。例示的な実施形態では、キャリアの空気/リフトエリアは、キャリアドア上であってもよく、したがって例示的な実施形態では、積載ポート(実質的にリフトエリアの下方に位置する)の空気ベアリング2372は、ポートドア2310の境界内に置かれてもよい。別の実施形態では、空気ベアリングは、ポートフレームまたはポート縁上に置かれてもよく、空気ベアリングへのガス供給は、積載ポートの積載チャンバの完全に外部に置かれてもよい。例示的な実施形態では、空気ベアリング2372は、オリフィスベアリング(実質的に局限された排気を有する)であってもよく、または分散したほぼ均一な排気を有する多孔質媒体空気ベアリングであってもよい。それぞれの空気ベアリング2372からの排気流量は、圧力、質量流量、および方向(一例として、図37CのABによって実質的に垂直に示される)の点から、固定されてもよい(実質的に一定であり続けてもよい)。別の実施形態では、空気ベアリングは、可変の排気流量を有し、積載ポートに対するキャリアの移動をオフセットするため、およびキャリアを積載ポートに位置合わせすることを促進するために、例えば排気流量特性(例えば圧力、質量、または方向)を変更できるようにしてもよい。理解され得るように、キャリア上の空気ベアリング2372およびリフトパッド2072は、所望の位置ズレ許容帯またはキャリアを積載ポート上に初回配置する際の配置領域を提供するような大きさであってもよい。
ここで、図37Eを参照すると、別の例示的な実施形態による積載ポート2300’の平面図が示されており、積載ポート2300’は、積載ポート2300と類似し、類似機構には、類似番号が付けられている。本例示的な実施形態では、1つ以上の空気ベアリング2372’は、ノズルのアレイを有してもよい。ノズルのアレイからの排気AB1〜AB4は、方向付け可能な合成排気を提供するために、組み合わせられてもよい。一例として、アレイのそれぞれのノズルは、その他のノズルの排気に対して排気角度を有してもよい。1つ以上のノズルからの排気流量は、固定されてもよく、または可変であってもよい。アレイの空気ノズルが最大流量で動作している場合、合成排気は、第1の所望の方向(例えば実質的に垂直)を有する。アレイの1つ以上のノズルを通る流量の停止または減少は、合成排気方向に変化が生じ、結果として積載面における方向成分となる。別の実施形態では、空気ベアリングのノズルは、排気の方向を制御するために可動式(例えば、傾斜変更可能な基盤上に搭載された空気ベアリングのノズル)であってもよく、または形状変更可能(例えば圧電材料または形状記憶材料を使用することによって)であってもよい。理解され得るように、積載面内の空気ベアリング排気の方向成分は、積載面内の空気ベアリングに乗っているキャリアに、排気の方向成分と対向する方向の起動力を付与し、積載面内のキャリアの横運動を生じる。
再び図37A〜37Dを参照すると、積載ポートの非接触型連結セクション2374は、キャリアと積載ポートとの間(キャリアドア2016とポートドア2310との間、および所望により、キャリアケーシングと積載ポートフレームとの間等)の磁気固定可能/固定不可能な連結を画定するために、磁石2074A〜2074C(図36C参照)またはキャリアの磁性体セクション2074A’〜2074C’と連動するように置かれた磁石セクション2374A〜2374Cを備えてもよい。また、例示的な実施形態では、キャリアの磁石2074A〜2074C、または磁性体セクション2074A’〜2074C’1と連動する積載ポートの磁石セクション2374A〜2374Cは、以下に記載される所望の位置合わせを達成するために、積載部分のキャリアの位置を調整することができる、キャリア位置補正デバイスを形成してもよい。図に示される磁石セクション2374A〜2374Cの配置は、例示に過ぎず、別の実施形態では、積載ポートの非接触型キャリア連結セクションの磁石セクションは、いかなる所望の方法で配置/構成されてもよい。磁石セクション2374A〜2374Cは、作動された場合に、キャリア内の磁石または磁気セクションに所望の方向にバイアスをかける所望の磁場(キャリアと積載ポートの固定/連結を生じるため、および/またはキャリア上に補正力を付与するため等)を生成する磁気スイッチとなる動作可能な磁石であってもよい。図37Aおよび37Dに見られるように、例示的な実施形態では、積載ポート接合部分は、キャリア搬送システムに積載ポートの位置/場所を教え、キャリアの積載ポート接合部分上への初回配置を可能にする、非接触型位置合わせシステム2380を有してもよい。前述されたように、積載ポートの配置領域には、実質的に突起がなく、例示的な実施形態では、キャリアを配置領域に初期配置する際、キャリアと積載ポートとの間に実質的な接触がない(すなわち摩擦接触がない)。示される例示的な実施形態では、位置合わせシステム2380は、適したセンサが像を取得することができるレジストレーションマスクのアレイまたはパターンを有してもよい。図37Dに示されるマスクのパターンは、例示に過ぎず、別の実施形態では、適したセンサが像を取得できる、いかなる適したマスキングパターンが使用されてもよく、すべての所望の自由度を定める。例えば搬送システム(例えば図26B参照)のキャリア保持部分上に置かれてもよいセンサ(図示せず)は、パターンおよびその空間特性の画像を取得することができる、例えばCCDまたはCMOS画像センサであってもよい。パターンを具象化する画像データは、キャリア搬送機に対する積載ポート配置領域の位置を判断し、キャリア搬送機に該位置を教えるために、キャリア搬送機とパターンの位置データを同様に登録し、関連付ける、適したプロセッサに伝達されてもよい。
例示的な実施形態では、キャリア2000は、搬送システムによって配置領域2302P内に突起のない積載面に置かれてもよい。例示的な実施形態では、配置領域は、積載ポートの位置合わせ軸に対して、キャリア+/−例えば約20mmの大きさに形成されるエリアであってもよい。実際の配置誤差は、いかなる値であってもよく、記載される値によって決まるわけではなく、キャリアを配置後に位置付けるために使用される補正メカニズムに対する比率で指定されてもよい。したがって、本連結の位置合わせ繰り返し性は、実質的に従来の連結方法と同一であると同時に、許容できるキャリア搬送機の配置誤差を増大する。積載ポートによって一度キャリアが検知されると、空気のフィルム(空気ベアリング)が起動され、キャリアを持ち上げ、キャリアと積載ポートとの間の接合部分の摩擦をなくす。この時点では、キャリア上の力は、その質量、水平基準平面に対する重心の相対位置、およびそれ自体の持ち上げ力である。キャリアリフトエリアは、キャリアを持ち上げ、キャリアの積載ポートへの繰り返し可能な位置決め(角度および横軸の両方)を確立するために、積載ポート上の空気パッドと接合する。ここで、空気のフィルム上に浮遊するキャリアは、積載ポートと一直線に置かれてもよい。前述されたように、磁気連結具は、キャリアを並進し、回転するために、キャリアに力を付与するために使用することができる。十分なストロークであり、対象位置を予測できる限り、磁気以外のいかなる方法を使用してキャリアに力を付与してもよい。キャリアと積載ポートの連結の完了とは、2つの対象をともに保持位置にクランプすることである。
一例として、および特に図36A〜36Cで図示される例示的な実施形態を参照し、キャリア2000が配置領域にある場合、永久磁石2074A〜2074Cは、積載ポート接合部分上の磁石2374A〜2374Cと重なり合う。空気ベアリングは、励起されてもよく、積載ポートの磁気は、対向する磁極をキャリアの磁石に提示するために、電気的または機械的手段によって作動される。接合部分に摩擦がないことによって、磁極が自然に位置合わせするまでX、Y、およびθZ軸上をキャリアが自由に移動できるようにするが、物理的接触を生成しない。本ステップ全体を通して、空気ベアリングには、キャリアおよび積載ポート内の磁力によってあらかじめ荷重が加えられる。先行荷重は、キャリアの制御の維持、および空気ベアリングの硬度の向上において有用である。例えば所定の時間経過後、またはセンサフィードバック手段によって空気ベアリングの動作が停止し、キャリアを積載ポートのポートドア上まで下げられるようにする。ここで、磁石は完全に接触し、キャリアをポートドアに保持するためのクランプ力を提供する。
図36Dに示される例示的な実施形態では、キャリア2000は、(キャリア搬送システムによって)配置された後の積載ポート連結点の磁場内に収まる大きさの鉄鋼材パッド2074Aおよび2074C(図36D参照)を有する。空気ベアリングが作動され、積載ポート上の磁石が電気的または機械的手段のいずれかによって作動され、キャリアの鉄鋼パッドに磁場を導入してもよい。接合部分に摩擦がないことにより、磁石と鉄剛パッドとの間の引力がキャリアを位置合わせした位置に並進または回転できるようになる。空気ベアリングは、磁力によってあらかじめ荷重が加えられる。先行荷重は、キャリアの制御の維持、および空気ベアリングの硬度の向上において有用である。例えば所定の時間経過後、またはセンサフィードバック手段によって空気ベアリングの動作が停止し、例えばキャリアを積載ポートのポートドア上まで下げられるようにする。鉄鋼パッド上の磁力は、キャリアをポートドアに保持するためのクランプ力を提供する。
さらに別の実施例によると、キャリアは、図37Eに示される例示的な実施形態のもの等、空気ベアリング面に一体化された、方向付けられた空気ノズル2372’(図37E参照)によって駆動されてもよい。該実施形態では、空気ノズル2372は、キャリアに運動を付与する、横方向に印加される圧力を底面に提供してもよい。運動は、キャリア上の磁石が積載ポートと一直線になるまで、キャリアをXまたはY軸に向けるために、ノズルの適切なセットにエネルギーを供給するコントローラによって制御することができる。ノズルのアレイがプラテンに搭載され、回転/傾斜する別の実施形態では、プラテンは、ノズルに所望の方向を提供するためのエネルギーが供給されてもよい。ノズルは、キャリアの意図される運動方向と対向する方向に排気を向ける。この動きは、磁石のアライメントまでキャリアを並進するための横力を付与する。キャリアの実際の位置を検出し、位置合わせした位置と比較するために、例えば磁気連結具からのフィードバックを含む、センサフィードバックのいくつかの形式が使用されてもよい。この情報は、どの方向にキャリアが並進されるべきか、および空気ノズルによってどのような力がキャリアに印加されるべきかを決定してもよい。別の実施形態では、キャリアを所望の位置に位置合わせするために、ノズルおよび磁気連結具が併用して使用されてもよい。
図37Fは、別の例示的な実施形態による、積載ポート接合部分の平面図を示す。本実施形態では、積載ポート2300’’は、積載ポート内に置かれる磁石2374’’が図37Eの矢印によって示される移動方向に移動可能なX−Yステージに取り付けられていることを除き、前述されたものと類似する。本実施形態では、キャリアは、積載ポートに置かれ、空気ベアリングが作動され、キャリアの磁石は、X−Yステージ2374S’’に連結される積載ポートの磁石に引きつけられる。X−Yステージ2374S’’は、例えば空気シリンダ、ネジ山のないネジ、または電気ソレノイドであってもよく、並進した位置を報告するためにリニアエンコードされる。連結されたキャリアの磁石および積載ポートの磁石は、教えられた(位置合わせした)位置に戻るように駆動される。目的地に到着する際、空気ベアリングの動作が停止され、キャリアがポートドアまで下がり、クランプされてもよい。同様に、この方法は、使用される既存の運動学的連結アプローチに適応することができ、それによってそれぞれの運動ピンがX−Yステージに連結される。本実施例では、運動ピンの2つがX、Y、およびθZと位置を合わせるために駆動される。これは、非接触を前提として動作しないが、最小摩擦でキャリアの配置許容を向上するための実行可能な方法である。
図37Gは、キャリアを配置し、キャリアの連結点を積載ポートと位置合わせするために、キャリアがプッシャーアーム2374Mによって駆動されてもよいことを除き、類似する積載ポート2300Aの別の例示的な実施形態を示す。示される例示的な実施形態では、積載面は、θXおよびθYを中心に回転可能に搭載されてもよい(矢印R、Pに示されるように)。積載平面を傾斜してキャリアの重心を移動するために、空気ベアリングと組み合わせた自由度を使用し、回転角方向への並進を付与することができる。この方法は、キャリアと積載ポートの磁石を位置合わせするために適切なキャリア方向に積載平面を理知的に動かすために、位置フィードバックを使用する。一度キャリアが位置につくと、空気ベアリングの動作が停止され、キャリアがポートドアにクランプされてもよい。最終的に、ドアの取り外しに適切なポートとの位置合わせを達成するために、積載平面が回転され、元の位置に戻される。
前述されたように、キャリア内の環境は、例えばウェハおよびキャリア内部に施された前プロセスならびに環境により、様々であってもよい。したがって、積載ポートまたは積載ステーションに連結されるキャリアは、現在のプロセスとは異なる環境をその中に有してもよい(例えばガス種、清浄度、または圧力)。例えば、キャリアのウェハの任意のプロセスは、不活性ガスを採用してもよい。したがって、任意のツールのキャリアと積載ポートとの間の接合部分は、キャリア開口中の圧力差または望ましくないガス種の導入を最小化するために、所望により、適したガス種が投入または排出されるようにしてもよい。別の実施例として、ツール環境が真空であり、接合部分を介してツールの積載ポートに結合されるキャリアの空気が抜かれて低圧力となり、ウェハがキャリアから直接真空ロードロックに積載されるようにしてもよい。キャリアと積載ポートとの間の接合部分およびキャリアとツールとの間の環境を適合できるようにする環境制御システムは、図10〜10Aおよび14に前述され、示されるものと実質的に類似してもよい。キャリア積載ポート接合および環境適合システムの別の適した実施例は、参照することにより本明細書に前述のように組み込まれる、2005年8月25日に出願された米国特許出願シリアル番号第11/210,918号に記載される。ここで、図38Aを参照すると、キャリア内の環境を、異なる制御環境を有してもよい積載ポートに適合するためのプロセスを図示するフローチャートが示されている。図38Aの例示的な実施形態では、キャリアおよび積載ポートの両方は、同一ガス種(例えば同一種の不活性ガス)を保持してもよい。本実施形態では、キャリアと積載ポート/ツールとの間の環境の平衡が達成されるまで、キャリアの圧力がプロセス圧力より高い場合は、キャリアから例えばロードポートチャンバ(または他の適したプレナム)への排気(接合部分を介して)を行い、キャリアの圧力が低い場合は、積載ポートまたはその他の適した供給元からキャリアにガスが挿入(接合部分を介して)されてもよい。図38Bの例示的な実施形態では、積載ポートが大気環境(例えば清浄度の高い空気)を有し、例えば図38Aに関連して前述されたものと同様な方法で、キャリアと積載ポートとの間の平衡が確立されてもよい。図38Cは、積載ポートが真空環境を有する例示的な実施形態におけるプロセスを図示する。キャリアおよび積載ポートが初期に異なるガス種を有する場合がある別の実施形態では、キャリアの初期環境は真空にされ、ドアが開口される前に、積載ポート内のガス種等がキャリアに投入(例えば積載ポートから)されてもよい。
再び図37Aを参照すると、前述されたように、例示的な実施形態における積載ポートは、ポートドア2310(ポートを開口および閉締するために)を上げるおよび下げる、ならびにウェハを処理するためにウェハのカセットをキャリアからロードポートチャンバ内の所望の高さに上げることができるインデクサ2306を有する。インデクサ2306は、前述され、図8、9、10〜10A、14および18に示される、ウェハによって占有される容量/環境から隔離されるインデクシングメカニズムを有する例示的な実施形態のものと類似してもよい。要約すると、インデクシングメカニズムの好適な実施例は、以下の配置を有してもよい:
1.ベローズを有する主ネジ−このメカニズムは、積載ポートのポートプレートに取り付けられた電気モータによって駆動される主ネジを採用する。清浄エリアに入る主ネジの一部分は、ベローズに封入される。ベローズは、動作中に概して清浄であり、疲労なく可撓性を維持することができる限り、金属、プラスチック、または繊維等のいかなる材料であってもよい。ベローズは、汚染物質生成メカニズムとウェハが置かれる清浄エリアとの間に障壁を提供する。ベローズの可撓性性質は、作動装置のストローク全体にわたり、本隔離を提供する。メカニズムのフィードバックは、モータまたは主ネジ上のロータリーエンコーダによるものであってもよく、運動の通路に沿ったリニアエンコーダからのものであってもよい。(図14参照)
2.ベローズを有する空気圧シリンダ−駆動メカニズムが、空気圧シリンダによるものであることを除き、前述実施形態類(1)と類似する。例えば2つの位置間を移動するために使用されてもよい;例えば閉締され、下げられたポッド。(図9参照)
3.空気圧シリンダ遠隔駆動部の主ネジ−駆動メカニズムがウェハ容量の外側の離れた位置に置かれることを除き、前述実施形態と類似する(図10参照)。積載ポートのポートプレートは、支持構造体で駆動部に取り付けられる。駆動部は、清浄エリアに露出されてもよいが、汚染物質は、空気流通路またはラビリンス封止によって制御される。空気流の使用は、生成され得る汚染物質をウェハの下にし、下方に押しやり、ウェハから離れるように、駆動部をウェハの下流に置く必要がある。ラビリンスまたはその他の「非摩擦」封止は、駆動部と清浄エリアとの間に固体障壁を提供することによって、粒子の導入をさらに制限することができる。第2に、駆動部は、処理ツール環境全体の外側に離れて置くことができる。これは、あまり清浄ではないFAB環境内の汚れている可能性のあるメカニズム内に置くが、あまり清浄ではないFABからプロセスツール環境を保護するために、ラビリンス封止を使用する。
4.ポートプレートに磁気で連結される駆動メカニズム−本実施形態は、ポートプレートと駆動メカニズムとの間に磁気連結具を採用する(例えば図8を参照、ただし反転されている)。磁気連結具は、駆動部を清浄エリアの外側に隔離できるようにする、空気ギャップにわたる非鉄鋼壁を介して動作してもよい。駆動方法は、主ネジ、空気圧シリンダ、またはリニアモータ等の前述されたいずれの種類であってもよい。後者は、運動の方向を抑制するために、空気ベアリングガイドと併用して清浄に動作できるため、清浄エリアの内側に存在してもよい。
ここで、図39を参照すると、別の例示的な実施形態による、積載ポート2300Aおよびそこに接合されるキャリア2000A、ならびにウェハ空気流管理システムの断面図が示されている。キャリア2000Aおよび積載ポート2300Aはそれぞれ、前述された例示的な実施形態のキャリアおよび積載ポートに類似してもよい。図39に示される実施形態では、例示目的のために、ポートドアが開口され、処理のためにカセットがロードポートチャンバにインデックスされ、置かれている。キャリアが開口され、処理のためにウェハが置かれる際、ウェハの周囲の空気流は、ウェハの清浄度を維持することを助長してもよい。例えば、プロセスによっては、長時間にわたりウェハが下方位置に維持され、環境内の粒子がウェハ表面に堆積するリスクを増大する。さらに、適切な空気流がないと、積載ポートメカニズムによって生成されるいかなる汚染物質がウェハ表面上に堆積し得る。示される例示的な実施形態では、プロセス環境内の空気流の少なくとも一部分が「捕獲」され、ウェハにわたり流れるように方向を変更されてもよい。次いで空気は、ウェハ配送平面(WTP)の処理環境下流の背面に排気される。例示的な実施形態では、空気流パターンは、ウェハ上面と平行な方向に水平に通過し、ウェハカセットの背面を出る。排気ルーティングは、空気がカセットから出た後、垂直に引き寄せ、フロアに向けられた排気ポートから出るように向ける。このアプローチは、解放ループまたは封止環境内で動作中、ウェハ表面にわたり、清浄で一定の流れまたは空気を維持することができる。例えば、積載ポートが窒素またはアルゴンのようなプロセス依存ガス種を有する環境内で動作する場合、示されるように既存の空気流の方向を変えて主流に戻すことは、制御ガス種に使用される閉締されたループ環境を支持する。
図39に見られるように、例示的な実施形態では、例えばウェハがアクセスされる領域の上方に、プロセスミニ環境の垂直表面に対して供給エアフォイルが搭載される。この場所は、SEMI E63標準にあるFOUPドアオープナーのための予約空間である。エアフォイルは、ミニ環境からの既存の層流の容量を捕獲し、空気ストリームを垂直方向から水平方向に曲げる。例示的な実施形態では、ウェハカセットが積載ポートの外側表面の内部に下げられる際、拡散要素は、ウェハカセットの背面に置かれる。ディフュ−ザは、流れ特性により、例えば部分的に開く固体パネルから構成されてもよい。ディフュ−ザは、空気がダクトの排気側に入る前に、圧力の差を提供しながらウェハ上を通過する水平空気流の均一性を管理するように構成される。例示的な実施形態では、巡回の排気側は、ウェハにわたる空気の流れが確実に安定かつ均一なものとなるように、力誘起型であってもよい。例えば、プロセスツールのミニ環境ポートに向けられた出力口を有する排気側ダクトの内側に搭載される軸方向ファン等。あるいは、ユニットは、ファンおよび供給エアフォイルの構成なく使用されてもよく、ディフュ−ザおよび排気ダクトは、ウェハにわたる空気流が確実に安定した均一なものになるように配置されてもよい。
ここで、図40A〜40Dを参照すると、個々の例示的な実施形態による、例示的キャリアのウェハ抑制の概略断面図が示されている。図40Aに示される例示的な実施形態は、ラジアルクランプウェハ抑制を図示する。クランピングは、カセットの並進側の壁によって提供されてもよい。メカニズムは、カセット内に存在し、積載ポートまたはポッドシェルとカセットの接合部分(Z軸)のいずれかによって作動され動かされる(Z軸)。別の実施形態では、ポッドシェルの内部に並進側壁があってもよい。メカニズムは、ポッドシェルを有して備えられ、積載ポート、ポートドア(OHTのZ軸)へのポッドシェル、またはカセット(積載ポートのZ軸)へのポッドのいずれかによって作動される。作動に先端材料(すなわち形状記憶材料または磁気拘束材料等)を使用する。図40Bに示される例示的な実施形態は、ウェハ上面に対して実質的に垂直に向いたクランプ力を採用する、ウェハ制御体を図示する。例示的な実施形態では、カセットと一体の垂直に並進するフィンガーである。メカニズムは、カセット内に備えられる。メカニズムは、積載ポート、ポートドア(OHTのZ軸)へのポッド、またはカセット(積載ポートのZ軸)へのポッドのいずれかによって作動される。別の実施形態では、ポッドシェルまたはカセットと一体の軸外並進フィンガーである。メカニズムは、カセットまたはポッドシェルのいずれかに備えることができる。フィンガーは、ウェハに対して水平外角度で並進する(図40C参照)。メカニズムは、積載ポート、ポートドア(OHTのZ軸)へのポッドシェル、またはカセット(積載ポートのZ軸)へのポッドシェルのいずれかによって作動される。別の例示的な実施形態では、ポッドシェルまたはカセットと一体である2DOFフィンガーである。フィンガーは回転し、次いでウェハと嵌合するために、垂直に並進する(図40D参照)。メカニズムは、ポートドア(OHTのZ軸)へのポッドシェル、またはカセット(積載ポートのZ軸)へのポッドシェルのいずれかによって作動される。別の実施形態では、キャリア内のウェハ抑制は、いかなる他の適した構成を有してもよい。例えば、ウェハは、ウェハエッジ接触が支持される、例えばウェハと線形エッジ接触を形成するカセット上の支持体フィンガー間でV字型であってもよい。
ここで、図41〜41Bを参照すると、別の例示的な実施形態による、処理ツールPTおよび処理配置搬送システムを有する代表的な処理配置の概略斜視図、端部正面図、および上平面図がそれぞれ示されている。処理ツールPTは、FABの処理ベイに配列されたツール等の例示的アレイで図示される。例示的な実施形態では、例えば搬送システム3000は、処理ベイのツールを提供してもよく、搬送システム3000は、FAB全体搬送システムのイントラベイ部分であってもよい。例示的な実施形態では、搬送システム3000は、前述され、図29A〜29Dに示される例示的な実施形態のAMHSシステムのセクションと概して類似してもよい。搬送システム3000は、図41に見られる適した搬送接合部分を介して、FAB AMHSシステムの別の(例えばインターベイ)部分3102と連通してもよい。前述されたように、示されるツールアレイ内の処理ツールPTの配置は、複数のツールの列を有する例示に過ぎない(実施例では、2つの列R1、R2が示されるが、別の実施形態では、より多いまたはより少ないツールの列を有してもよい)。示される実施例では、ツールの列は、実質的に平行に配置されてもよく(幾何学的ではあるが、互いに対して角度を付けられてもよい)、実質的に平行なプロセス方向を定めてもよい。異なるツールの列に沿ったプロセス方向は、互いと同一であっても対向してもよい。また、任意の列に沿ったプロセス方向は、ツールの列の一部分または領域に沿ったプロセス方向が1方通行となり、同一のツールの列の別の部分または領域のプロセス方向が対向通行となるように反転されてもよい。列R1、R2のプロセスツールは、異なるプロセス領域ZA−ZCを画定するために、分散されてもよい(例えば図41参照)。それぞれのプロセス領域ZA−ZCは、列R1、R2内に1つ以上のプロセスツールを含んでもよい。別の実施形態では、プロセス領域にツールが置かれてもよいが、単一列である。理解され得るように、任意の領域内のプロセスツールは、補完プロセスを有する、および/または同様のツール処理率を有する等、プロセスに関連してもよい。例えばツール領域ZAは、高処理量(例えば1時間当たり約500ウェハ(WPH))のツールを有してもよいが、中処理量(例えばおよそ75WPH〜500WPH未満)のツールが領域ZBに置かれてもよく、低処理量(例えばおよそ15WPH〜100WPH)のツールが領域ZCに置かれてもよい。理解され得るように、いずれかの任意の領域を確定するツールは、同一でなくてもよく、任意の領域内の1つ以上のツールは、任意の領域内の他のツールとは異なる処理量またはプロセスを有してもよいが、それでもなお、領域内のツールが、少なくとも搬送の観点から組織的に適切であり、ある領域内でツールが組織化されるように、ツール間に関係が存在してもよい。図41に図示されるツール領域は、例示に過ぎず、別の実施形態では、ツール領域は、いかなる他の所望の配置を有してもよい。
図41に見られるように、搬送システム3000は、キャリアをツールへ/ツールから搬送することができる。搬送システム3000は、前述された例示的な実施形態および図29〜35に示される搬送システムと概して類似してもよい。図41〜41Bに示される例示的な実施形態では、搬送システム3000は、オーバーヘッド構成(例えば搬送システムがツールの上方/上に置かれる)を有してもよい。別の実施形態では、搬送システムは、下部構成(例えば図30〜33に図示される搬送システムと類似する、例えば搬送システムがツールの下部に置かれる)等、いかなる他の適した構成を有してもよい。図41〜41Bに見られるように、搬送システムは、一般的に多数の搬送サブシステムまたはセクションを有してもよい。例示的な実施形態では、搬送システム3000は、コンベヤセクション(例えば前述され、図20〜25Bに示されるソリッドステートのコンベヤと類似するもの、またはいずれかの他の適したコンベヤ)等、一般的にバルク材料/高速搬送セクション3100を有してもよい。コンベヤセクションは、すべてのツール領域にわたり延在してもよく、例えばコンベヤセクションにキャリアが置かれる/から移動される際に停止/減速することなく、実質的に等速な搬送速度でキャリアを搬送してもよい。また、例示的な実施形態では、搬送システム3000は、ストレージステーション/位置3000S(図41Bも参照)、1つ以上のストレージステーション/位置(図42も参照)にアクセスできるシャトル3202を有するシャトルシステムセクション3200、および接合する搬送システムセクション3300を含んでもよい。例示的な実施形態では、接合する搬送システムセクションは、バルク搬送コンベヤセクション3100によって搬送されたキャリア、またはストレージステーションのキャリアにアクセス可能であり、キャリアを処理ツールの積載セクションに移送可能であってもよい。例示的な実施形態では、ストレージステーション、シャトルシステムセクション3200、および接合する搬送システムセクションは、搬送システムに沿って選択的に設置することが可能な選択設置可能部分に形成されてもよい。例示的な実施形態では、搬送システムセクション3100、3300、3200は、搬送システムに設置するよう選択されたシステムセクションの一部分を容易に設置できるようにするためのモジュラーであってもよい。搬送システムに沿って設置するよう選択された搬送システムシャトルシステム、接合システム、およびストレージシステムセクションの一部分は、処理ツールの領域ZA〜ZCに対応してもよい。理解され得るように、搬送システム3000は、処理ツールまたは処理ツール領域に対応するように構成可能であってもよい。さらに、例示的な実施形態では、搬送システムは、領域TA〜TC内に構成可能であってもよく、一般的に処理ツール領域ZA〜ZCと連通し、それらに対応する。したがって、搬送システムは、異なるシステムセクション構成を有する異なる領域を有してもよい。例示的な実施形態では、ストレージシステムおよびシャトルシステムセクションは、搬送システムの領域TA〜TCのそれぞれに構成可能であってもよい。また、例示的な実施形態では、接合部分搬送システムセクションは、それぞれの領域に構成可能であってもよい。例示的な実施形態では、接合部分搬送システムは、選択設置可能な接合トランスポータ(図41に示される実施例の構台)部分3310、3320を有してもよく、これらは、追加され、取り外されてもよく、搬送システムの領域TA〜TCのそれぞれに多数の異なる配向で設置されてもよい。所望の接合部分搬送システム部分は、所望のツール接合部分および例えばツール領域ZA〜ZCに対応するプロセスツールの処理速度に相応するアクセス速度を提供するために、搬送システムの領域内に設置されてもよい。図41Aに最もよくみられるように、接合部分搬送システムセクションは、選択可変数のトランスポータ進行平面を有してもよい(例えば領域TCのいくつかは、単一接合トランスポータ進行平面(図48参照)を有してもよく、その他の領域TA、TBは、1つ以上のトランスポータ進行平面ITC1、ITC2(図41A、46参照)を有してもよい)。複数の平面を有する領域では、トランスポータは、互いを通過して縦走できてもよい。2つの平面が示されるが、より多くまたはより少ないトランスポータ平面が提供されてもよい。例示的な実施形態では、搬送システムは、実質的に水平な進行平面を有して配置されるが、別の実施形態では、搬送システムは、接合トランスポータバイパスのための垂直な進行平面を有するものを含む、いかなる他の所望の配置を有してもよい。
低、中、高処理量のためにオーバーヘッドガントリーシステム(OGS)を構成することができる。因子または処理を変更する能力は、フィールドの再構成が可能なモジュラーアセンブリによって行うことができる。これらのモジュラーアセンブリは、例えば3つのカテゴリ、低処理量、中処理量、高処理量に分類することができる。様々なモジュールの配置は、所望の移動側、ストレージ容量、および所望の処理量のベイへの分散等、多くの因子に依存してもよい。
低処理量:一例として、低処理量のツールまたはツール領域は、単一ガントリー3310に十分に収容することができる。この構成は、「フィーダ」ロボット3320またはシャトルシステム3200を使用することなく、すべての所望の移動を提供してもよい。ガントリーは、キャリアをストレージからツールに移送することに加え、キャリアをイントラベイのコンベヤから掴み、ストレージ位置に移送する。キャリアを隣接するガントリー領域に移動するために、キャリアは、隣接するガントリーによる取り出しのために、イントラベイのコンベヤ上に置かれてもよく、またはストレージネスト内に置かれてもよい。本構成を用いて、間にあるガントリーが移動するまで、あるガントリーが別のガントリーを横断する。2つ以上のガントリーが並んで作業しており、1つに障害が発生した場合、隣接するガントリーが障害の発生したユニットの作業を引き受ける。作業量は減少するが、完全に中断されない。
中処理量:例えば、中処理量ツールまたはツール領域は、「フィーダ」ロボット3320(例えば追加ガントリー/トランスポータレベル)を追加することによって満たされる。本構成は、フィーダロボット3320および分類機/シャトル33200が追加された低処理量の配置と概して類似する。例示的な実施形態では、フィーダロボットおよび分類機/シャトルは、イントラベイのコンベヤからストレージへの移動のみを実行するための専用のデバイスであってもよい。すべてのフィーダロボットが、フィーダの片側(図44参照)に2つのガントリーローダロボット3310、3312を採用することが望ましい場合がある。しかしながら、別の実施形態では、フィーダは、1つのローダロボットと対にされてもよい。分類機/シャトルの目的は、フィーダからキャリアを受け入れ、ストレージのための列を作ることである。本構成を用いることによって、「ローダ」ロボットは、イントラベイのコンベヤからキャリアを掴むという付加が追加されることなく、ストレージからツールへの移動およびその逆の移動にのみ集中することができる。システムは、隣接する低、中、または高処理量モジュールとともに動作することができる。ローダロボットに障害が発生した場合、隣接するローダロボットが、障害が発生したロボットの領域に移動し、作業する。(図46および47参照)。フィーダメカニズムに障害が発生した場合、個々のローダロボットが低処理量構成と同一の方法で動作する。両方の障害例において、システムは、容量は低減するが、動作中であり続ける。
高処理量:一例として、高処理量用途では、特定のツールまたはツール領域の需要を満たすようにガントリーモジュールを構成することができる。高処理量の配置は、ローダロボットをベイのそれぞれの側に、中処理量領域のものと類似するフィーダロボット配置、およびストレージにキャリアの列を作るための類似分類機/シャトルを有してもよい。(図45参照)。ローダロボットは、より短い距離の移動を可能にするベイの側に置かれるツールに関与する。キャリアは、イントラベイのコンベヤシステムを介して高処理領域に出入りする。高処理量の構成は、ローダロボットの障害および/またはフィーダロボットの障害の両方に対する耐障害性を有する。ローダロボットに障害が発生した場合、障害の発生したロボットが領域から移動された後に、その他のローダロボットがベイの両側で作業してもよい。フィーダに障害が発生した場合、ローダロボットがイントラベイのコンベヤシステムからキャリアを掴む責任を負うようになる。ローダロボットおよびフィーダロボットの両方に障害が発生した場合、1つのローダロボットがすべての所望の移動に対する責任を負うようになる。
低、中、および高のそれぞれの構成は、所望の移動速度により、単一体として、または3つの配置のいずれかに隣接して動作することができる。システムは、システムにわたるキャリアの流れを完全に不能にするいかなる単一障害点も有さない。個々または複数の構成要素の障害に対する耐障害性に加え、システムは、複数の使用可能なキャリアの移動通路を活用することができる。ホストコントローラは、通常の動作条件下で、特定のキャリアの重要な移動に続くレベルを含む移動の標準セットを採用する。一時的なキャリア交通量の急増、ツール障害、または上流制限を克服するために、ホストの制御論理は、問題のあるエリアから離れてキャリアの流れのルートを再設定し、反転するためのスキームを開始することができる。図50は、例示的な実施形態による、キャリアを点AからBに移動する多くの方法を示す。
例示的な実施形態では、「フィーダ」ロボットは、イントラベイのコンベヤシステムからキャリアを取り出し、それらを適切なストレージ位置に置いてもよい。所望により、フィーダロボットは、ツールローダロボットがストレージからツールへの移動にだけ集中できるようにし、システムの全移動量を向上する。フィーダは、イントラベイのコンベヤが限られた障害または障害なく(例えば図20のものと類似するアクセスレーンからキャリアにアクセスする際のコンベヤの障害が存在しない場合がある)移動できるようにする迅速な短距離移動を利用する。フィーダメカニズムは、ガントリーシステムの作業負荷を軽減する。様々な運動を支援するための予想される駆動メカニズムには、リニアモータ、ボールネジ、空圧駆動、ベルト駆動、摩擦駆動、および磁気推進が含まれる。以下の実施形態は、前述された前提に基づき、実施することができる:
1.フィーダロボットは、x方向(ベイの長手)に固定され、y(ベイの横軸)およびz(垂直)方向における自由度を有することを除き、ガントリーローダロボットと類似する。フィーダメカニズムは、ローダロボットがペイロードなく通過できるように、ツールローダロボットの下方の平面上に置かれる。積載ポート領域の上方のエリアは、ローダロボットがペイロードを有するフィーダにわたり移動できるように解放されている。フィーダシステムは、運搬車が上昇位置にある場合に、イントラベイのコンベヤを通過し、キャリア上を移動し、掴むために十分な空間を有するように、垂直に置かれる。フィーダは、上方からキャリアにアクセスし、短距離垂直ストロークを使用してイントラベイのコンベヤシステムからキャリアを掴み、所望のストレージフランジに置く。本構成では、ストレージレーンは、イントラベイのコンベヤと同一平面上に存在する。ストレージレーンは、ストレージ列に沿う次の位置にキャリアを往復させるために使用される2方向分類機/シャトルメカニズムを所有する。シャトル駆動メカニズムは、例えば、ベイの長手に沿うピッチ間隔の少なくとも1つにキャリアを移動できるように設計される。ピッチ間隔は、ガントリーツールローダロボットがフィーダロボットに隣接して進行し、障害なくキャリアを掴むことができる距離として定義することができる。また、所望により、分類機/シャトルも、隣接するローダロボット領域とストレージレーンとの間でキャリアを搬送するために使用される。例えば、キャリアの一連の動きは、以下である:
・ イントラベイのコンベヤは、ベイの長手に沿うフィーダロボットの固定X位置で一瞬停止する。
・ フィーダロボットは、以前のY位置からイントラベイのコンベヤ上のキャリアの直上まで進行する。
・ フィーダロボットがキャリアを掴む。
・ フィーダロボットは、特定のシャトルレーンまでY方向(ベイの横軸)に進行する。
・ フィーダロボットは、キャリアをシャトル上に置き、次の移動に進む。
・ シャトル/分類機メカニズムがキャリアをX方向に推進する。
・ ガントリーツールローダロボットは、ストレージ位置に移動し、次いでキャリアを掴み、適切なツールに置く。
例示的な実施形態によるシステムのいくつかの利点の例には、従来のシステムを上回る向上したウェハ処理量、キャリアの移動を完了するための複数の移動通路、および向上した耐障害性が含まれる。
図48に示される別の例示的な実施形態によると、フィーダロボットは、シャトルおよびイントラベイのコンベヤシステムの直下にある平面上にある線形ステージとして実装される。ステージは、実施形態1と同一の自由度を有し、上方というよりは、下方からキャリアを掴む。一度キャリアがイントラベイのコンベヤから捕獲されると、ベイと逆に推進され、適切なシャトル上に開放する。本構造は、コンベヤレーンを装置境界間のどこにでも置くことができるという利益を有する。例えば、イントラベイのコンベヤは、実施形態1のように、外側というよりは中心にあってもよい。本配置のその他の利点は、実施形態1では、ローダがこの移動を実行できるのは、積載ポート領域内に位置する場合のみに制限されているのに対して、ローダロボットは今、ベイ内のいかなるY位置においてペイロードを有するフィーダメカニズムを通過することができるということである。さらに、ローダロボットは、衝突を回避するためにフィーダジオメトリと通信する必要がない。フィーダおよびローダロボットの両方は、ペイロードを有し、互いに接合せずに同一の垂直空間を占有することができる。本構成の一連の動きは、上方というよりは下方からキャリアを掴むことを除き、実施形態1と同一である。
別の実施形態では、下方からのオーバーヘッドまたはメカニズムは、X(ベイの長手)、Y(ベイの横軸)、およびZ(垂直)方向に移動することができる。本構成では、3軸フィーダが必要に応じて特定のストレージレーンおよびスロットに移動できるため、シャトル/分類機が使用されなくてもよい。例えば、キャリアは、イントラベイのコンベヤから移動され、適切なストレージレーンに置かれ、次いでストレージ内のキャリアの初期待ち行列に向かって垂直に並進される。図49に最もよく見られるように、その他の例示的な実施形態によると、FABフロアからOHTシステムが到達可能な最高点に延在するキャリアジオメトリと一致する容量のキャリアストレージを可能にし、ベイの長手方向全体にわたり配置することができる、垂直ストレージコラムを提供することによって向上したストレージ容量が生成されてもよい。
別の実施形態では、所望により、FAB内のストレージ密度を向上するための円筒型キャリアネストを置くことができる。円筒型ストレージネストは、キャリアを重ねて保持し、キャリアを指定の高さまで上げるまたは下げるメカニズムを提供することができる。垂直運動のメカニズムは、空気圧式、機械式、または磁気式であってもよい。
ここで、図51を参照すると、さらに別の例示的な実施形態による、搬送システム4000の概略平面図が示されている。図51に図示される例示的な実施形態では、搬送システムは、例えばFAB全体搬送システムのインターベイ部分等の代表的なセクションであり、別の実施形態では、搬送システムは、いかなる所望の寸法および構成を有してもよい。図51に示される例示的な実施形態では、搬送システム4000は、前述され、図41〜50に図示される搬送システム3000と概して類似してもよい。類似機構には、類似番号が付けられている。搬送システム3000と同様に、図51に示される例示的な実施形態では、搬送システム4000は、バルクまたは高速大量搬送セクション4100(例えばコンベヤ)および接合セクション4200を有してもよい。示される本実施形態の接合セクション4200は、例示に過ぎず、別の実施形態では、いかなる所望の数のサブセクション(例えば前述されたものと類似するストレージセクション、シャトルセクション)を有するいかなる所望の構成を有してもよい。一般的に、接合セクション4200は、バルク搬送システムセクション4100とプロセスツールとの間のキャリアを接合できる多数のフィーダロボットを有してもよい。バルク搬送システムセクション4100は、前述され、一部分が図20に示される搬送システム500と概して類似してもよい。図51に示される例示的な実施形態では、バルク搬送システムセクション4100は、ソリッドステートのコンベヤシステムを有するトラックを備えてもよい。トラックは、参照することによりその全体が本明細書に前述のように組み込まれる、米国特許出願シリアル番号第10/697,528号に記載されるものと類似する、ソリッドステートのコンベヤシステムを有してもよい。図51に示される例示的な実施形態では、搬送システム4100は、搬送システムによるキャリアの搬送が、搬送されているその他のキャリアの動きから実質的に分断される、非同期搬送システム(搬送システム500と類似する)であってもよい。したがって、1つ以上のキャリアは、搬送中に搬送システムのキャリア搬送ストリーム内のその他の隣または近接キャリアの搬送速度に影響を与えることなく、独立して動作する(例えば加速/減速、停止、積載/積卸)ことが可能であってもよい。
図51に示される例示的な実施形態では、以後バルク搬送機4100と称するバルク搬送システムセクションは、一般的に主搬送トラック4100Mを備える。また、バルク搬送機4100は、多数のサイディングトラック4100Sを有してもよい。例示目的のためにループとして図51に示され、別の実施形態では、いかなる他の所望の形状を有してもよい主搬送トラック4100Mは、バルク搬送機によって搬送されているキャリアの主搬送通路(またはストリーム)を画定する。例示的な実施形態の説明は、特にキャリアを参照するが、本明細書に記載される機構は、バルク搬送機によって搬送されるペイロードのプラテンまたはその他の起動デバイス上に(基板)キャリアが置かれる場合がある別の実施形態にも同様に適用することができる。例示的な実施形態では、主搬送通路は、連続的かつ実質的に等速であってもよい。したがって、主搬送トラック4100M上で搬送されるキャリアは、搬送システム上で停止したキャリアからの障害なく、主通路上の搬送機全体にわたり、持続的かつ高速に進行することが可能である。採用されたサイディングまたは分岐トラック4100Sは、搬送速度を決定するバルク搬送上のキャリアの動作を主搬送通路から分断できるようにする。前述されたように、速度を決定する動作は、主搬送通路に障害を与えることなく、サイディングトラックから実行されてもよい。したがって、サイディングトラック4100Sは、例えばキャリア緩衝装置、積載/積卸位置または通路切り替えデバイスを画定してもよい。例示的な実施形態では、1つのサイディングトラックが示されるが、例えば、および別の実施形態では、いかなる所望の数のサイディングトラックがあってもよい。また、二股に分かれ、実質的に直線状のセグメントで再度合流する、示される例示的な実施形態におけるサイディングの構成も、例示に過ぎず、別の実施形態では、サイディングトラックは、いかなる他の所望の構成を有してもよい。例えば、サイディングトラックは、主トラックループの対向側間(任意のベイ内)で分岐してもよく、または例えば図29A、29Bに示されるような異なるインターベイ(例えばインター−インター)搬送セクション、もしくはインター−イントラ(あるいはその逆)搬送セクションの主トラック間で分岐してもよい。別の実施形態では、サイディングは、主トラックと異なる配向を有してもよく、主トラックの上または下を横断してもよい。その他の別の実施形態では、所望により、実質的に直角の交差点または切り替え等が主トラックとサイディングトラックとの間の交差点に配置されてもよい。
例示的な実施形態では、主およびサイディングトラック4100M、4100Sは、バルク搬送機のトラックを組み合わせるためにモジュールで接続されるモジュラートラックセグメントA、B、C、D、Lを備えてもよい。キャリアは、例えばリニアモータによってバルク搬送機のトラック4100S、4100M上で駆動されてもよい。前述されたトラック500と同様に、リニアモータのフォーサーは、トラック4100M、4100S内/上に置かれてもよく、リニアモータの反応部分は、キャリア上にあってもよい。キャリアは、キャリアの適したソリッドステートの支持体部材上で作用する非接触型または滑らかなベアリング(例えば空気/ガスベアリング)磁気浮上システム、または接触型ベアリング(例えばローラー、ボール/ローラーベアリング等)のトラック内の適したデバイスによって、トラック上で移動可能に支持されてもよい。別の実施形態では、キャリアは、車輪、ローラー、ガス/空気ベアリング等、そこに一体化された起動支持体を有してもよい。理解され得るように、主およびサイディングトラック上でキャリアを支持する起動支持体は、それぞれのキャリアをトラックにわたり安定して支持するために、トラック上でいかなる所望の配置を有してもよく、キャリアがトラックに沿って自由に移動できるように、主およびサイディングトラックに沿って分布されてもよい。例示的な実施形態では、リニアモータは、例えば線形誘導モータ(LIM)、リニアブラシレスDCモータ(等)である場合があるが、別の実施形態では、バルク搬送機の主およびサイディングトラックに沿ってキャリアを促すために、いかなる所望のリニアモータまたはいずれかの他の種類のモータ/駆動部が使用されてもよい。前述されたように、例示的な実施形態では、LIMのフォーサー(または相巻線)4120、4120M、4120Sは、搬送機の主およびサイディングトラックを形成するトラックモジュールA、B、C、D、L内に置かれ、キャリアは、以下にさらに詳細に記載されるLIMの反応速度/部材を有する。別の実施形態では、キャリアまたは運搬車プラテンにモータコイルが搭載されてもよく、トラックに磁気反応要素が搭載されてもよい。
さらに図51を参照すると、示される例示的な実施形態の主4100Mおよびサイディング4100SトラックのモジュラーセグメントA、B、C、D、Lは、代表的なものであり、別の実施形態では、いかなる所望の構成を有してもよい。トラックセグメントA、B、C、D、Lは、指示がない限り、概して類似する。図51に見られるように、例示的な実施形態では、トラックセグメント(モジュール)は、一般的にシングルトラックセグメント(例えばA、C、D、L)および接合部(トラック切り替え)セグメントを含んでもよい。別の実施形態では、いずれかの他の所望のモジュラートラックセクションが使用されてもよい。例えば、別の実施形態では、任意のトラックモジュールは、非接合マルチトラックモジュールと称される場合がある、一般的に互いに平行して延在する、複数のトラック(それぞれが異なるキャリア搬送通路を形成する)を含んでもよい。例示的な実施形態では、シングルトラックセグメントは、実質的に直線状のセグメントA、D、Lおよび湾曲状のセグメントCを含んでもよいが、別の実施形態では、シングルトラックセグメントは、いかなる他の所望の形状を有してもよい。示される例示的な実施形態では、トラックセクションは、描写目的のために、実質的に共通高度に描画される。別の実施形態では、主およびサイディングトラックは、異なる高度のセクションを含んでもよい。例えば、サイディングは、主トラックおよび/またはその他のサイディングとは異なる高度(例えばより低いまたはより高い)に位置してもよい。また、主トラックおよび/またはサイディングトラックは、より高いまたはより低いトラック部分等、トラックに沿って異なる高度にトラックセクションを有してもよい。適したランプ(図示せず)が異なる高度のトラックセクションを接合し、トラックを進行するキャリアが間を移行できるようにしてもよい。図51から理解され得るように、接合セグメントB、4102、4102’は、サイディングまたは分岐トラック4100Sが主トラック4100Mと合流する場所、または接合が望ましい場所に置くことができる。図51に示される例示的な実施形態では、例示目的のために、2つの接合トラックセグメント4102、4102’が示される。図51に示される接合セグメント4102、4102’の構成は、主トラック4100Mの片側に合流/分化するシングル分岐トラック(例えば図51の軸Xで示される方向に対して左側)を有する例示に過ぎない。別の実施形態では、接合セグメントは、主トラックの右に分岐してもよい。その他の別の実施形態では、接合セグメントは、主トラックの反対側にある分岐であって、実質的に直接互いに対向するまたは交代する分岐を有する1つのセグメント内の複数分岐、または主トラックの片側(例えば左および/または右)上での複数分岐等、いかなる所望の構成を有してもよい。例示的な実施形態では、シングルトラックセグメントA、C、D、Lは、異なる形状(例えば直線状、湾曲状等)を有するが、その他の点では概して類似する。トラックセグメントA、C、D、Lのそれぞれは、モータのフォーサー4120内に対応するセクションを含んでもよい。理解され得るように、および図51に示されるように、モジュラートラックセグメントが組み立てられる場合、モータのフォーサーセクション(様々なトラックセクションの)は、動作可能に統合される(適したコントローラを使用して)場合に、キャリア/プラテン内の反応プレートを操作し、主およびサイディングトラックの長手方向にわたりキャリア/プラテンを駆動するために、主およびサイディングトラックに実質的に連続的なモータのフォーサー4120M、4120Sを画定してもよい。別の実施形態では、トラックは、一体化フォーサーセクションなく、1つ以上のセグメントを含んでもよい。
理解され得るように、フォーサー4120またはリニアモータの一次コイルアセンブリと称される場合があるものは、例えばLIM配置の場合、一般的にスチール積層体および相巻線を備え、それらは、トラックセグメントと一体化して形成されてもよく、またはトラックセグメントに接合されるフォーサー筐体に収容されてもよい。別の実施形態では、トラックセグメントに一体化されるリニアモータのフォーサーの相巻線は、いかなる他の適した配置を有してもよい。それぞれのセグメントA、C、D、L内のフォーサーセクション(例えば図52のセグメントC参照)は、それ自体がセグメント化されてもよく、または連続していてもよい。湾曲状のトラックセグメントCは、フォーサーセクション4120Cを有してもよく、その中で相巻線は、コイルアセンブリがトラックの湾曲に相応する曲線を画定するように配置されてもよく、概して湾曲状のフォーサーセクションを画定するために配置されたセグメントを有するフォーサーセクションを有してもよい。別の実施形態では、トラックセグメントのフォーサーセクションは、いかなる他の所望の形状を有してもよい。トラックセグメントA、C、D、Lのフォーサーセクションは、トラックおよび該トラックに乗るキャリアに対して対称に配置されてもよい。別の実施形態では、フォーサーは、トラックおよびその上のキャリアに対して非対称に置かれてもよい。
図54は、代表的なトラックセグメントAおよびその上に移動可能に支持される代表的なキャリア5000の概略端面図を示す。前述したように、一般的にトラック(主およびサイディング4100M、4100S)は、トラックに沿ったキャリアの制御移動をもたらすために、起動力/推進力、起動支持体、およびキャリア5000の誘導を提供する。また、前述されたように、例示的な実施形態では、例えばLIM等のキャリアを駆動するリニアモータは、キャリア上の反応プレート/要素5100を操作する、トラック内のフォーサー4120M、4120Sにバイアスをかける。また、図53を参照すると、代表的なキャリア5000およびキャリアの反応プレート5100の概略底面図が示されている。図53に示されるキャリア上の反応プレート5100の配置は、例示に過ぎず、別の実施形態では、キャリア上の反応プレートは、いかなる他の適した配置を有してもよい。別の実施形態では、反応プレートは、より多くてもより少なくてもよい。例示的な実施形態では、反応プレート5100は、キャリアの底面上に示されるが、別の実施形態では、反応プレートは、キャリアのいずれかの他の所望の側面または部分に置かれてもよい。例示的な実施形態では、LIMを画定するもの等、反応プレート5100は、スチールまたはアルミニウム等の金属から作製されてもよいが、いずれかの他の適した材料が使用されてもよい。反応プレートの1つ以上は、以下に記載されるように、鉄鋼(磁気)材料から作製されてもよい。別の実施形態では、反応要素は、リニアブラシレスDCモータの相巻線等のモータ相巻線で動作するように配列された永久磁石を含んでもよい。キャリア上の反応プレートは、トラック4100M、4100S内のフォーサー4120M、4120Sに対応し、主またはサイディングトラックに沿う推進力を提供するプレート5102を1つ以上含んでもよい。これは、図54に概略的に図示される。反応プレート5102は、1つのプレートとして図53に概略的に示されるが、例えば図20C、20Dに示されるような配置を有する、いかなる所望の数のプレートを含んでもよい。前述されたように、トラック内のフォーサー4120(およびしたがってフォーサーセクション4120A、4120C、個々のセグメントの図52、54参照)および対応する反応プレート5102は、キャリアならびにトラックに対して実質的に対称に配置されてもよい。別の実施形態では、モータのフォーサーは、非対称であってもよい。
図54に示される例示的な実施形態では、キャリア5000は、適した空気ベアリング4200によって、トラック上に移動可能に支持される。図54に示されるガス/空気/液体ベアリングの分布は、例示に過ぎず、別の実施形態では、トラックからキャリアを安定して支持する、いずれかの他の所望のガス圧力分布を提供するために、排気ポートが配置されてもよい。別の実施形態では、トラックからキャリアを上げるために排気を行うガスポートがキャリア内に存在してもよい。前述されたように、その他の別の実施形態では、キャリアとトラックとの間の起動支持体は、いかなる他の所望の種類であってもよく、トラックセグメントまたはキャリアのいずれかの従属物であってもよい。空気ベアリング4200のガスポートおよび/またはキャリア上のガス衝撃エリアは、キャリアのトラックに対する水平誘導を生じる合成方向力を生成するように構成されてもよい。理解され得るように、ガスポートは、適したガスの供給源(図示せず)に連通可能に接続されてもよい。例示的な実施形態では、トラックセクションは、ガス供給元から流体ベアリングのガスポートにガスを送り込むためのガス導管を有してもよい。例えばトラック上のキャリアが存在する場所に近接するガスポートを操作するために、適した弁調整および制御が含まれてもよい。制御は、能動的であってもよい(例えばセンサがキャリアの存在を特定し、キャリアの動作が既知であるトラックセクションで操作されるガスポートのオン/オフを切り替える)。
図51〜52、および54に示される例示的な実施形態では、トラック4100M、4100Sは、キャリアがトラックを下方に進む際の移動を誘導するために、制御および誘導システム4130を含んでもよい。誘導システム4130は、主およびサイディングトラック4100M、4100Sに沿って延在する非接触型システムであってもよい。例示的な実施形態では、トラックセグメントA、C、D、Lのそれぞれは、誘導システム4130A、4130Cの対応するセクション(図52、54参照)を含んでもよく、これらは、セグメントが接合される場合、結合して実質的に連続するトラックの誘導システムを形成してもよい。別の実施形態では、誘導システムは、トラックに独立して搭載可能であってもよい。その他の別の実施形態では、誘導システムは、いかなる適した種類であってもよく、例えばトラックの支持システムと一体化されてもよく(例えばトラックに沿って移動するキャリアの配向および水平位置合わせを維持することを助長する、トラックまたはその間のキャリア上のローラーもしくは車輪)、および/またはリニアモータと一体化されてもよく(以下にさらに記載されるように)、および/またはキャリア支持体およびリニアモータから独立していてもよい。例示的な実施形態では、トラック4100M、4100S内の誘導システム4130は、一般的に、トラック内のリニアモータのフォーサー4120と実質的に平行に延在する誘導磁石トラック4130M、4130Sを備えてもよい。誘導磁石トラックは、例えば、直列配置され、磁石トラックを形成する永久磁石を備えてもよい。また、OT切り替え/接合部等のトラックの一部分も電磁石を含んでもよく、切り替えるためにオン/オフが繰り返されてもよい。別の実施形態では、誘導には、キャリア上に誘導力を生成することができる巻線をトラックセクション内のモータに提供することが含まれてもよい。該誘導巻線は、リニアフォーサーに一体化されてもよく、またはトラックに沿った推進力を提供するリニアフォーサーから分離され、独立していてもよい。理解され得るように、トラック内の誘導フォーサーは、適した誘導プレート/要素5104(キャリアをトラック4100M、4100Sに対する所望の水平位置に維持するためのキャリア内の磁性体(例えば鉄鋼)または永久磁石等)と相互作用してもよい。その他の別の実施形態では、キャリア上に誘導力を生成するための固定具がキャリア上に搭載され、トラック内の固定子要素と動作し、キャリア誘導を行ってもよい。前述されたように、例示的な実施形態では、トラックセグメントモジュールA、C、D、Lは、図52および54に示されるように、誘導トラックの対応するセクション1430A、1430Lをそれぞれ有してもよい。例示的な実施形態では、トラックセクションA、C、D、Lの誘導トラックセクション1430A、1430Lは、フォーサー4120Aに沿って反対側に配置される、2つの誘導トラック4132、4134(例えば図54参照)を備えてもよい。示される誘導トラックの位置は、例示である。別の実施形態では、より多いまたはより少ない誘導トラックがいかなる所望の位置に提供されてもよい。誘導トラックと相互作用するキャリアの誘導プレート/要素は、以下に記載されるように、リニアモータのその他のセクションの軸外(軸Xに対して)リニアモータ反応プレート5104R、5106R、5104L、5106L(図53参照)であってもよく、またはリニアモータ反応プレートから独立した他の適した鉄鋼プレート/要素であってもよい。その他の別の実施形態では、キャリアは、磁石要素を誘導してもよく、トラックは、トラック誘導システムを画定するために、キャリア上の磁石と相互作用するように配置される鉄鋼/磁性体トラックを有してもよい。また、誘導システムは、トラックに沿ったキャリアの移動を制御するコントローラと通信可能に接続されたホール効果センサ、LVDT等の位置付け/位置検知システム/デバイスも含んでもよい。位置付けシステム/デバイスは、参照することによって前述のように組み込まれる米国特許出願第11/211,236号に記載されるものと類似してもよい。一例として、主およびサイディングトラックに沿った位置付けフィードバックもまた、LIMの適したホール効果センサによって提供されてもよい。
ここで再び図52を参照すると、上記に記載されるトラックセグメントCおよび代表的な接合セグメントBの概略平面図が示されている。バルク搬送機4100のその他の接合セグメントは、接合セグメントBと概して類似する。例示的な実施形態では、接合セグメントは、主およびサイディングトラック4120M、4120Sの両方にフォーサーセクションを有してもよい。また、例示的な実施形態では、セグメントBは、切り替えリニアモータのフォーサーセクション4125を有してもよい。理解され得るように、例示的な実施形態では、主トラックおよびサイディングトラックのリニアモータから独立した独立型リニアモータは、以下に記載されるように、キャリアの主およびサイディングトラックの切り替えを行うための接合部に置かれてもよい。例示的な実施形態では、切り替えリニアモータは、LIMであってもよく、ブラシレスDCモータ等のいかなる他の適したリニアモータが使用されてもよい。別の実施形態では、いずれかの他の適した電気的または機械的切り替えシステムが使用されてもよい。図52に見られるように、本実施形態では、フォーサー4125(切り替えモータの)は、主およびサイディングトラックのフォーサー4120M、4120Sからのオフセット位置に置かれてもよい。主トラックのフォーサーセクションは、示されるように、サブセクション4122、4124、4126にさらに区分されてもよい。主トラックのフォーサーのサブセクション4122、4124、4126は、示されるように、互いから物理的に分離されてもよく、またはコントローラによって互いから事実上分離され、切り替えLIMフォーサー4125の向かいのセクション4124が、その他の隣接する主トラックのLIMフォーサーセクション4122、4126から独立して電源を切ることができるようにしてもよい。図52に示される、接合セグメント上のフォーサーセクション4122、4125、4124、4126、および誘導システムの構成は、例示に過ぎず、別の実施形態では、接合セグメントは、いかなる他の所望の構成を有してもよい。図52に見られるように、例示的な実施形態では、切り替えフォーサー4125は、主およびサイディングトラックのフォーサーからサイディングトラックが合流/分化する方向(例えば軸Xから左)にオフセットされてもよい。例示的な実施形態では、切り替えフォーサー4125は、主トラックの方向(軸Xによって示される)と概して平行に配置することができる1つの端部4125M、およびサイディングトラックの局所方向(図52に軸bによって示される)と概して平行に配置されてもよい別の端部4125Sを有してもよい。例示的な実施形態では、サイディング(軸b)の主トラックからの出口/入口の局所方向は、主トラックの移動方向(軸X)に対して鋭角で配向される。したがって、理解され得るように、キャリアは、サイディングに移動する場合、軸Xに沿った運動量を利用して切り替えを行ってもよく、全体として軸Xに沿った運動量を相殺しない場合がある(例えば主トラック上で停止しない場合がある)。別の例示的な実施形態によると(図52Cも参照)、接合セグメントは、切り替えガイド4130S’(トラック4132S’、4134S”)を有して切り替えフォーサー(4125)の位置に提供され、以下に記載されるモータA’を用いずに切り替えるために、進行軸(例えば軸X)に沿ったキャリアの運動量を吸収することによって切り替えを行ってもよい。前述されたように、別の実施形態では、所望により、サイディングへの入口/出口と主トラックの方向との間に角度が提供されてもよい。(例えば直交だが、その場合でも、切り替えリニアモータの構成は、X方向の運動量を利用する)。図52〜53に見られるように、例示的な実施形態では、切り替えLIMフォーサー4125の端部4125Mは、キャリアの反応プレート5104、5106の1つ以上で動作するように置かれてもよい(図53も参照)。反応プレート5104、5106は、横方向(軸Yに沿って)にオフセットされてもよい。さらに、反応プレート5106L、5106Rも、キャリアの所望の参照点(例えば中心)から長手方向(軸Xに沿って)にオフセットされてもよい。例示的な実施形態では、反応プレートは、横軸Yに対して異なる角度α、βにある対角軸上に置かれてもよい。別の実施形態では、キャリアは、より多いまたはより少ない反応プレートを有する、いかなる他の所望の反応プレート配置を有してもよい。前述されたように、反応プレート5104L、5106Lの1つ以上は、キャリアを主トラック4100Mからサイディング4100Sに切り替える(およびサイディング4100S、セグメント4102’のその他の端部で合流する接合部においてその逆も同様、図51参照)ために、切り替えフォーサー4125によって使用されてもよい。
図52Bに最もよく見られるように、例示的な実施形態では、誘導磁石セクション4130は、主トラックとサイディングトラックとの間で切り替えを行うように配置される。図52Bに見られるように、例示的な実施形態では、誘導磁石トラック4134(サイディングの入口に近接する側)は、切り替え誘導トラック4134S’(該側に対応する)の少なくとも一部分がトラック4134Mと合流するように割り込まれる。図52Bに示される誘導トラックの接合部分は、例示に過ぎず、別の実施形態では、トラックの接合部分/インターチェンジは、いずれかの他の適した方法で配置されてもよい。対向する誘導磁石トラック4132M(サイディングの入口の反対側)は、示されるように、対応する切り替え誘導4132S’と合流する。例示的な実施形態では、誘導トラック4130M、4130S’のそれぞれは、オン/オフに切り替えられる作動可能な磁場を備えるセクション4132J(図52も参照)を含んでもよい。例えば、誘導トラックのセクション4132Jは、例えば永久磁石を有する磁気チャックと類似する電磁石コイル、およびコイルを通過する電流が誘導磁石セクションの磁場を事実上オン/オフに切り替えることができ、したがってキャリアと誘導トラックとの間の誘導力を解放するように巻線の周囲に配置されるコイルで構成されてもよい。別の実施形態では、作動可能な磁気セクションは、いかなる他の所望の配置を有してもよい。理解され得るように、所望の誘導トラック4132M、4132S’、4134S、4134S’の誘導磁石セクション4132Jは、切り替えを行うために、「オン」および「オフ」に切り替えられ、例えばキャリアが主トラック上を進み続ける場合、主誘導トラック4132M、4134Mは「オン」に切り替えられ、切り替え誘導は「オフ」に切り替えられ、キャリアがサイディングに切り替えられる場合、切り替え誘導4132S’、4134S’は「オン」であり、主誘導は「オフ」である。誘導磁石セクション4132M、4134Mを「オフ」に切り替えることによって、もはや主トラックに保持されなくてもよいことから、キャリアが横方向(主トラック外)に自由に動けるようになる。誘導磁石がキャリア内にある別の実施形態では、接合セグメントの誘導システムは、キャリアの磁石に相殺磁場を生成するのに適した巻線を含んでもよい。接合セグメントは、「オン」に切り替えられる際、キャリア(フォーサー4125によって移動される)をサイディングトラック4100Sに誘導する、一般的にサイディングの入口(軸b)と直線状に配置される作動可能/動作可能な1つ以上の誘導磁石(図示せず)をさらに含んでもよい。これらの誘導磁石セクションは、キャリアが接合部上を移動し、主トラック上を進みつづける場合、「オフ」に切り替えられてもよい。したがって、一例として、キャリアを主トラックからサイディングに切り替えるために、例示的な実施形態では、フォーサーセクション4124の動作が停止されてもよく、誘導磁石セクション4132M、4134Mが「オフ」に切り替えられ、誘導4132S’、4134S’内のスイッチが「オン」であってもよい。キャリアの運動量は、矢印b(図52参照)の方向のキャリアの軌道を事実上サイディング上に偏向する、切り替え誘導を有するトラックに沿って移動してもよい。フォーサー4125(提供される場合)は、キャリアを主トラックからサイディングの入口に向かってさらに促してもよいが、例示的な実施形態では、キャリアの運動量は、所望のサイディングトラック4100Sに沿って運動を継続するために、サイディングのフォーサー4120Sが対応する反応プレート5102上で動作するまでキャリアをサイディングに移動するのに十分であってもよい。誘導磁石トラック4130Sは、サイディングトラック4100Sに沿ってキャリアを誘導するために、キャリアの磁気要素を取得する。例示的な実施形態では、キャリアの切り替えは、概して受動的な方法で達成されており、切り替えに位置フィードバックが採用されなくてもよい。能動的切り替えのある別の実施形態では、キャリアを主からサイディングに切り替え中の位置フィードバックは、誘導/位置付けシステムによって実行されてもよく、該システムは、例えばキャリアが主トラック上にある場合に、切り替えLIMフォーサーにハンドオフする前にキャリアの位置を取得するために配置されてもよく、キャリアが切り替えLIMを介して切り替わる間、位置フィードバックを継続し、サイディングトラックLIMへのハンドオフを可能にする。このように、位置付けデバイスは、切り替え中の位置フィードバックを可能にするために配置される、いかなる適した種類の連続または分散デバイス(例えば光学、磁気、バーコード、基準ストリップ、レーザー/ビーム測距または高周波測距)であってもよい。
ここで、図52Aを参照すると、別の例示的な実施形態による、バルクトランスポータの接合セグメントB’の別の平面図が示されている。本例示的な実施形態では、接合セグメントB’は、指示がない限り、図52に示されるセグメントBと類似する。図52Aでは、明確化のために、誘導磁石トラックは図示されない。また、セグメントB’上の主トラックのLIMフォーサーセクション4120M’は、隣接するフォーサー4122’、4126’から独立して電源を切ることができるサブセクション4124’を有してもよい。本例示的な実施形態では、サイディングのLIMフォーサー4120B’は、キャリアが主トラック上にある場合に、キャリアの反応プレート5106L’上で動作できる(所望により)ようにするために、主トラックに向かって十分に延在してもよい。これは、切り替えを行うために置かれたキャリアの反応プレート5102’、5106L’(ファントムで)を示す図52Aに図示される。トラックLIMの反応プレート5102’は、例えば主トラックのフォーサーセグメント4124’の上(および例えば隣接する「上流」主トラックのフォーサー4122’、および反応プレートから離れて)に置かれてもよく、5106L’は、サイディングのLIMフォーサー4120B’と動作するように置かれてもよい。したがって、切り替えるために、主トラックセグメント4124’は電源が切られ、サイディングのフォーサー4120B’は、エネルギーが供給され、キャリアをサイディングトラックに向けてもよい。サイディングから主トラックへの切り替えは、同様な方法で達成されてもよい。別の実施形態では、主およびサイディングトラックのリニアモータは、DCブラシレスモータまたは他のブラシレス鉄芯モータ等のいかなる適したリニアモータであってもよい。別の実施形態では、永久磁石反応要素は、キャリア内にあってもよく、その他の別の実施形態では、永久磁石は、トラックセグメント(キャリア内のコアモータ)内にあってもよい。別の実施形態では、相巻線は、磁石とモータ芯との間の磁場を相殺し、モータの磁石/鉄芯要素の相互作用によって提供される誘導を削除し、あるトラックから別のトラックにキャリアを切り替えられるようにするために、所望により、トラック(図20A、20Bに示されるものと同様な方法で)またはキャリアのいずれかの中に置かれてもよい。
ここで、再び図51を参照すると、例示的な実施形態では、1つ以上のトラックセグメントLは、エリアIを有してもよく、そこで接合セクション4200のロボット等によってキャリアがトラックから持ち上げられてもよい。理解され得るように、リフトエリアI内の誘導磁石トラック4130Sは、図52に示されるセクション4132Jと類似する作動可能な磁場を有するセクションとともに提供されてもよい。別の実施形態では、相巻線は、キャリアをトラックによる捕獲から「解放」し、トラックからのキャリアの持ち上げの容易化を促進するために、トラックまたはキャリアのいずれかの中の磁石と、トラックまたはキャリアのいずれかの中のリニアモータの鉄芯もしくは鉄鋼反応プレートである磁性体との間の磁場を相殺するために、提供されてもよい。
再び図53を参照すると、例示的な実施形態では、1つ以上のキャリア5000は、キャリア列内の1つ以上のキャリアを互いに連結するための連結具5200を有してもよい。連結具は、連結または解放するためにコントローラに動作可能に接続されてもよい磁気連結具等、いかなる適した種類のものであってもよい。別の実施形態では、キャリア間連結は、例えば機械的連結であってもよい。連結具5200は、図53に概略的に示されるが、別の実施形態では、キャリアの所望の位置に置かれてもよい。キャリア間連結は、バルク搬送機4100による搬送中に、2つ以上のキャリアを互いに繋ぐために使用されてもよい。理解され得るように、これは、繋がれたキャリアの1つ以上が列の機関となることを可能にし、一方、列中の他のキャリアは、受動的であってもよい。図51は、例示的な実施形態による、キャリアの列を示す。理解され得るように、繋がれる間、繋がれたキャリアはまとめられ、列中の「機関」キャリアの移動を制御することによって、すべてのキャリアが移動できるようにする。これは、コントローラの負荷を大幅に低減する可能性がある。列中の任意のキャリアの位置情報は、キャリアの列中(例えば「機関」キャリア基準)の、制御された相対的に望ましいレフェレンスに登録されてもよい。したがって、所望のコントローラは、列として移動する場合、それぞれのキャリアの個々のキャリアの移動を追跡することなく、所望のキャリアを特定し、所在を確認してもよく、列中の任意のキャリアの個別制御の開始を所望する場合、コントローラは、トラック上の列の位置および列上の所望の参照に対する任意のキャリアの位置を検索し、トラック上のキャリアの概略位置を特定してもよい。トラック位置付けシステムを用いて、高精度な位置付けを行ってもよい。別の実施形態では、キャリアの列から分断する際の位置付けは、いかなる他の所望の方法で行われてもよい。理解され得るように、列中のいずれかのキャリアが機関キャリアであってもよい。所望の運転パラメータを支持するために、キャリアの列の機関の位置付けが確立されてもよい。さらに、機関の位置は、機関キャリアの動作を停止し、列中の別のキャリアを機関となるように起動することによって、切り替えられてもよい。
ここで、図55を参照すると、さらに別の例示的な実施形態による、搬送システムA4000の概略端部正面図が示されている。図55に示される例示的な実施形態では、搬送システムの配置は、例示に過ぎず、別の実施形態では、搬送システムは、いかなる他の適した配置を有してもよい。図55に示される例示的な実施形態では、搬送システムA4000は、前述され、図51に図示される搬送システム4000と概して類似する(類似機構には、類似番号が付けられている)。搬送システムA4000は、一般的に、高速バルクまたは大量搬送セクションA4100および接合セクション4200を含んでもよい。高速大量搬送セクションA4100は、高速大量搬送通路A4102を1つ以上(例示目的のために、図55に図示される実施形態では、2つの通路が示される)有してもよい。例示的な実施形態では、大量搬送通路A4102は、FAB内のキャリアA5000を大量搬送できるように、前述されたものと同様の方法等で構成されてもよい。また、例示的な実施形態では、大量搬送セクションA4100の大量搬送通路A4102は、通路を進行するキャリアを、実質的に等速(少なくとも通路のいくつかの部分で)で通路の進行方向に搬送するように配置されてもよい。大量搬送セクショの通路は、前述されたものと同様な方法で互いに接続されてもよい。図55に示される例示的な実施形態では、接合セクションA4200は、例えば、前述され、図51に示される接合セクション4200と概して類似してもよい。例示的な実施形態では、接合セクションA4200は、大量搬送機と処理ツールとの間のキャリアを接合することができる。接合セクションA4200は、一般的に、シャトリングセクションA4202およびストレージセクションA4204を有してもよい。前述されたように、ストレージセクションA4204は、多数の処理ツールのためのキャリアを保管または緩衝するためのストレージ位置A4204Aを有して配置されてもよい。ストレージ位置A4204Aは、処理ツールのキャリアを効率的に緩衝するために、いかなる所望の方法で配置されてもよい。シャトリングセクションA4202は、ストレージセクションA4204のストレージ位置と処理ツールの積載接合部分(例えば積載ポート)との間のキャリアを接合できる、多数のフィーダロボットA4202を有してもよい。例示的な実施形態では、搬送システムA4000は、例えば実質的に等速でバルク搬送セクション通路A4100および接合セクションA4200を搬送されているキャリアA5000を接合することができる、搬送機ハンドオフセクションA4300を有してもよい。したがって、例示的な実施形態では、搬送システムA4000は、通路を進行するキャリアが実質的に等速で搬送される搬送システムの通路の一部分でさえ、非同期搬送システムであってもよい。例示的な実施形態では、搬送機ハンドオフセクションA4300は、キャリアが実質的に等速で進行する搬送通路A4102からキャリアが搬送システムA4000によって搬送されている間、キャリアの搬送速度決定動作を事実上分断できるようにする。
さらに図55を参照すると、大量またはバルク搬送セクションの通路A4102は、いかなる所望のバルクコンベヤシステムを備えてもよい。ここで、図55Aを参照すると、図示される例示的な実施形態では、大量搬送セクションA4100の通路A4102は、例示目的のみのために、ベルトまたはリボンコンベヤA4103として示されている。理解され得るように、ベルトコンベヤA4103は、キャリア支持体または運搬面A4604を有し、搬送するために、キャリアA5000がベルトA4103から(またはその上に)支持される。また、理解され得るように、ベルトA4103、およびしたがってそのキャリア運搬面(ベルトによって画定される、またはベルトに従属する)は、実質的に一定の搬送速度で通路の搬送方向(図55Aに矢印Xで示される)に沿って移動してもよい。別の実施形態では、大量搬送システムセクションの通路に沿ってキャリアを輸送するための輸送システムは、いかなる所望の構成であってもよい。例えば、通路は、前述されたようなソリッドステートのコンベヤシステムを有してもよく、または機械的に定められる輸送手段(ローラー、流体ベアリング等)を有してもよい。その他の別の実施形態では、通路は、自動または半自動運搬車のためのトラックであってもよい。通路の輸送システムは、システムによって運搬されるキャリアが実質的に等速で運搬されるように、または所望により運搬速度が可変となるように、操作可能となるよう構成されてもよい。結果的に、搬送機ハンドオフセクションは、輸送システムによって搬送されるキャリアの搬送速度決定動作から独立して、実質的に一定な搬送速度を維持するために、所望の通路の輸送システム(またはその一部分)を操作することを可能にする。
図55Aに示される例示的な実施形態では、大量搬送セクション通路A4102は、処理ツールのオーバーヘッドに置かれるオーバーヘッドシステムとして示されている。別の実施形態では、大量搬送セクション通路は、ツールおよびツールの積載接合部分LPに対して、いかなる所望の高度に置かれてもよい。図55、55A〜55Cに示される例示的な実施形態におけるキャリアA5000は、代表的なものである。キャリアA5000は、前述され、図36A〜36Bに示されるキャリア2000と類似してもよい。例示的な実施形態では、キャリアA5000は、一般的に、上部接合セクションA5002(例えば、一般的にキャリアの上方または上からキャリアが接合および嵌合できるように配置される)および下部接合セクションA5004(例えば、一般的にキャリアの下方または下からのキャリアの接合および嵌合を提供するように配置される)を有してもよい。キャリアは、前述されたような側面開口型、上面開口型、または底面開口型であってもよい。別の実施形態では、キャリアは、キャリアを搬送システムおよび処理ツールの積載接合部分に接合するための接合/嵌合面(例えば側面嵌合)のいかなる所望の配置を有してもよい。図55に示される例示的な実施形態における処理ツールの積載接合部分LPは、代表的なものである。例示的な実施形態では、積載接合部分LPは、キャリアの下側接合セクションA5004と接合するように配置されてもよいが、別の実施形態では、ツール積載接合部分は、キャリアのいかなる所望の側面上の補完キャリア嵌合機能と嵌合するように構成されてもよい。図55に図示される搬送システムA4000に対するツール積載接合部分LPの位置は、例示に過ぎず、別の実施形態では、ツール積載接合部分は、搬送システムと所望の関係で置かれてもよい。図55、55Aに図示される例示的な実施形態では、大量搬送セクションの通路A4102のコンベヤシステムは、キャリアA5000の上部接合セクションA5002と嵌合するように配置されたキャリア支持体A4104を有してもよい。図55、55Aに示されるキャリア支持体の構成は、代表的なものであり、キャリア支持体は、搬送中にコンベヤからキャリアを解放可能に捕獲し、保持するために、キャリア上部接合部分A5002の嵌合機能を補完し、それと動作可能である、いかなる適した構成を有してもよい。例示的な実施形態では、キャリアA5000は、実質的に通路の下に吊り下げられた通路A4102のコンベヤによって運ばれてもよい。キャリア下部接合部分A5004は、通路A4102上で搬送中、アクセス可能(キャリアの下または横等から)であってもよい。別の実施形態では、通路のコンベヤ上のキャリア支持体は、輸送中に、キャリアのいずれかの所望の側面または表面上でキャリアと嵌合し、支持する(例えばコンベヤは、キャリア底面と嵌合または接合してもよい)ためのいかなる所望の構成を有してもよい。
さらに図55を参照すると、前述されたように、搬送システムの接合セクションA4200は、前述され、図41〜46および51に示される接合システム3200、3300、4200と概して類似するオーバーヘッドガントリーシステムであってもよい。接合システムA4200は、シャトルおよびフィーダロボットA4202によって縦走される、選択可能に可変の数のトランスポータ進行平面(ガントリーA4201によって画定されるもの等)を有してもよい。また、前述されたように、別の実施形態では、接合システムは、いかなる他の所望の構成を有してもよい。例示的な実施形態では、ガントリーA4201およびストレージ位置A4204は、大量搬送セクションの通路A4102間にネスト化されてもよい。フィーダロボットA4204は、キャリアA5000にキャリア上部接合部分A5002から嵌合し、キャリアを上方から支持するように構成されてもよい。シャトル(図示せず)は、キャリアを上方または下方から支持してもよい。別の実施形態では、接合セクションのロボットおよびシャトルは、いかなる適した配置を有してもよい。前述されたように、大量搬送セクションA4100と接合セクション4200との間のキャリアのハンドオフは、以下にさらに記載されるように、ハンドオフセクションA4300で実行されてもよい。
図55、55Aに最もよく見られるように、ハンドオフセクションA4300は、一般的に、大量搬送通路に沿って搬送されるキャリア(実質的に一定の通路の搬送速度等で)にアクセスし、それを捕獲し、キャリアを通路から分断し、接合セクションA4200のロボット/シャトルがキャリアにアクセスできるドロップステーションにキャリアを置くことができる、キャリッジ表面を有する。ここで、図55B〜55Dも参照すると、例示的な実施形態では、ハンドオフセクションA4300は、多数のキャリアA4302(例示目的のために、1つが示されている)を有してもよい。図に見られるように、キャリッジA4302は、搬送速度で通路上を搬送される際に、キャリアと位置合わせ配置が可能な運搬車またはいずれかの他の適した輸送メカニズムもしくはシステムであってもよい。したがって、キャリッジA4302は、キャリアとのキャリッジ連結およびキャリアの大量搬送輸送支持体A4104からの分断を可能にするのに十分な距離だけ、通路の搬送方向(矢印Xによって示される)に進行可能であってもよい。例示的な実施形態では、キャリッジA4302は、トラックまたは通路A4304に乗っている運搬車として概略的に図示される。トラックA4304は、大量搬送セクションの通路A4102の下に置かれてもよい(図55も参照)。例えば、トラックA4304は、ハンガーでオーバーヘッドから吊り下げられてもよい。また、示される例示的な実施形態では、トラック、およびその上のキャリッジA4302も、接合部分セクションの下に位置される。前述されたように、別の実施形態では、ハンドオフセクションのキャリッジは、いかなる他の適した構成を有してもよい。理解され得るように、例示的な実施形態では、ハンドオフセクションの配置は、例えば、通路の分離部分にある通路上のキャリアにキャリッジがアクセスできるようにする。ハンドオフセクションは、通路の適切なセクションに分布されてもよい。図55Dに最もよく見られるように、キャリッジA4302は、キャリア接合部分A4306を有してもよく、これによって通路上のキャリアと嵌合し、捕獲してもよい。キャリッジA4302のキャリア接合部分A4306は、いかなる適した配置を有してもよい。例示的な実施形態では、キャリア接合部分A4306は、例えばキャリアの下部接合部分A5004(図55A参照)と嵌合するための嵌合機能を有してもよい。例えば、キャリッジ接合部分A4306は、キャリアの運動学的連結機構を補完し、嵌合された場合に結果として嵌合時の受動的な位置合わせおよびキャリアとキャリッジとの間の安定した受動的な固定を生じる運動学的連結機構を有してもよい。別の実施形態では、キャリッジ接合部分は、キャリアを捕獲するためのいずれかの他の所望の受動的または能動的な連結もしくは嵌合システム(例えばクランプ磁気チャック等)を有してもよい。図55Bに見られるように、キャリッジA4302はキャリッジA4302のキャリア接合部分A4306が連結されるようキャリアA5000と十分に位置合わせされるように、トラックA4304上に支持されてもよい。理解され得るように、キャリッジトラックA4304は、キャリッジA4302が通路A4102の進行速度と一致するように加速し、通路によって搬送される所望のキャリアA5000と並び、捕獲し、キャリアを通路支持体A4204から解放するのに十分であってもよい。例示的な実施形態では、キャリッジトラックA4304は、キャリッジが例えばドロップオフステーションDSで接合システムA4200にハンドオフするために、所望の速度に減速するのに十分であってもよい。例示的な実施形態では、ドロップオフステーションDSの位置は、選択的に可変(ハンドオフセクショントラックA4304に沿って等)であってもよいが、静止していてもよい。別の実施形態では、キャリッジは、永久ループトラック上等、通路の進行速度と実質的に一致する速度で移動するトラック上に配置されてもよい。
図55A、55Dに最もよく見られるように、例示的な実施形態では、ハンドオフセクションA4300のキャリッジ表面は、通路上のキャリアに近接し、キャリアを通路支持体から積載/積卸するために、Z方向における移動を有してもよい。図示される例示的な実施形態では、キャリッジは、キャリッジ接合部分A4306をZ方向に駆動することができる、適したZ駆動部(主ネジ、空圧、電磁石等)を有して提供されてもよい。
したがって、および一例として、通路からキャリアを積卸するために、キャリッジ接合部分A4306は、キャリアの接合部分A5004(キャリッジとキャリアが1直線に並ぶ)と接触するために上げられてもよい。キャリアの接合部分は、例えばキャリアを連結した後、キャリアA5000を通路(一例として通路支持体からのキャリアの解放を促進するために、通路に対するキャリッジの進行速度は、速める/遅らせる等、可変であってもよい)から解放するために、さらに上げられてもよい。通路から解放されるキャリアは、通路によって運搬されるキャリアがキャリアの搬送エンベロープを取り除くために、キャリッジA4302によって下げられてもよい。ハンドオフセクションA4300によるキャリアの通路上への積載は、実質的に類似するが、反対の方法で達成されてもよい。別の実施形態では、キャリッジ接合部分のZ方向移動は、支持トラックがZ駆動部またはリフトを有する、または通路上のキャリアと接触させるためにキャリッジを上げるおよび下げる、上下するランプ等の可変の高さのキャリッジに対する支持表面を有する等、いずれかの他の所望の方法で行われてもよい。その他の別の実施形態では、キャリアとキャリッジを閉締するための軸に沿った移動は、通路またはキャリアの適した駆動部もしくは他の変位手段によって行われてもよい(例えば通路支持体は、Z軸駆動部を有してもよい)。さらに他の別の実施形態では、ハンドオフセクションによってキャリアと通路の連結および分断のためにキャリアとキャリッジを閉締する移動軸または閉締軸は、いかなる所望の方向(地面基準座標系に対して)であってもよい。
図55、55B〜Cに最もよく見られ、前述されたように、ハンドオフセクションA4300は、例えば接合セクションA4200のロボットA4202によってアクセス可能に配置されるドロップステーションDSを有する。例示的な実施形態では、ドロップステーションDSは、大量搬送セクションの通路およびその上を搬送されるキャリアの搬送エンベロープTEは、Y軸等(別の実施形態では、オフセットは、いずれかの所望の軸に沿ってもよい)にオフセットされてもよい。一般的に、通路によって定義される長手方向からの横方向オフセットと称される場合がある、ドロップステーションDS(図55B〜55Cに最もよく見られる)のオフセットは、接合セクションA4200から上部キャリア接合部分A5002へのアクセスを容易にする。また、例示的な実施形態では、キャリアの上部接合部分A500Nは、キャリアがキャリッジA4302によってドロップステーションDSに置かれる場合、キャリッジが別のキャリアの接合部分A5002でキャリアと接合するために、接合セクションA4200によって自由に嵌合されてもよい。したがって、例示的な実施形態では、キャリアは、掴み/配置行動の干渉なく、キャリッジA4302と接合セクションのロボットA4202との間を直接移送されてもよい。別の実施形態では、キャリアをストレージ位置に置くために、ハンドオフシステムのキャリッジが配置されてもよく、接合セクションがストレージ位置からキャリアにアクセスしてもよい。その他の別の実施形態では、ハンドオフセクションのキャリッジおよび接合セクションのロボットは、共通接合部分でキャリアを接合してもよい。例示的な実施形態では、キャリアへの上面アクセスは、接合セクションがドロップステーションDSからキャリアを接合するために、フィーダロボットA4202を採用できるようにする。別の実施形態では、ハンドオフセクションのドロップステーションは、接合セクションがドロップステーションでキャリアにアクセスし、接合できるようにするために、搬送エンベロープからいずれかの適した方向にオフセットされてもよい。
図55B〜55Cに最もよく見られるように、例示的な実施形態では、キャリアA5000は、キャリッジA4302によってドロップステーションから、またはそこへ移動されてもよい。一例として、キャリッジは、キャリッジがキャリアをドロップステーションに移動できるようにする、適したY駆動部(駆動部は、キャリッジまたは少なくともキャリアを接合/支持する部分にオフセット方向における移動自由度を提供するために所望されるものであってもよい)を有してもよい。一例として、キャリッジ接合部分A4306は、Y方向に移動可能な可動式支持体上にあってもよい。別の実施形態では、キャリアを有するユニット等のキャリッジは、キャリアをドロップステーションに移動するために、Y方向に移動可能であってもよい。さらに他の実施形態では、トラックは、トラックに沿って進行するキャリッジがドロップステーションに誘導されるように、搬送エンベロープから離れている曲がり(例えば永久ループ)等を有する形であってもよい。
ここで、また図56〜56Aを参照すると、別の例示的な実施形態による、代表的な搬送システムA4000’の概略平面図および正面図がそれぞれ示されている。図56〜56Aに図示される例示的な実施形態では、搬送システムA4000’は、前述された搬送システムA4000と実質的に類似する(類似機構には、類似番号が付けられている)。搬送システムA4000’は、一般的に、多数の通路A4102’を有する大量搬送セクションA4100’、接合セクションA4200’(例示目的のために、ガントリーとして図示される)、および大量搬送機と接合部分セクションとの間でキャリアA5000’をハンドオフし、所望の大量搬送セクションの通路によって搬送されるキャリアが実質的に一定の進行速度を維持できるようにするためのハンドオフセクションA4300’を有する。例示的な実施形態では、ハンドオフセクションA4300’のドロップステーションDS’と通路A4102’の搬送エンベロープTE’との間の分離またはオフセット(搬送エンベロープの外側で搬送速度を決定するキャリアの動作/行動を実行できるようにする)は、通路A4102’の方向変更によって行われてもよい。図56に最もよく見られるように、例示的な実施形態では、通路は、互いに対して異なる方向を有するセクションA4102A’、A4102B’、A4102C’を有してもよい。例えば、これは、シャント/バイパスセクションの交差点、通路の端部セクション(図29A〜29B、および図51も参照)で行われてもよい。また、図56に示される実施例のもののように、異なる方向を有する通路セクションA4102A’、A4102B’、A4102C’は、大量搬送システムの通路からキャリアを積載/積卸することが望ましいFAB領域内に提供されてもよい。図56に示される例示的な実施形態では、通路セクションA4102A’、A4102B’、A4102C’の配置は、一般的に2つの曲がりを画定し、それらのそれぞれは、ドロップステーションDSを設置するために搬送エンベロープTE’とハンドオフセクションとの間の所望の分離を提供するのに十分な寸法である。前述されたように、示される通路セクションの方向および配置は、例示に過ぎない。例示的な実施形態では、それぞれのセクションは、ハンドオフセクション部分A4300’を有し、これは、互いおよび前述され、図55A〜55Dに示されるハンドオフセクションA4300と実質的に類似してもよい。それぞれのハンドオフセクション部分A4300’は、通路A4102’からキャリアA5000’を積載/積卸する(前述されたものと同様な方法で)ために配置されるキャリッジおよび縦走トラックA4304’(図56Aも参照)を有してもよい。それぞれのハンドオフセクション部分A4300D’は、キャリアのためのドロップステーションDS’を有してもよい。例示的な実施形態では、ドロップステーションDS’は、トラックA4304’と実質的に一列であってもよい(図56のいくつかの下流または上流の通路の搬送エンベロープTE’とともに)。例示的な実施形態では、ハンドオフセクションのある部分A4300、A4300Bは、キャリアを通路から積卸するために使用されてもよく、その他の部分は、キャリアを通路に積載するために使用されてもよい。一例として、部分A4300’は、接合し、通路セクションA4102A’からキャリアを掴んでもよい。積卸されたキャリアA5000’は、接合セクションA4200’にハンドオフするために、例えばトラックA4304’の端部に位置するドロップステーションDS’に持ち込まれてもよい。通路上に積載するキャリアは、ハンドオフするために、接合セクションA4200’によって部分A4300B’のドロップステーションDSB’に持ち込まれてもよい。ハンドオフセクション部分A4300B’は、次いでキャリアを移動し、通路セクションA4102C’と搬送速度および方向を合わせ、キャリアを通路に積載する。別の実施形態では、ハンドオフセクションのそれぞれの部分は、キャリアを通路に/通路から積載および積卸可能であってもよく(例えばトラックは、通路に対してキャリアを積載または積卸するのを支持するために置かれる複数のドロップステーションを有してもよく、および/またはキャリッジは、積載および積卸の両方を行うために、トラックに沿って循環してもよい。したがって、搬送システムA4000’は、非同期であってもよい。
工場自動化は、例えばそれぞれのウェハのプロセス全体にわたり、計画を立て、スケジュールを組み、追跡するために、ウェハ識別表示を使用する。IDは、機械読み取り可能であり、ホストサーバ上のデータベースで管理される。データベース内のウェハ識別表示は、ウェハの破損、装置の停止状況またはソフトウェアのエラーから影響を受ける。したがって、これを克服するために、それぞれの処理ツールで繰り返される読み取りステップが使用されてもよい。ウェハの機械読み取りは、典型的に、例えばキャリアが積載され、ウェハが取り出され、次いで配向された後に行われてもよい。IDは、検証のためにホストに報告され、次いで認証後に処理が開始される。従来的に、不正なウェハが積載される場合、特定するためにかなりの時間を浪費しなければそれが分からない。さらに、ツールがエラーのために停止する場合、ウェハを取り出し、キャリア/データベースに再入力する必要があり、人的エラーの可能性を生み出す。キャリアは、ウェハID’を格納することができ、積載ポート内に含まれ、それによって読まれる、搭載された書き込み可能なデータタグを所有してもよい。前述された例示的な実施形態によるキャリアは、積載ポートでキャリアの書き込み可能なIDタグとウェハID’をインターロックする、インターロックを有してもよい。キャリア上の書き込み可能なIDタグは、外部デジタルI/O信号を盛り込む。信号は、ポッドドアの取り外しを検出することができるセンサに直結される。センサは、光学的、機械的、音響的、容量的なもの等のいかなる適した種類のものであってもよい。一例として、ポッドシェルおよびポッドドアの両方の上の導電性パッドを低電圧信号ラインが通り抜けてもよい。ドアが閉締され、電圧の流れが終了する場合、パッドは、局部接触する。ドアが取り外される際、電圧の流れが遮断され、キャリアIDタグに信号が作製される。
一例示的な実施形態に従い、ソフトウェアインテグリティタグおよびドアが開口されたかどうかを検出するための方法に加えて、ウェハ読み取り方法を導入する。例えば、インテグリティタグは、ウェハが積載され、ドアがポッドに固定された後に、書き込み可能なキャリアIDに書き込まれる。ポッドが次のツール積載ポートに到着した際、タグは、インテグリティタグとともに読まれる。インテグリティタグが有効な場合、ウェハID’は、改ざんされておらず、有効であると考えられる。インテグリティタグが無効な場合、ある時点でドアが取り外されており、ウェハIDの正確性に疑いがある。この情報に基づき、ホストは、完全性を検証するために、ツールでのウェハの読み取りを強制する。
別の例示的な実施形態によると、一体型ウェハIDリーダは、積載ポートに提供されてもよい。リーダは、サイクル時間を最小化するために、連続ドア開口中に、ID’を読み取ることができるように配置される。本実施形態は、処理ツール内の方法と比較し、サイクル時間が低減されるという利点を有し、また、処理ツールホスト通信から分離して検証スキーム全体を実行することができる。
別の例示的な実施形態によると、キャリア内のそれぞれのウェハスロットに対する専用アルファベット数字ディスプレイがキャリアに付け加えられてもよい。一体化されたディスプレイは、キャリア内の実際のウェハIDと相互に関係する。文字高さは、操作者と天井に取り付けられたストレージネストとの間の距離と同様の離れた距離から読むために十分大きくてもよい。本実施形態では、ディスプレイは、IDインテグリティを図式的に示す。インテグリティタグが無効な場合、異なる文字または色でディスプレイ上に図式的に示される。
さらに別の例示的な実施形態に従って、外部ウェハIDリーダを統合する。外部ウェハIDリーダは、例えば、AMHSシステム内の積載ポートおよび処理ツールの外部に置かれてもよい。疑わしいウェハID’を有するキャリアは、外部リーダに積載され、検証される。一度動作が完了すると、ドアが固定され、書き込み可能なキャリアIDにインテグリティタグが書き込まれる。ここで、キャリアは、最終目的地であるストレージ/積載ポート位置に移動される。これは、ツール処理時間と連続というよりは、ウェハキャリアの待ち時間と平行して実行されるという利点を有する。さらに、外部リーダは、ウェハ配向方法を組み込むことができる。
前述された説明は、本発明の実例でしかないことが理解されるべきである。本発明から逸脱することなく、当業者によって様々な代替および修正が考案されてもよい。したがって、本発明は、添付の特許請求の範囲に含まれる、すべての代替、修正、および変形を包括することが意図される。